1
|
Berry SN, Zou M, Nguyen SL, Sajowitz AE, Qin L, Lewis W, Jolliffe KA. Supramolecular Control of the Temperature Responsiveness of Fluorescent Macrocyclic Molecular Rotamers. Chemistry 2024; 30:e202400504. [PMID: 38499467 DOI: 10.1002/chem.202400504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
To fully harness the potential of molecular machines, it is crucial to develop methods by which to exert control over their speed of motion through the application of external stimuli. A conformationally strained macrocyclic fluorescent rotamer, CarROT, displays a reproducible and linear fluorescence decrease towards temperature over the physiological temperature range. Through the external addition of anions, cations or through deprotonation, the compound can access four discreet rotational speeds via supramolecular interactions (very slow, slow, fast and very fast) which in turn stop, reduce or enhance the thermoluminescent properties due to increasing or decreasing non-radiative decay processes, thereby providing a means to externally control the temperature sensitivity of the system. Through comparison with analogues with a higher degree of conformational freedom, the high thermosensitivity of CarROT over the physiological temperature range was determined to be due to conformational strain, which causes a high energy barrier to rotation over this range. Analogues with a higher degree of conformational freedom display lower sensitivities towards temperature over the same temperature range. This study provides an example of an information rich small molecule, in which programable rotational speed states can be observed with facile read-out.
Collapse
Affiliation(s)
- Stuart N Berry
- School of Chemistry, The University of Sydney, NSW, 2006, Australia
| | - Meijun Zou
- School of Chemistry, The University of Sydney, NSW, 2006, Australia
| | - Sarah L Nguyen
- School of Chemistry, The University of Sydney, NSW, 2006, Australia
| | - Aidan E Sajowitz
- School of Chemistry, The University of Sydney, NSW, 2006, Australia
| | - Lei Qin
- School of Chemistry, The University of Sydney, NSW, 2006, Australia
| | - William Lewis
- School of Chemistry, The University of Sydney, NSW, 2006, Australia
- Sydney Analytical, The University of Sydney, NSW, 2006, Australia
| | - Katrina A Jolliffe
- School of Chemistry, The University of Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW, 2006, Australia
| |
Collapse
|
2
|
Howlader P, Schmittel M. Heteroleptic metallosupramolecular aggregates /complexation for supramolecular catalysis. Beilstein J Org Chem 2022; 18:597-630. [PMID: 35673407 PMCID: PMC9152274 DOI: 10.3762/bjoc.18.62] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/11/2022] [Indexed: 12/25/2022] Open
Abstract
Supramolecular catalysis is reviewed with an eye on heteroleptic aggregates/complexation. Since most of the current metallosupramolecular catalytic systems are homoleptic in nature, the idea of breaking/reducing symmetry has ignited a vivid search for heteroleptic aggregates that are made up by different components. Their higher degree of functional diversity and structural heterogeneity allows, as demonstrated by Nature by the multicomponent ATP synthase motor, a more detailed and refined configuration of purposeful machinery. Furthermore, (metallo)supramolecular catalysis is shown to extend beyond the single "supramolecular unit" and to reach far into the field and concepts of systems chemistry and information science.
Collapse
Affiliation(s)
- Prodip Howlader
- Center of Micro- and Nanochemistry and (Bio)Technology, Universität Siegen, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and (Bio)Technology, Universität Siegen, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
3
|
Elramadi E, Ghosh A, Valiyev I, Biswas P, Paululat T, Schmittel M. Catalytic machinery in motion: Controlling catalysis via speed. Chem Commun (Camb) 2022; 58:8073-8076. [DOI: 10.1039/d2cc02555h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three 3-component copper(I)-based slider-on-deck systems served as catalysts for a click reaction showing a higher catalytic activity with increasing sliding speed. Upon addition of brake stones, the motion of the...
Collapse
|
4
|
Saha S, Kundu S, Biswas PK, Bolte M, Schmittel M. Dynamics of the alkyne → copper( i) interaction and its use in a heteroleptic four-component catalytic rotor. Chem Commun (Camb) 2022; 58:13019-13022. [DOI: 10.1039/d2cc04497h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dynamics of alkyne → copper(i) interactions has been determined and used to self-assemble a fast nanorotor, which underwent a self-catalyzed click transformation to a triazole rotor, an interesting process for the production of biohybrid devices.
Collapse
Affiliation(s)
- Suchismita Saha
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany
| | - Sohom Kundu
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany
| | - Pronay Kumar Biswas
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany
| | - Michael Bolte
- Institut für Organische Chemie und Chemische Biologie, Johann Wolfgang Goethe-Universität, Max-von-Laue Strasse 7, Frankfurt am Main D-60438, Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany
| |
Collapse
|
5
|
Goswami A, Saha S, Elramadi E, Ghosh A, Schmittel M. Off-Equilibrium Speed Control of a Multistage Molecular Rotor: 2-Fold Chemical Fueling by Acid or Silver(I). J Am Chem Soc 2021; 143:14926-14935. [PMID: 34478277 DOI: 10.1021/jacs.1c08005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Driving conformational motion in defined off-equilibrium oscillations can be achieved using chemical fuels. When the ultrafast turnstile 1 (k298> 1012 Hz) was fueled with 2-cyano-2-phenylpropanoic acid (Fuel 1), the diprotonated rotor [H2(1)]2+ (k298 = 84.0 kHz) formed as a transient regaining the dynamics of the initial turnstile after consumption of the fuel (135 min). Upon addition of silver(I) (Fuel 2) to turnstile 1, the metastable rotor [Ag2(1)]2+ (k298 = 1.57 Hz) was initially furnished, but due to a consequentially triggered SN2 reaction, the Ag+ ions were consumed as insoluble AgBr along with regeneration of 1 (within 3 h). The off-equilibrium fast ⇆ slow rotor conversions fueled by acid and silver(I) were directly monitored by fluorescence and 1H NMR. In addition, metal ion exchange was fueled enabling off-equilibrium oscillations between rotors [Li2(1)]2+ ⇆ [Ag2(1)]2+. In the end, both sustainability and efficiency of the process were increased in unison by using the interfering proton waste in the formation of a [2]pseudorotaxane.
