1
|
Yang DS, Chen XL, Wu CY, Zhou Y, Wang LS, Wu YD, Wu AX. Intramolecular/Intermolecular Sequential Cyclization Accompanied by Double C-F Bond Cleavage: Access to Tricyclic Fluorine-Containing Pyrano[3,2- c]chromenes. J Org Chem 2024. [PMID: 39465977 DOI: 10.1021/acs.joc.4c01854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Defluorinative cyclization of CF3-alkenes has emerged as a reliable strategy for crafting intricate polycyclic frameworks. In this study, a facile defluorinative bicyclization approach was developed for the construction of 4H,5H-pyrano[3,2-c]chromenes under mild conditions involving a sequence of intramolecular cyclization and intermolecular defluoroheterocyclization. A variety of polysubstituted 4H,5H-pyrano[3,2-c]chromenes featuring C2-fluorine could be synthesized in good yields with excellent tolerance toward various functional groups. Moreover, the introduction of a C-F bond provides additional possibilities for further modification of this skeleton. The product features aggregation-induced emission (AIE) characteristics after simple modification, which is promising for chemical and biomedical imaging.
Collapse
Affiliation(s)
- Dong-Sheng Yang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Xiang-Long Chen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Chun-Yan Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - You Zhou
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Li-Sheng Wang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Yan-Dong Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - An-Xin Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
2
|
Shen G, Li Z, Zhao L, Zhang Y, Zhang Y, Li Z, Huang X, Lv X. Room-Temperature Cascade Electrophilic Addition/Cyclization/Oxidation Reactions: Divergent Selective Synthesis of Brominated 2H-Chromenes, 2H-Chromen-2-ols and 2H-Chromen-2-ones. Chemistry 2024; 30:e202401011. [PMID: 38757219 DOI: 10.1002/chem.202401011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
The room temperature metal-free cascade electrophilic addition/cyclization/oxidation reactions of (3-phenoxyprop-1-yn-1-yl)benzenes to divergently synthesize various brominated benzopyran derivatives (3-bromo-2H-chromenes, 3-bromo-2H-chromen-2-ols and 3-bromo coumarins) by tuning the amount of Br2 and H2O have been developed. The method exhibited high selectivity, mild reaction conditions, broad substrate scope, high efficiency, and the applicability for derivatization of the brominated products. The importance of the strategies provides a great advantage for selective synthesis of brominated benzopyran derivatives.
Collapse
Affiliation(s)
- Guodong Shen
- School of Chemistry and Chemical Engineering, Liaocheng University, 1 Hunan Avenue, Liaocheng, 252000, Shandong, P. R. China
| | - Zhanjun Li
- School of Chemistry and Chemical Engineering, Liaocheng University, 1 Hunan Avenue, Liaocheng, 252000, Shandong, P. R. China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology E-208 West Campus, 2 Ling Gong Road, Dalian, 116024, P. R. China
| | - Lingyu Zhao
- School of Chemistry and Chemical Engineering, Liaocheng University, 1 Hunan Avenue, Liaocheng, 252000, Shandong, P. R. China
| | - Ye Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, 1 Hunan Avenue, Liaocheng, 252000, Shandong, P. R. China
| | - Yalin Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, 1 Hunan Avenue, Liaocheng, 252000, Shandong, P. R. China
| | - Zhen Li
- School of Chemistry and Chemical Engineering, Liaocheng University, 1 Hunan Avenue, Liaocheng, 252000, Shandong, P. R. China
| | - Xianqiang Huang
- School of Chemistry and Chemical Engineering, Liaocheng University, 1 Hunan Avenue, Liaocheng, 252000, Shandong, P. R. China
| | - Xin Lv
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Avenue, Jinhua, 321004, P. R. China
| |
Collapse
|
3
|
Snabilié DD, Ham R, Reek JNH, de Bruin B. Light Induced Cobalt(III) Carbene Radical Formation from Dimethyl Malonate As Carbene Precursor. Organometallics 2024; 43:1299-1307. [PMID: 38873572 PMCID: PMC11167645 DOI: 10.1021/acs.organomet.4c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024]
Abstract
Radical-type carbene transfer catalysis is an efficient method for the direct functionalization of C-H and C=C bonds. However, carbene radical complexes are currently formed via high-energy carbene precursors, such as diazo compounds or iodonium ylides. Many of these carbene precursors require additional synthetic steps, have an explosive nature, or generate halogenated waste. Consequently, the utilization of carbene radical catalysis is limited by specific carbene precursors that access the carbene radical intermediate. In this study, we generate a cobalt(III) carbene radical complex from dimethyl malonate, which is commercially available and bench-stable. EPR and NMR spectroscopy were used to identify the intermediates and showed that the cobalt(III) carbene radical complex is formed upon light irradiation. In the presence of styrene, carbene transfer occurred, forming cyclopropane as the product. With this photochemical method, we demonstrate that dimethyl malonate can be used as an alternative carbene precursor in the formation of a cobalt(III) carbene radical complex.
Collapse
Affiliation(s)
- Demi D. Snabilié
- Van ‘t Hoff Institute
for Molecular Sciences, University of Amsterdam,
Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Rens Ham
- Van ‘t Hoff Institute
for Molecular Sciences, University of Amsterdam,
Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Joost N. H. Reek
- Van ‘t Hoff Institute
for Molecular Sciences, University of Amsterdam,
Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Bas de Bruin
- Van ‘t Hoff Institute
for Molecular Sciences, University of Amsterdam,
Science Park 904, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
4
|
Lee WCC, Zhang XP. Metalloradical Catalysis: General Approach for Controlling Reactivity and Selectivity of Homolytic Radical Reactions. Angew Chem Int Ed Engl 2024; 63:e202320243. [PMID: 38472114 PMCID: PMC11097140 DOI: 10.1002/anie.202320243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Since Friedrich Wöhler's groundbreaking synthesis of urea in 1828, organic synthesis over the past two centuries has predominantly relied on the exploration and utilization of chemical reactions rooted in two-electron heterolytic ionic chemistry. While one-electron homolytic radical chemistry is both rich in fundamental reactivities and attractive with practical advantages, the synthetic application of radical reactions has been long hampered by the formidable challenges associated with the control over reactivity and selectivity of high-energy radical intermediates. To fully harness the untapped potential of radical chemistry for organic synthesis, there is a pressing need to formulate radically different concepts and broadly applicable strategies to address these outstanding issues. In pursuit of this objective, researchers have been actively developing metalloradical catalysis (MRC) as a comprehensive framework to guide the design of general approaches for controlling over reactivity and stereoselectivity of homolytic radical reactions. Essentially, MRC exploits the metal-centered radicals present in open-shell metal complexes as one-electron catalysts for homolytic activation of substrates to generate metal-entangled organic radicals as the key intermediates to govern the reaction pathway and stereochemical course of subsequent catalytic radical processes. Different from the conventional two-electron catalysis by transition metal complexes, MRC operates through one-electron chemistry utilizing stepwise radical mechanisms.
Collapse
Affiliation(s)
- Wan-Chen Cindy Lee
- Department of Chemistry, Boston College, Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467 (USA)
| | - X. Peter Zhang
- Department of Chemistry, Boston College, Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467 (USA)
| |
Collapse
|
5
|
Geng M, Huang M, Kuang J, Fang W, Xiao X, Miao M, Ma Y. Cu(II)-Catalyzed [3 + 1 + 1 + 1] Cyclization of 1,3-Diketones and 2-Naphthols Using N, N-Dimethylethanolamine as a Dual Carbon Synthon for the Synthesis of 2 H-Chromenes. J Org Chem 2024; 89:152-162. [PMID: 38086005 DOI: 10.1021/acs.joc.3c01849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Reactions with diverse C1 synthons to realize homologation were well explored. However, homologations occurring twice with one C1 synthon in a reaction were less reported. We disclose herein a Cu(II)-catalyzed novel and efficient synthesis of 2H-chromenes from 2-naphthols, 1,3-diketones, and N,N-dimethylethanolamine (DMEA) as a dual carbon synthon. Various 2H-chromenes with different functional groups are constructed in moderate to good yields. This is the first report that DMEA acts as a dual C1 synthon.
