1
|
Ye BC, Li WH, Zhang X, Chen J, Gao Y, Wang D, Pan H. Advancing Heterogeneous Organic Synthesis With Coordination Chemistry-Empowered Single-Atom Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2402747. [PMID: 39291881 DOI: 10.1002/adma.202402747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/17/2024] [Indexed: 09/19/2024]
Abstract
For traditional metal complexes, intricate chemistry is required to acquire appropriate ligands for controlling the electron and steric hindrance of metal active centers. Comparatively, the preparation of single-atom catalysts is much easier with more straightforward and effective accesses for the arrangement and control of metal active centers. The presence of coordination atoms or neighboring functional atoms on the supports' surface ensures the stability of metal single-atoms and their interactions with individual metal atoms substantially regulate the performance of metal active centers. Therefore, the collaborative interaction between metal and the surrounding coordination environment enhances the initiation of reaction substrates and the formation and transformation of crucial intermediate compounds, which imparts single-atom catalysts with significant catalytic efficacy, rendering them a valuable framework for investigating the correlation between structure and activity, as well as the reaction mechanism of catalysts in organic reactions. Herein, comprehensive overviews of the coordination interaction for both homogeneous metal complexes and single-atom catalysts in organic reactions are provided. Additionally, reflective conjectures about the advancement of single-atom catalysts in organic synthesis are also proposed to present as a reference for later development.
Collapse
Affiliation(s)
- Bo-Chao Ye
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wen-Hao Li
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Xia Zhang
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yong Gao
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| |
Collapse
|
2
|
Scaringi S, Leforestier B, Mazet C. Remote Functionalization by Pd-Catalyzed Isomerization of Alkynyl Alcohols. J Am Chem Soc 2024; 146:18606-18615. [PMID: 38941513 PMCID: PMC11240579 DOI: 10.1021/jacs.4c05136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/30/2024]
Abstract
In recent years, progress has been made in the development of catalytic methods that allow remote functionalizations based on alkene isomerization. In contrast, protocols based on alkyne isomerization are comparatively rare. Herein, we report a general Pd-catalyzed long-range isomerization of alkynyl alcohols. Starting from aryl-, heteroaryl-, or alkyl-substituted precursors, the optimized system provides access preferentially to the thermodynamically more stable α,β-unsaturated aldehydes and is compatible with potentially sensitive functional groups. We showed that the migration of both π-components of the carbon-carbon triple bond can be sustained over several methylene units. Computational investigations served to shed light on the key elementary steps responsible for the reactivity and selectivity. These include an unorthodox phosphine-assisted deprotonation rather than a more conventional β-hydride elimination in the final tautomerization event.
Collapse
Affiliation(s)
| | | | - Clément Mazet
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
3
|
Rodina D, Vaith J, Paradine SM. Ligand control of regioselectivity in palladium-catalyzed heteroannulation reactions of 1,3-Dienes. Nat Commun 2024; 15:5433. [PMID: 38926361 PMCID: PMC11208576 DOI: 10.1038/s41467-024-49803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Olefin carbofunctionalization reactions are indispensable tools for constructing diverse, functionalized scaffolds from simple starting materials. However, achieving precise control over regioselectivity in intermolecular reactions remains a formidable challenge. Here, we demonstrate that using PAd2nBu as a ligand enables regioselective heteroannulation of o-bromoanilines with branched 1,3-dienes through ligand control. This approach provides regiodivergent access to 3-substituted indolines, showcasing excellent regioselectivity and reactivity across a range of functionalized substrates. To gain further insights into the origin of selectivity control, we employ a data-driven strategy, developing a linear regression model using calculated parameters for phosphorus ligands. This model identifies four key parameters governing regioselectivity in this transformation, paving the way for future methodology development. Additionally, density functional theory calculations elucidate key selectivity-determining transition structures along the reaction pathway, corroborating our experimental observations and establishing a solid foundation for future advancements in regioselective olefin difunctionalization reactions.
Collapse
Affiliation(s)
- Dasha Rodina
- Department of Chemistry, University of Rochester, Rochester, NY, USA
| | - Jakub Vaith
- Department of Chemistry, University of Rochester, Rochester, NY, USA
| | - Shauna M Paradine
- Department of Chemistry, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
4
|
Cook A, Newman SG. Alcohols as Substrates in Transition-Metal-Catalyzed Arylation, Alkylation, and Related Reactions. Chem Rev 2024; 124:6078-6144. [PMID: 38630862 DOI: 10.1021/acs.chemrev.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Alcohols are abundant and attractive feedstock molecules for organic synthesis. Many methods for their functionalization require them to first be converted into a more activated derivative, while recent years have seen a vast increase in the number of complexity-building transformations that directly harness unprotected alcohols. This Review discusses how transition metal catalysis can be used toward this goal. These transformations are broadly classified into three categories. Deoxygenative functionalizations, representing derivatization of the C-O bond, enable the alcohol to act as a leaving group toward the formation of new C-C bonds. Etherifications, characterized by derivatization of the O-H bond, represent classical reactivity that has been modernized to include mild reaction conditions, diverse reaction partners, and high selectivities. Lastly, chain functionalization reactions are described, wherein the alcohol group acts as a mediator in formal C-H functionalization reactions of the alkyl backbone. Each of these three classes of transformation will be discussed in context of intermolecular arylation, alkylation, and related reactions, illustrating how catalysis can enable alcohols to be directly harnessed for organic synthesis.
Collapse
Affiliation(s)
- Adam Cook
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
5
|
Muto K, Hatanaka M, Kakiuchi F, Kochi T. Conformational Isomerization as a Process to Determine Selectivity over Reaction Pathways: Effect of Alkene Rotation in Chain Walking via Cis Alkene Intermediates. J Org Chem 2024; 89:4712-4721. [PMID: 38526974 DOI: 10.1021/acs.joc.3c02960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
In organic reactions, bond-forming and bond-cleaving processes are generally considered to be more important than other processes such as conformational isomerization. We report herein an example where a conformational isomerization process, propeller-like alkene rotation, is considered to determine the selectivity over the reaction pathways. The transition state with the highest energy barrier in some alkylpalladium isomerization (chain walking) events was theoretically indicated to correspond to alkene rotation, while transition states for bond-cleaving β-hydride elimination and bond-forming migratory insertion were not even observed. It was also suggested both theoretically and experimentally that the palladium chain walking over internal carbons in alkyl chains proceeds via cis alkene intermediates rather than thermodynamically more stable trans alkene intermediates, due to their relative difficulty to undergo alkene rotation.