Collapse
Affiliation(s)
- Abir Goswami
- Organische Chemie I, Center of Micro- and Nanochemistry and Engineering, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Suchismita Saha
- Organische Chemie I, Center of Micro- and Nanochemistry and Engineering, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Emad Elramadi
- Organische Chemie I, Center of Micro- and Nanochemistry and Engineering, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Amit Ghosh
- Organische Chemie I, Center of Micro- and Nanochemistry and Engineering, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Organische Chemie I, Center of Micro- and Nanochemistry and Engineering, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
6
|
Zhang HN, Yu WB, Lin YJ, Jin GX. Stimuli-Responsive Topological Transformation of a Molecular Borromean Ring via Controlled Oxidation of Thioether Moieties. Angew Chem Int Ed Engl 2021; 60:15466-15471. [PMID: 33871131 DOI: 10.1002/anie.202103264] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 01/31/2023]
Abstract
A Cp*-Rh based D-shaped binuclear metallacycle and a template-free molecular Borromean ring (BR) were obtained in high yield using the semi-rigid thioether dipyridyl ligand 1,4-bis[(pyridin-4-ylthio)methyl]benzene (Bptmb). The topological transformation from a binuclear metallacycle and a BR to tetranuclear metallacycles was realized via the controlled oxidation of thioethers. The strategy used in this work can be regarded as a new form of stimuli-responsive post-synthesis modification (PSM).
Collapse
Affiliation(s)
- Hai-Ning Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of, Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Wei-Bin Yu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of, Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Yue-Jian Lin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of, Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of, Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
7
|
Komiya N, Ikeshita M, Tosaki K, Sato A, Itami N, Naota T. Catalytic Enantioselective Rotation of Watermill‐Shaped Dinuclear Pd Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Naruyoshi Komiya
- Department of Chemistry, Graduate School of Engineering Science Osaka University Machikaneyama, Toyonaka, Osaka 560-8531 Japan
- Chemistry Laboratory The Jikei University School of Medicine Kokuryo, Chofu, Tokyo 182-8570 Japan
| | - Masahiro Ikeshita
- Department of Chemistry, Graduate School of Engineering Science Osaka University Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| | - Koichi Tosaki
- Department of Chemistry, Graduate School of Engineering Science Osaka University Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| | - Atsushi Sato
- Department of Chemistry, Graduate School of Engineering Science Osaka University Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| | - Nao Itami
- Department of Chemistry, Graduate School of Engineering Science Osaka University Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| | - Takeshi Naota
- Department of Chemistry, Graduate School of Engineering Science Osaka University Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| |
Collapse
|
8
|
Zhang H, Yu W, Lin Y, Jin G. Stimuli‐Responsive Topological Transformation of a Molecular Borromean Ring via Controlled Oxidation of Thioether Moieties. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Hai‐Ning Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of, Polymers Department of Chemistry Fudan University Shanghai 200433 P. R. China
| | - Wei‐Bin Yu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of, Polymers Department of Chemistry Fudan University Shanghai 200433 P. R. China
| | - Yue‐Jian Lin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of, Polymers Department of Chemistry Fudan University Shanghai 200433 P. R. China
| | - Guo‐Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of, Polymers Department of Chemistry Fudan University Shanghai 200433 P. R. China
| |
Collapse
|
9
|
Abstract
Three distinct four-component supramolecular nanorotors were prepared, using, for the first time, bipyridine instead of phenanthroline stations in the stator. Following our established self-sorting protocol to multicomponent nanodevices, the nanorotors were self-assembled by mixing the stator, rotators with various pyridine head groups, copper(I) ions and 1,4-diazabicyclo[2.2.2]octane (DABCO). Whereas the exchange of a phenanthroline vs. a bipyridine station did not entail significant changes in the rotational exchange frequency, the para-substituents at the pyridine head group of the rotator had drastic consequences on the speed: 4-OMe (k298 = 35 kHz), 4-H (k298 = 77 kHz) and 4-NO2 (k298 = 843 kHz). The exchange frequency (log k) showed an excellent linear correlation with both the Hammett substituent constants and log K of the copper(I)–ligand interaction, proving that rotator–copper(I) bond cleavage is the key determining factor in the rate-determining step.
Collapse
|
10
|
Schmittel M, Howlader P. Toward Molecular Cybernetics - the Art of Communicating Chemical Systems. CHEM REC 2020; 21:523-543. [PMID: 33350570 DOI: 10.1002/tcr.202000126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 11/10/2022]
Abstract
The emerging field of molecular cybernetics has the potential to widely broaden our perception of chemistry. Chemistry will develop beyond its current focus that is mainly concerned with single transformations, pure compounds, and/or defined mixtures. On this way, chemistry will become autonomous, networked and smart through communicating molecules each of which serves a control engineering purpose, like the set of wheels in the machinery of life. The present personal account describes our latest developments in this field.
Collapse
Affiliation(s)
- Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| | - Prodip Howlader
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| |
Collapse
|
11
|
Biswas PK, Goswami A, Saha S, Schmittel M. Dynamics of Hydrogen Bonding in Three-Component Nanorotors. Chemistry 2020; 26:14095-14099. [PMID: 32744381 PMCID: PMC7702118 DOI: 10.1002/chem.202002877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/29/2020] [Indexed: 11/23/2022]
Abstract
The dynamics of hydrogen bonding do not only play an important role in many biochemical processes but also in Nature's multicomponent machines. Here, a three-component nanorotor is presented where both the self-assembly and rotational dynamics are guided by hydrogen bonding. In the rate-limiting step of the rotational exchange, two phenolic O-H-N,N(phenanthroline) hydrogen bonds are cleaved, a process that was followed by variable-temperature 1 H NMR spectroscopy. Activation data (ΔG≠ 298 =46.7 kJ mol-1 at 298 K, ΔH≠ =55.3 kJ mol-1 , and ΔS≠ =28.8 J mol-1 K-1 ) were determined, furnishing a rotational exchange frequency of k298 =40.0 kHz. Fully reversible disassembly/assembly of the nanorotor was achieved by addition of 5.0 equivalents of trifluoroacetic acid (TFA)/1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) over three cycles.