Collapse
Affiliation(s)
- Meiqi Geng
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, China
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Minzhao Huang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, China
| | - Jinqiang Kuang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, China
| | - Weiwei Fang
- International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Xuqiong Xiao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, No. 2318 Yuhangtang Rd. Hangzhou 311121, P R China
| | - Maozhong Miao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, China
| |
Collapse
|
6
|
Das S, Ehlers AW, Patra S, de Bruin B, Chattopadhyay B. Iron-Catalyzed Intermolecular C-N Cross-Coupling Reactions via Radical Activation Mechanism. J Am Chem Soc 2023. [PMID: 37390369 DOI: 10.1021/jacs.3c05627] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
A concept for intermolecular C-N cross-coupling amination has been discovered using tetrazoles and aromatic and aliphatic azides with boronic acids under iron-catalyzed conditions. The amination follows an unprecedented metalloradical activation mechanism that is different from traditional metal-catalyzed C-N cross-coupling reactions. The scope of the reaction has been demonstrated by the employment of a large number of tetrazoles, azides, and boronic acids. Moreover, several late-stage aminations and a short synthesis of a drug candidate have been showcased for further synthetic utility. Collectively, this iron-catalyzed C-N cross-coupling should have wide applications in the context of medicinal chemistry, drug discovery, and pharmaceutical industries.
Collapse
Affiliation(s)
- Subrata Das
- Department of Biological & Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014 Uttar Pradesh, India
| | - Andreas W Ehlers
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Sima Patra
- Department of Biological & Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014 Uttar Pradesh, India
| | - Bas de Bruin
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Buddhadeb Chattopadhyay
- Department of Biological & Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014 Uttar Pradesh, India
| |
Collapse
|
7
|
Zhou N, Xia Z, Kuang K, Xu Q, Zhao F, Wang L, Zhang M. Visible-Light-Induced Difluoroalkylation of 1-(Allyloxy)-2-(1-arylvinyl)benzenes and 1-(1-Arylvinyl)-2-(vinyloxy)benzenes: Synthesis of Bis-Difluoroalkylated Benzoxepines and 2 H-Chromenes. Org Lett 2022; 24:5791-5796. [PMID: 35916599 DOI: 10.1021/acs.orglett.2c02314] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel visible-light-mediated difluoroalkylation of 1-(allyloxy)-2-(1-arylvinyl)benzenes and 1-(1-arylvinyl)-2-(vinyloxy)benzenes for the synthesis of bis-difluoroalkylated benzoxepines and 2H-chromenes is developed. This method features mild reaction conditions, good regioselectivity, a wide substrate scope, good functional-group compatibility, and late-stage modification. Preliminary mechanistic studies reveal that the generation of the CF2CO2Et radical is more prone to reaction with the double bond of the aryl group.
Collapse
Affiliation(s)
- Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Ziqin Xia
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Kaimo Kuang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Qiankun Xu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Fangli Zhao
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Lei Wang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Man Zhang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| |
Collapse
|
8
|
Kimura Y, Lugo-Fuentes LI, Saito S, Jimenez-Halla JOC, Barroso-Flores J, Yamamoto Y, Nakamoto M, Shang R. A boron, nitrogen-containing heterocyclic carbene (BNC) as a redox active ligand: synthesis and characterization of a lithium BNC-aurate complex. Dalton Trans 2022; 51:7899-7906. [PMID: 35535973 DOI: 10.1039/d2dt01083f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stabilization of low oxidation gold anions as aurate or auride by organic ligands has long been a synthetic challenge, owing to the proneness of low-valent gold centres to cluster. Despite being the most electronegative metal, isolable gold(I) aurate complexes have only been obtained from a few σ-withdrawing organo- and organo-main group ligands. Stabilization of highly-reduced gold complexes by π-modulating redox active ligands has only been achieved by cyclic (amino)(alkyl)carbene (CAAC), which is limited to 1e--reduction to form neutral gold(0) complexes. This work reports a simple modular synthesis of a boron, nitrogen-containing heterocyclic carbene (ClBNC) at a gold(I) center through metal-assisted coupling between azadiboriridine and isocyanides. The anionic electrophilic ClBNC ligand in the gold(I) complex [(ClBNC)AuPMe3] (3a and 3b) allows a 2e--reduction to form the first η1-carbene aurate complex [(BNC)AuPMe3]Li(DME) (5a, DME = dimethoxyethane). Single crystal crystallographic analysis and computational studies of these complexes revealed a highly π-withdrawing character of the neutral 4π B,N-heterocyclic carbene (BNC) moiety and a 6π weakly aromatic character with π-donating properties to the gold(I) fragment in its reduced form, showcasing the first cyclic carbene ligand that allows electronic tunability between π-withdrawing (Fischer-type)- and π-donating (Schrock-type) properties.
Collapse
Affiliation(s)
- Yoshitaka Kimura
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan.
| | - Leonardo I Lugo-Fuentes
- Department of Chemistry, Division of Natural and Exact Sciences, University of Guanajuato, Campus Gto, Noria Alta s/n 36050, Guanajuato, Mexico
| | - Souta Saito
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan.
| | - J Oscar C Jimenez-Halla
- Department of Chemistry, Division of Natural and Exact Sciences, University of Guanajuato, Campus Gto, Noria Alta s/n 36050, Guanajuato, Mexico
| | - Joaquín Barroso-Flores
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM México and Instituto de Química, Universidad Nacional Autónoma de México, Carretera Toluca-Atlacomulco Km. 14.5, Unidad San Cayetano, 50200 Toluca de Lerdo, Ciudad de Méico 04510, Mexico
| | - Yohsuke Yamamoto
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan.
| | - Masaaki Nakamoto
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan.
| | - Rong Shang
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan.
| |
Collapse
|
9
|
Reek JNH, de Bruin B, Pullen S, Mooibroek TJ, Kluwer AM, Caumes X. Transition Metal Catalysis Controlled by Hydrogen Bonding in the Second Coordination Sphere. Chem Rev 2022; 122:12308-12369. [PMID: 35593647 PMCID: PMC9335700 DOI: 10.1021/acs.chemrev.1c00862] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transition metal catalysis is of utmost importance for the development of sustainable processes in academia and industry. The activity and selectivity of metal complexes are typically the result of the interplay between ligand and metal properties. As the ligand can be chemically altered, a large research focus has been on ligand development. More recently, it has been recognized that further control over activity and selectivity can be achieved by using the "second coordination sphere", which can be seen as the region beyond the direct coordination sphere of the metal center. Hydrogen bonds appear to be very useful interactions in this context as they typically have sufficient strength and directionality to exert control of the second coordination sphere, yet hydrogen bonds are typically very dynamic, allowing fast turnover. In this review we have highlighted several key features of hydrogen bonding interactions and have summarized the use of hydrogen bonding to program the second coordination sphere. Such control can be achieved by bridging two ligands that are coordinated to a metal center to effectively lead to supramolecular bidentate ligands. In addition, hydrogen bonding can be used to preorganize a substrate that is coordinated to the metal center. Both strategies lead to catalysts with superior properties in a variety of metal catalyzed transformations, including (asymmetric) hydrogenation, hydroformylation, C-H activation, oxidation, radical-type transformations, and photochemical reactions.
Collapse
Affiliation(s)
- Joost N H Reek
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.,InCatT B.V., Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Sonja Pullen
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Tiddo J Mooibroek
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | | | - Xavier Caumes
- InCatT B.V., Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
10
|
Das S, Mondal R, Guin AK, Paul ND. Ligand centered redox enabled sustainable synthesis of triazines and pyrimidines using a zinc-stabilized azo-anion radical catalyst. Org Biomol Chem 2022; 20:3105-3117. [PMID: 35088804 DOI: 10.1039/d1ob02428k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein, we report ligand-centered redox controlled Zn(II)-catalyzed multicomponent approaches for synthesizing pyrimidines and triazines. Taking advantage of the ligand-centered redox events and using a well-defined Zn(II)-catalyst (1a) bearing (E)-2-((4-chlorophenyl)diazenyl)-1,10-phenanthroline (L1a) as the redox-active ligand, a wide variety of substituted pyrimidines and triazines were prepared via dehydrogenative alcohol functionalization reactions. Pyrimidines were prepared via two pathways: (i) dehydrogenative coupling of primary and secondary alcohols with amidines and (ii) dehydrogenative coupling of primary alcohols with alkynes and amidines. Triazines were prepared via dehydrogenative coupling of alcohols and amidines. Catalyst 1a is well tolerant to a wide range of substrates yielding the desired pyrimidines and triazines in moderate to good isolated yields. A series of control reactions were performed to predict the plausible mechanism, suggesting that the active participation of the ligand-centered redox events enables the Zn(II)-complex 1a to act as an efficient catalyst for synthesizing these N-heterocycles. Electron transfer processes occur at the azo-aromatic ligand throughout the catalytic reaction, and the Zn(II)-center serves only as a template.
