1
|
Kaur R, Wetmore SD. Is Metal Stabilization of the Leaving Group Required or Can Lysine Facilitate Phosphodiester Bond Cleavage in Nucleic Acids? A Computational Study of EndoV. J Chem Inf Model 2024; 64:944-959. [PMID: 38253321 DOI: 10.1021/acs.jcim.3c01775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Endonuclease V (EndoV) is a single-metal-dependent enzyme that repairs deaminated DNA nucleobases in cells by cleaving the phosphodiester bond, and this enzyme has proven to be a powerful tool in biotechnology and medicine. The catalytic mechanism used by EndoV must be understood to design new disease detection and therapeutic solutions and further exploit the enzyme in interdisciplinary applications. This study has used a mixed molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) approach to compare eight distinct catalytic pathways and provides the first proposed mechanism for bacterial EndoV. The calculations demonstrate that mechanisms involving either direct or indirect metal coordination to the leaving group of the substrate previously proposed for other nucleases are unlikely for EndoV, regardless of the general base (histidine, aspartate, and substrate phosphate moiety). Instead, distinct catalytic pathways are characterized for EndoV that involve K139 stabilizing the leaving group, a metal-coordinated water stabilizing the transition structure, and either H214 or a substrate phosphate group activating the water nucleophile. In silico K139A and H214A mutational results support the newly proposed roles of these residues. Although this is a previously unseen combination of general base, general acid, and metal-binding architecture for a one-metal-dependent endonuclease, our proposed catalytic mechanisms are fully consistent with experimental kinetic, structural, and mutational data. In addition to substantiating a growing body of literature, suggesting that one metal is enough to catalyze P-O bond cleavage in nucleic acids, this new fundamental understanding of the catalytic function will promote the exploration of new and improved applications of EndoV.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
2
|
Al Nasr IS, Corona A, Koko WS, Khan TA, Ben Said R, Daoud I, Rahali S, Tramontano E, Schobert R, Amdouni N, Biersack B. Versatile anti-infective properties of pyrido- and dihydropyrido[2,3-d]pyrimidine-based compounds. Bioorg Med Chem 2023; 90:117376. [PMID: 37336083 DOI: 10.1016/j.bmc.2023.117376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/16/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
A series of 1H-indeno[2',1':5,6]dihydropyrido[2,3-d]pyrimidine and 1H-indeno[2',1':5,6]pyrido[2,3-d]pyrimidine derivatives was prepared and screened for antiparasitic and viral RNase H inhibitory activity. Several compounds showed considerable activity against Toxoplasma gondii parasites and Leishmania major amastigotes, which warrants further investigation. Based on the structural similarities of certain derivatives with common viral RNase H inhibitors, a HIV-1 RNase H assay was used to study the RNase H inhibition by selected test compounds. Docking of active derivatives into the active site of the HIV-1 RNase H enzyme was carried out. The new compound 2a, inactive in the antiparasitic tests, showed distinct HIV-1 RNase H inhibition. Thus, ring substitution determines antiparasitic or HIV-1 RNase H inhibitory activity of this promising compound class.
Collapse
Affiliation(s)
- Ibrahim S Al Nasr
- Department of Biology, College of Science and Arts, Qassim University, Unaizah 51911, Saudi Arabia; Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Angela Corona
- Laboratorio di Virologia Molecolare, Dipartimento di Scienze della Vita e Dell'Ambiente, Universitá degli Studi di Cagliari, Cittadella Universitaria di Monserrato SS554, 09042 Monserrato, Italy
| | - Waleed S Koko
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Tariq A Khan
- Department of Clinical Nutrition, College of Applied Health Sciences, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Ridha Ben Said
- Laboratoire de Caractérisations, Applications et Modélisations des Matériaux, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia; Department of Chemistry, College of Science and Arts at Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Ismail Daoud
- University Mohamed Khider, Department of Matter Sciences, BP 145 RP, Biskra, Algeria; Laboratory of Natural and Bio-active Substances, Faculty of Science, Tlemcen University, P.O. Box 119, Tlemcen, Algeria
| | - Seyfeddine Rahali
- Department of Chemistry, College of Science and Arts at Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Enzo Tramontano
- Laboratorio di Virologia Molecolare, Dipartimento di Scienze della Vita e Dell'Ambiente, Universitá degli Studi di Cagliari, Cittadella Universitaria di Monserrato SS554, 09042 Monserrato, Italy
| | - Rainer Schobert
- Organische Chemie I, Universität Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Noureddine Amdouni
- Laboratoire de Caractérisations, Applications et Modélisations des Matériaux, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Bernhard Biersack
- Organische Chemie I, Universität Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany.
| |
Collapse
|
3
|
Genna V, Iglesias-Fernández J, Reyes-Fraile L, Villegas N, Guckian K, Seth P, Wan B, Cabrero C, Terrazas M, Brun-Heath I, González C, Sciabola S, Villalobos A, Orozco M. Controlled sulfur-based engineering confers mouldability to phosphorothioate antisense oligonucleotides. Nucleic Acids Res 2023; 51:4713-4725. [PMID: 37099382 PMCID: PMC10250214 DOI: 10.1093/nar/gkad309] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 04/27/2023] Open
Abstract
Phosphorothioates (PS) have proven their effectiveness in the area of therapeutic oligonucleotides with applications spanning from cancer treatment to neurodegenerative disorders. Initially, PS substitution was introduced for the antisense oligonucleotides (PS ASOs) because it confers an increased nuclease resistance meanwhile ameliorates cellular uptake and in-vivo bioavailability. Thus, PS oligonucleotides have been elevated to a fundamental asset in the realm of gene silencing therapeutic methodologies. But, despite their wide use, little is known on the possibly different structural changes PS-substitutions may provoke in DNA·RNA hybrids. Additionally, scarce information and significant controversy exists on the role of phosphorothioate chirality in modulating PS properties. Here, through comprehensive computational investigations and experimental measurements, we shed light on the impact of PS chirality in DNA-based antisense oligonucleotides; how the different phosphorothioate diastereomers impact DNA topology, stability and flexibility to ultimately disclose pro-Sp S and pro-Rp S roles at the catalytic core of DNA Exonuclease and Human Ribonuclease H; two major obstacles in ASOs-based therapies. Altogether, our results provide full-atom and mechanistic insights on the structural aberrations PS-substitutions provoke and explain the origin of nuclease resistance PS-linkages confer to DNA·RNA hybrids; crucial information to improve current ASOs-based therapies.
Collapse
Affiliation(s)
- Vito Genna
- Mechanisms of Diseases, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- NBD | Nostrum Biodiscovery, Baldiri Reixac 10, Barcelona 08028, Spain
| | | | - Laura Reyes-Fraile
- Mechanisms of Diseases, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Nuria Villegas
- Mechanisms of Diseases, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | | | - Punit Seth
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Brad Wan
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Cristina Cabrero
- Instituto de Química Física Rocasolano, C/ Serrano 119, Madrid 28006, Spain
| | - Montserrat Terrazas
- Mechanisms of Diseases, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- Department of Inorganic and Organic Chemistry, Section of Organic Chemistry, IBUB, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Isabelle Brun-Heath
- Mechanisms of Diseases, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Carlos González
- Instituto de Química Física Rocasolano, C/ Serrano 119, Madrid 28006, Spain
| | | | | | - Modesto Orozco
- Mechanisms of Diseases, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- Department of Biochemistry and Biomedicine, University of Barcelona, Barcelona 08028, Spain
| |
Collapse
|
4
|
Berger MB, Cisneros GA. Distal Mutations in the β-Clamp of DNA Polymerase III* Disrupt DNA Orientation and Affect Exonuclease Activity. J Am Chem Soc 2023; 145:3478-3490. [PMID: 36745735 PMCID: PMC10237177 DOI: 10.1021/jacs.2c11713] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
DNA polymerases are responsible for the replication and repair of DNA found in all DNA-based organisms. DNA Polymerase III is the main replicative polymerase of E. coli and is composed of over 10 proteins. A subset of these proteins (Pol III*) includes the polymerase (α), exonuclease (ϵ), clamp (β), and accessory protein (θ). Mutations of residues in, or around the active site of the catalytic subunits (α and ϵ), can have a significant impact on catalysis. However, the effects of distal mutations in noncatalytic subunits on the activity of catalytic subunits are less well-characterized. Here, we investigate the effects of two Pol III* variants, β-L82E/L82'E and β-L82D/L82'D, on the proofreading reaction catalyzed by ϵ. MD simulations reveal major changes in the dynamics of Pol III*, which extend throughout the complex. These changes are mostly induced by a shift in the position of the DNA substrate inside the β-clamp, although no major structural changes are observed in the protein complex. Quantum mechanics/molecular mechanics (QM/MM) calculations indicate that the β-L82D/L82'D variant has reduced catalytic proficiency due to highly endoergic reaction energies resulting from structural changes in the active site and differences in the electric field at the active site arising from the protein and substrate. Conversely, the β-L82E/L82'E variant is predicted to maintain proofreading activity, exhibiting a similar reaction barrier for nucleotide excision compared with the WT system. However, significant differences in the reaction mechanism are obtained due to the changes induced by the mutations on the β-clamp.