Collapse
Affiliation(s)
- Pronay Kumar Biswas
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| | - Abir Goswami
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| | - Suchismita Saha
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| |
Collapse
|
12
|
Satake A, Katagami Y, Odaka Y, Kuramochi Y, Harada S, Kouchi T, Kamebuchi H, Tadokoro M. Synthesis of Double-Bridged Cofacial Nickel Porphyrin Dimers with 2,2'-Bipyridyl Pillars and Their Restricted Coordination Space. Inorg Chem 2020; 59:8013-8024. [PMID: 32441925 DOI: 10.1021/acs.inorgchem.0c00177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Double-bridged cofacial Ni porphyrin dimers 2 with 2,2'-bipyridyl pillars were effectively prepared by a one-step reductive homocoupling reaction of bis(chloropyridyl)-substituted Ni porphyrin derivatives followed by a specific separation of a cyanopropyl-modified silica gel column using pyridine eluent systems. The structural analyses of 2 and its Pd complex were carried out in their solid and solution states by means of X-ray single crystal analysis and NMR, respectively. The complexation of η3-allylpalladium chloride (Pd) with 2 on the spatially restricted 2,2-bipyridine moieties on 2 gave a 2:1 (Pd:2) complex, in which the 2,2'-bipyridine ligands only provided one of the N atoms on a 2,2'-bipyridine ligand to a Pd. Therefore, the 2,2-bipyridine moieties acted as a monodentate ligand.
Collapse
Affiliation(s)
- Akiharu Satake
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.,Department of Chemistry, Faculty of Science Division II, Tokyo University of Science, Tokyo, Japan
| | - Yuta Katagami
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuki Odaka
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yusuke Kuramochi
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.,Department of Chemistry, Faculty of Science Division II, Tokyo University of Science, Tokyo, Japan
| | - Shohei Harada
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Takaya Kouchi
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Hajime Kamebuchi
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.,Department of Chemistry, Faculty of Science Division I, Tokyo University of Science, Tokyo, Japan
| | - Makoto Tadokoro
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.,Department of Chemistry, Faculty of Science Division I, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
13
|
Biswas PK, Saha S, Gaikwad S, Schmittel M. Reversible Multicomponent AND Gate Triggered by Stoichiometric Chemical Pulses Commands the Self-Assembly and Actuation of Catalytic Machinery. J Am Chem Soc 2020; 142:7889-7897. [DOI: 10.1021/jacs.0c01315] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Pronay Kumar Biswas
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Suchismita Saha
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Sudhakar Gaikwad
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
14
|
Coordination-driven assemblies based on meso-substituted porphyrins: Metal-organic cages and a new type of meso-metallaporphyrin macrocycles. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213165] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Prigorchenko E, Ustrnul L, Borovkov V, Aav R. Heterocomponent ternary supramolecular complexes of porphyrins: A review. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s108842461930026x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Porphyrins are prominent host molecules which are widely used due to their structural characteristics and directional interaction sites. This review summarizes non-covalently bound ternary complexes of porphyrins, constructed from at least three non-identical species. Progress in supramolecular chemistry allows the creation of complex molecular machinery tools, such as rotors, motors and switches from relatively simple structures in a single self-assembly step. In the current review, we highlight the collection of sophisticated molecular ensembles including sandwich-type complexes, cages, capsules, tweezers, rotaxanes, and supramolecular architectures mediating oxygen-binding and oxidation reactions. These diverse structures have high potential to be applied in sensing, production of new smart materials as well as in medical science.
Collapse
Affiliation(s)
- Elena Prigorchenko
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Lukas Ustrnul
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Victor Borovkov
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
- College of Chemistry and Materials Science, South-Central University for Nationalities, 182 Minzu Road, Hongshan, Wuhan 430074, China
| | - Riina Aav
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| |
Collapse
|
16
|
Ghosh A, Paul I, Schmittel M. Time-Dependent Pulses of Lithium Ions in Cascaded Signaling and Out-of-Equilibrium (Supra)molecular Logic. J Am Chem Soc 2019; 141:18954-18957. [DOI: 10.1021/jacs.9b10763] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Amit Ghosh
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Indrajit Paul
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
17
|
Paul I, Ghosh A, Bolte M, Schmittel M. Remote Control of the Synthesis of a [2]Rotaxane and its Shuttling via Metal-Ion Translocation. ChemistryOpen 2019; 8:1355-1360. [PMID: 31763127 PMCID: PMC6863578 DOI: 10.1002/open.201900293] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/30/2019] [Indexed: 12/25/2022] Open
Abstract
Remote control in an eight-component network commanded both the synthesis and shuttling of a [2]rotaxane via metal-ion translocation, the latter being easily monitored by distinct colorimetric and fluorimetric signals. Addition of zinc(II) ions to the red colored copper-ion relay station rapidly liberated copper(I) ions and afforded the corresponding zinc complex that was visualized by a bright sky blue fluorescence at 460 nm. In a mixture of all eight components of the network, the liberated copper(I) ions were translocated to a macrocycle that catalyzed formation of a rotaxane by a double-click reaction of acetylenic and diazide compounds. The shuttling frequency in the copper-loaded [2]rotaxane was determined to k 298=30 kHz (ΔH ≠=62.3±0.6 kJ mol-1, ΔS ≠=50.1±5.1 J mol-1 K-1, ΔG ≠ 298=47.4 kJ mol-1). Removal of zinc(II) ions from the mixture reversed the system back generating the metal-free rotaxane. Further alternate addition and removal of Zn2+ reversibly controlled the shuttling mode of the rotaxane in this eight-component network where the ion translocation status was monitored by the naked eye.