Collapse
Affiliation(s)
- Siuli Das
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India.
| | - Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India.
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India.
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India.
| |
Collapse
|
11
|
Hong P, Song X, Huang Z, Tan K, Wu A, Lu X. Insights into the Mechanism of Metal-Catalyzed Transformation of Oxime Esters: Metal-Bound Radical Pathway vs Free Radical Pathway. J Org Chem 2022; 87:6014-6024. [PMID: 35389656 DOI: 10.1021/acs.joc.2c00273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Controlling of radical reactivity by binding a radical to the metal center is an elegant strategy to overcome the challenge that radical intermediates are "too reactive to be selective". Yet, its application has seemingly been limited to a few strained-ring substrates, azide compounds, and diazo compounds. Meanwhile, first-row transition-metal-catalyzed (mainly, Fe, Ni, Cu) transformations of oxime esters have been reported recently in which the activation processes are assumed to follow free-radical mechanisms. In this work, we show by means of density functional theory calculations that the activation of oxime esters catalyzed by Fe(II) and Cu(I) catalysts more likely affords a metal-bound iminyl radical, rather than the presumed free iminyl radical, and the whole process follows a metal-bound radical mechanism. The as-formed metal-bound radical intermediates are an Fe(III)-iminyl radical (Stotal = 2, SFe = 5/2, and Siminyl = -1/2) and a Cu(II)-iminyl radical (Stotal = 0, SCu = 1/2, and Siminyl = -1/2). The discovery of such novel substrates affording metal-bound radical intermediates may facilitate the experimental design of metal-catalyzed asymmetric synthesis using oxime esters to achieve the desired enantioselectivity.
Collapse
Affiliation(s)
- Pan Hong
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaolin Song
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhengqi Huang
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kai Tan
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Anan Wu
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
12
|
Ke J, Lee WCC, Wang X, Wang Y, Wen X, Zhang XP. Metalloradical Activation of In Situ-Generated α-Alkynyldiazomethanes for Asymmetric Radical Cyclopropanation of Alkenes. J Am Chem Soc 2022; 144:2368-2378. [PMID: 35099966 PMCID: PMC9032462 DOI: 10.1021/jacs.1c13154] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
α-Alkynyldiazomethanes, generated in situ from the corresponding sulfonyl hydrazones in the presence of a base, can serve as effective metalloradicophiles in Co(II)-based metalloradical catalysis (MRC) for asymmetric cyclopropanation of alkenes. With D2-symmetric chiral amidoporphyrin 2,6-DiMeO-QingPhyrin as the optimal supporting ligand, the Co(II)-based metalloradical system can efficiently activate different α-alkynyldiazomethanes at room temperature for highly asymmetric cyclopropanation of a broad range of alkenes. This catalytic radical process provides a general synthetic tool for stereoselective construction of alkynyl cyclopropanes in high yields with high both diastereoselectivity and enantioselectivity. Combined computational and experimental studies offer several lines of evidence in support of the underlying stepwise radical mechanism for the Co(II)-catalyzed olefin cyclopropanation involving a unique α-metalloradical intermediate that is associated with two resonance forms of α-Co(III)-propargyl radical and γ-Co(III)-allenyl radical. The resulting enantioenriched alkynyl cyclopropanes, as showcased with several stereospecific transformations, may serve as valuable chiral building blocks for stereoselective organic synthesis.
Collapse
Affiliation(s)
- Jing Ke
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Wan-Chen Cindy Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Xiaoxu Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yong Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Xin Wen
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X. Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
13
|
An efficient one-pot synthesis of indolyl-4H-chromene derivatives. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-021-03040-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Zheng SL, Chen L. Synthesis of 2 H-chromenes: recent advances and perspectives. Org Biomol Chem 2021; 19:10530-10548. [PMID: 34842267 DOI: 10.1039/d1ob01906f] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As one type of chromene, 2H-chromenes represent important oxygen heterocycles, which not only widely exist in natural products, pharmaceutical agents and biologically relevant molecules, but have also been used broadly in materials science and organic synthesis. Two major synthetic strategies have been developed towards such compounds. This review mainly focuses on the recent advances in this field, including benzopyran ring formation involving cyclization reactions and the late-stage functionalization of the parent 2H-chromenes.
Collapse
Affiliation(s)
- Shi-Lu Zheng
- College of Food and Biological Engineering, Chengdu University, P. R. China.,Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, P. R. China.
| | - Long Chen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P. R. China.,Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, P. R. China.
| |
Collapse
|
15
|
Zhou M, Wolzak LA, Li Z, de Zwart FJ, Mathew S, de Bruin B. Catalytic Synthesis of 1 H-2-Benzoxocins: Cobalt(III)-Carbene Radical Approach to 8-Membered Heterocyclic Enol Ethers. J Am Chem Soc 2021; 143:20501-20512. [PMID: 34802239 PMCID: PMC8662738 DOI: 10.1021/jacs.1c10927] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 12/30/2022]
Abstract
The metallo-radical activation of ortho-allylcarbonyl-aryl N-arylsulfonylhydrazones with the paramagnetic cobalt(II) porphyrin catalyst [CoII(TPP)] (TPP = tetraphenylporphyrin) provides an efficient and powerful method for the synthesis of novel 8-membered heterocyclic enol ethers. The synthetic protocol is versatile and practical and enables the synthesis of a wide range of unique 1H-2-benzoxocins in high yields. The catalytic cyclization reactions proceed with excellent chemoselectivities, have a high functional group tolerance, and provide several opportunities for the synthesis of new bioactive compounds. The reactions are shown to proceed via cobalt(III)-carbene radical intermediates, which are involved in intramolecular hydrogen transfer (HAT) from the allylic position to the carbene radical, followed by a near-barrierless radical rebound step in the coordination sphere of cobalt. The proposed mechanism is supported by experimental observations, density functional theory (DFT) calculations, and spin trapping experiments.
Collapse
Affiliation(s)
- Minghui Zhou
- Homogeneous,
Supramolecular and Bio-Inspired Catalysis (HomKat) group, Van ‘t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Lukas A. Wolzak
- Homogeneous,
Supramolecular and Bio-Inspired Catalysis (HomKat) group, Van ‘t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Zirui Li
- Department
of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Felix J. de Zwart
- Homogeneous,
Supramolecular and Bio-Inspired Catalysis (HomKat) group, Van ‘t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Simon Mathew
- Homogeneous,
Supramolecular and Bio-Inspired Catalysis (HomKat) group, Van ‘t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Homogeneous,
Supramolecular and Bio-Inspired Catalysis (HomKat) group, Van ‘t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
16
|
van Leest N, de Zwart FJ, Zhou M, de Bruin B. Controlling Radical-Type Single-Electron Elementary Steps in Catalysis with Redox-Active Ligands and Substrates. JACS AU 2021; 1:1101-1115. [PMID: 34467352 PMCID: PMC8385710 DOI: 10.1021/jacsau.1c00224] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Advances in (spectroscopic) characterization of the unusual electronic structures of open-shell cobalt complexes bearing redox-active ligands, combined with detailed mapping of their reactivity, have uncovered several new catalytic radical-type protocols that make efficient use of the synergistic properties of redox-active ligands, redox-active substrates, and the metal to which they coordinate. In this perspective, we discuss the tools available to study, induce, and control catalytic radical-type reactions with redox-active ligands and/or substrates, contemplating recent developments in the field, including some noteworthy tools, methods, and reactions developed in our own group. The main topics covered are (i) tools to characterize redox-active ligands; (ii) novel synthetic applications of catalytic reactions that make use of redox-active carbene and nitrene substrates at open-shell cobalt-porphyrins; (iii) development of catalytic reactions that take advantage of purely ligand- and substrate-based redox processes, coupled to cobalt-centered spin-changing events in a synergistic manner; and (iv) utilization of redox-active ligands to influence the spin state of the metal. Redox-active ligands have emerged as useful tools to generate and control reactive metal-coordinated radicals, which give access to new synthetic methodologies and intricate (electronic) structures, some of which are yet to be exposed.