Collapse
Affiliation(s)
- Kazuma Muto
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Miho Hatanaka
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Fumitoshi Kakiuchi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Takuya Kochi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
6
|
Shirai T, Migitera Y, Nakajima R, Kumamoto T. Palladium-Catalyzed Reductive Heck Hydroarylation of Unactivated Alkenes Using Hydrosilane at Room Temperature. J Org Chem 2024; 89:2787-2793. [PMID: 38301250 PMCID: PMC10877589 DOI: 10.1021/acs.joc.3c02488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
The reductive Heck hydroarylation of unactivated alkenes has emerged as an essential reaction for regioselective hydroarylation. Herein, we report a palladium-catalyzed reductive Heck hydroarylation of unactivated alkenes under mild conditions with enhanced functional group tolerance using hydrosilane as the reducing reagent. Under the optimal conditions, the alkylarene yields increased, resulting in minimal undesired products. Mechanistic studies using deuterated reagents indicated the involvement of two competing catalytic cycles.
Collapse
Affiliation(s)
- Takahiro Shirai
- Graduate
School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yusuke Migitera
- School
of Pharmaceutical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Ryo Nakajima
- Graduate
School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Takuya Kumamoto
- Graduate
School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
7
|
Zeng W, Chen AW, Yan MJ, Wang J. Sterically demanding Csp 2( ortho-substitution)-Csp 3(tertiary) bond formation via carboxylate-directed Mizoroki-Heck reaction under extra-ligand-free conditions. Org Biomol Chem 2023; 22:80-84. [PMID: 38051230 DOI: 10.1039/d3ob01784b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Construction of the sterically demanding Csp2(oS)-Csp3(T) bond was achieved by carrying out the Pd-catalyzed carboxylate-directed Mizoroki-Heck reaction under extra-ligand-free aqueous conditions. The cooperative role of the presence of water with the absence of phosphine ligand was proposed to accelerate the migratory insertion process considerably, delivering a broad substrate scope.
Collapse
Affiliation(s)
- Wei Zeng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ai-Wen Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ming-Jie Yan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jie Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Linnebank PR, Poole DA, Kluwer AM, Reek JNH. A substrate descriptor based approach for the prediction and understanding of the regioselectivity in caged catalyzed hydroformylation. Faraday Discuss 2023; 244:169-185. [PMID: 37139675 PMCID: PMC10416704 DOI: 10.1039/d3fd00023k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023]
Abstract
The use of data driven tools to predict the selectivity of homogeneous catalysts has received considerable attention in the past years. In these studies often the catalyst structure is varied, but the use of substrate descriptors to rationalize the catalytic outcome is relatively unexplored. To study whether this may be an effective tool, we investigated both an encapsulated and a non-encapsulated rhodium based catalyst in the hydroformylation reaction of 41 terminal alkenes. For the non-encapsulated catalyst, CAT2, the regioselectivity of the acquired substrate scope could be predicted with high accuracy using the Δ13C NMR shift of the alkene carbon atoms as a descriptor (R2 = 0.74) and when combined with a computed intensity of the CC stretch vibration (ICC stretch) the accuracy increased further (R2 = 0.86). In contrast, a substrate descriptor approach with an encapsulated catalyst, CAT1, appeared more challenging indicating a confined space effect. We investigated Sterimol parameters of the substrates as well as computer-aided drug design descriptors of the substrates, but these parameters did not result in a predictive formula. The most accurate substrate descriptor based prediction was made with the Δ13C NMR shift and ICC stretch (R2 = 0.52), suggestive of the involvement of CH-π interactions. To further understand the confined space effect of CAT1, we focused on the subset of 21 allylbenzene derivatives to investigate predictive parameters unique for this subset. These results showed the inclusion of a charge parameter of the aryl ring improved the regioselectivity predictions, which is in agreement with our assessment that noncovalent interactions between the phenyl ring of the cage and the aryl ring of the substrate are relevant for the regioselectivity outcome. However, the correlation is still weak (R2 = 0.36) and as such we are investigating novel parameters that should improve the overall regioselectivity outcome.
Collapse
Affiliation(s)
- Pim R Linnebank
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - David A Poole
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | | | - Joost N H Reek
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
- InCatT B.V., Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
9
|
Simlandy AK, Alturaifi TM, Nguyen JM, Oxtoby LJ, Wong QN, Chen JS, Liu P, Engle KM. Enantioselective Hydroalkenylation and Hydroalkynylation of Alkenes Enabled by a Transient Directing Group: Catalyst Generality through Rigidification. Angew Chem Int Ed Engl 2023; 62:e202304013. [PMID: 37141510 PMCID: PMC10524838 DOI: 10.1002/anie.202304013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/06/2023]
Abstract
The catalytic enantioselective synthesis of α-chiral alkenes and alkynes represents a powerful strategy for rapid generation of molecular complexity. Herein, we report a transient directing group (TDG) strategy to facilitate site-selective palladium-catalyzed reductive Heck-type hydroalkenylation and hydroalkynylation of alkenylaldehyes using alkenyl and alkynyl bromides, respectively, allowing for construction of a stereocenter at the δ-position with respect to the aldehyde. Computational studies reveal the dual beneficial roles of rigid TDGs, such as L-tert-leucine, in promoting TDG binding and inducing high levels of enantioselectivity in alkene insertion with a variety of migrating groups.
Collapse
Affiliation(s)
- Amit Kumar Simlandy
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, CA 92037, La Jolla, USA
| | - Turki M Alturaifi
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, PA 15260, Pittsburgh, USA
| | - Johny M Nguyen
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, CA 92037, La Jolla, USA
| | - Lucas J Oxtoby
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, CA 92037, La Jolla, USA
| | - Quynh Nguyen Wong
- Automated Synthesis Facility, The Scripps Research Institute, 10550 North Torrey Pines Road, CA 92037, La Jolla, USA
| | - Jason S Chen
- Automated Synthesis Facility, The Scripps Research Institute, 10550 North Torrey Pines Road, CA 92037, La Jolla, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, PA 15260, Pittsburgh, USA
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, CA 92037, La Jolla, USA
| |
Collapse
|
10
|
Flesch KN, Cusumano AQ, Chen PJ, Strong CS, Sardini SR, Du YE, Bartberger MD, Goddard WA, Stoltz BM. Divergent Catalysis: Catalytic Asymmetric [4+2] Cycloaddition of Palladium Enolates. J Am Chem Soc 2023; 145:11301-11310. [PMID: 37186945 PMCID: PMC10388310 DOI: 10.1021/jacs.3c02104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
An asymmetric decarboxylative [4+2] cycloaddition from a catalytically generated chiral Pd enolate was developed, forging four contiguous stereocenters in a single transformation. This was achieved through a strategy termed divergent catalysis, wherein departure from a known catalytic cycle enables novel reactivity of a targeted intermediate prior to re-entry into the original cycle. Mechanistic studies including quantum mechanics calculations, Eyring analysis, and KIE studies offer insight into the reaction mechanism.