Collapse
Affiliation(s)
- Indrajit Paul
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversität SiegenAdolf-Reichwein-Str. 2D-57068SiegenGermany
| | - Amit Ghosh
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversität SiegenAdolf-Reichwein-Str. 2D-57068SiegenGermany
| | - Michael Bolte
- Institut für Anorganische und Analytische ChemieGoethe-Universität FrankfurtMax-von-Laue-Strasse 7D-60438Frankfurt (Main)Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversität SiegenAdolf-Reichwein-Str. 2D-57068SiegenGermany
| |
Collapse
|
18
|
Goswami A, Saha S, Biswas PK, Schmittel M. (Nano)mechanical Motion Triggered by Metal Coordination: from Functional Devices to Networked Multicomponent Catalytic Machinery. Chem Rev 2019; 120:125-199. [DOI: 10.1021/acs.chemrev.9b00159] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Abir Goswami
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Suchismita Saha
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Pronay Kumar Biswas
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| |
Collapse
|
19
|
Paul I, Samanta D, Gaikwad S, Schmittel M. Selective detection of DABCO using a supramolecular interconversion as fluorescence reporter. Beilstein J Org Chem 2019; 15:1371-1378. [PMID: 31293687 PMCID: PMC6604717 DOI: 10.3762/bjoc.15.137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/27/2019] [Indexed: 11/23/2022] Open
Abstract
The quantitative double self-sorting between the three-component rectangle [Cu4(1)2(2)2]4+ and the four-component sandwich complex [Cu2(1)(2)(4)]2+ is triggered by inclusion and release of DABCO (4). The fully reversible and clean switching between two multicomponent supramolecular architectures can be monitored by fluorescence changes at the zinc porphyrin sites. The structural changes are accompanied by a huge spatial contraction/expansion of the zinc porphyrin–zinc porphyrin distances that change from 31.2/38.8 Å to 6.6 Å and back. The supramolecular interconversion was used for the highly selective detection of DABCO in a mixture of other similar compounds.
Collapse
Affiliation(s)
- Indrajit Paul
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Debabrata Samanta
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Sudhakar Gaikwad
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
20
|
Rizzuto FJ, Carpenter JP, Nitschke JR. Multisite Binding of Drugs and Natural Products in an Entropically Favorable, Heteroleptic Receptor. J Am Chem Soc 2019; 141:9087-9095. [PMID: 31079455 DOI: 10.1021/jacs.9b03776] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The cavities of artificial receptors are defined by how their components fit together. The encapsulation of specific molecules can thus be engineered by considering geometric principles; however, intermolecular interactions and steric fit scale with receptor size, such that the ability to bind multiple guests from a specific class of compounds remains a current challenge. By employing metal-organic self-assembly, we have prepared a triangular prism from two different ligands that is capable of binding more than 20 different natural products, drugs, and steroid derivatives within its prolate cavity. Encapsulation inflates the host, enhancing its ability to bind other guests in peripheral pockets and thus enabling our system to bind combinations of different drug and natural product cargoes in different locations simultaneously. This new mode of entropically favorable self-assembly thus enables central encapsulation to amplify guest-binding events around the periphery of an artificial receptor.
Collapse
Affiliation(s)
- Felix J Rizzuto
- Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , United Kingdom
| | - John P Carpenter
- Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , United Kingdom
| | - Jonathan R Nitschke
- Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , United Kingdom
| |
Collapse
|
21
|
Saha S, Biswas PK, Schmittel M. Reversible Interconversion of a Static Metallosupramolecular Cage Assembly into a High-Speed Rotor: Stepless Adjustment of Rotational Exchange by Nucleophile Addition. Inorg Chem 2019; 58:3466-3472. [PMID: 30789716 DOI: 10.1021/acs.inorgchem.8b03567] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The self-assembled cage ROT-1 was prepared from the pyridine-terminated rotator 1, the phenanthroline-appended stator 2, DABCO, and copper(I) ions in a ratio of 1:1:1:4. This four-component assembly is held together by two pyridine→[Cu(phenAr2)]+ as well as two DABCO→zinc porphyrin interactions (phenAr2 = 2,9-diarylphenanthroline) and does not show any motion on the NMR time scale ( k < 0.1 s-1, 298 K). However, it is converted to the fast nanorotor ROT-1 xCD3CN by addition of CD3CN [ x = (v/v)% of acetonitrile in dichloromethane] due to acceleration of both pyridine→copper(I) dissociation steps. Now the rotator is able to visit all four copper(I)-loaded phenanthroline stations of the stator. Depending on the amount of CD3CN, the exchange frequency of the nanorotor varies from 0.7 s-1 (CD3CN:CD2Cl2 = 1:29) to 8000 s-1 (CD3CN:CD2Cl2 = 1:5) at 25 °C. When iodide (I-) is added to the static assembly ROT-1, the rotational speed increases even more drastically ( k = 20 000 s-1), again due to accelerating the rate-determining pyridine→copper(I) dissociation step. In both cases, a sigmoidal relationship is established between exchange frequency and the concentration of added nucleophile (CD3CN or iodide) that suggests the presence of a cooperative effect. Reversible switching between the static assembly and fast rotor was performed several times without any decomposition of the system. In contrast, addition of the common nucleophile PPh3 to ROT-1 does not increase the rotational speed, a finding that is explained on thermodynamic grounds.
Collapse
Affiliation(s)
- Suchismita Saha
- Center of Micro- and Nanochemistry and Engineering , Organische Chemie I , Adolf-Reichwein-Str. 2 , D-57068 Siegen , Germany
| | - Pronay Kumar Biswas
- Center of Micro- and Nanochemistry and Engineering , Organische Chemie I , Adolf-Reichwein-Str. 2 , D-57068 Siegen , Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering , Organische Chemie I , Adolf-Reichwein-Str. 2 , D-57068 Siegen , Germany
| |
Collapse
|
22
|
Wu SH, Chen HH. Self-assembling behavior of binary mixture of hexa-peri-hexabenzocoronene derivatives with different molecular symmetry. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.11.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Özer MS, Paul I, Goswami A, Schmittel M. Cation exchange reversibly switches rotor speed and is monitored by a networked fluorescent reporter. Dalton Trans 2019; 48:9043-9047. [DOI: 10.1039/c9dt01633c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The three-step transformation of a turnstile into a zinc rotor (8 kHz) and then into a copper rotor (30 kHz) was achieved with the last transformation being monitored by a fluorescence reporter.