Collapse
Affiliation(s)
- Nicolaas
P. van Leest
- Homogeneous, Supramolecular and Bio-Inspired
Catalysis Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Felix J. de Zwart
- Homogeneous, Supramolecular and Bio-Inspired
Catalysis Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Minghui Zhou
- Homogeneous, Supramolecular and Bio-Inspired
Catalysis Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Homogeneous, Supramolecular and Bio-Inspired
Catalysis Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
17
|
Zhang C, Wang DS, Lee WCC, McKillop AM, Zhang XP. Controlling Enantioselectivity and Diastereoselectivity in Radical Cascade Cyclization for Construction of Bicyclic Structures. J Am Chem Soc 2021; 143:11130-11140. [PMID: 34260202 PMCID: PMC8399859 DOI: 10.1021/jacs.1c04719] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Radical cascade cyclization reactions are highly attractive synthetic tools for the construction of polycyclic molecules in organic synthesis. While it has been successfully implemented in diastereoselective synthesis of natural products and other complex compounds, radical cascade cyclization faces a major challenge of controlling enantioselectivity. As the first application of metalloradical catalysis (MRC) for controlling enantioselectivity as well as diastereoselectivity in radical cascade cyclization, we herein report the development of a Co(II)-based catalytic system for asymmetric radical bicyclization of 1,6-enynes with diazo compounds. Through the fine-tuning of D2-symmetric chiral amidoporphyrins as the supporting ligands, the Co(II)-catalyzed radical cascade process, which proceeds in a single operation under mild conditions, enables asymmetric construction of multisubstituted cyclopropane-fused tetrahydrofurans bearing three contiguous stereogenic centers, including two all-carbon quaternary centers, in high yields with excellent stereoselectivities. Combined computational and experimental studies have shed light on the underlying stepwise radical mechanism for this new Co(II)-based cascade bicyclization that involves the relay of several Co-supported C-centered radical intermediates, including α-, β-, γ-, and ε-metalloalkyl radicals. The resulting enantioenriched cyclopropane-fused tetrahydrofurans that contain a trisubstituted vinyl group at the bridgehead, as showcased in several stereospecific transformations, may serve as useful intermediates for stereoselective organic synthesis. The successful demonstration of this new asymmetric radical process via Co(II)-MRC points out a potentially general approach for controlling enantioselectivity as well as diastereoselectivity in synthetically attractive radical cascade reactions.
Collapse
Affiliation(s)
- Congzhe Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Duo-Sheng Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Wan-Chen Cindy Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Alexander M McKillop
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
18
|
Wang X, Ke J, Zhu Y, Deb A, Xu Y, Zhang XP. Asymmetric Radical Process for General Synthesis of Chiral Heteroaryl Cyclopropanes. J Am Chem Soc 2021; 143:11121-11129. [PMID: 34282613 PMCID: PMC8399893 DOI: 10.1021/jacs.1c04655] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A highly efficient catalytic method has been developed for asymmetric radical cyclopropanation of alkenes with in situ-generated α-heteroaryldiazomethanes via Co(II)-based metalloradical catalysis (MRC). Through fine-tuning the cavity-like environments of newly-synthesized D2-symmetric chiral amidoporphyrins as the supporting ligand, the optimized Co(II)-based metalloradical system is broadly applicable to α-pyridyl and other α-heteroaryldiazomethanes for asymmetric cyclopropanation of wide-ranging alkenes, including several types of challenging substrates. This new catalytic methodology provides a general access to valuable chiral heteroaryl cyclopropanes in high yields with excellent both diastereoselectivities and enantioselectivities. Combined computational and experimental studies further support the underlying stepwise radical mechanism of the Co(II)-based olefin cyclopropanation involving α- and γ-metalloalkyl radicals as the key intermediates.
Collapse
Affiliation(s)
- Xiaoxu Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jing Ke
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yiling Zhu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Arghya Deb
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yijie Xu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
19
|
Zheng SL, Zou YX, Wen Z, Lin JF, Gu LH, Chen L. Y(OTf) 3-catalyzed phosphorylation of 2H-chromene hemiacetals with P(O)-H compounds to 2-phosphorylated 2H-chromenes. Org Biomol Chem 2021; 19:6812-6816. [PMID: 34297020 DOI: 10.1039/d1ob01221e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A facile synthesis of 2-phosphorylated 2H-chromenes has been accomplished herein via a Y(OTf)3-catalyzed dehydrative coupling of 2H-chromene hemiacetals with P(O)-H compounds. This protocol features low catalyst loading, mild reaction conditions, broad substrate scope and easy elaboration of the products.
Collapse
Affiliation(s)
- Shi-Lu Zheng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P. R. China.
| | | | | | | | | | | |
Collapse
|
20
|
Ma L, Jin F, Cheng X, Tao S, Jiang G, Li X, Yang J, Bao X, Wan X. [2 + 2 + 1] Cycloaddition of N-tosylhydrazones, tert-butyl nitrite and alkenes: a general and practical access to isoxazolines. Chem Sci 2021; 12:9823-9830. [PMID: 34349956 PMCID: PMC8293996 DOI: 10.1039/d1sc02352g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/19/2021] [Indexed: 12/11/2022] Open
Abstract
N-Tosylhydrazones have proven to be versatile synthons over the past several decades. However, to our knowledge, the construction of isoxazolines based on N-tosylhydrazones has not been examined. Herein, we report the first demonstrations of [2 + 2 + 1] cycloaddition reactions that allow the facile synthesis of isoxazolines, employing N-tosylhydrazones, tert-butyl nitrite (TBN) and alkenes as reactants. This process represents a new type of cycloaddition reaction with a distinct mechanism that does not involve the participation of nitrile oxides. This approach is both general and practical and exhibits a wide substrate scope, nearly universal functional group compatibility, tolerance of moisture and air, the potential for functionalization of complex bioactive molecules and is readily scaled up. Both control experiments and theoretical calculations indicate that this transformation proceeds via the in situ generation of a nitronate from the coupling of N-tosylhydrazone and TBN, followed by cycloaddition with an alkene and subsequent elimination of a tert-butyloxy group to give the desired isoxazoline.
Collapse
Affiliation(s)
- Liang Ma
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Feng Jin
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xionglve Cheng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Suyan Tao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Gangzhong Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xingxing Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Jinwei Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xiaoguang Bao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xiaobing Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| |
Collapse
|
21
|
van Leest N, de Bruin B. Revisiting the Electronic Structure of Cobalt Porphyrin Nitrene and Carbene Radicals with NEVPT2-CASSCF Calculations: Doublet versus Quartet Ground States. Inorg Chem 2021; 60:8380-8387. [PMID: 34096281 PMCID: PMC8220492 DOI: 10.1021/acs.inorgchem.1c00910] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Indexed: 12/23/2022]
Abstract
Cobalt porphyrin complexes are established catalysts for carbene and nitrene radical group-transfer reactions. The key carbene and mono- and bisnitrene radical complexes coordinated to [Co(TPP)] (TPP = tetraphenylporphyrin) have previously been investigated with a variety of experimental techniques and supporting (single-reference) density functional theory (DFT) calculations that indicated doublet (S = 1/2) ground states for all three species. In this contribution, we revisit their electronic structures with multireference N-electron valence state perturbation theory (NEVPT2)-complete-active-space self-consistent-field (CASSCF) calculations to investigate possible multireference contributions to the ground-state wave functions. The carbene ([CoIII(TPP)(•CHCO2Et)]) and mononitrene ([CoIII(TPP)(•NNs)]) radical complexes were confirmed to have uncomplicated doublet ground states, although a higher carbene or nitrene radical character and a lower Co-C/N bond order was found in the NEVPT2-CASSCF calculations. Supported by electron paramagnetic resonance analysis and spin counting, paramagnetic molar susceptibility determination, and NEVPT2-CASSCF calculations, we report that the cobalt porphyrin bisnitrene complex ([CoIII(TPP•)(•NNs)2]) has a quartet (S = 3/2) spin ground state, with a thermally accesible multireference and multideterminant "broken-symmetry" doublet spin excited state. A spin flip on the porphyrin-centered unpaired electron allows for interconversion between the quartet and broken-symmetry doublet spin states, with an approximate 10-fold higher Boltzmann population of the quartet at room temperature.