Collapse
Affiliation(s)
- Madison B Berger
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
5
|
Kaur R, Nikkel DJ, Aboelnga MM, Wetmore SD. The Impact of DFT Functional, Cluster Model Size, and Implicit Solvation on the Structural Description of Single-Metal-Mediated DNA Phosphodiester Bond Cleavage: The Case Study of APE1. J Phys Chem B 2022; 126:10672-10683. [PMID: 36485014 DOI: 10.1021/acs.jpcb.2c06756] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phosphodiester bond hydrolysis in nucleic acids is a ubiquitous reaction that can be facilitated by enzymes called nucleases, which often use metal ions to achieve catalytic function. While a two-metal-mediated pathway has been well established for many enzymes, there is growing support that some enzymes require only one metal for the catalytic step. Using human apurinic/apyrimidinic endonuclease (APE1) as a prototypical example and cluster models, this study clarifies the impact of DFT functional, cluster model size, and implicit solvation on single-metal-mediated phosphodiester bond cleavage and provides insight into how to efficiently model this chemistry. Initially, a model containing 69 atoms built from a high-resolution X-ray crystal structure is used to explore the reaction pathway mapped by a range of DFT functionals and basis sets, which provides support for the use of standard functionals (M06-2X and B3LYP-D3) to study this reaction. Subsequently, systematically increasing the model size to 185 atoms by including additional amino acids and altering residue truncation points highlights that small models containing only a few amino acids or β carbon truncation points introduce model strains and lead to incorrect metal coordination. Indeed, a model that contains all key residues (general base and acid, residues that stabilize the substrate, and amino acids that maintain the metal coordination) is required for an accurate structural depiction of the one-metal-mediated phosphodiester bond hydrolysis by APE1, which results in 185 atoms. The additional inclusion of the broader enzyme environment through continuum solvation models has negligible effects. The insights gained in the present work can be used to direct future computational studies of other one-metal-dependent nucleases to provide a greater understanding of how nature achieves this difficult chemistry.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Dylan J Nikkel
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Mohamed M Aboelnga
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada.,Chemistry Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
6
|
Kaur R, Aboelnga MM, Nikkel DJ, Wetmore SD. The metal dependence of single-metal mediated phosphodiester bond cleavage: a QM/MM study of a multifaceted human enzyme. Phys Chem Chem Phys 2022; 24:29130-29140. [PMID: 36444615 DOI: 10.1039/d2cp04338f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleases catalyze the cleavage of phosphodiester bonds in nucleic acids using a range of metal cofactors. Although it is well accepted that many nucleases rely on two metal ions, the one-metal mediated pathway is debated. Furthermore, one-metal mediated nucleases maintain activity in the presence of many different metals, but the underlying reasons for this broad metal specificity are unknown. The human apurinic/apyrimidinic endonuclease (APE1), which plays a key role in DNA repair, transcription regulation, and gene expression, is a prototypical example of a one-metal dependent nuclease. Although Mg2+ is the native metal cofactor, APE1 remains catalytically active in the presence of several metals, with the rate decreasing as Mg2+ > Mn2+ > Ni2+ > Zn2+, while Ca2+ completely abolished the activity. The present work uses quantum mechanics-molecular mechanics techniques to map APE1-facilitated phosphodiester bond hydrolysis in the presence of these metals. The structural differences in stationary points along the reaction pathway shed light on the interplay between several factors that allow APE1 to remain catalytically active for various metals, with the trend in the barrier heights correlating with the experimentally reported APE1 catalytic activity. In contrast, Ca2+ significantly changes the metal coordination and active site geometry, and thus completely inhibits catalysis. Our work thereby provides support for the controversial single-metal mediated phosphodiester bond cleavage and clarifies uncertainties regarding the role of the metal and metal identity in this important reaction. This information is key for future medicinal and biotechnological applications including disease diagnosis and treatment, and protein engineering.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| | - Mohamed M Aboelnga
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| | - Dylan J Nikkel
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| |
Collapse
|
7
|
Pang J, Guo Q, Lu Z. The catalytic mechanism, metal dependence, substrate specificity, and biodiversity of ribonuclease H. Front Microbiol 2022; 13:1034811. [PMID: 36478866 PMCID: PMC9719913 DOI: 10.3389/fmicb.2022.1034811] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/31/2022] [Indexed: 11/29/2023] Open
Abstract
Ribonucleoside monophosphates are inevitably misincorporated into the DNA genome inside cells, and they need to be excised to avoid chromosome instability. Ribonucleases H (RNases H) are enzymes that specifically hydrolyze the RNA strand of RNA/DNA hybrids or the RNA moiety from DNA containing a stretch of RNA, they therefore are required for DNA integrity. Extensive studies have drawn a mostly clear picture of the mechanisms of RNase H catalysis, but some questions are still lacking definitive answers. This review summarizes three alternative models of RNase H catalysis. The two-metal model is prevalent, but a three-metal model suggests the involvement of a third cation in catalysis. Apparently, the mechanisms underlying metal-dependent hydrolyzation are more complicated than initially thought. We also discuss the metal choices of RNases H and analyze how chemically similar cations function differently. Substrate and cleavage-site specificities vary among RNases H, and this is explicated in detail. An intriguing phenomenon is that organisms have diverse RNase H combinations, which may provide important hints to how rnh genes were transferred during evolution. Whether RNase H is essential for cellular growth, a key question in the study of in vivo functions, is also discussed. This article may aid in understanding the mechanisms underlying RNase H and in developing potentially promising applications of it.
Collapse
Affiliation(s)
| | | | - Zheng Lu
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| |
Collapse
|
8
|
Structural and mechanistic basis for recognition of alternative tRNA precursor substrates by bacterial ribonuclease P. Nat Commun 2022; 13:5120. [PMID: 36045135 PMCID: PMC9433436 DOI: 10.1038/s41467-022-32843-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Binding of precursor tRNAs (ptRNAs) by bacterial ribonuclease P (RNase P) involves an encounter complex (ES) that isomerizes to a catalytic conformation (ES*). However, the structures of intermediates and the conformational changes that occur during binding are poorly understood. Here, we show that pairing between the 5′ leader and 3′RCCA extending the acceptor stem of ptRNA inhibits ES* formation. Cryo-electron microscopy single particle analysis reveals a dynamic enzyme that becomes ordered upon formation of ES* in which extended acceptor stem pairing is unwound. Comparisons of structures with alternative ptRNAs reveals that once unwinding is completed RNase P primarily uses stacking interactions and shape complementarity to accommodate alternative sequences at its cleavage site. Our study reveals active site interactions and conformational changes that drive molecular recognition by RNase P and lays the foundation for understanding how binding interactions are linked to helix unwinding and catalysis. Ribonuclease P efficiently processes all tRNA precursors despite sequence variation at the site of cleavage. Here, authors use high-throughput enzymology and cryoEM to reveal conformational changes that drive recognition by bacterial RNase P.
Collapse
|
9
|
Jones SP, Goossen C, Lewis SD, Delaney AM, Gleghorn ML. Not making the cut: Techniques to prevent RNA cleavage in structural studies of RNase-RNA complexes. J Struct Biol X 2022; 6:100066. [PMID: 35340590 PMCID: PMC8943300 DOI: 10.1016/j.yjsbx.2022.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
RNases are varied in the RNA structures and sequences they target for cleavage and are an important type of enzyme in cells. Despite the numerous examples of RNases known, and of those with determined three-dimensional structures, relatively few examples exist with the RNase bound to intact cognate RNA substrate prior to cleavage. To better understand RNase structure and sequence specificity for RNA targets, in vitro methods used to assemble these enzyme complexes trapped in a pre-cleaved state have been developed for a number of different RNases. We have surveyed the Protein Data Bank for such structures and in this review detail methodologies that have successfully been used and relate them to the corresponding structures. We also offer ideas and suggestions for future method development. Many strategies within this review can be used in combination with X-ray crystallography, as well as cryo-EM, and other structure-solving techniques. Our hope is that this review will be used as a guide to resolve future yet-to-be-determined RNase-substrate complex structures.