Collapse
Affiliation(s)
- Merve S. Özer
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| | - Indrajit Paul
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| | - Abir Goswami
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| |
Collapse
|
24
|
Heteroleptic copper phenanthroline complexes in motion: From stand-alone devices to multi-component machinery. Coord Chem Rev 2018; 376:478-505. [PMID: 32287354 PMCID: PMC7126816 DOI: 10.1016/j.ccr.2018.08.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/07/2018] [Accepted: 08/13/2018] [Indexed: 12/27/2022]
Abstract
Two and a half decades of copper phenanthroline-based switches, devices and machines have illustrated the rich dynamic nature of these metal complexes. With an emphasis on the metal-ligand dissociation as the rate-determining step the present review summarizes not only spectacular examples of machinery, but also highlights rate data collected during a variety of investigations. Copper-ligand exchange reactions are mostly triggered by redox processes, addition of metal ions or addition of ligands. While the rate data spread over >8 orders of magnitude, individual effects of solvent, steric bulk, flexibility, σ-basicity and the trajectory (intra- vs. intermolecular dissociation) have large impact. Unfortunately, in many cases the exact mechanism in the rate-determining step (nucleophile-induced vs. monomolecular metal-ligand dissociation) has not been determined, suggesting to invest further efforts in the physical (in)organic chemistry of such coordination-driven systems.
Collapse
|
25
|
Dynamic Functional Molecular Systems: From Supramolecular Structures to Multi‐Component Machinery and to Molecular Cybernetics. Isr J Chem 2018. [DOI: 10.1002/ijch.201800124] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Multi-Component Spirane Assemblies. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Bhat IA, Devaraj A, Zangrando E, Mukherjee PS. A Discrete Self-Assembled Pd12
Triangular Orthobicupola Cage and its Use for Intramolecular Cycloaddition. Chemistry 2018; 24:13938-13946. [DOI: 10.1002/chem.201803039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Imtiyaz Ahmad Bhat
- Inorganic and Physical Chemistry Department; Indian Institute of Science; Bangalore Karnataka 560012 India
| | - Anthonisamy Devaraj
- Inorganic and Physical Chemistry Department; Indian Institute of Science; Bangalore Karnataka 560012 India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences; via, Giorgieri 1 34127 Trieste Italy
| | - Partha Sarathi Mukherjee
- Inorganic and Physical Chemistry Department; Indian Institute of Science; Bangalore Karnataka 560012 India
| |
Collapse
|
28
|
Biswas PK, Saha S, Paululat T, Schmittel M. Rotating Catalysts Are Superior: Suppressing Product Inhibition by Anchimeric Assistance in Four-Component Catalytic Machinery. J Am Chem Soc 2018; 140:9038-9041. [DOI: 10.1021/jacs.8b04437] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Pronay Kumar Biswas
- Center of Micro- and Nanochemistry and Engineering, Universität Siegen, Organische Chemie I, Adolf-Reichwein-Straße 2, D-57068 Siegen, Germany
| | - Suchismita Saha
- Center of Micro- and Nanochemistry and Engineering, Universität Siegen, Organische Chemie I, Adolf-Reichwein-Straße 2, D-57068 Siegen, Germany
| | - Thomas Paululat
- Universität Siegen, Organische Chemie II, Adolf-Reichwein-Straße 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering, Universität Siegen, Organische Chemie I, Adolf-Reichwein-Straße 2, D-57068 Siegen, Germany
| |
Collapse
|
29
|
Ganta S, Chand DK. Molecular Recombination Phenomena in Palladium(II)-Based Self-Assembled Complexes. Inorg Chem 2018; 57:5145-5158. [DOI: 10.1021/acs.inorgchem.8b00213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sudhakar Ganta
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Dillip K. Chand
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
30
|
Ghosh A, Paul I, Adlung M, Wickleder C, Schmittel M. Oscillating Emission of [2]Rotaxane Driven by Chemical Fuel. Org Lett 2018; 20:1046-1049. [PMID: 29384684 DOI: 10.1021/acs.orglett.7b03996] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A molecular shuttle consisting of a dibenzo-24-crown-8 macrocycle and an axle with two degenerate peripheral triazolium stations, a central dibenzyl ammonium station, and two anthracenes stoppers was exposed to 2-cyano-2-phenylpropanoic acid as a chemical fuel. Protonation/deprotonation of the amine reversibly switches the rotaxane from a static and little emissive to a dynamic fluorescent shuttling device, the latter exhibiting rapid motion (15 kHz at 25 °C). Four fuel cycles were run.
Collapse
Affiliation(s)
- Amit Ghosh
- Center of Micro- and Nanochemistry and Engineering , Organische Chemie I, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany
| | - Indrajit Paul
- Center of Micro- and Nanochemistry and Engineering , Organische Chemie I, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany
| | - Matthias Adlung
- Center of Micro- and Nanochemistry and Engineering , Anorganische Chemie II, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany
| | - Claudia Wickleder
- Center of Micro- and Nanochemistry and Engineering , Anorganische Chemie II, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering , Organische Chemie I, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany
| |
Collapse
|
31
|
Goswami A, Pramanik S, Schmittel M. Catalytically active nanorotor reversibly self-assembled by chemical signaling within an eight-component network. Chem Commun (Camb) 2018; 54:3955-3958. [DOI: 10.1039/c8cc01496e] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As an example of advanced molecular cybernetics eight components work together through chemical signaling reversibly setting up multifunctional nanomachinery.
Collapse
Affiliation(s)
- Abir Goswami
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| | - Susnata Pramanik
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| |
Collapse
|
32
|
Kwon H, Lee E. Fluxional motion in a dinuclear copper(i) complex with a propeller-type ligand: metal hopping on both sides. Dalton Trans 2018; 47:17206-17210. [DOI: 10.1039/c8dt03884h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fluxional motion of a dicopper(i) complex of hexa(2-pyridyl)benzene that accompanies metal hopping processes and ring rotation was studied.