Collapse
Affiliation(s)
- Nicolaas
P. van Leest
- Homogeneous, Supramolecular
and Bio-Inspired Catalysis Group, Van ’t Hoff Institute for
Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Homogeneous, Supramolecular
and Bio-Inspired Catalysis Group, Van ’t Hoff Institute for
Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
22
|
Roy S, Das SK, Khatua H, Das S, Singh KN, Chattopadhyay B. Iron‐Catalyzed Radical Activation Mechanism for Denitrogenative Rearrangement Over C(sp
3
)–H Amination. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Satyajit Roy
- Division of Molecular Synthesis & Drug Discovery, Centre of Bio-Medical Research (CBMR) SGPGIMS Campus Raebareli Road Lucknow 226014 U.P. India
- Department of Chemistry, Institute of Science Banaras Hindu University Varanasi 221005 India
| | - Sandip Kumar Das
- Division of Molecular Synthesis & Drug Discovery, Centre of Bio-Medical Research (CBMR) SGPGIMS Campus Raebareli Road Lucknow 226014 U.P. India
| | - Hillol Khatua
- Division of Molecular Synthesis & Drug Discovery, Centre of Bio-Medical Research (CBMR) SGPGIMS Campus Raebareli Road Lucknow 226014 U.P. India
| | - Subrata Das
- Division of Molecular Synthesis & Drug Discovery, Centre of Bio-Medical Research (CBMR) SGPGIMS Campus Raebareli Road Lucknow 226014 U.P. India
| | - Krishna Nand Singh
- Department of Chemistry, Institute of Science Banaras Hindu University Varanasi 221005 India
| | - Buddhadeb Chattopadhyay
- Division of Molecular Synthesis & Drug Discovery, Centre of Bio-Medical Research (CBMR) SGPGIMS Campus Raebareli Road Lucknow 226014 U.P. India
| |
Collapse
|
23
|
Roy S, Das SK, Khatua H, Das S, Singh KN, Chattopadhyay B. Iron-Catalyzed Radical Activation Mechanism for Denitrogenative Rearrangement Over C(sp 3 )-H Amination. Angew Chem Int Ed Engl 2021; 60:8772-8780. [PMID: 33463874 DOI: 10.1002/anie.202014950] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/05/2021] [Indexed: 11/11/2022]
Abstract
An iron-catalyzed denitrogenative rearrangement of 1,2,3,4-tetrazole is developed over the competitive C(sp3 )-H amination. This catalytic rearrangement reaction follows an unprecedented metalloradical activation mechanism. Employing the developed method, a wide number of complex-N-heterocyclic product classes have been accessed. The synthetic utility of this radical activation method is showcased with the short synthesis of a bioactive molecule. Collectively, this discovery underlines the progress of radical activation strategy that should find wide application in the perspective of medicinal chemistry, drug discovery and natural product synthesis research.
Collapse
Affiliation(s)
- Satyajit Roy
- Division of Molecular Synthesis & Drug Discovery, Centre of Bio-Medical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, 226014, U.P., India.,Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sandip Kumar Das
- Division of Molecular Synthesis & Drug Discovery, Centre of Bio-Medical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, 226014, U.P., India
| | - Hillol Khatua
- Division of Molecular Synthesis & Drug Discovery, Centre of Bio-Medical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, 226014, U.P., India
| | - Subrata Das
- Division of Molecular Synthesis & Drug Discovery, Centre of Bio-Medical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, 226014, U.P., India
| | - Krishna Nand Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Buddhadeb Chattopadhyay
- Division of Molecular Synthesis & Drug Discovery, Centre of Bio-Medical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, 226014, U.P., India
| |
Collapse
|
24
|
Gu ZY, Han H, Li ZY, Ji SJ, Xia JB. Catalytic synthesis of functionalized amidines via cobalt-carbene radical coupling with isocyanides and amines. Org Chem Front 2021. [DOI: 10.1039/d1qo00063b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An atom- and step-economic multi-component cobalt-catalyzed synthesis of amidines has been reported by using amines, isocyanides, and diazo compounds as carbene sources.
Collapse
Affiliation(s)
- Zheng-Yang Gu
- College of Textiles and Clothing & Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province
- Yancheng Institute of Technology
- Yancheng
- China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
| | - Hui Han
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Center for Excellence in Molecular Synthesis
- Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP)
- University of Chinese Academy of Sciences
| | - Zi-Yin Li
- College of Textiles and Clothing & Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province
- Yancheng Institute of Technology
- Yancheng
- China
| | - Shun-Jun Ji
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- China
| | - Ji-Bao Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Center for Excellence in Molecular Synthesis
- Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP)
- University of Chinese Academy of Sciences
| |
Collapse
|
25
|
Vasantha R., Lenin DV, Rao LC, Satish Kumar N. Water Extract of Lemon (WEL) as a Promoter: Green and Regioselective Synthesis of Alkyl‐4‐(1
H
‐indol‐3 yl)‐2‐alkyl‐4
H
‐chromene‐3‐carboxylates Using 4
H
‐chromenes and Indoles. ChemistrySelect 2020. [DOI: 10.1002/slct.202003542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Vasantha R.
- School of Chemical Sciences Central University of Gujarat Sector 30 Gandhinagar, Gujarat India- 382030
| | - Dandamudi V Lenin
- School of Chemical Sciences Central University of Gujarat Sector 30 Gandhinagar, Gujarat India- 382030
| | | | | |
Collapse
|
26
|
Zhang Z, Gevorgyan V. Co-Catalyzed Transannulation of Pyridotriazoles with Isothiocyanates and Xanthate Esters. Org Lett 2020; 22:8500-8504. [PMID: 33044833 PMCID: PMC7655727 DOI: 10.1021/acs.orglett.0c03099] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An efficient radical transannulation reaction of pyridotriazoles with isothiocyanates and xanthate esters was developed. This method features conversion of pyridotriazoles into two N-fused heterocyclic aromatic systems-imino-thiazolopyridines and oxo-thiazolopyridine derivatives-via one-step Co(II)-catalyzed transannulation reaction proceeding via a radical mechanism. The synthetic usefulness of the developed method was illustrated in the synthesis of amino acid derivatives and further transformations of obtained reaction products.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| |
Collapse
|
27
|
|
28
|
Zhou M, Lankelma M, Vlugt JI, Bruin B. Catalytic Synthesis of 8‐Membered Ring Compounds via Cobalt(III)‐Carbene Radicals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Minghui Zhou
- Homogeneous, Supramolecular and Bio-Inspired Catalysis group (HomKat)Van't Hoff Institute for Molecular Sciences (HIMS)University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Marianne Lankelma
- Homogeneous, Supramolecular and Bio-Inspired Catalysis group (HomKat)Van't Hoff Institute for Molecular Sciences (HIMS)University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Jarl Ivar Vlugt
- Homogeneous, Supramolecular and Bio-Inspired Catalysis group (HomKat)Van't Hoff Institute for Molecular Sciences (HIMS)University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Bas Bruin
- Homogeneous, Supramolecular and Bio-Inspired Catalysis group (HomKat)Van't Hoff Institute for Molecular Sciences (HIMS)University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
29
|
Zhou M, Lankelma M, van der Vlugt JI, de Bruin B. Catalytic Synthesis of 8-Membered Ring Compounds via Cobalt(III)-Carbene Radicals. Angew Chem Int Ed Engl 2020; 59:11073-11079. [PMID: 32259369 PMCID: PMC7317878 DOI: 10.1002/anie.202002674] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Indexed: 12/20/2022]
Abstract
The metalloradical activation of o-aryl aldehydes with tosylhydrazide and a cobalt(II) porphyrin catalyst produces cobalt(III)-carbene radical intermediates, providing a new and powerful strategy for the synthesis of medium-sized ring structures. Herein we make use of the intrinsic radical-type reactivity of cobalt(III)-carbene radical intermediates in the [CoII (TPP)]-catalyzed (TPP=tetraphenylporphyrin) synthesis of two types of 8-membered ring compounds; novel dibenzocyclooctenes and unprecedented monobenzocyclooctadienes. The method was successfully applied to afford a variety of 8-membered ring compounds in good yields and with excellent substituent tolerance. Density functional theory (DFT) calculations and experimental results suggest that the reactions proceed via hydrogen atom transfer from the bis-allylic/benzallylic C-H bond to the carbene radical, followed by two divergent processes for ring-closure to the two different types of 8-membered ring products. While the dibenzocyclooctenes are most likely formed by dissociation of o-quinodimethanes (o-QDMs) which undergo a non-catalyzed 8π-cyclization, DFT calculations suggest that ring-closure to the monobenzocyclooctadienes involves a radical-rebound step in the coordination sphere of cobalt. The latter mechanism implies that unprecedented enantioselective ring-closure reactions to chiral monobenzocyclooctadienes should be possible, as was confirmed for reactions mediated by a chiral cobalt-porphyrin catalyst.