Collapse
Affiliation(s)
- Seth P. Jones
- School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, United States
| | - Christian Goossen
- School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, United States
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Lothrop St, Pittsburgh, PA 15261, United States
| | - Sean D. Lewis
- School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, United States
- Mayo Clinic, 200 1st St SW, Rochester, MN 5590, United States
| | - Annie M. Delaney
- School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, United States
| | - Michael L. Gleghorn
- School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, United States
| |
Collapse
|
10
|
Lee H, Cho H, Kim J, Lee S, Yoo J, Park D, Lee G. RNase H is an exo- and endoribonuclease with asymmetric directionality, depending on the binding mode to the structural variants of RNA:DNA hybrids. Nucleic Acids Res 2022; 50:1801-1814. [PMID: 34788459 PMCID: PMC8886854 DOI: 10.1093/nar/gkab1064] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022] Open
Abstract
RNase H is involved in fundamental cellular processes and is responsible for removing the short stretch of RNA from Okazaki fragments and the long stretch of RNA from R-loops. Defects in RNase H lead to embryo lethality in mice and Aicardi-Goutieres syndrome in humans, suggesting the importance of RNase H. To date, RNase H is known to be a non-sequence-specific endonuclease, but it is not known whether it performs other functions on the structural variants of RNA:DNA hybrids. Here, we used Escherichia coli RNase H as a model, and examined its catalytic mechanism and its substrate recognition modes, using single-molecule FRET. We discovered that RNase H acts as a processive exoribonuclease on the 3' DNA overhang side but as a distributive non-sequence-specific endonuclease on the 5' DNA overhang side of RNA:DNA hybrids or on blunt-ended hybrids. The high affinity of previously unidentified double-stranded (ds) and single-stranded (ss) DNA junctions flanking RNA:DNA hybrids may help RNase H find the hybrid substrates in long genomic DNA. Our study provides new insights into the multifunctionality of RNase H, elucidating unprecedented roles of junctions and ssDNA overhang on RNA:DNA hybrids.
Collapse
Affiliation(s)
- Hyunjee Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Single-Molecule Biology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - HyeokJin Cho
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Single-Molecule Biology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jooyoung Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Sua Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jungmin Yoo
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Single-Molecule Biology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Daeho Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Gwangrog Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Single-Molecule Biology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
11
|
Son H, Park J, Choi YH, Jung Y, Lee JW, Bae S, Lee S. Exploring the dynamic nature of divalent metal ions involved in DNA cleavage by CRISPR-Cas12a. Chem Commun (Camb) 2022; 58:1978-1981. [PMID: 35045150 DOI: 10.1039/d1cc04446j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas12a has been widely used in genome editing and nucleic acid detection. In both of these applications, Cas12a cleaves target DNA in a divalent metal ion-dependent manner. However, when and how metal ions contribute to the cleavage reaction is unclear. Here, using a single-molecule FRET assay, we reveal that these metal ions are necessary for stabilising cleavage-competent conformations and that they are easily exchangeable, suggesting that they are dynamically coordinated.
Collapse
Affiliation(s)
- Heyjin Son
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - Jaeil Park
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea. .,Department of Physics and Optoelectronics Convergence Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - You Hee Choi
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea. .,Ministry of Food and Drug Safety (MFDS), Cheongju 28159, Republic of Korea
| | - Youngri Jung
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Joong-Wook Lee
- Department of Physics and Optoelectronics Convergence Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sangsu Bae
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Sanghwa Lee
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
12
|
Cutruzzolà F, Paiardini A, Scribani Rossi C, Spizzichino S, Paone A, Giardina G, Rinaldo S. A conserved scaffold with heterogeneous metal ion binding site: the multifaceted example of HD-GYP proteins. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Prototype Foamy Virus Integrase Displays Unique Biochemical Activities among Retroviral Integrases. Biomolecules 2021; 11:biom11121910. [PMID: 34944553 PMCID: PMC8699820 DOI: 10.3390/biom11121910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/01/2022] Open
Abstract
Integrases of different retroviruses assemble as functional complexes with varying multimers of the protein. Retroviral integrases require a divalent metal cation to perform one-step transesterification catalysis. Tetrameric prototype foamy virus (PFV) intasomes assembled from purified integrase and viral DNA oligonucleotides were characterized for their activity in the presence of different cations. While most retroviral integrases are inactive in calcium, PFV intasomes appear to be uniquely capable of catalysis in calcium. The PFV intasomes also contrast with other retroviral integrases by displaying an inverse correlation of activity with increasing manganese beginning at relatively low concentrations. The intasomes were found to be significantly more active in the presence of chloride co-ions compared to acetate. While HIV-1 integrase appears to commit to a target DNA within 20 s, PFV intasomes do not commit to target DNA during their reaction lifetime. Together, these data highlight the unique biochemical activities of PFV integrase compared to other retroviral integrases.
Collapse
|
14
|
Ilina TV, Brosenitsch T, Sluis-Cremer N, Ishima R. Retroviral RNase H: Structure, mechanism, and inhibition. Enzymes 2021; 50:227-247. [PMID: 34861939 DOI: 10.1016/bs.enz.2021.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
All retroviruses encode the enzyme, reverse transcriptase (RT), which is involved in the conversion of the single-stranded viral RNA genome into double-stranded DNA. RT is a multifunctional enzyme and exhibits DNA polymerase and ribonuclease H (RNH) activities, both of which are essential to the reverse-transcription process. Despite the successful development of polymerase-targeting antiviral drugs over the last three decades, no bona fide inhibitor against the RNH activity of HIV-1 RT has progressed to clinical evaluation. In this review article, we describe the retroviral RNH function and inhibition, with primary consideration of the structural aspects of inhibition.
Collapse
Affiliation(s)
- Tatiana V Ilina
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Teresa Brosenitsch
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Nicolas Sluis-Cremer
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Rieko Ishima
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
15
|
Lormand JD, Kim SK, Walters-Marrah GA, Brownfield BA, Fromme JC, Winkler WC, Goodson JR, Lee VT, Sondermann H. Structural characterization of NrnC identifies unifying features of dinucleotidases. eLife 2021; 10:70146. [PMID: 34533457 PMCID: PMC8492067 DOI: 10.7554/elife.70146] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
RNA degradation is fundamental for cellular homeostasis. The process is carried out by various classes of endolytic and exolytic enzymes that together degrade an RNA polymer to mono-ribonucleotides. Within the exoribonucleases, nano-RNases play a unique role as they act on the smallest breakdown products and hence catalyze the final steps in the process. We recently showed that oligoribonuclease (Orn) acts as a dedicated diribonuclease, defining the ultimate step in RNA degradation that is crucial for cellular fitness (Kim et al., 2019). Whether such a specific activity exists in organisms that lack Orn-type exoribonucleases remained unclear. Through quantitative structure-function analyses, we show here that NrnC-type RNases share this narrow substrate length preference with Orn. Although NrnC and Orn employ similar structural features that distinguish these two classes of dinucleases from other exonucleases, the key determinants for dinuclease activity are realized through distinct structural scaffolds. The structures, together with comparative genomic analyses of the phylogeny of DEDD-type exoribonucleases, indicate convergent evolution as the mechanism of how dinuclease activity emerged repeatedly in various organisms. The evolutionary pressure to maintain dinuclease activity further underlines the important role these analogous proteins play for cell growth.
Collapse
Affiliation(s)
- Justin D Lormand
- Department of Molecular Medicine, Cornell University, Ithaca, United States
| | - Soo-Kyoung Kim
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | | | - Bryce A Brownfield
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - J Christopher Fromme
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Wade C Winkler
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Jonathan R Goodson
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Holger Sondermann
- Department of Molecular Medicine, Cornell University, Ithaca, United States.,CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.,Christian-Albrechts-Universität, Kiel, Germany
| |
Collapse
|
16
|
Dürr SL, Bohuszewicz O, Berta D, Suardiaz R, Jambrina PG, Peter C, Shao Y, Rosta E. The Role of Conserved Residues in the DEDDh Motif: the Proton-Transfer Mechanism of HIV-1 RNase H. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Simon L. Dürr
- Department of Chemistry, King’s College London, London SE1 1DB, U.K
- Department of Chemistry, University of Konstanz, Konstanz 78457, Germany
| | - Olga Bohuszewicz
- Department of Chemistry, King’s College London, London SE1 1DB, U.K
| | - Dénes Berta
- Department of Physics and Astronomy, University College London; London WC1E 6BT, U.K
| | - Reynier Suardiaz
- Department of Chemistry, King’s College London, London SE1 1DB, U.K
| | | | - Christine Peter
- Department of Chemistry, University of Konstanz, Konstanz 78457, Germany
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-5251, United States
| | - Edina Rosta
- Department of Chemistry, King’s College London, London SE1 1DB, U.K
- Department of Physics and Astronomy, University College London; London WC1E 6BT, U.K
| |
Collapse
|
17
|
Corona A, Seibt S, Schaller D, Schobert R, Volkamer A, Biersack B, Tramontano E. Garcinol from Garcinia indica inhibits HIV-1 reverse transcriptase-associated ribonuclease H. Arch Pharm (Weinheim) 2021; 354:e2100123. [PMID: 34008218 DOI: 10.1002/ardp.202100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 11/06/2022]
Abstract
The bioactive components of Garcinia indica, garcinol (camboginol), and isogarcinol (cambogin), are suitable drug candidates for the treatment of various human diseases. HIV-1-RNase H assay was used to study the RNase H inhibition by garcinol and isogarcinol. Docking of garcinol into the active site of the enzyme was carried out to rationalize the difference in activities between the two compounds. Garcinol showed higher HIV-1-RNase H inhibition than the known inhibitor RDS1759 and retained full potency against the RNase H of a drug-resistant HIV-1 reverse transcriptase form. Isogarcinol was distinctly less active than garcinol, indicating the importance of the enolizable β-diketone moiety of garcinol for anti-RNase H activity. Docking calculations confirmed these findings and suggested this moiety to be involved in the chelation of metal ions of the active site. On the basis of its HIV-1 reverse transcriptase-associated RNase H inhibitory activity, garcinol is worth being further explored concerning its potential as a cost-effective treatment for HIV patients.