Collapse
Affiliation(s)
- Hyunchul Kwon
- Department of Chemistry
- Pohang University of Science and Technology
- Pohang
- Republic of Korea
| | - Eunsung Lee
- Department of Chemistry
- Pohang University of Science and Technology
- Pohang
- Republic of Korea
- Division of Advanced Materials Science
| |
Collapse
|
33
|
From Self-Sorting of Dynamic Metal–Ligand Motifs to (Supra)Molecular Machinery in Action. ADVANCES IN INORGANIC CHEMISTRY 2018. [DOI: 10.1016/bs.adioch.2017.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Paul I, Goswami A, Mittal N, Schmittel M. Catalytic Three-Component Machinery: Control of Catalytic Activity by Machine Speed. Angew Chem Int Ed Engl 2017; 57:354-358. [DOI: 10.1002/anie.201709644] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/30/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Indrajit Paul
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I; University of Siegen; Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | - Abir Goswami
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I; University of Siegen; Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | - Nikita Mittal
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I; University of Siegen; Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I; University of Siegen; Adolf-Reichwein-Str. 2 57068 Siegen Germany
| |
Collapse
|
35
|
Paul I, Goswami A, Mittal N, Schmittel M. Katalytische Drei-Komponenten-Maschinen: Steuerung der katalytischen Aktivität mittels Maschinengeschwindigkeit. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Indrajit Paul
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I; Universität Siegen; Adolf-Reichwein-Straße 2 57068 Siegen Deutschland
| | - Abir Goswami
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I; Universität Siegen; Adolf-Reichwein-Straße 2 57068 Siegen Deutschland
| | - Nikita Mittal
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I; Universität Siegen; Adolf-Reichwein-Straße 2 57068 Siegen Deutschland
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I; Universität Siegen; Adolf-Reichwein-Straße 2 57068 Siegen Deutschland
| |
Collapse
|
36
|
Biswas PK, Saha S, Nanaji Y, Rana A, Schmittel M. Influence of Rotator Design on the Speed of Self-Assembled Four-Component Nanorotors: Coordinative Versus Dispersive Interactions. Inorg Chem 2017; 56:6662-6670. [DOI: 10.1021/acs.inorgchem.7b00740] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Pronay Kumar Biswas
- Center of Micro- and Nanochemistry and
Engineering, University of Siegen, Adolf−Reichwein−Str.
2, D-57068 Siegen, Germany
| | - Suchismita Saha
- Center of Micro- and Nanochemistry and
Engineering, University of Siegen, Adolf−Reichwein−Str.
2, D-57068 Siegen, Germany
| | - Yerramsetti Nanaji
- Center of Micro- and Nanochemistry and
Engineering, University of Siegen, Adolf−Reichwein−Str.
2, D-57068 Siegen, Germany
| | - Anup Rana
- Center of Micro- and Nanochemistry and
Engineering, University of Siegen, Adolf−Reichwein−Str.
2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and
Engineering, University of Siegen, Adolf−Reichwein−Str.
2, D-57068 Siegen, Germany
| |
Collapse
|
37
|
Bhat IA, Jain R, Siddiqui MM, Saini DK, Mukherjee PS. Water-Soluble Pd 8L 4 Self-assembled Molecular Barrel as an Aqueous Carrier for Hydrophobic Curcumin. Inorg Chem 2017; 56:5352-5360. [PMID: 28394128 DOI: 10.1021/acs.inorgchem.7b00449] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A tetrafacial water-soluble molecular barrel (1) was synthesized by coordination driven self-assembly of a symmetrical tetrapyridyl donor (L) with a cis-blocked 90° acceptor [cis-(en)Pd(NO3)2] (en = ethane-1,2-diamine). The open barrel structure of (1) was confirmed by single crystal X-ray diffraction. The presence of a hydrophobic cavity with large windows makes it an ideal candidate for encapsulation and carrying hydrophobic drug like curcumin in an aqueous medium. The barrel (1) encapsulates curcumin inside its molecular cavity and protects highly photosensitive curcumin from photodegradation. The photostability of encapsulated curcumin is due to the absorption of a high proportion of the incident photons by the aromatic walls of 1 with a high absorption cross-sectional area, which helps the walls to shield the guest even against sunlight/UV radiations. As compared to free curcumin in water, we noticed a significant increase in solubility as well as cellular uptake of curcumin upon encapsulation inside the water-soluble molecular barrel (1) in aqueous medium. Fluorescence imaging confirmed that curcumin was delivered into HeLa cancer cells by the aqueous barrel (1) with the retention of its potential anticancer activity. While free curcumin is inactive toward cancer cells in aqueous medium at room temperature due to negligible solubility, the determined IC50 value of ∼14 μM for curcumin in aqueous medium in the presence of the barrel (1) reflects the efficiency of the barrel as a potential curcumin carrier in aqueous medium without any other additives. Thus, two major challenges of increasing the bioavailability and stability of curcumin in aqueous medium even in the presence of UV light have been addressed by using a new supramolecular water-soluble barrel (1) as a drug carrier.
Collapse
Affiliation(s)
- Imtiyaz Ahmad Bhat
- Department of Inorganic and Physical Chemistry, Indian Institute of Science , Bangalore 560012, India
| | - Ruchi Jain
- Department of Molecular Reproduction, Development and Genetics and Centre for Biosystems Science and Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Mujahuddin M Siddiqui
- Department of Inorganic and Physical Chemistry, Indian Institute of Science , Bangalore 560012, India
| | - Deepak K Saini
- Department of Molecular Reproduction, Development and Genetics and Centre for Biosystems Science and Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science , Bangalore 560012, India
| |
Collapse
|
38
|
Li M, Zhang Q, Xu L, Zhu W, Mack J, May AK, Nyokong T, Kobayashi N, Liang X. Flexible Metal-Porphyrin Dimers (M=Mn III Cl, Co II , Ni II , Cu II ): Synthesis, Spectroscopy, Electrochemistry, Spectroelectrochemistry, and Theoretical Calculations. Chempluschem 2017; 82:598-606. [PMID: 31961595 DOI: 10.1002/cplu.201600475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/31/2016] [Indexed: 11/07/2022]
Abstract
Four metalloporphyrin dimers linked by bridging amide-bonded xanthene moieties and that contain either MnIII , CoII , NiII , or CuII metal centers were synthesized. Various spectroscopic, electrochemical, and spectroelectrochemical methods were used to study trends in their properties. Their electronic structure and optical properties were analyzed through a comparison of the electronic absorption and magnetic circular dichroism (MCD) spectral data with the results of time-dependent (TD)-DFT calculations.