Collapse
Affiliation(s)
- Minghui Zhou
- Homogeneous, Supramolecular and Bio-Inspired Catalysis group (HomKat)Van't Hoff Institute for Molecular Sciences (HIMS)University of Amsterdam (UvA)Science Park 9041098XHAmsterdamThe Netherlands
| | - Marianne Lankelma
- Homogeneous, Supramolecular and Bio-Inspired Catalysis group (HomKat)Van't Hoff Institute for Molecular Sciences (HIMS)University of Amsterdam (UvA)Science Park 9041098XHAmsterdamThe Netherlands
| | - Jarl Ivar van der Vlugt
- Homogeneous, Supramolecular and Bio-Inspired Catalysis group (HomKat)Van't Hoff Institute for Molecular Sciences (HIMS)University of Amsterdam (UvA)Science Park 9041098XHAmsterdamThe Netherlands
| | - Bas de Bruin
- Homogeneous, Supramolecular and Bio-Inspired Catalysis group (HomKat)Van't Hoff Institute for Molecular Sciences (HIMS)University of Amsterdam (UvA)Science Park 9041098XHAmsterdamThe Netherlands
| |
Collapse
|
30
|
Alcântara AFP, Fontana LA, Almeida MP, Rigolin VH, Ribeiro MA, Barros WP, Megiatto JD. Control over the Redox Cooperative Mechanism of Radical Carbene Transfer Reactions for the Efficient Active‐Metal‐Template Synthesis of [2]Rotaxanes. Chemistry 2020; 26:7808-7822. [DOI: 10.1002/chem.201905602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 02/01/2023]
Affiliation(s)
- Arthur F. P. Alcântara
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
- Instituto Federal do Sertão Pernambucano Estrada do Tamboril 56200-000 Ouricuri Brazil
| | - Liniquer A. Fontana
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Marlon P. Almeida
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Vitor H. Rigolin
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Marcos A. Ribeiro
- Departamento de QuímicaUniversidade Federal do Espírito Santo Av. Fernando Ferrari, 514 29075-910 Vitória Brazil
| | - Wdeson P. Barros
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Jackson D. Megiatto
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| |
Collapse
|
31
|
Song L, Su Q, Lin X, Du Z, Xu H, Ouyang MA, Yao H, Tong R. Cascade Claisen and Meinwald Rearrangement for One-Pot Divergent Synthesis of Benzofurans and 2H-Chromenes. Org Lett 2020; 22:3004-3009. [DOI: 10.1021/acs.orglett.0c00770] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Liyan Song
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qian Su
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xi Lin
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhihui Du
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Huiyou Xu
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ming-An Ouyang
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Drug Synthesis and Evaluation Center, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong 510260, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| |
Collapse
|
32
|
Zhu D, Chen L, Fan H, Yao Q, Zhu S. Recent progress on donor and donor-donor carbenes. Chem Soc Rev 2020; 49:908-950. [PMID: 31958107 DOI: 10.1039/c9cs00542k] [Citation(s) in RCA: 222] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Donor and donor-donor carbenes are two important kinds of carbenes, which have experienced tremendous growth in the past two decades. This review provides a comprehensive overview of the recent development of donor and donor-donor carbene chemistry. The development of this chemistry offers efficient protocols to construct a wide variety of C-C and C-X bonds in organic synthesis. This review is organized based on the different types of carbene precursors, including diazo compounds, hydrazones, enynones, cycloheptatrienes and cyclopropenes. The typical transformations, the reaction mechanisms, as well as their subsequent applications in the synthesis of complex natural products and bioactive molecules are discussed. Due to the rapidly increasing interest in this area, we believe that this review will provide a timely and comprehensive discussion of recent progress in donor and donor-donor carbene chemistry.
Collapse
Affiliation(s)
- Dong Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China.
| | | | | | | | | |
Collapse
|
33
|
Wang DY, Li HJ, Huang DM, Wu YC. Tin(ii)-catalyzed dehydrative cross-coupling of 2H-chromene hemiacetals with ketones. Org Biomol Chem 2020; 18:9308-9315. [DOI: 10.1039/d0ob01980a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Without the derivatization of 2H-chromene hemiacetals to 2H-chromene acetals, the direct C–OH/C–H coupling reaction has been accomplished with water as the only by-product.
Collapse
Affiliation(s)
- Dan-Yang Wang
- School of Marine Science and Technology
- Weihai Marine Organism & Medical Technology Research Institute
- Harbin Institute of Technology
- Weihai 264209
- P. R. China
| | - Hui-Jing Li
- School of Marine Science and Technology
- Weihai Marine Organism & Medical Technology Research Institute
- Harbin Institute of Technology
- Weihai 264209
- P. R. China
| | - Deng-Ming Huang
- School of Marine Science and Technology
- Weihai Marine Organism & Medical Technology Research Institute
- Harbin Institute of Technology
- Weihai 264209
- P. R. China
| | - Yan-Chao Wu
- School of Marine Science and Technology
- Weihai Marine Organism & Medical Technology Research Institute
- Harbin Institute of Technology
- Weihai 264209
- P. R. China
| |
Collapse
|
34
|
Mokar BD, Yi CS. Scope and Mechanism of the Ruthenium-Catalyzed Dehydrative C–H Coupling of Phenols with α,β-Unsaturated Carbonyl Compounds: Expedient Synthesis of Chromene and Benzoxacyclic Derivatives. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
| | - Chae S. Yi
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| |
Collapse
|
35
|
Affiliation(s)
- Guojiao Wu
- Department of ChemistryUniversity of Hamburg Martin Luther King Pl 6 20146 Hamburg Germany
| | - Jennifer Börger
- Department of ChemistryUniversity of Hamburg Martin Luther King Pl 6 20146 Hamburg Germany
| | | |
Collapse
|
36
|
Wu G, Börger J, Jacobi von Wangelin A. A Carbene-Extended ATRA Reaction. Angew Chem Int Ed Engl 2019; 58:17241-17245. [PMID: 31613415 PMCID: PMC6900008 DOI: 10.1002/anie.201909872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/03/2019] [Indexed: 12/27/2022]
Abstract
Atom-transfer radical addition (ATRA) reactions have gained a strong foothold in organic synthesis by virtue of their operational simplicity, synthetic versatility, and perfect atom economy. A rich chemical space can be accessed through clever combinations of the simple starting materials. Many variations of this general motif have been reported. However, the vast majority involve the addition of an organic halide across a C=C double bond, resulting in the formation of 1,2-bifunctional products. This report introduces a significant expansion of this general reactivity concept to give 1,3-bifunctional adducts through the combination of 1,1-ATRA to a carbenoid and 1,2-ATRA to an alkyne. Both processes operate under mild conditions (RT, 5 h) with the same commercial catalyst (CoBr2 , dppbz).
Collapse
Affiliation(s)
- Guojiao Wu
- Department of ChemistryUniversity of HamburgMartin Luther King Pl 620146HamburgGermany
| | - Jennifer Börger
- Department of ChemistryUniversity of HamburgMartin Luther King Pl 620146HamburgGermany
| | | |
Collapse
|
37
|
Zhao J, Li P, Xu Y, Shi Y, Li F. Nickel-Catalyzed Transformation of Diazoacetates to Alkyl Radicals Using Alcohol as a Hydrogen Source. Org Lett 2019; 21:9386-9390. [DOI: 10.1021/acs.orglett.9b03610] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jingjing Zhao
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Pan Li
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Yaohua Xu
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Yixin Shi
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Fuwei Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
38
|
Hu Y, Lang K, Li C, Gill JB, Kim I, Lu H, Fields KB, Marshall M, Cheng Q, Cui X, Wojtas L, Zhang XP. Enantioselective Radical Construction of 5-Membered Cyclic Sulfonamides by Metalloradical C-H Amination. J Am Chem Soc 2019; 141:18160-18169. [PMID: 31622088 DOI: 10.1021/jacs.9b08894] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Both arylsulfonyl and alkylsulfonyl azides can be effectively activated by the cobalt(II) complexes of D2-symmetric chiral amidoporphyrins for enantioselective radical 1,5-C-H amination to stereoselectively construct 5-membered cyclic sulfonamides. In addition to C-H bonds with varied electronic properties, the Co(II)-based metalloradical system features chemoselective amination of allylic C-H bonds and is compatible with heteroaryl groups, producing functionalized 5-membered chiral cyclic sulfonamides in high yields with high enantioselectivities. The unique profile of reactivity and selectivity of the Co(II)-catalyzed C-H amination is attributed to its underlying stepwise radical mechanism, which is supported by several lines of experimental evidence.