Collapse
Affiliation(s)
- Kaylin N Flesch
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Alexander Q Cusumano
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Peng-Jui Chen
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Christian Santiago Strong
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Stephen R Sardini
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Yun E Du
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | | | - William A Goddard
- Materials and Process Simulation Center, Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Brian M Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
11
|
Li X, Yang T, Li J, Li X, Chen P, Lin Z, Liu G. Regio- and enantioselective remote dioxygenation of internal alkenes. Nat Chem 2023:10.1038/s41557-023-01192-3. [PMID: 37106097 DOI: 10.1038/s41557-023-01192-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/27/2023] [Indexed: 04/29/2023]
Abstract
Methods for the enantioselective direct oxygenation of internal alkenes have provided chemists with versatile and powerful toolboxes for the synthesis of optically pure alcohols, one of the most privileged structural motifs. Regioselectivity, however, remains a formidable challenge in the functionalization of internal alkenes. Here we report a palladium-catalysed highly regio- and enantioselective remote 1,n-dioxygenation (n ≥ 4) of internal alkenes with engineered pyridine-oxazoline (Pyox) ligands. The reactions proceed efficiently and exhibit a broad substrate scope with excellent regio- and enantioselectivity, affording optically pure 1,n-diol acetates as the key synthons for important bioactive molecules. Experimental studies and density functional theory calculations provide evidence that the regioselectivity is governed by the reactivity disparity of two allylic C-H bonds, where the oxypalladation is reversible and the first palladium migration step proves to be the regioselectivity-determining step, enabled by the modified phenyl-substituted Pyox ligands.
Collapse
Affiliation(s)
- Xiaonan Li
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tilong Yang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jiayuan Li
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Li
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Guosheng Liu
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
12
|
Byrne TJM, Mylrea ME, Cuthbertson JD. A Redox-Relay Heck Approach to Substituted Tetrahydrofurans. Org Lett 2023; 25:2361-2365. [PMID: 36988968 PMCID: PMC10088021 DOI: 10.1021/acs.orglett.3c00769] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
An operationally simple and efficient strategy for the synthesis of substituted tetrahydrofurans from readily available cis-butene-1,4-diol is described. A redox-relay Heck reaction is used to rapidly access cyclic hemiacetals that can be directly reduced to afford the corresponding 3-aryl tetrahydrofuran. Furthermore, the hemiacetals can also serve as precursors to a range of disubstituted tetrahydrofurans, including the calyxolane natural products.
Collapse
Affiliation(s)
- Tom J M Byrne
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham NG7 2TU, U.K
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Megan E Mylrea
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham NG7 2TU, U.K
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - James D Cuthbertson
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham NG7 2TU, U.K
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| |
Collapse
|
13
|
Duhamel T, Scaringi S, Leforestier B, Poblador-Bahamonde AI, Mazet C. Assisted Tandem Pd Catalysis Enables Regiodivergent Heck Arylation of Transiently Generated Substituted Enol Ethers. JACS AU 2023; 3:261-274. [PMID: 36711081 PMCID: PMC9875267 DOI: 10.1021/jacsau.2c00645] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Two complementary regiodivergent Pd-catalyzed assisted tandem [isomerization/Heck arylation] reactions are reported. They provide access to a broad array of acyclic trisubstituted vinyl ethers starting from readily available alkenyl ethers. In both cases, the isomerization is conducted with a [Pd-H] precatalyst supported by tris-tert-butyl phosphine ligands. When the catalyst is modified by the addition of a chelating bisphosphine ligand (dppp), an organic base (Cy2NMe), sodium acetate, and aryl triflates are used as electrophiles, the α-arylation pathway is promoted preferentially. The β-arylation pathway is favored for electron-deficient and electron-neutral aryl halides when the catalyst is simply modified by the addition of an excess of an organic base (Et3N) after completion of the isomerization reaction. Electron-rich aryl halides lead to reduced levels of regiocontrol. The moderate stereoselectivity obtained are proposed to reflect the absence of stereocontrol in the isomerization step. Computational analyses suggest that migratory insertion is selectivity-determining for both the arylations. For the β-selective arylation, an energy decomposition analysis underscored that electronic factors favor α-regioselectivity and steric effects favor β-regioselectivity. Preliminary investigations show that high levels of stereoselectivity can be achieved for the α-selective arylation by ligand control. Complementarily, reaction conditions for postcatalytic stereo-correction have also been identified for each catalytic system.
Collapse
Affiliation(s)
| | | | | | | | - Clément Mazet
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
14
|
Xiao B, Sun TY, Wu YD. Study of Pd-catalyzed Selective Mono- and Di-C(sp 3)-H Bond Activation: A Bi-ligand Model. J Org Chem 2022; 87:10958-10966. [PMID: 35901268 DOI: 10.1021/acs.joc.2c01235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Controlling the number of C-H bond activation is a long-standing challenge in organic synthesis. Recently, Yu's group demonstrated that in Pd-catalyzed alanine's arylation, pyridine-type ligands favor a mono-C-H bond activation, while quinoline-type ligands favor a di-C-H bond activation. To disclose the underlying principles, a theoretical study (density functional theory (DFT)) has been carried out. Our study indicates that a mono-ligand model, which is generally adopted in the community, does not reproduce the experimentally observed mono-/di-selectivity, while a bi-ligand model can rationalize the experimental observations well, including the observed diastereoselectivity in diarylation. The electron-rich pyridine-type ligands with less steric congestion can promote the C-H bond activation reaction of alanine derivatives. The quinoline-type ligands have a better π back-donation interaction with the metal, which makes a more active C-H bond activation than the pyridine-type ligands for this reaction. This bi-ligand model, which is a necessity, allows the understanding and future design of a dual ligand effect in C-H bond activation.