Collapse
Affiliation(s)
- Minzhi Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Li Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Weihua Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - John Mack
- Department of Chemistry, Rhodes University, Grahamstown, 6140, South Africa
| | - Aviwe K May
- Department of Chemistry, Rhodes University, Grahamstown, 6140, South Africa
| | - Tebello Nyokong
- Department of Chemistry, Rhodes University, Grahamstown, 6140, South Africa
| | - Nagao Kobayashi
- Faculty of Textile Science and Technology, Shinshu University, Ueda, 386-8567, Japan
| | - Xu Liang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| |
Collapse
|
39
|
Jansze SM, Wise MD, Vologzhanina AV, Scopelliti R, Severin K. Pd II2L 4-type coordination cages up to three nanometers in size. Chem Sci 2017; 8:1901-1908. [PMID: 28567267 PMCID: PMC5444114 DOI: 10.1039/c6sc04732g] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/09/2016] [Indexed: 12/25/2022] Open
Abstract
The utilization of large ligands in coordination-based self-assembly represents an attractive strategy for the construction of supramolecular assemblies more than two nanometers in size. However, the implementation of this strategy is hampered by the fact that the preparation of such ligands often requires substantial synthetic effort. Herein, we describe a simple one-step protocol, which allows large bipyridyl ligands with a bent shape to be synthesized from easily accessible and/or commercially available starting materials. The ligands were used to construct PdII2L4-type coordination cages of unprecedented size. Furthermore, we provide evidence that these cages may be stabilized by close intramolecular packing of lipophilic ligand side chains. Packing effects of this kind are frequently encountered in protein assemblies, but they are seldom used as a design element in metallasupramolecular chemistry.
Collapse
Affiliation(s)
- Suzanne M Jansze
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| | - Matthew D Wise
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| | - Anna V Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences , 119991 Moscow , Russia
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| |
Collapse
|
40
|
Ozores HL, Amorín M, Granja JR. Self-Assembling Molecular Capsules Based on α,γ-Cyclic Peptides. J Am Chem Soc 2017; 139:776-784. [DOI: 10.1021/jacs.6b10456] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Haxel Lionel Ozores
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS),
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Manuel Amorín
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS),
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Juan R. Granja
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS),
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| |
Collapse
|
41
|
Özer MS, Rana A, Biswas PK, Schmittel M. Four-component zinc-porphyrin/zinc-salphen nanorotor. Dalton Trans 2017; 46:9491-9497. [DOI: 10.1039/c7dt01323j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An off-axis supramolecular rotor was composed of four components: a zinc-porphyrin based stator with four phenanthroline stations and a zinc-salphen based rotator were self-assembled with DABCO and four copper(i) ions to furnish the rotor ROT-2 in quantitative yield.
Collapse
Affiliation(s)
- Merve S. Özer
- Center for Micro- and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| | - Anup Rana
- Center for Micro- and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| | - Pronay K. Biswas
- Center for Micro- and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| | - Michael Schmittel
- Center for Micro- and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| |
Collapse
|
42
|
Samanta D, Paul I, Schmittel M. Supramolecular five-component nano-oscillator. Chem Commun (Camb) 2017; 53:9709-9712. [DOI: 10.1039/c7cc05235a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A five-component self-sorted metallo-supramolecular nano-oscillator was designed based on the full orthogonality of three different dynamic complexation motifs.
Collapse
Affiliation(s)
- Debabrata Samanta
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| | - Indrajit Paul
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| |
Collapse
|
43
|
Goswami A, Paul I, Schmittel M. Three-component nanorotors generated from fusion of complexes and post-fusion metal–metal exchange. Chem Commun (Camb) 2017; 53:5186-5189. [DOI: 10.1039/c7cc01977g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The fusion of two homoleptic complexes quantitatively created a novel three-component nanorotor.
Collapse
Affiliation(s)
- Abir Goswami
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2
- Siegen
- Germany
| | - Indrajit Paul
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2
- Siegen
- Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2
- Siegen
- Germany
| |
Collapse
|
44
|
Gaikwad S, Lal Saha M, Samanta D, Schmittel M. Five-component trigonal nanoprism with six dynamic corners. Chem Commun (Camb) 2017; 53:8034-8037. [DOI: 10.1039/c7cc04078d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The metallo-supramolecular trigonal prism P is based on five different components and three unlike dynamic coordination motifs: the heteroleptic phenanthroline–terpyridine complex [Zn(1)(4)]2+ (HETTAP), the heteroleptic phenanthroline–pyridine complex [Cu(2)(5A)]+ (HETPYP-I), and the pyridine → zinc(ii)–porphyrin interaction.
Collapse
Affiliation(s)
- Sudhakar Gaikwad
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| | - Manik Lal Saha
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| | - Debabrata Samanta
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| |
Collapse
|
45
|
Abstract
In our quest to develop artificial multistate devices, we synthesized the nanomechanical switch 1 that is characterized by a tetrahedral core equipped with four pending arms. The rotary arm with its azaterpyridine terminal is intramolecularly coordinated to a zinc(II) porphyrin station that is the terminus of another arm in 1. The two other arms carry identical sterically shielded phenanthroline stations. The 2-fold alternate addition of a copper(I) ion and [1,10]-phenanthroline (1 equiv each) results in the formation of five different switching states (State I→ State II→ State III→ State IV→ State V → State I), which force the toggling arm to move back and forth between the zinc(II) porphyrin and phenanthroline stations separated by a distance of 25 Å. All switching states constitute clean single species, except for State III, and thus are fully characterized by spectroscopic methods and elemental analysis. Finally, the initial state of nanoswitch was reset by addition of cyclam for complete removal of the copper(I) ions.