Collapse
Affiliation(s)
- Yang Hu
- Department of Chemistry , University of South Florida , Tampa , Florida 33620-5250 , United States
| | - Kai Lang
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Chaoqun Li
- Department of Chemistry , University of South Florida , Tampa , Florida 33620-5250 , United States
| | - Joseph B Gill
- Department of Chemistry , University of South Florida , Tampa , Florida 33620-5250 , United States
| | - Isaac Kim
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Hongjian Lu
- Department of Chemistry , University of South Florida , Tampa , Florida 33620-5250 , United States
| | - Kimberly B Fields
- Department of Chemistry , University of South Florida , Tampa , Florida 33620-5250 , United States
| | - McKenzie Marshall
- Department of Chemistry , University of South Florida , Tampa , Florida 33620-5250 , United States
| | - Qigan Cheng
- Department of Chemistry , University of South Florida , Tampa , Florida 33620-5250 , United States
| | - Xin Cui
- Department of Chemistry , University of South Florida , Tampa , Florida 33620-5250 , United States
| | - Lukasz Wojtas
- Department of Chemistry , University of South Florida , Tampa , Florida 33620-5250 , United States
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| |
Collapse
|
39
|
Wang B, Howard IG, Pope JW, Conte ED, Deng Y. Bis(imino)pyridine iron complexes for catalytic carbene transfer reactions. Chem Sci 2019; 10:7958-7963. [PMID: 31853351 PMCID: PMC6839806 DOI: 10.1039/c9sc02189b] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/02/2019] [Indexed: 12/21/2022] Open
Abstract
The bis(imino)pyridine iron complex, for the first time, is developed as an effective metal carbene catalyst for carbene transfer reactions of donor-acceptor diazo compounds. Its broad catalytic capability is demonstrated by a range of metal carbene reactions, from cyclopropanation, cyclopropenation, epoxidation, and Doyle-Kirmse reaction to O-H insertion, N-H insertion, and C-H insertion reactions. The asymmetric cyclopropanation of styrene and methyl phenyldiazoacetate was successfully achieved by the new chiral bis(imino)pyridine iron catalyst, which delivers a new gateway for the development of chiral iron catalysis for metal carbene reactions.
Collapse
Affiliation(s)
- Ban Wang
- Chemistry Department , Western Kentucky University , 1906 College Heights Boulevard , Bowling Green , Kentucky 42101 , USA .
| | - Isaac G Howard
- Chemistry Department , Western Kentucky University , 1906 College Heights Boulevard , Bowling Green , Kentucky 42101 , USA .
| | - Jackson W Pope
- Chemistry Department , Western Kentucky University , 1906 College Heights Boulevard , Bowling Green , Kentucky 42101 , USA .
| | - Eric D Conte
- Chemistry Department , Western Kentucky University , 1906 College Heights Boulevard , Bowling Green , Kentucky 42101 , USA .
| | - Yongming Deng
- Chemistry Department , Western Kentucky University , 1906 College Heights Boulevard , Bowling Green , Kentucky 42101 , USA .
| |
Collapse
|
40
|
Jiang C, Chen Y, Zhang H, Tan JP, Wang T. Catalyst-Free Synthesis of α-Functionalized 2H-Chromenes in Water: A Tandem Self-Promoted pseudo-Substitution and Decarboxylation Process. Chem Asian J 2019; 14:2938-2944. [PMID: 31298487 DOI: 10.1002/asia.201900641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/01/2019] [Indexed: 11/07/2022]
Abstract
A catalyst-free decarboxylative reaction between β-keto acids and 2H-chromene acetals in water was developed. This reaction featured a broad substrate scope and easily obtainable starting materials to afford α-functionalized 2H-chromenes in high yields. The synthetic value of this protocol was also demonstrated by the scale-up synthesis and versatile conversions of the title product into other useful compounds. In addition, control experiments indicated that water was essential for the reactivity. Mechanistic studies further revealed that the reaction proceeded through a self-promoted tandem pseudo-substitution and decarboxylation process.
Collapse
Affiliation(s)
- Chunhui Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, P. R. China.,Key Laboratory of Green Chemistry&Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yayun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, P. R. China.,Key Laboratory of Green Chemistry&Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Hongkui Zhang
- Key Laboratory of Green Chemistry&Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jian-Ping Tan
- Key Laboratory of Green Chemistry&Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry&Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
41
|
Roy S, Khatua H, Das SK, Chattopadhyay B. Iron(II)‐Based Metalloradical Activation: Switch from Traditional Click Chemistry to Denitrogenative Annulation. Angew Chem Int Ed Engl 2019; 58:11439-11443. [DOI: 10.1002/anie.201904702] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/27/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Satyajit Roy
- Division of Molecular Synthesis & Drug DiscoveryCentre of Bio-Medical Research (CBMR)SGPGIMS Campus Raebareli Road Lucknow 226014 U.P. India
| | - Hillol Khatua
- Division of Molecular Synthesis & Drug DiscoveryCentre of Bio-Medical Research (CBMR)SGPGIMS Campus Raebareli Road Lucknow 226014 U.P. India
| | - Sandip Kumar Das
- Division of Molecular Synthesis & Drug DiscoveryCentre of Bio-Medical Research (CBMR)SGPGIMS Campus Raebareli Road Lucknow 226014 U.P. India
| | - Buddhadeb Chattopadhyay
- Division of Molecular Synthesis & Drug DiscoveryCentre of Bio-Medical Research (CBMR)SGPGIMS Campus Raebareli Road Lucknow 226014 U.P. India
| |
Collapse
|
42
|
Roy S, Khatua H, Das SK, Chattopadhyay B. Iron(II)‐Based Metalloradical Activation: Switch from Traditional Click Chemistry to Denitrogenative Annulation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Satyajit Roy
- Division of Molecular Synthesis & Drug DiscoveryCentre of Bio-Medical Research (CBMR)SGPGIMS Campus Raebareli Road Lucknow 226014 U.P. India
| | - Hillol Khatua
- Division of Molecular Synthesis & Drug DiscoveryCentre of Bio-Medical Research (CBMR)SGPGIMS Campus Raebareli Road Lucknow 226014 U.P. India
| | - Sandip Kumar Das
- Division of Molecular Synthesis & Drug DiscoveryCentre of Bio-Medical Research (CBMR)SGPGIMS Campus Raebareli Road Lucknow 226014 U.P. India
| | - Buddhadeb Chattopadhyay
- Division of Molecular Synthesis & Drug DiscoveryCentre of Bio-Medical Research (CBMR)SGPGIMS Campus Raebareli Road Lucknow 226014 U.P. India
| |
Collapse
|
43
|
Che J, Gopi Krishna Reddy A, Niu L, Xing D, Hu W. Cu(I)-Catalyzed Three-Component Reaction of α-Diazo Amide with Terminal Alkyne and Isatin Ketimine via Electrophilic Trapping of Active Alkynoate-Copper Intermediate. Org Lett 2019; 21:4571-4574. [DOI: 10.1021/acs.orglett.9b01470] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiuwei Che
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Alavala Gopi Krishna Reddy
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, East Campus, Guangzhou, Guangdong 510006, China
| | - Li Niu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Dong Xing
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, East Campus, Guangzhou, Guangdong 510006, China
| |
Collapse
|
44
|
Lankelma M, Olivares AM, de Bruin B. [Co(TPP)]-Catalyzed Formation of Substituted Piperidines. Chemistry 2019; 25:5658-5663. [PMID: 30844097 PMCID: PMC6563703 DOI: 10.1002/chem.201900587] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Indexed: 01/12/2023]
Abstract
Radical cyclization via cobalt(III)-carbene radical intermediates is a powerful method for the synthesis of (hetero)cyclic structures. Building on the recently reported synthesis of five-membered N-heterocyclic pyrrolidines catalyzed by CoII porphyrins, the [Co(TPP)]-catalyzed formation of useful six-membered N-heterocyclic piperidines directly from linear aldehydes is presented herein. The piperidines were obtained in overall high yields, with linear alkenes being formed as side products in small amounts. A DFT study was performed to gain a deeper mechanistic understanding of the cobalt(II)-porphyrin-catalyzed formation of pyrrolidines, piperidines, and linear alkenes. The calculations showed that the alkenes are unlikely to be formed through an expected 1,2-hydrogen-atom transfer to the carbene carbon. Instead, the calculations were consistent with a pathway involving benzyl-radical formation followed by radical-rebound ring closure to form the piperidines. Competitive 1,5-hydrogen-atom transfer from the β-position to the benzyl radical explained the formation of linear alkenes as side products.