Collapse
Affiliation(s)
- Bo Xiao
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Computational Chemistry and Drug Design, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yun-Dong Wu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Computational Chemistry and Drug Design, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,Shenzhen Bay Laboratory, Shenzhen 518132, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Siddaraju Y, Sabbatani J, Cohen A, Marek I. Preparation of Distant Quaternary Carbon Stereocenters by Double Selective Ring-Opening of 1,1-Biscyclopropyl Methanol Derivatives. Angew Chem Int Ed Engl 2022; 61:e202203652. [PMID: 35521738 PMCID: PMC9401570 DOI: 10.1002/anie.202203652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 12/15/2022]
Abstract
The diastereoselective double carbometalation reaction of cyclopropenes provides, in a single-pot operation, two ω-ene-[1,1]-bicyclopropyl ester derivatives. One regioisomer then undergoes a Pd-catalyzed addition of aryl iodide to provide skipped dienes possessing several distant stereocenters including two congested quaternary carbon centers with excellent diastereoselectivity.
Collapse
Affiliation(s)
- Yogesh Siddaraju
- Schulich Faculty of Chemistry, Technion—Israel Institute of TechnologyTechnion City3200009HaifaIsrael
| | - Juliette Sabbatani
- Schulich Faculty of Chemistry, Technion—Israel Institute of TechnologyTechnion City3200009HaifaIsrael
| | - Anthony Cohen
- Schulich Faculty of Chemistry, Technion—Israel Institute of TechnologyTechnion City3200009HaifaIsrael
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion—Israel Institute of TechnologyTechnion City3200009HaifaIsrael
| |
Collapse
|
16
|
Siddaraju Y, Sabbatani J, Cohen A, Marek I. Preparation of Distant Quaternary Carbon Stereocenters by Double Selective Ring‐Opening of 1,1‐Biscyclopropyl Methanol Derivatives. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Anthony Cohen
- Technion Israel Institute of Technology Chemistry ISRAEL
| | - Ilan Marek
- Technion - Israel Institute of Technology Schulich Faculty of Chemistry Technion City 32000 Haifa ISRAEL
| |
Collapse
|
17
|
Yang X, Li X, Chen P, Liu G. Palladium(II)-Catalyzed Enantioselective Hydrooxygenation of Unactivated Terminal Alkenes. J Am Chem Soc 2022; 144:7972-7977. [PMID: 35468295 DOI: 10.1021/jacs.2c02753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel Pd(II)-catalyzed enantioselective Markovnikov hydrooxygenation of unactivated terminal alkenes using a substituted pyridinyl oxazoline (Pyox) ligand has been developed. Herein it was discovered that the (EtO)2MeSiH/BQ redox system is vital for the highly selective and efficient hydrooxygenation, where the alkylpalladium(II) species generated from enantioselective oxypalladation step is reduced by silane. This method provides efficient access to optically pure alcohol esters from easily available alkenes with excellent enantioselectivities and features a broad substrate scope.
Collapse
Affiliation(s)
- Xintuo Yang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hong Kong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiang Li
- State Key Laboratory of Organometallic Chemistry and Shanghai Hong Kong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry and Shanghai Hong Kong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Guosheng Liu
- State Key Laboratory of Organometallic Chemistry and Shanghai Hong Kong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,Chang-Kung Chuang Institute, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
18
|
Herrera CL, Santiago JV, Pastre JC, Correia CRD. In Tandem Auto‐Sustainable Enantioselective Heck‐Matsuda Reactions Directly from Anilines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | - João Victor Santiago
- Institute of Chemistry University of Campinas – UNICAMP Campinas 13083-970 São Paulo Brazil
| | - Julio Cezar Pastre
- Institute of Chemistry University of Campinas – UNICAMP Campinas 13083-970 São Paulo Brazil
| | | |
Collapse
|
19
|
Zhang M, Ji Y, Zhang C. Transition Metal Catalyzed Enantioselective Migratory Functionalization Reactions of Alkenes through Chain‐walking. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Min Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University Weijin Rd. 92 Tianjin 300072 China
| | - Yuqi Ji
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University Weijin Rd. 92 Tianjin 300072 China
| | - Chun Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University Weijin Rd. 92 Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| |
Collapse
|
20
|
Cohen A, Kaushansky A, Marek I. Mechanistic Insights on the Selectivity of the Tandem Heck-Ring-Opening of Cyclopropyldiol Derivatives. JACS AU 2022; 2:687-696. [PMID: 35373195 PMCID: PMC8970019 DOI: 10.1021/jacsau.1c00547] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Indexed: 06/14/2023]
Abstract
The preparation of a new class of alkenyl cyclopropyl diols, easily available through a copper-catalyzed carbometalation reaction of cyclopropenes, has enabled the study of key mechanistic aspects of the tandem Heck-cyclopropane ring-opening reaction. Utilizing these substrates containing two distinct hydroxyl groups allowed us to examine parameters affecting the reaction outcome and selectivity. The combination of these experimental results with detailed DFT studies shed light on the mechanism governing the regio- and stereoselectivity of the cyclopropane ring-opening. A thorough investigation displayed the dual roles fulfilled by the hydroxyl group during the reaction, which is key to this remarkable transformation. In addition to its mechanistic implication, the reaction granted access to various lactones possessing up to four stereocenters as a single diastereomer, conveniently prepared in only two catalytic steps from easily accessible achiral cyclopropenes.
Collapse
|
21
|
Xu J, Ma X, Liu C, Zhang D. Density Functional Theory Study of Gold-Catalyzed 1,2-Diarylation of Alkenes: π-Activation versus Migratory Insertion Mechanisms. J Org Chem 2022; 87:4078-4087. [PMID: 35232016 DOI: 10.1021/acs.joc.1c02861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Density functional theory calculations are carried out to better understand the first gold-catalyzed 1,2-diarylation reactions of alkenes reported in the recent literature. The calculations on two representative reactions, aryl alkene/aryl iodide coupling pair (the aryl-I bond is located outside the aryl alkene) versus iodoaryl alkene/indole coupling pair (the aryl-I bond is located in the aryl alkene), confirm that the reaction involves a π-activation mechanism rather than the general migratory insertion mechanism in previously known metal catalysis by Pd, Ni, and Cu complexes. Theoretical results rationalize the regioselectivity of the reactions controlled by the aryl-I bond position (intermolecular or intramolecular) and also the ligand and substituent effects on the reactivity.