Collapse
Affiliation(s)
- Angela Corona
- Laboratorio di Virologia Molecolare, Dipartimento di Scienze della Vita e Dell'Ambiente, Universitá degli Studi di Cagliari, Monserrato, Italy
| | - Sebastian Seibt
- Organic Chemistry Laboratory, University of Bayreuth, Bayreuth, Germany
| | - David Schaller
- In Silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Rainer Schobert
- Organic Chemistry Laboratory, University of Bayreuth, Bayreuth, Germany
| | - Andrea Volkamer
- In Silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, Bayreuth, Germany
| | - Enzo Tramontano
- Laboratorio di Virologia Molecolare, Dipartimento di Scienze della Vita e Dell'Ambiente, Universitá degli Studi di Cagliari, Monserrato, Italy.,Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| |
Collapse
|
18
|
Yagi K, Ito S, Sugita Y. Exploring the Minimum-Energy Pathways and Free-Energy Profiles of Enzymatic Reactions with QM/MM Calculations. J Phys Chem B 2021; 125:4701-4713. [PMID: 33914537 PMCID: PMC10986901 DOI: 10.1021/acs.jpcb.1c01862] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding molecular mechanisms of enzymatic reactions is of vital importance in biochemistry and biophysics. Here, we introduce new functions of hybrid quantum mechanical/molecular mechanical (QM/MM) calculations in the GENESIS program to compute the minimum-energy pathways (MEPs) and free-energy profiles of enzymatic reactions. For this purpose, an interface in GENESIS is developed to utilize a highly parallel electronic structure program, QSimulate-QM (https://qsimulate.com), calling it as a shared library from GENESIS. Second, algorithms to search the MEP are implemented, combining the string method (E et al. J. Chem. Phys. 2007, 126, 164103) with the energy minimization of the buffer MM region. The method implemented in GENESIS is applied to an enzyme, triosephosphate isomerase, which converts dihyroxyacetone phosphate to glyceraldehyde 3-phosphate in four proton-transfer processes. QM/MM-molecular dynamics simulations show performances of greater than 1 ns/day with the density functional tight binding (DFTB), and 10-30 ps/day with the hybrid density functional theory, B3LYP-D3. These performances allow us to compute not only MEP but also the potential of mean force (PMF) of the enzymatic reactions using the QM/MM calculations. The barrier height obtained as 13 kcal mol-1 with B3LYP-D3 in the QM/MM calculation is in agreement with the experimental results. The impact of conformational sampling in PMF calculations and the level of electronic structure calculations (DFTB vs B3LYP-D3) suggests reliable computational protocols for enzymatic reactions without high computational costs.
Collapse
Affiliation(s)
- Kiyoshi Yagi
- Theoretical
Molecular Science Laboratory, RIKEN Cluster
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shingo Ito
- Theoretical
Molecular Science Laboratory, RIKEN Cluster
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yuji Sugita
- Theoretical
Molecular Science Laboratory, RIKEN Cluster
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Computational
Biophysics Research Team, RIKEN Center for
Computational Science, 7-1-26 minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Laboratory
for Biomolecular Function Simulation, RIKEN
Center for Biosystems Dynamics Research, 1-6-5 minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
19
|
Guillen-Chable F, Rodríguez Corona U, Pereira-Santana A, Bayona A, Rodríguez-Zapata LC, Aquino C, Šebestová L, Vitale N, Hozak P, Castano E. Fibrillarin Ribonuclease Activity is Dependent on the GAR Domain and Modulated by Phospholipids. Cells 2020; 9:cells9051143. [PMID: 32384686 PMCID: PMC7290794 DOI: 10.3390/cells9051143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Fibrillarin is a highly conserved nucleolar methyltransferase responsible for ribosomal RNA methylation across evolution from Archaea to humans. It has been reported that fibrillarin is involved in the methylation of histone H2A in nucleoli and other processes, including viral progression, cellular stress, nuclear shape, and cell cycle progression. We show that fibrillarin has an additional activity as a ribonuclease. The activity is affected by phosphoinositides and phosphatidic acid and insensitive to ribonuclease inhibitors. Furthermore, the presence of phosphatidic acid releases the fibrillarin-U3 snoRNA complex. We show that the ribonuclease activity localizes to the GAR (glycine/arginine-rich) domain conserved in a small group of RNA interacting proteins. The introduction of the GAR domain occurred in evolution in the transition from archaea to eukaryotic cells. The interaction of this domain with phospholipids may allow a phase separation of this protein in nucleoli.
Collapse
Affiliation(s)
- Francisco Guillen-Chable
- Biochemistry and Molecular Plant Biology Department, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida C.P. 97200, Yucatán, Mexico; (F.G.-C.); (U.R.C.); (A.B.); (C.A.)
| | - Ulises Rodríguez Corona
- Biochemistry and Molecular Plant Biology Department, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida C.P. 97200, Yucatán, Mexico; (F.G.-C.); (U.R.C.); (A.B.); (C.A.)
| | - Alejandro Pereira-Santana
- Industrial Biotechnology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Camino Arenero 1227, el Bajio, Zapopan C.P. 45019, Jalisco, Mexico;
- Dirección de Cátedras, Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Alcaldia Benito Juarez C.P. 03940, Ciudad de Mexico, Mexico
| | - Andrea Bayona
- Biochemistry and Molecular Plant Biology Department, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida C.P. 97200, Yucatán, Mexico; (F.G.-C.); (U.R.C.); (A.B.); (C.A.)
| | - Luis Carlos Rodríguez-Zapata
- Biotechnology Department, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida C.P. 97200, Yucatan, Mexico;
| | - Cecilia Aquino
- Biochemistry and Molecular Plant Biology Department, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida C.P. 97200, Yucatán, Mexico; (F.G.-C.); (U.R.C.); (A.B.); (C.A.)
| | - Lenka Šebestová
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the CAS, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic; (L.Š.); (P.H.)
- Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
| | - Nicolas Vitale
- Institute of Celullar and Integrative Neuroscience (INCI), UPR-3212 The French National Centre for Scientific Research & University of Strasbourg, 67000 Strasbourg, France;
| | - Pavel Hozak
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the CAS, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic; (L.Š.); (P.H.)
| | - Enrique Castano
- Biochemistry and Molecular Plant Biology Department, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida C.P. 97200, Yucatán, Mexico; (F.G.-C.); (U.R.C.); (A.B.); (C.A.)
- Correspondence:
| |
Collapse
|
20
|
Jenkins K, Mateeva T, Szabó I, Melnik A, Picotti P, Csikász-Nagy A, Rosta E. Combining data integration and molecular dynamics for target identification in α-Synuclein-aggregating neurodegenerative diseases: Structural insights on Synaptojanin-1 (Synj1). Comput Struct Biotechnol J 2020; 18:1032-1042. [PMID: 32419904 PMCID: PMC7215115 DOI: 10.1016/j.csbj.2020.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 12/19/2022] Open
Abstract
Parkinson’s disease (PD), Alzheimer’s disease (AD) and Amyotrophic lateral sclerosis (ALS) are neurodegenerative diseases hallmarked by the formation of toxic protein aggregates. However, targeting these aggregates therapeutically have thus far shown no success. The treatment of AD has remained particularly problematic since no new drugs have been approved in the last 15 years. Therefore, novel therapeutic targets need to be identified and explored. Here, through the integration of genomic and proteomic data, a set of proteins with strong links to α-synuclein-aggregating neurodegenerative diseases was identified. We propose 17 protein targets that are likely implicated in neurodegeneration and could serve as potential targets. The human phosphatidylinositol 5-phosphatase synaptojanin-1, which has already been independently confirmed to be implicated in Parkinson’s and Alzheimer’s disease, was among those identified. Despite its involvement in PD and AD, structural aspects are currently missing at the molecular level. We present the first atomistic model of the 5-phosphatase domain of synaptojanin-1 and its binding to its substrate phosphatidylinositol 4,5-bisphosphate (PIP2). We determine structural information on the active site including membrane-embedded molecular dynamics simulations. Deficiency of charge within the active site of the protein is observed, which suggests that a second divalent cation is required to complete dephosphorylation of the substrate. The findings in this work shed light on the protein’s binding to phosphatidylinositol 4,5-bisphosphate (PIP2) and give additional insight for future targeting of the protein active site, which might be of interest in neurodegenerative diseases where synaptojanin-1 is overexpressed.