Collapse
Affiliation(s)
- Marianne Lankelma
- Van 't Hoff Institute for Molecular Sciences (HIMS)Homogeneous, Supramolecular & Bio-Inspired CatalysisUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Astrid M. Olivares
- Department of ChemistryUniversity of Rochester404 Hutchison HallRochesterNY14627-0216USA
| | - Bas de Bruin
- Van 't Hoff Institute for Molecular Sciences (HIMS)Homogeneous, Supramolecular & Bio-Inspired CatalysisUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
45
|
Demarteau J, Debuigne A, Detrembleur C. Organocobalt Complexes as Sources of Carbon-Centered Radicals for Organic and Polymer Chemistries. Chem Rev 2019; 119:6906-6955. [DOI: 10.1021/acs.chemrev.8b00715] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jérémy Demarteau
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Allée du 6 Août, Building B6A, Agora Square, 4000 Liège, Belgium
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Allée du 6 Août, Building B6A, Agora Square, 4000 Liège, Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Allée du 6 Août, Building B6A, Agora Square, 4000 Liège, Belgium
| |
Collapse
|
46
|
van der Vlugt JI. Radical-Type Reactivity and Catalysis by Single-Electron Transfer to or from Redox-Active Ligands. Chemistry 2019; 25:2651-2662. [PMID: 30084211 PMCID: PMC6471147 DOI: 10.1002/chem.201802606] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Indexed: 12/12/2022]
Abstract
Controlled ligand-based redox-activity and chemical non-innocence are rapidly gaining importance for selective (catalytic) processes. This Concept aims to provide an overview of the progress regarding ligand-to-substrate single-electron transfer as a relatively new mode of operation to exploit ligand-centered reactivity and catalysis based thereon.
Collapse
Affiliation(s)
- Jarl Ivar van der Vlugt
- Bio-Inspired Homogeneous and Supramolecular Catalysis Groupvan ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamNetherlands
| |
Collapse
|
47
|
Sinha S, Sikari R, Sinha V, Jash U, Das S, Brandão P, Demeshko S, Meyer F, de Bruin B, Paul ND. Iron-Catalyzed/Mediated C–N Bond Formation: Competition between Substrate Amination and Ligand Amination. Inorg Chem 2019; 58:1935-1948. [DOI: 10.1021/acs.inorgchem.8b02877] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Suman Sinha
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic
Garden, Howrah 711103, India
| | - Rina Sikari
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic
Garden, Howrah 711103, India
| | - Vivek Sinha
- Homogeneous Catalysis Group, van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Upasona Jash
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic
Garden, Howrah 711103, India
| | - Siuli Das
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic
Garden, Howrah 711103, India
| | - Paula Brandão
- Departamento de Química, CICECO-Instituto de Materiais de Aveiro, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Serhiy Demeshko
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Franc Meyer
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Bas de Bruin
- Homogeneous Catalysis Group, van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Nanda D. Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic
Garden, Howrah 711103, India
| |
Collapse
|
48
|
Ragupathi A, Sagadevan A, Charpe VP, Lin CC, Hwu JR, Hwang KC. Visible-light-driven copper-catalyzed aerobic oxidative cascade cyclization of N-tosylhydrazones and terminal alkynes: regioselective synthesis of 3-arylcoumarins. Chem Commun (Camb) 2019; 55:5151-5154. [DOI: 10.1039/c9cc01801h] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
An intuitive visible-light-driven copper-catalyzed process can accomplish regioselective functionalized 3-arylcoumarins via oxidative annulation of simple N-tosylhydrazones with terminal alkynes under O2 (1 atm.) at room temperature.
Collapse
Affiliation(s)
| | | | | | - Chun-Cheng Lin
- Department of Chemistry
- National Tsing Hua University
- Hsinchu
- Republic of China
| | - Jih-Ru Hwu
- Department of Chemistry
- National Tsing Hua University
- Hsinchu
- Republic of China
| | - Kuo Chu Hwang
- Department of Chemistry
- National Tsing Hua University
- Hsinchu
- Republic of China
| |
Collapse
|
49
|
Geer AM, Julián A, López JA, Ciriano MA, Tejel C. Pseudo-tetrahedral Rhodium and Iridium Complexes: Catalytic Synthesis of E-Enynes. Chemistry 2018; 24:17545-17556. [PMID: 30207408 DOI: 10.1002/chem.201803878] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Indexed: 01/04/2023]
Abstract
The reactions of the rhodium(I) and iridium(I) complexes [M(PhBP3 )(C2 H4 )(NCMe)] (PhBP3 =PhB(CH2 PPh2 )3 - ) with alkynes have resulted in the synthesis of a new family of pseudo-tetrahedral complexes, [M(PhBP3 )(RC≡CR')] (M=Rh, Ir), which contain the alkyne as a four-electron donor. The reactions of these unusual compounds with two-electron donors (L=PMe3 , CNtBu) produced a change in the "donicity" of the alkyne from a 4e- to a 2e- donor to give five-coordinate complexes. These were the final products with the iridium complexes, whereas further reactions took place with the rhodium complexes. In particular, C(sp)-H bond activation of the alkyne occurred leading to hydrido alkynyl complexes. This process is essential for the further reactivity of the alkynes, and if the alkyne itself was used as reagent, E-enyne complexes were obtained. As a consequence of this chemistry, we show that the complex [Rh(PhBP3 )(C2 H4 )(NCMe)] is a very efficient pre-catalyst for the regioselective di- and trimerization of terminal alkynes to E-enynes and benzene derivatives, respectively. Interestingly, acetonitrile significantly enhanced the catalytic activity by facilitating the C(sp)-H bond activation step. A hydrometalation mechanism to account for these experimental observations is proposed.
Collapse
Affiliation(s)
- Ana M Geer
- Departamento de Química Inorgánica, Instituto de Síntesis QuímicayCatálisis Homogénea-ISQCH, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Alejandro Julián
- Departamento de Química Inorgánica, Instituto de Síntesis QuímicayCatálisis Homogénea-ISQCH, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - José A López
- Departamento de Química Inorgánica, Instituto de Síntesis QuímicayCatálisis Homogénea-ISQCH, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Miguel A Ciriano
- Departamento de Química Inorgánica, Instituto de Síntesis QuímicayCatálisis Homogénea-ISQCH, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Cristina Tejel
- Departamento de Química Inorgánica, Instituto de Síntesis QuímicayCatálisis Homogénea-ISQCH, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| |
Collapse
|
50
|
Huang DM, Li HJ, Wang Q, Yan P, Wu YC. Synthesis of 2-(2H
-Chromenyl)-Oxazoles from 2H
-Chromene Hemiacetals by Using a Modified Passerini-Type Reaction. ChemistrySelect 2018. [DOI: 10.1002/slct.201802363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Deng-Ming Huang
- School of Marine Science and Technology; Harbin Institute of Technology, No. 2; Wenhuaxi Road Weihai 264209, P. R. China
| | - Hui-Jing Li
- School of Marine Science and Technology; Harbin Institute of Technology, No. 2; Wenhuaxi Road Weihai 264209, P. R. China
| | - Quanfu Wang
- School of Marine Science and Technology; Harbin Institute of Technology, No. 2; Wenhuaxi Road Weihai 264209, P. R. China
| | - Peisheng Yan
- School of Marine Science and Technology; Harbin Institute of Technology, No. 2; Wenhuaxi Road Weihai 264209, P. R. China
| | - Yan-Chao Wu
- School of Marine Science and Technology; Harbin Institute of Technology, No. 2; Wenhuaxi Road Weihai 264209, P. R. China
- Beijing National Laboratory for Molecular Sciences (BNLMS); Institute of Chemistry Chinese Academy of Sciences, No.2, 1st North Street, Zhongguancun; Beijing 100190, P. R. China
| |
Collapse
|