Collapse
Affiliation(s)
- Jihong Xu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Xuexiang Ma
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Chengbu Liu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Dongju Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
22
|
Sansinenea E, Ortiz A. Asymmetric Organocatalytic Syntheses of Bioactive Compounds. Curr Org Synth 2022; 19:148-165. [DOI: 10.2174/1570179418666210728145206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/10/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
Background:
The total syntheses of complex natural products have evolved to include new methodologies to save time, simplifying the form to achieve these natural compounds.
Objective:
In this review, we have described the asymmetric synthesis of different natural products and biologically active compounds of the last ten years until the current day.
Results:
An asymmetric organocatalytic reaction is a key to generate stereoselectively the main structure with the required stereochemistry.
Conclusion:
Even more remarkable, the organocatalytic cascade reactions, which are carried out with high stereoselectivity, as well as a possible approximation of the organocatalysts activation with sub-strates are also described.
Collapse
Affiliation(s)
- Estibaliz Sansinenea
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Aurelio Ortiz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
23
|
Affiliation(s)
- Victor M. Chernyshev
- Platov South-Russian State Polytechnic University (NPI), Novocherkassk, 346428, Russia
| | - Valentine P. Ananikov
- Platov South-Russian State Polytechnic University (NPI), Novocherkassk, 346428, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
24
|
Zeferino RCF, Piaia VAA, Orso VT, Pinheiro VM, Zanetti M, Colpani GL, Padoin N, Soares C, Fiori MA, Riella HG. Neryl acetate synthesis from nerol esterification with acetic anhydride by heterogeneous catalysis using ion exchange resin. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Seth K. Recent progress in rare-earth metal-catalyzed sp 2 and sp 3 C–H functionalization to construct C–C and C–heteroelement bonds. Org Chem Front 2022. [DOI: 10.1039/d1qo01859k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The review presents rare-earth metal-catalyzed C(sp2/sp3)–H functionalization accessing C–C/C–heteroatom bonds and olefin (co)polymerization, highlighting substrate scope, mechanistic realization, and origin of site-, enantio-/diastereo-selectivity.
Collapse
Affiliation(s)
- Kapileswar Seth
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) – Guwahati, Sila Katamur, Changsari, Kamrup 781101, Assam, India
| |
Collapse
|
26
|
Li WH, Yang J, Wang D, Li Y. Striding the threshold of an atom era of organic synthesis by single-atom catalysis. Chem 2022. [DOI: 10.1016/j.chempr.2021.10.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Hsu DS, Wang MY, Huang JY. Asymmetric Total Syntheses of (+)-5- epi-Schisansphenin B and the Proposed Structure of (+)-15-Hydroxyacora-4(14),8-diene. J Org Chem 2021; 87:644-651. [PMID: 34949087 DOI: 10.1021/acs.joc.1c02627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The asymmetric total syntheses of (+)-5-epi-schisansphenin B and the proposed structure of (+)-15-hydroxyacora-4(14),8-diene have been accomplished from 1,3-cyclopentadione (10) in eight synthetic steps. The enantioselective palladium-catalyzed redox-relay Heck alkenylation, the intramolecular Stetter reaction, and the regioselective Tiffeneau-Demjanov-type ring expansion were the pivotal steps in these syntheses.
Collapse
Affiliation(s)
- Day-Shin Hsu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Minhsiung 62102, Taiwan
| | - Meng-Yu Wang
- Department of Chemistry and Biochemistry, National Chung Cheng University, Minhsiung 62102, Taiwan
| | - Jiun-Yi Huang
- Department of Chemistry and Biochemistry, National Chung Cheng University, Minhsiung 62102, Taiwan
| |
Collapse
|
28
|
Muto K, Kumagai T, Kakiuchi F, Kochi T. Remote Arylative Substitution of Alkenes Possessing an Acetoxy Group via β-Acetoxy Elimination. Angew Chem Int Ed Engl 2021; 60:24500-24504. [PMID: 34510680 DOI: 10.1002/anie.202111396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 12/14/2022]
Abstract
Palladium-catalyzed remote arylative substitution was achieved for the reaction of arylboronic acids with alkenes possessing a distant acetoxy group to provide arylation products having an alkene moiety at the remote position. The use of β-acetoxy elimination as a key step in the catalytic cycle allowed for regioselective formation of unstabilized alkenes after chain walking. This reaction was applicable to various arylboronic acids as well as alkene substrates.
Collapse
Affiliation(s)
- Kazuma Muto
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Takaaki Kumagai
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Fumitoshi Kakiuchi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Takuya Kochi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
29
|
Muto K, Kumagai T, Kakiuchi F, Kochi T. Remote Arylative Substitution of Alkenes Possessing an Acetoxy Group via β‐Acetoxy Elimination. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kazuma Muto
- Department of Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Takaaki Kumagai
- Department of Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Fumitoshi Kakiuchi
- Department of Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Takuya Kochi
- Department of Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| |
Collapse
|
30
|
Unnikrishnan A, Sunoj RB. Iridium-Catalyzed Regioselective Borylation through C-H Activation and the Origin of Ligand-Dependent Regioselectivity Switching. J Org Chem 2021; 86:15618-15630. [PMID: 34598435 DOI: 10.1021/acs.joc.1c02126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Research efforts in catalytic regioselective borylation using C-H bond activation of arenes have gained considerable recent attention. The ligand-enabled regiocontrol, such as in the borylation of benzaldehyde, the selectivity could be switched from the ortho to meta position, under identical conditions, by just changing the external ligand (L) from 8-aminoquinoline (8-AQ) to tetramethylphenanthroline (TMP). The DFT(B3LYP-D3) computations helped us learn that the energetically preferred catalytic pathway includes the formation of an Ir-π-complex between the active catalyst [Ir(L)(Bpin)3] and benzaldimine, a C-H bond oxidative addition (OA) to form an Ir(V)aryl-hydride intermediate, and a reductive elimination to furnish the borylated benzaldehyde as the final product. The lowest energetic span (δEortho = 26 kcal/mol with 8-AQ) is noted in the ortho borylation pathway, with the OA transition state (TS) as the turnover-determining TS. The change in regiochemical preference to the meta borylation (δEmeta = 26) with TMP is identified. A hemilabile mode of 8-AQ participation is found to exhibit a δEortho of 24 kcal/mol for the ortho borylation, relative to that in the chelate mode (δEortho = 26 kcal/mol). The predicted regioselectivity switching is in good agreement with the earlier experimental observations.