Collapse
Affiliation(s)
- Kirsten Jenkins
- Randall Division of Cell and Molecular Biophysics, Institute for Mathematical and Molecular Biomedicine, King's College London, London SE1 1UL, UK
| | - Teodora Mateeva
- Department of Chemistry, King's College London, London SE1 1DB, UK
| | - István Szabó
- Department of Chemistry, King's College London, London SE1 1DB, UK
| | - Andre Melnik
- Institute of Biochemistry, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Paola Picotti
- Institute of Biochemistry, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Attila Csikász-Nagy
- Randall Division of Cell and Molecular Biophysics, Institute for Mathematical and Molecular Biomedicine, King's College London, London SE1 1UL, UK.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083 Budapest, Hungary
| | - Edina Rosta
- Department of Chemistry, King's College London, London SE1 1DB, UK
| |
Collapse
|
21
|
Berta D, Buigues PJ, Badaoui M, Rosta E. Cations in motion: QM/MM studies of the dynamic and electrostatic roles of H + and Mg 2+ ions in enzyme reactions. Curr Opin Struct Biol 2020; 61:198-206. [PMID: 32065923 DOI: 10.1016/j.sbi.2020.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/17/2022]
Abstract
Here we discuss current trends in the simulations of enzymatic reactions focusing on phosphate catalysis. The mechanistic details of the proton transfers coupled to the phosphate cleavage is one of the key challenges in QM/MM calculations of these and other enzyme catalyzed reactions. The lack of experimental information offers both an opportunity for computations as well as often unresolved controversies. We discuss the example of small GTPases including the important human Ras protein. The high dimensionality and chemical complexity of these reactions demand carefully chosen computational techniques both in terms of the underlying quantum chemical theory and the sampling of the conformational ensemble. We also point out the important role of Mg2+ ions, and recent advances in their transient involvement in the catalytic mechanisms.
Collapse
Affiliation(s)
- Dénes Berta
- Department of Chemistry, King's College London, London, SE1 1DB, United Kingdom
| | - Pedro J Buigues
- Department of Chemistry, King's College London, London, SE1 1DB, United Kingdom
| | - Magd Badaoui
- Department of Chemistry, King's College London, London, SE1 1DB, United Kingdom
| | - Edina Rosta
- Department of Chemistry, King's College London, London, SE1 1DB, United Kingdom.
| |
Collapse
|
22
|
Tramontano E, Corona A, Menéndez-Arias L. Ribonuclease H, an unexploited target for antiviral intervention against HIV and hepatitis B virus. Antiviral Res 2019; 171:104613. [PMID: 31550450 DOI: 10.1016/j.antiviral.2019.104613] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/18/2022]
Abstract
Ribonucleases H (RNases H) are endonucleolytic enzymes, evolutionarily related to retroviral integrases, DNA transposases, resolvases and numerous nucleases. RNases H cleave RNA in RNA/DNA hybrids and their activity plays an important role in the replication of prokaryotic and eukaryotic genomes, as well as in the replication of reverse-transcribing viruses. During reverse transcription, the RNase H activity of human immunodeficiency virus (HIV) and hepatitis B virus (HBV) degrades the viral genomic RNA to facilitate the synthesis of viral double-stranded DNA. HIV and HBV reverse transcriptases contain DNA polymerase and RNase H domains that act in a coordinated manner to produce double-stranded viral DNA. Although RNase H inhibitors have not been developed into licensed drugs, recent progress has led to the identification of a number of small molecules with inhibitory activity at low micromolar or even nanomolar concentrations. These compounds can be classified into metal-chelating active site inhibitors and allosteric inhibitors. Among them, α-hydroxytropolones, N-hydroxyisoquinolinediones and N-hydroxypyridinediones represent chemotypes active against both HIV and HBV RNases H. In this review we summarize recent developments in the field including the identification of novel RNase H inhibitors, compounds with dual inhibitory activity, broad specificity and efforts to decrease their toxicity.
Collapse
Affiliation(s)
- Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid, Spain.
| |
Collapse
|
23
|
Morero NR, Zuliani C, Kumar B, Bebel A, Okamoto S, Guynet C, Hickman AB, Chandler M, Dyda F, Barabas O. Targeting IS608 transposon integration to highly specific sequences by structure-based transposon engineering. Nucleic Acids Res 2019; 46:4152-4163. [PMID: 29635476 PMCID: PMC5934647 DOI: 10.1093/nar/gky235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/05/2018] [Indexed: 12/15/2022] Open
Abstract
Transposable elements are efficient DNA carriers and thus important tools for transgenesis and insertional mutagenesis. However, their poor target sequence specificity constitutes an important limitation for site-directed applications. The insertion sequence IS608 from Helicobacter pylori recognizes a specific tetranucleotide sequence by base pairing, and its target choice can be re-programmed by changes in the transposon DNA. Here, we present the crystal structure of the IS608 target capture complex in an active conformation, providing a complete picture of the molecular interactions between transposon and target DNA prior to integration. Based on this, we engineered IS608 variants to direct their integration specifically to various 12/17-nt long target sites by extending the base pair interaction network between the transposon and the target DNA. We demonstrate in vitro that the engineered transposons efficiently select their intended target sites. Our data further elucidate how the distinct secondary structure of the single-stranded transposon intermediate prevents extended target specificity in the wild-type transposon, allowing it to move between diverse genomic sites. Our strategy enables efficient targeting of unique DNA sequences with high specificity in an easily programmable manner, opening possibilities for the use of the IS608 system for site-specific gene insertions.
Collapse
Affiliation(s)
- Natalia Rosalía Morero
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Cecilia Zuliani
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Banushree Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Aleksandra Bebel
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Sachi Okamoto
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Catherine Guynet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique, Toulouse Cedex 31062, France
| | - Alison Burgess Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Chandler
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique, Toulouse Cedex 31062, France
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Orsolya Barabas
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| |
Collapse
|
24
|
Calixto AR, Moreira C, Pabis A, Kötting C, Gerwert K, Rudack T, Kamerlin SCL. GTP Hydrolysis Without an Active Site Base: A Unifying Mechanism for Ras and Related GTPases. J Am Chem Soc 2019; 141:10684-10701. [PMID: 31199130 DOI: 10.1021/jacs.9b03193] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
GTP hydrolysis is a biologically crucial reaction, being involved in regulating almost all cellular processes. As a result, the enzymes that catalyze this reaction are among the most important drug targets. Despite their vital importance and decades of substantial research effort, the fundamental mechanism of enzyme-catalyzed GTP hydrolysis by GTPases remains highly controversial. Specifically, how do these regulatory proteins hydrolyze GTP without an obvious general base in the active site to activate the water molecule for nucleophilic attack? To answer this question, we perform empirical valence bond simulations of GTPase-catalyzed GTP hydrolysis, comparing solvent- and substrate-assisted pathways in three distinct GTPases, Ras, Rab, and the Gαi subunit of a heterotrimeric G-protein, both in the presence and in the absence of the corresponding GTPase activating proteins. Our results demonstrate that a general base is not needed in the active site, as the preferred mechanism for GTP hydrolysis is a conserved solvent-assisted pathway. This pathway involves the rate-limiting nucleophilic attack of a water molecule, leading to a short-lived intermediate that tautomerizes to form H2PO4- and GDP as the final products. Our fundamental biochemical insight into the enzymatic regulation of GTP hydrolysis not only resolves a decades-old mechanistic controversy but also has high relevance for drug discovery efforts. That is, revisiting the role of oncogenic mutants with respect to our mechanistic findings would pave the way for a new starting point to discover drugs for (so far) "undruggable" GTPases like Ras.