Collapse
Affiliation(s)
- Sudhakar Gaikwad
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen , Adolf-Reichwein-Strasse-2, 57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen , Adolf-Reichwein-Strasse-2, 57068 Siegen, Germany
| |
Collapse
|
46
|
Saha ML, Schmittel M. Metal-Ligand Exchange in a Cyclic Array: The Stepwise Advancement of Supramolecular Complexity. Inorg Chem 2016; 55:12366-12375. [PMID: 27934423 DOI: 10.1021/acs.inorgchem.6b02256] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Herein, we demonstrate how the supramolecular complexity (evaluated by the degree of self-sorting M) evolves in a chemical cycle of cascaded metallosupramolecular transformations, using abiological self-assembled entities as input signals. Specifically, the successive addition of the supramolecular self-assembled structures S1 and (T2 + S2) to the starting supramolecular two-component equilateral triangle T1 (M = 1) first induced a fusion into the three-component quadrilateral R1 (M = 6) and then to the five-component scalene triangle T3 (M = 16). Upon the addition of the supramolecular input M1 to T3, a notable self-sorting event occurred, leading to regeneration of the triangle T1 along with formation of the scalene triangle T4 (M = 25). This last step closed the cycle of the supramolecular transformations.
Collapse
Affiliation(s)
- Manik Lal Saha
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen , Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen , Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany
| |
Collapse
|
47
|
Nakamura M, Kishimoto K, Kobori Y, Abe T, Yoza K, Kobayashi K. Self-Assembled Molecular Gear: A 4:1 Complex of Rh(III)Cl Tetraarylporphyrin and Tetra(p-pyridyl)cavitand. J Am Chem Soc 2016; 138:12564-77. [PMID: 27623394 DOI: 10.1021/jacs.6b07284] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The components of a 4:1 mixture of Rh(III)Cl tetrakis(4-methylphenyl)porphyrin 1 and a bowl-shaped tetra(4-pyridyl)cavitand 4 self-assemble into a 4:1 complex 14•4 via Rh-pyridyl axial coordination bonds. The single-crystal X-ray diffraction analysis and variable-temperature (VT) (1)H NMR study of 14•4 indicated that 14•4 behaves as a quadruple interlocking gear with an inner space, wherein (i) four subunits-1 are gear wheels and four p-pyridyl groups in subunit-4 are axes of gear wheels, (ii) one subunit-1 and two adjacent subunits-1 interlock with one another cooperatively, and (iii) four subunits-1 in 14•4 rotate quickly at 298 K on the NMR time scale. Together, the extremely strong porphyrin-Rh-pyridyl axial coordination bond, the rigidity of the methylene-bridge cavitand as a scaffold of the pyridyl axes, and the cruciform arrangement of the interdigitating p-tolyl groups as the teeth moiety of the gear wheels in the assembling 14-unit make 14•4 function as a quadruple interlocking gear in solution. The gear function of 14•4 was also supported by the rotation behaviors of other 4:1 complexes: 24•4 and 34•4 obtained from Rh(III)Cl tetrakis[4-(4-methylphenyl)phenyl]porphyrin 2 or Rh(III)Cl tetrakis(3,5-dialkoxyphenyl)porphyrin 3 and 4 also served as quadruple interlocking gears, whereas 14•5 obtained from 1 and tetrakis[4-(4-pyridyl)phenyl]cavitand 5 did not behave as a gear. The results of activation parameters (ΔH(⧧), ΔS(⧧), and ΔG(⧧)) obtained from Eyring plots based on line-shape analysis of the VT (1)H NMR spectra of 14•4, 24•4, and 34•4 also support the interlocking rotation (geared coupled rotation) mechanism.
Collapse
Affiliation(s)
- Munechika Nakamura
- Department of Chemistry, Faculty of Science, Shizuoka University , 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Kazuki Kishimoto
- Department of Chemistry, Faculty of Science, Shizuoka University , 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Yasuhiro Kobori
- Department of Chemistry, Graduate School of Science, Kobe University , 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan
| | - Tomoka Abe
- Department of Chemistry, Graduate School of Science, Kobe University , 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan
| | - Kenji Yoza
- Bruker axs , 3-9-B Moriya, Kanagawa-ku, Yokohama 221-0022, Japan
| | - Kenji Kobayashi
- Department of Chemistry, Faculty of Science, Shizuoka University , 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
48
|
Xu L, Huang T, Liang X, Mack J, Harris J, Nyokong T, Li M, Zhu W. Spectroscopic investigations and theoretical calculations of DABCO induced xanthene bridged self-assembled zinc(II) porphyrin dimer. J PORPHYR PHTHALOCYA 2016. [DOI: 10.1142/s1088424616500231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An in-depth study of the electronic structure of a 1,4-diazabicyclo[2.2.2]octane (DABCO) induced molecular self-assembled xanthene-bridged and amide-bonded porphyrin dimer is reported. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations are used to identify trends in the optical spectroscopic properties. B3LYP geometry optimization predicts the formation of an almost perfectly eclipsed structure with respect to the two porphyrin rings with the analogous pyrrole nitrogens separated by 7.7–8.1 Å. The observed distinctive derivative-shaped band morphology of the pseudo-Faraday-A[Formula: see text] terms in the MCD spectra has been used to identify the main electronic Q and B-bands and to validate the TD-DFT calculations. The absence of a discernible splitting of the redox steps or a quenching of the fluorescence demonstrates that there is no significant exciton coupling between the two porphyrin rings.
Collapse
Affiliation(s)
- Li Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Tingting Huang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Xu Liang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - John Mack
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Jessica Harris
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Tebello Nyokong
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Minzhi Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Weihua Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
49
|
Benson CR, Share AI, Marzo MG, Flood AH. Double Switching of Two Rings in Palindromic [3]Pseudorotaxanes: Cooperativity and Mechanism of Motion. Inorg Chem 2016; 55:3767-76. [DOI: 10.1021/acs.inorgchem.5b02554] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Christopher R. Benson
- Department
of Chemistry, Indiana University 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Andrew I. Share
- Department
of Chemistry, Indiana University 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Matthew G. Marzo
- Department
of Chemistry, Indiana University 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Amar H. Flood
- Department
of Chemistry, Indiana University 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
50
|
Wang SY, Fu JH, Liang YP, He YJ, Chen YS, Chan YT. Metallo-Supramolecular Self-Assembly of a Multicomponent Ditrigon Based on Complementary Terpyridine Ligand Pairing. J Am Chem Soc 2016; 138:3651-4. [DOI: 10.1021/jacs.6b01005] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shih-Yu Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Jun-Hao Fu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yen-Peng Liang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yun-Jui He
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Sheng Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|