Collapse
Affiliation(s)
- Anju Unnikrishnan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Raghavan B Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
31
|
|
32
|
Mechanistically guided survey of enantioselective palladium-catalyzed alkene functionalization. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2021.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Oliveira CC, Correia CRD. Enantioselective Heck-Matsuda Reactions: From Curiosity to a Game-Changing Methodology. CHEM REC 2021; 21:2688-2701. [PMID: 34174155 DOI: 10.1002/tcr.202100149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/14/2021] [Indexed: 11/06/2022]
Abstract
The enantioselective palladium-catalyzed Heck arylation of olefins using arenediazonium salts is one of the last features in the evolution of a synthetic method known as the Heck-Matsuda reaction. This personal account highlights the development of the enantioselective Heck-Matsuda reaction in its initial stages, the challenges faced along the way, and the interesting findings that opened new synthetic opportunities, mainly from our laboratory, featuring the Heck-Matsuda reaction as a central player in the synthesis of bioactive and functional molecules.
Collapse
Affiliation(s)
- Caio C Oliveira
- Institute of Chemistry, University of Campinas, Josué de, Castro, 10384-612, São Paulo, Brazil
| | | |
Collapse
|
34
|
Riemer N, Riemer M, Krüger M, Clarkson GJ, Shipman M, Schmidt B. Synthesis of Arylidene-β-lactams via exo-Selective Matsuda-Heck Arylation of Methylene-β-lactams. J Org Chem 2021; 86:8786-8796. [PMID: 34156248 DOI: 10.1021/acs.joc.1c00638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
exo-Methylene-β-lactams were synthesized in two steps from commercially available 3-bromo-2-(bromomethyl)propionic acid and reacted with arene diazonium salts in a Heck-type arylation in the presence of catalytic amounts of Pd(OAc)2 under ligand-free conditions. The products, arylidene-β-lactams, were obtained in high yields as single isomers. The β-hydride elimination step of the Pd-catalyzed coupling reaction proceeds with high exo-regioselectivity and E-stereoselectivity. With aryl iodides, triflates, or bromides, the coupling products were isolated only in low yields, due to extensive decomposition of the starting material at elevated temperatures. This underlines that arene diazonium salts can be superior arylating reagents in Heck-type reactions and yield coupling products in synthetically useful yields and selectivities when conventional conditions fail.
Collapse
Affiliation(s)
- Nastja Riemer
- Universitaet Potsdam, Institut für Chemie, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany.,Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Martin Riemer
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Mandy Krüger
- Universitaet Potsdam, Institut für Chemie, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| | - Guy J Clarkson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Michael Shipman
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Bernd Schmidt
- Universitaet Potsdam, Institut für Chemie, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
35
|
Kraus SL, Ross SP, Sigman MS. Rate Profiling the Impact of Remote Functional Groups on the Redox-Relay Heck Reaction. Org Lett 2021; 23:2505-2509. [PMID: 33710906 DOI: 10.1021/acs.orglett.1c00450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The redox-relay Heck reaction is a powerful method for the construction of enantioenriched quaternary stereocenters remote from existing functional groups. However, there has been little success in the design of site-selective alkene functionalization based on these methods. Herein, we show that experimentally determined rates can be used to train a multivariate linear regression model capable of predicting the rate of a specific relay Heck reaction, allowing for the site-selective functionalization of diene substrates.
Collapse
Affiliation(s)
- Samantha L Kraus
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Sean P Ross
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
36
|
Xie J, Liang R, Jia Y. Recent Advances of Catalytic Enantioselective Heck Reactions and
Reductive‐Heck
Reactions. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000464] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jia‐Qi Xie
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green‐Chemical Synthesis Technology, Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Ren‐Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green‐Chemical Synthesis Technology, Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Yi‐Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green‐Chemical Synthesis Technology, Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| |
Collapse
|
37
|
Prater MB, Sigman MS. Enantioselective Synthesis of Alkyl Allyl Ethers via Palladium-Catalyzed Redox-Relay Heck Alkenylation of O-Alkyl Enol Ethers. Isr J Chem 2021; 60:452-460. [PMID: 33446940 DOI: 10.1002/ijch.201900077] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Herein we report a transformation that generates an array of enantiomerically enriched, alkyl allyl ethers. Cyclic, acyclic, and heteroatom-bearing alkenyl triflates undergo an enantioselective, palladium-catalyzed C-C bond formation with diverse acyclic O-alkyl enol ethers in good yields and excellent enantioselectivities.
Collapse
Affiliation(s)
- Matthew B Prater
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT, 84112
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT, 84112
| |
Collapse
|
38
|
Zhou J, Zhou Y, Li Y, Zhang J, Zhang L. DFT Mechanistic Study on Palladium‐Catalyzed Redox‐Neutral Hydroarylation of Unactivated Alkenes with Arylboronic Acids. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jianguo Zhou
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling School of Science Tianjin Chengjian University Tianjin 300384 P. R. China
| | - Yongzhu Zhou
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling School of Science Tianjin Chengjian University Tianjin 300384 P. R. China
- School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
| | - Yanxia Li
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling School of Science Tianjin Chengjian University Tianjin 300384 P. R. China
| | - Jie Zhang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling School of Science Tianjin Chengjian University Tianjin 300384 P. R. China
| | - Lei Zhang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling School of Science Tianjin Chengjian University Tianjin 300384 P. R. China
| |
Collapse
|
39
|
Bonfield HE, Valette D, Lindsay DM, Reid M. Stereoselective Remote Functionalization via Palladium-Catalyzed Redox-Relay Heck Methodologies. Chemistry 2021; 27:158-174. [PMID: 32744766 PMCID: PMC7821197 DOI: 10.1002/chem.202002849] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Indexed: 11/29/2022]
Abstract
Exploration of novel, three-dimensional chemical space is of growing interest in the drug discovery community and with this comes the challenge for synthetic chemists to devise new stereoselective methods to introduce chirality in a rapid and efficient manner. This Minireview provides a timely summary of the development of palladium-catalyzed asymmetric redox-relay Heck-type processes. These reactions represent an important class of transformation for the selective introduction of remote stereocenters, and have risen to prominence over the past decade. Within this Minireview, the vast scope of these transformations will be showcased, alongside applications to pharmaceutically relevant chiral building blocks and drug substances. To complement this overview, a mechanistic summary and discussion of the current limitations of the transformation are presented, followed by an outlook on future areas of investigation.