Collapse
Affiliation(s)
- Ana R Calixto
- Department of Chemistry-BMC , Uppsala University , Box 576, S-751 23 Uppsala , Sweden
| | - Cátia Moreira
- Department of Chemistry-BMC , Uppsala University , Box 576, S-751 23 Uppsala , Sweden
| | - Anna Pabis
- Department of Cell and Molecular Biology , Uppsala University , BMC Box 596, S-751 24 , Uppsala , Sweden
| | - Carsten Kötting
- Department of Biophysics , Ruhr University Bochum , 44801 Bochum , Germany
| | - Klaus Gerwert
- Department of Biophysics , Ruhr University Bochum , 44801 Bochum , Germany
| | - Till Rudack
- Department of Biophysics , Ruhr University Bochum , 44801 Bochum , Germany
| | - Shina C L Kamerlin
- Department of Chemistry-BMC , Uppsala University , Box 576, S-751 23 Uppsala , Sweden
| |
Collapse
|
25
|
The Leishmania donovani IMPACT-like protein possesses non-specific nuclease activity. Int J Biol Macromol 2018; 119:962-973. [DOI: 10.1016/j.ijbiomac.2018.07.175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/22/2018] [Accepted: 07/27/2018] [Indexed: 12/22/2022]
|
26
|
Dynamic coordination of two-metal-ions orchestrates λ-exonuclease catalysis. Nat Commun 2018; 9:4404. [PMID: 30353000 PMCID: PMC6199318 DOI: 10.1038/s41467-018-06750-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/22/2018] [Indexed: 11/08/2022] Open
Abstract
Metal ions at the active site of an enzyme act as cofactors, and their dynamic fluctuations can potentially influence enzyme activity. Here, we use λ-exonuclease as a model enzyme with two Mg2+ binding sites and probe activity at various concentrations of magnesium by single-molecule-FRET. We find that while MgA2+ and MgB2+ have similar binding constants, the dissociation rate of MgA2+ is two order of magnitude lower than that of MgB2+ due to a kinetic-barrier-difference. At physiological Mg2+ concentration, the MgB2+ ion near the 5'-terminal side of the scissile phosphate dissociates each-round of degradation, facilitating a series of DNA cleavages via fast product-release concomitant with enzyme-translocation. At a low magnesium concentration, occasional dissociation and slow re-coordination of MgA2+ result in pauses during processive degradation. Our study highlights the importance of metal-ion-coordination dynamics in correlation with the enzymatic reaction-steps, and offers insights into the origin of dynamic heterogeneity in enzymatic catalysis.
Collapse
|
27
|
Samara NL, Yang W. Cation trafficking propels RNA hydrolysis. Nat Struct Mol Biol 2018; 25:715-721. [PMID: 30076410 DOI: 10.1038/s41594-018-0099-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/22/2018] [Indexed: 11/09/2022]
Abstract
Catalysis by members of the RNase H superfamily of enzymes is generally believed to require only two Mg2+ ions that are coordinated by active-site carboxylates. By examining the catalytic process of Bacillus halodurans RNase H1 in crystallo, however, we found that the two canonical Mg2+ ions and an additional K+ failed to align the nucleophilic water for RNA cleavage. Substrate alignment and product formation required a second K+ and a third Mg2+, which replaced the first K+ and departed immediately after cleavage. A third transient Mg2+ has also been observed for DNA synthesis, but in that case it coordinates the leaving group instead of the nucleophile as in the case of the RNase H1 hydrolysis reaction. These transient cations have no contact with the enzymes. Other DNA and RNA enzymes that catalyze consecutive cleavage and strand-transfer reactions in a single active site may similarly require cation trafficking coordinated by the substrate.
Collapse
Affiliation(s)
- Nadine L Samara
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), US National Institutes of Health (NIH), Bethesda, MD, USA.,Section on Biological Chemistry, National Institute of Dental and Craniofacial Research (NIDCR), US National Institutes of Health, Bethesda, MD, USA
| | - Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), US National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
28
|
Hayashi J, Nishigaki M, Ochi Y, Wada SI, Wada F, Nakagawa O, Obika S, Harada-Shiba M, Urata H. Effective gene silencing activity of prodrug-type 2′-O-methyldithiomethyl siRNA compared with non-prodrug-type 2′-O-methyl siRNA. Bioorg Med Chem Lett 2018; 28:2171-2174. [DOI: 10.1016/j.bmcl.2018.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/01/2018] [Accepted: 05/07/2018] [Indexed: 11/15/2022]
|
29
|
Structure of HIV-1 reverse transcriptase cleaving RNA in an RNA/DNA hybrid. Proc Natl Acad Sci U S A 2018; 115:507-512. [PMID: 29295939 DOI: 10.1073/pnas.1719746115] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
HIV-1 reverse transcriptase (RT) contains both DNA polymerase and RNase H activities to convert the viral genomic RNA to dsDNA in infected host cells. Here we report the 2.65-Å resolution structure of HIV-1 RT engaging in cleaving RNA in an RNA/DNA hybrid. A preferred substrate sequence is absolutely required to enable the RNA/DNA hybrid to adopt the distorted conformation needed to interact properly with the RNase H active site in RT. Substituting two nucleotides 4 bp upstream from the cleavage site results in scissile-phosphate displacement by 4 Å. We also have determined the structure of HIV-1 RT complexed with an RNase H-resistant polypurine tract sequence, which adopts a rigid structure and is accommodated outside of the nuclease active site. Based on this newly gained structural information and a virtual drug screen, we have identified an inhibitor specific for the viral RNase H but not for its cellular homologs.
Collapse
|
30
|
Feng X, Ashley J, Zhou T, Halder A, Sun Y. Molecularly imprinted nanoparticles for inhibiting ribonuclease in reverse transcriptase polymerase chain reaction. Analyst 2018; 143:2750-2754. [DOI: 10.1039/c8an00711j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We showed that molecularly imprinted nanoparticles (nanoMIPs) could efficiently inhibit the activities of the RNase in RT-PCR reactions, demonstrating that the tailor-made nanomaterials are very promising for use in routine biological assays.
Collapse
Affiliation(s)
- Xiaotong Feng
- Department of Micro- and Nanotechnology
- Technical University of Denmark
- DK- 2800 Kgs, Lyngby
- Denmark
| | - Jon Ashley
- Department of Micro- and Nanotechnology
- Technical University of Denmark
- DK- 2800 Kgs, Lyngby
- Denmark
| | - Tongchang Zhou
- Department of Micro- and Nanotechnology
- Technical University of Denmark
- DK- 2800 Kgs, Lyngby
- Denmark
| | - Arnab Halder
- Department of Micro- and Nanotechnology
- Technical University of Denmark
- DK- 2800 Kgs, Lyngby
- Denmark
| | - Yi Sun
- Department of Micro- and Nanotechnology
- Technical University of Denmark
- DK- 2800 Kgs, Lyngby
- Denmark
| |
Collapse
|
31
|
Walker AR, Cisneros GA. Computational Simulations of DNA Polymerases: Detailed Insights on Structure/Function/Mechanism from Native Proteins to Cancer Variants. Chem Res Toxicol 2017; 30:1922-1935. [PMID: 28877429 PMCID: PMC5696005 DOI: 10.1021/acs.chemrestox.7b00161] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Genetic information is vital in the
cell cycle of DNA-based organisms.
DNA polymerases (DNA Pols) are crucial players in transactions dealing
with these processes. Therefore, the detailed understanding of the
structure, function, and mechanism of these proteins has been the
focus of significant effort. Computational simulations have been applied
to investigate various facets of DNA polymerase structure and function.
These simulations have provided significant insights over the years.
This perspective presents the results of various computational studies
that have been employed to research different aspects of DNA polymerases
including detailed reaction mechanism investigation, mutagenicity
of different metal cations, possible factors for fidelity synthesis,
and discovery/functional characterization of cancer-related mutations
on DNA polymerases.
Collapse
Affiliation(s)
- Alice R Walker
- Department of Chemistry, University of North Texas , 1155 Union Circle, Denton, Texas 76203, United States
| | - G Andrés Cisneros
- Department of Chemistry, University of North Texas , 1155 Union Circle, Denton, Texas 76203, United States
| |
Collapse
|
32
|
Yekwa E, Khourieh J, Canard B, Papageorgiou N, Ferron F. Activity inhibition and crystal polymorphism induced by active-site metal swapping. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2017; 73:641-649. [PMID: 28777079 DOI: 10.1107/s205979831700866x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/10/2017] [Indexed: 11/11/2022]
Abstract
The Arenaviridae family is one of the two RNA viral families that encode a 3'-5' exonuclease in their genome. An exonuclease domain is found in the Arenaviridae nucleoprotein and targets dsRNA specifically. This domain is directly involved in suppression of innate immunity in the host cell. Like most phosphate-processing enzymes, it requires a divalent metal ion such as Mg2+ (or Mn2+) as a cofactor to catalyse nucleotide-cleavage and nucleotide-transfer reactions. On the other hand, calcium (Ca2+) inhibits this enzymatic activity, in spite of the fact that Mg2+ and Ca2+ present comparable binding affinities and biological availabilities. Here, the molecular and structural effects of the replacement of magnesium by calcium and its inhibition mechanism for phosphodiester cleavage, an essential reaction in the viral process of innate immunity suppression, are studied. Biochemical data and high-resolution structures of the Mopeia virus exonuclease domain complexed with each ion are reported for the first time. The consequences of the ion swap for the stability of the protein, the catalytic site and the functional role of a specific metal ion in enabling the catalytic cleavage of a dsRNA substrate are outlined.