Collapse
Affiliation(s)
- Holly E. Bonfield
- Chemical DevelopmentGlaxoSmithKlineGunnels Wood RoadStevenageHertfordshireSG1 2NYUK
- Department of Pure and Applied Chemistry WestCHEMUniversity of Strathclyde295 Cathedral StreetGlasgowScotlandG1 1XLUK
| | - Damien Valette
- Chemical DevelopmentGlaxoSmithKlineGunnels Wood RoadStevenageHertfordshireSG1 2NYUK
| | - David M. Lindsay
- Department of Pure and Applied Chemistry WestCHEMUniversity of Strathclyde295 Cathedral StreetGlasgowScotlandG1 1XLUK
| | - Marc Reid
- Department of Pure and Applied Chemistry WestCHEMUniversity of Strathclyde295 Cathedral StreetGlasgowScotlandG1 1XLUK
| |
Collapse
|
40
|
Yu R, Rajasekar S, Fang X. Enantioselective Nickel‐Catalyzed Migratory Hydrocyanation of Nonconjugated Dienes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008854] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rongrong Yu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Shanmugam Rajasekar
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Xianjie Fang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
41
|
Yu R, Rajasekar S, Fang X. Enantioselective Nickel-Catalyzed Migratory Hydrocyanation of Nonconjugated Dienes. Angew Chem Int Ed Engl 2020; 59:21436-21441. [PMID: 32786048 DOI: 10.1002/anie.202008854] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Indexed: 12/23/2022]
Abstract
Metal-catalyzed chain-walking reactions have recently emerged as a powerful strategy to functionalize remote positions in organic molecules. However, a chain-walking protocol for nonconjugated dienes remains scarcely reported, and developments are currently ongoing. In this Communication, a nickel-catalyzed asymmetric hydrocyanation of nonconjugated dienes involving a chain-walking process is demonstrated. The reaction exhibits excellent regio- and chemoselectivity, and a wide range of substrates were tolerated, delivering the products in high yields and enantioselectivities. Deuterium-labeling experiments support the chain-walking process, which involves an iterative β-H elimination and reinsertion processes. Gram-scale synthesis, regioconvergent experiments, and downstream transformations gave further insights into the high potential of this transformation.
Collapse
Affiliation(s)
- Rongrong Yu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Shanmugam Rajasekar
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xianjie Fang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
42
|
Han XW, Daugulis O, Brookhart M. Unsaturated Alcohols as Chain-Transfer Agents in Olefin Polymerization: Synthesis of Aldehyde End-Capped Oligomers and Polymers. J Am Chem Soc 2020; 142:15431-15437. [DOI: 10.1021/jacs.0c06644] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xing-Wang Han
- Center for Polymer Chemistry, Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Olafs Daugulis
- Center for Polymer Chemistry, Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Maurice Brookhart
- Center for Polymer Chemistry, Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
43
|
Cohen Y, Cohen A, Marek I. Creating Stereocenters within Acyclic Systems by C–C Bond Cleavage of Cyclopropanes. Chem Rev 2020; 121:140-161. [DOI: 10.1021/acs.chemrev.0c00167] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yair Cohen
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| | - Anthony Cohen
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| |
Collapse
|
44
|
Cohen A, Chagneau J, Marek I. Stereoselective Preparation of Distant Stereocenters (1,5) within Acyclic Molecules. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01762] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anthony Cohen
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 32000, Israel
| | - Jean Chagneau
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 32000, Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 32000, Israel
| |
Collapse
|
45
|
Ross SP, Rahman AA, Sigman MS. Development and Mechanistic Interrogation of Interrupted Chain-Walking in the Enantioselective Relay Heck Reaction. J Am Chem Soc 2020; 142:10516-10525. [PMID: 32412759 PMCID: PMC7376753 DOI: 10.1021/jacs.0c03589] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The formation of alkyl-palladium complexes via the nucleopalladation of alkenes is the entry point for a wide range of diverse reactions. One possibility is that the intermediate alkyl-Pd complexes can undergo a "chain-walking" event, to allow for remote functionalization through various termination processes. However, there are few methods to selectively interrupt the chain-walking process at a prescribed location. Herein, we demonstrate that a variety of homoallylic protected amines undergo an interrupted enantioselective relay Heck reaction to give enantioenriched allylic amine products. The selectivity of this process can be diverted to exclusively yield the ene-amide products by virtue of changing the nature of the amine protecting group. To rationalize this observation, we combine experiment and computation to investigate the mechanism of the chain-walking process and termination events. Isotopic labeling experiments and the computed reaction pathways suggest that the system is likely under thermodynamic control, with the selectivity being driven by the relative stability of intermediates encountered during chain-walking. These results illustrate that the chain-walking of alkyl-palladium complexes can be controlled through the alteration of thermodynamic processes and provides a roadmap for exploiting these processes in future reaction development.
Collapse
Affiliation(s)
- Sean P. Ross
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah, 84112, United States
| | | | - Matthew S. Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah, 84112, United States
| |
Collapse
|
46
|
Yang ZH, Wang Q, Zhuo S, Xu LP. Mechanistic Study on Palladium-Catalyzed Regioselective Oxidative Amination: Roles of Ammonium Salts. J Org Chem 2020; 85:6981-6991. [PMID: 32396725 DOI: 10.1021/acs.joc.0c00296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Anti-Markovnikov selective oxidative amination reaction with simple alkenes is particularly promising but challenging because of the inherent electronic effect of the alkene substrate which is in favor of the Markovnikov product. In a recently reported Pd-catalyzed anti-Markovnikov oxidative amination reaction, the addition of quaternary ammonium salts is shown to be critical. We performed a comprehensive DFT study to elucidate the reaction mechanism and the origin of the regioselectivity, as well as the roles of the ammonium salts. Our results show that without and with the ammonium salts the reaction mechanisms are different. Detailed analyses indicate that the steric effects account for the switch of regioselectivity. The roles of the quaternary ammonium salts have been elucidated: (1) Me4NOAc plays the role of base in deprotonating the phthalimide and allows the reaction to proceed through a trans-aminopalladation mechanism; (2) Me4NCl facilitates the thermodynamically favorable transformation of Pd(OAc)2 to the palladate ([Pd(AcO)2Cl2]2-), which lessens the polarity of the carbon-carbon double bond, minimizes the inherent electronic effects, and leads to a steric-effect-controlled reaction; (3) Me4NCl is essential in decreasing the activation barrier in the rate-determining ligand exchange step by Cl- acting as a better leaving group (compared to AcO-).