Collapse
Affiliation(s)
- Elsie Yekwa
- CNRS, AFMB UMR 7257, 13288 Marseille, France
| | | | | | | | | |
Collapse
|
33
|
Fast exploration of an optimal path on the multidimensional free energy surface. PLoS One 2017; 12:e0177740. [PMID: 28542475 PMCID: PMC5436793 DOI: 10.1371/journal.pone.0177740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 05/02/2017] [Indexed: 11/29/2022] Open
Abstract
In a reaction, determination of an optimal path with a high reaction rate (or a low free energy barrier) is important for the study of the reaction mechanism. This is a complicated problem that involves lots of degrees of freedom. For simple models, one can build an initial path in the collective variable space by the interpolation method first and then update the whole path constantly in the optimization. However, such interpolation method could be risky in the high dimensional space for large molecules. On the path, steric clashes between neighboring atoms could cause extremely high energy barriers and thus fail the optimization. Moreover, performing simulations for all the snapshots on the path is also time-consuming. In this paper, we build and optimize the path by a growing method on the free energy surface. The method grows a path from the reactant and extends its length in the collective variable space step by step. The growing direction is determined by both the free energy gradient at the end of the path and the direction vector pointing at the product. With fewer snapshots on the path, this strategy can let the path avoid the high energy states in the growing process and save the precious simulation time at each iteration step. Applications show that the presented method is efficient enough to produce optimal paths on either the two-dimensional or the twelve-dimensional free energy surfaces of different small molecules.
Collapse
|
34
|
Samara NL, Gao Y, Wu J, Yang W. Detection of Reaction Intermediates in Mg 2+-Dependent DNA Synthesis and RNA Degradation by Time-Resolved X-Ray Crystallography. Methods Enzymol 2017; 592:283-327. [PMID: 28668125 DOI: 10.1016/bs.mie.2017.03.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Structures of enzyme-substrate/product complexes have been studied for over four decades but have been limited to either before or after a chemical reaction. Recently using in crystallo catalysis combined with X-ray diffraction, we have discovered that many enzymatic reactions in nucleic acid metabolism require additional metal ion cofactors that are not present in the substrate or product state. By controlling metal ions essential for catalysis, the in crystallo approach has revealed unprecedented details of reaction intermediates. Here we present protocols used for successful studies of Mg2+-dependent DNA polymerases and ribonucleases that are applicable to analyses of a variety of metal ion-dependent reactions.
Collapse
Affiliation(s)
- Nadine L Samara
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States; Section on Biological Chemistry, NIDCR, National Institutes of Health, Bethesda, MD, United States
| | - Yang Gao
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States
| | - Jinjun Wu
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States
| | - Wei Yang
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
35
|
Pérez-Gallegos A, Garcia-Viloca M, González-Lafont À, Lluch JM. Understanding how cAMP-dependent protein kinase can catalyze phosphoryl transfer in the presence of Ca2+and Sr2+: a QM/MM study. Phys Chem Chem Phys 2017; 19:10377-10394. [DOI: 10.1039/c7cp00666g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Theoretical results demonstrate for the first time at the molecular level that the overall PKAc-catalyzed phosphoryl-transfer reaction is plausible with Ca2+and Sr2+, alkaline earth metal ions other than Mg2+, which is in good agreement with experiments.
Collapse
Affiliation(s)
- Ayax Pérez-Gallegos
- Institut de Biotecnologia i de Biomedicina and Departament de Química, Universitat Autònoma de Barcelona
- 08193 Bellaterra (Barcelona)
- Spain
| | - Mireia Garcia-Viloca
- Institut de Biotecnologia i de Biomedicina and Departament de Química, Universitat Autònoma de Barcelona
- 08193 Bellaterra (Barcelona)
- Spain
| | - Àngels González-Lafont
- Institut de Biotecnologia i de Biomedicina and Departament de Química, Universitat Autònoma de Barcelona
- 08193 Bellaterra (Barcelona)
- Spain
| | - José M. Lluch
- Institut de Biotecnologia i de Biomedicina and Departament de Química, Universitat Autònoma de Barcelona
- 08193 Bellaterra (Barcelona)
- Spain
| |
Collapse
|
36
|
Characterization of a DUF820 family protein Alr3200 of the cyanobacterium Anabaena sp. strain PCC7120. J Biosci 2016; 41:589-600. [DOI: 10.1007/s12038-016-9646-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
37
|
Genna V, Vidossich P, Ippoliti E, Carloni P, De Vivo M. A Self-Activated Mechanism for Nucleic Acid Polymerization Catalyzed by DNA/RNA Polymerases. J Am Chem Soc 2016; 138:14592-14598. [PMID: 27530537 DOI: 10.1021/jacs.6b05475] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The enzymatic polymerization of DNA and RNA is the basis for genetic inheritance for all living organisms. It is catalyzed by the DNA/RNA polymerase (Pol) superfamily. Here, bioinformatics analysis reveals that the incoming nucleotide substrate always forms an H-bond between its 3'-OH and β-phosphate moieties upon formation of the Michaelis complex. This previously unrecognized H-bond implies a novel self-activated mechanism (SAM), which synergistically connects the in situ nucleophile formation with subsequent nucleotide addition and, importantly, nucleic acid translocation. Thus, SAM allows an elegant and efficient closed-loop sequence of chemical and physical steps for Pol catalysis. This is markedly different from previous mechanistic hypotheses. Our proposed mechanism is corroborated via ab initio QM/MM simulations on a specific Pol, the human DNA polymerase-η, an enzyme involved in repairing damaged DNA. The structural conservation of DNA and RNA Pols supports the possible extension of SAM to Pol enzymes from the three domains of life.
Collapse
Affiliation(s)
- Vito Genna
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia , Via Morego 30, 16163, Genoa, Italy.,IAS-5/INM-9 Computational Biomedicine and JARA-HPC, Forschungszentrum Jülich , Wilhelm-Johnen-Strasse, 52428 Jülich, Germany
| | - Pietro Vidossich
- IAS-5/INM-9 Computational Biomedicine and JARA-HPC, Forschungszentrum Jülich , Wilhelm-Johnen-Strasse, 52428 Jülich, Germany
| | - Emiliano Ippoliti
- IAS-5/INM-9 Computational Biomedicine and JARA-HPC, Forschungszentrum Jülich , Wilhelm-Johnen-Strasse, 52428 Jülich, Germany
| | - Paolo Carloni
- IAS-5/INM-9 Computational Biomedicine and JARA-HPC, Forschungszentrum Jülich , Wilhelm-Johnen-Strasse, 52428 Jülich, Germany
| | - Marco De Vivo
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia , Via Morego 30, 16163, Genoa, Italy.,IAS-5/INM-9 Computational Biomedicine and JARA-HPC, Forschungszentrum Jülich , Wilhelm-Johnen-Strasse, 52428 Jülich, Germany
| |
Collapse
|
38
|
Yoon H, Warshel A. The control of the discrimination between dNTP and rNTP in DNA and RNA polymerase. Proteins 2016; 84:1616-1624. [PMID: 27480935 DOI: 10.1002/prot.25104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/06/2016] [Accepted: 07/11/2016] [Indexed: 12/11/2022]
Abstract
Understanding the origin of discrimination between rNTP and dNTP by DNA/RNA polymerases is important both for gaining fundamental knowledge on the corresponding systems and for advancing the design of specific drugs. This work explores the nature of this discrimination by systematic calculations of the transition state (TS) binding energy in RB69 DNA polymerase (gp43) and T7 RNA polymerase. The calculations reproduce the observed trend, in particular when they included the water contribution obtained by the water flooding approach. Our detailed study confirms the idea that the discrimination is due to the steric interaction between the 2'OH and Tyr416 in DNA polymerase, while the electrostatic interaction is the source of the discrimination in RNA polymerase. Proteins 2016; 84:1616-1624. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hanwool Yoon
- Department of Chemistry, University of Southern California, Los Angeles, California, 90089-1062
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California, 90089-1062.
| |
Collapse
|
39
|
Chen TH, Tanimoto A, Shkriabai N, Kvaratskhelia M, Wysocki V, Gopalan V. Use of chemical modification and mass spectrometry to identify substrate-contacting sites in proteinaceous RNase P, a tRNA processing enzyme. Nucleic Acids Res 2016; 44:5344-55. [PMID: 27166372 PMCID: PMC4914120 DOI: 10.1093/nar/gkw391] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/28/2016] [Indexed: 02/07/2023] Open
Abstract
Among all enzymes in nature, RNase P is unique in that it can use either an RNA- or a protein-based active site for its function: catalyzing cleavage of the 5′-leader from precursor tRNAs (pre-tRNAs). The well-studied catalytic RNase P RNA uses a specificity module to recognize the pre-tRNA and a catalytic module to perform cleavage. Similarly, the recently discovered proteinaceous RNase P (PRORP) possesses two domains – pentatricopeptide repeat (PPR) and metallonuclease (NYN) – that are present in some other RNA processing factors. Here, we combined chemical modification of lysines and multiple-reaction monitoring mass spectrometry to identify putative substrate-contacting residues in Arabidopsis thaliana PRORP1 (AtPRORP1), and subsequently validated these candidate sites by site-directed mutagenesis. Using biochemical studies to characterize the wild-type (WT) and mutant derivatives, we found that AtPRORP1 exploits specific lysines strategically positioned at the tips of it's V-shaped arms, in the first PPR motif and in the NYN domain proximal to the catalytic center, to bind and cleave pre-tRNA. Our results confirm that the protein- and RNA-based forms of RNase P have distinct modules for substrate recognition and cleavage, an unanticipated parallel in their mode of action.