Collapse
Affiliation(s)
- Zhen-Hua Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, P. R. China
| | - Qian Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, P. R. China
| | - Shuping Zhuo
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, P. R. China
| | - Li-Ping Xu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, P. R. China
| |
Collapse
|
47
|
Baek D, Ryu H, Ryu JY, Lee J, Stoltz BM, Hong S. Catalytic enantioselective synthesis of tetrasubstituted chromanones via palladium-catalyzed asymmetric conjugate arylation using chiral pyridine-dihydroisoquinoline ligands. Chem Sci 2020; 11:4602-4607. [PMID: 33133484 PMCID: PMC7574023 DOI: 10.1039/d0sc00412j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/07/2020] [Indexed: 11/21/2022] Open
Abstract
Highly enantioselective conjugate addition reactions of arylboronic acids to 2-substituted chromones catalyzed by palladium complexes with new chiral Pyridine-Dihydroisoquinoline (PyDHIQ) ligands have been developed. These reactions provide highly enantioselective access to chromanones containing tetrasubstituted stereocenters. Various arylboronic acids and 2-substituted chromones can be used in the catalytic reaction to afford the chiral tetrasubstituted chromanones in good yields and excellent enantioselectivities (25 examples, up to 98% yields, up to 99% ee).
Collapse
Affiliation(s)
- Doohyun Baek
- Department of Chemistry , Gwangju Institute of Science and Technology , 123 Cheomdan-gwagiro, Buk-gu , Gwangju 61005 , Republic of Korea .
| | - Huijeong Ryu
- Department of Chemistry , Gwangju Institute of Science and Technology , 123 Cheomdan-gwagiro, Buk-gu , Gwangju 61005 , Republic of Korea .
| | - Ji Yeon Ryu
- Department of Chemistry , Chonnam National University , 77 Yongbong-ro, Buk-gu , Gwangju 61186 , Republic of Korea
| | - Junseong Lee
- Department of Chemistry , Chonnam National University , 77 Yongbong-ro, Buk-gu , Gwangju 61186 , Republic of Korea
| | - Brian M Stoltz
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering , Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , CA 91125 , USA .
| | - Sukwon Hong
- Department of Chemistry , Gwangju Institute of Science and Technology , 123 Cheomdan-gwagiro, Buk-gu , Gwangju 61005 , Republic of Korea .
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology , 123 Cheomdan-gwagiro, Buk-gu , Gwangju 61005 , Republic of Korea
| |
Collapse
|
48
|
Rosales AR, Ross SP, Helquist P, Norrby PO, Sigman MS, Wiest O. Transition State Force Field for the Asymmetric Redox-Relay Heck Reaction. J Am Chem Soc 2020; 142:9700-9707. [PMID: 32249569 DOI: 10.1021/jacs.0c01979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A transition state force field (TSFF) was developed using the quantum-guided molecular mechanics (Q2MM) method to describe the stereodetermining migratory insertion step of the enantioselective redox-relay Heck reaction for a range of multisubstituted alkenes. We show that the TSFF is highly predictive through an external validation of the TSFF against 151 experimentally determined stereoselectivities resulting in an R2 of 0.89 and MUE of 1.8 kJ/mol. In addition, limitations in the underlying force field were identified by comparison of the TSFF results to DFT level calculations. A novel application of the TSFF was demonstrated for 31 cases where the enantiomer predicted by the TSFF differed from the originally published values. Experimental determination of the absolute configuration demonstrated that the computational predictions were accurate, suggesting that TSFFs can be used for the rapid prediction of the absolute stereochemistry for a class of reactions. Finally, a virtual ligand screen was conducted utilizing both the TSFF and a simple molecular correlation method. Both methods were similarly predictive, but the TSFF was able to show greater utility through transferability, speed, and interpretability.
Collapse
Affiliation(s)
- Anthony R Rosales
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Sean P Ross
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Paul Helquist
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Per-Ola Norrby
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg, SE-43183 Mölndal, Sweden
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Olaf Wiest
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Lab of Computational Chemistry and Drug Design, School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
49
|
Oxtoby LJ, Li Z, Tran VT, Erbay TG, Deng R, Liu P, Engle KM. A Transient‐Directing‐Group Strategy Enables Enantioselective Reductive Heck Hydroarylation of Alkenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001069] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Lucas J. Oxtoby
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Zi‐Qi Li
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Van T. Tran
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Tuğçe G. Erbay
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Ruohan Deng
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Peng Liu
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Keary M. Engle
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
50
|
Oxtoby LJ, Li ZQ, Tran VT, Erbay TG, Deng R, Liu P, Engle KM. A Transient-Directing-Group Strategy Enables Enantioselective Reductive Heck Hydroarylation of Alkenes. Angew Chem Int Ed Engl 2020; 59:8885-8890. [PMID: 32196876 DOI: 10.1002/anie.202001069] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/20/2020] [Indexed: 01/28/2023]
Abstract
Metal-coordinating directing groups have seen extensive use in the field of transition-metal-catalyzed alkene functionalization; however, their waste-generating installation and removal steps limit the efficiency and practicality of reactions that rely on their use. Inspired by developments in asymmetric organocatalysis, where reactions rely on reversible covalent interactions between an organic substrate and a chiral mediator, we have developed a transient-directing-group approach to reductive Heck hydroarylation of alkenyl benzaldehyde substrates that proceeds under mild conditions. Highly stereoselective migratory insertion is facilitated by in situ formation of an imine from catalytic amounts of a commercially available amino acid additive. Computational studies reveal an unusual mode of enantioinduction by the remote chiral center in the transient directing group.
Collapse
Affiliation(s)
- Lucas J Oxtoby
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Zi-Qi Li
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Van T Tran
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Tuğçe G Erbay
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Ruohan Deng
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|