Collapse
Affiliation(s)
- Tien-Hao Chen
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Akiko Tanimoto
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Nikoloz Shkriabai
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | | | - Vicki Wysocki
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Venkat Gopalan
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
40
|
Sgrignani J, Magistrato A. QM/MM MD Simulations on the Enzymatic Pathway of the Human Flap Endonuclease (hFEN1) Elucidating Common Cleavage Pathways to RNase H Enzymes. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00178] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jacopo Sgrignani
- Institute of Research in Biomedicine (IRB), Via Vincenzo Vela, 6500 Bellinzona, Switzerland
| | - Alessandra Magistrato
- CNR-IOM-Democritos
National Simulation Center c/o International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
41
|
Lopata A, Jambrina PG, Sharma PK, Brooks BR, Toth J, Vertessy BG, Rosta E. Mutations Decouple Proton Transfer from Phosphate Cleavage in the dUTPase Catalytic Reaction. ACS Catal 2015. [DOI: 10.1021/cs502087f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Anna Lopata
- Institute
of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H1113, Hungary
| | - Pablo G. Jambrina
- Department
of Chemistry, King’s College London, London SE1 1DB, United Kingdom
| | - Pankaz K. Sharma
- College
of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea
| | - Bernard R. Brooks
- Laboratory
of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20892-9314, United States
| | - Judit Toth
- Institute
of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H1113, Hungary
| | - Beata G. Vertessy
- Institute
of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H1113, Hungary
- Department
of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest H1111, Hungary
| | - Edina Rosta
- Department
of Chemistry, King’s College London, London SE1 1DB, United Kingdom
| |
Collapse
|
42
|
Abstract
DNA transposases use a limited repertoire of structurally and mechanistically distinct nuclease domains to catalyze the DNA strand breaking and rejoining reactions that comprise DNA transposition. Here, we review the mechanisms of the four known types of transposition reactions catalyzed by (1) RNase H-like transposases (also known as DD(E/D) enzymes); (2) HUH single-stranded DNA transposases; (3) serine transposases; and (4) tyrosine transposases. The large body of accumulated biochemical and structural data, particularly for the RNase H-like transposases, has revealed not only the distinguishing features of each transposon family, but also some emerging themes that appear conserved across all families. The more-recently characterized single-stranded DNA transposases provide insight into how an ancient HUH domain fold has been adapted for transposition to accomplish excision and then site-specific integration. The serine and tyrosine transposases are structurally and mechanistically related to their cousins, the serine and tyrosine site-specific recombinases, but have to date been less intensively studied. These types of enzymes are particularly intriguing as in the context of site-specific recombination they require strict homology between recombining sites, yet for transposition can catalyze the joining of transposon ends to form an excised circle and then integration into a genomic site with much relaxed sequence specificity.
Collapse
Affiliation(s)
- Alison B Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Center Dr., Bethesda, MD 20892, USA
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Center Dr., Bethesda, MD 20892, USA
| |
Collapse
|
43
|
Palermo G, Cavalli A, Klein ML, Alfonso-Prieto M, Dal Peraro M, De Vivo M. Catalytic metal ions and enzymatic processing of DNA and RNA. Acc Chem Res 2015; 48:220-8. [PMID: 25590654 DOI: 10.1021/ar500314j] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONSPECTUS: Two-metal-ion-dependent nucleases cleave the phosphodiester bonds of nucleic acids via the two-metal-ion (2M) mechanism. Several high-resolution X-ray structures portraying the two-metal-aided catalytic site, together with mutagenesis and kinetics studies, have demonstrated a functional role of the ions for catalysis in numerous metallonucleases. Overall, the experimental data confirm the general mechanistic hypothesis for 2M-aided phosphoryl transfer originally reported by Steitz and Steitz ( Proc. Natl. Acad. Sci. U.S.A. 1993 , 90 ( 14 ), 6498 - 6502 ). This seminal paper proposed that one metal ion favors the formation of the nucleophile, while the nearby second metal ion facilitates leaving group departure during RNA hydrolysis. Both metals were suggested to stabilize the enzymatic transition state. Nevertheless, static X-ray structures alone cannot exhaustively unravel how the two ions execute their functional role along the enzymatic reaction during processing of DNA or RNA strands when moving from reactants to products, passing through metastable intermediates and high-energy transition states. In this Account, we discuss the role of multiscale molecular simulations in further disclosing mechanistic insights of 2M-aided catalysis for two prototypical enzymatic targets for drug discovery, namely, ribonuclease H (RNase H) and type II topoisomerase (topoII). In both examples, first-principles molecular simulations, integrated with structural data, emphasize a cooperative motion of the bimetal motif during catalysis. The coordinated motion of both ions is crucial for maintaining a flexible metal-centered structural architecture exquisitely tailored to accommodate the DNA or RNA sugar-phosphate backbone during phosphodiester bond cleavage. Furthermore, our analysis of RNase H and the N-terminal domain (PAN) of influenza polymerase shows that classical molecular dynamics simulations coupled with enhanced sampling techniques have contributed to describe the modulatory effect of metal ion concentration and metal uptake on the 2M mechanism and efficiency. These aspects all point to the emerging and intriguing role of additional adjacent ions potentially involved in the modulation of phosphoryl transfer reactions and enzymatic turnover in 2M-catalysis, as recently observed experimentally in polymerase η and homing endonuclease I-DmoI. These computational results, integrated with experimental findings, describe and reinforce the nascent concept of a functional and cooperative dynamics of the catalytic metal ions during the 2M-dependent enzymatic processing of DNA and RNA. Encouraged by the insights provided by computational approaches, we foresee further experiments that will feature the functional and joint dynamics of the catalytic metal ions for nucleic acid processing. This could impact the de novo design of artificial metallonucleases and the rational design of potent metal-chelating inhibitors of pharmaceutically relevant enzymes.
Collapse
Affiliation(s)
- Giulia Palermo
- Department
of Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Andrea Cavalli
- Department
of Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro
6, I-40126 Bologna, Italy
| | - Michael L. Klein
- Institute
for Computational Molecular Science, Temple University, SERC Building, 1925 North 12th Street, Philadelphia Pennsylvania 19122, United States
| | - Mercedes Alfonso-Prieto
- Institute
for Computational Molecular Science, Temple University, SERC Building, 1925 North 12th Street, Philadelphia Pennsylvania 19122, United States
| | - Matteo Dal Peraro
- Institute
of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne - EPFL, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics - SIB, 1015 Lausanne, Switzerland
| | - Marco De Vivo
- Department
of Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
44
|
Perera L, Beard WA, Pedersen LG, Wilson SH. Applications of quantum mechanical/molecular mechanical methods to the chemical insertion step of DNA and RNA polymerization. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 97:83-113. [PMID: 25458356 PMCID: PMC5573153 DOI: 10.1016/bs.apcsb.2014.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We review theoretical attempts to model the chemical insertion reactions of nucleoside triphosphates catalyzed by the nucleic acid polymerases using combined quantum mechanical/molecular mechanical methodology. Due to an existing excellent database of high-resolution X-ray crystal structures, the DNA polymerase β system serves as a useful template for discussion and comparison. The convergence of structures of high-quality complexes and continued developments of theoretical techniques suggest a bright future for understanding the global features of nucleic acid polymerization.
Collapse
Affiliation(s)
- Lalith Perera
- Laboratory of Structural Biology, National Institution of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.
| | - William A Beard
- Laboratory of Structural Biology, National Institution of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Lee G Pedersen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Samuel H Wilson
- Laboratory of Structural Biology, National Institution of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
45
|
Riahi S, Rowley CN. The CHARMM-TURBOMOLE interface for efficient and accurate QM/MM molecular dynamics, free energies, and excited state properties. J Comput Chem 2014; 35:2076-86. [PMID: 25178266 DOI: 10.1002/jcc.23716] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 08/04/2014] [Accepted: 08/07/2014] [Indexed: 01/05/2023]
Abstract
The quantum mechanical (QM)/molecular mechanical (MM) interface between Chemistry at HARvard Molecular Mechanics (CHARMM) and TURBOMOLE is described. CHARMM provides an extensive set of simulation algorithms, like molecular dynamics (MD) and free energy perturbation, and support for mature nonpolarizable and Drude polarizable force fields. TURBOMOLE provides fast QM calculations using density functional theory or wave function methods and excited state properties. CHARMM-TURBOMOLE is well-suited for extended QM/MM MD simulations using first principles methods with large (triple-ζ) basis sets. We demonstrate these capabilities with a QM/MM simulation of Mg(2+) (aq), where the MM outer sphere water molecules are represented using the SWM4-NDP Drude polarizable force field and the ion and inner coordination sphere are represented using QM PBE, PBE0, and MP2 methods. The relative solvation free energies of Mg(2+) and Zn(2+) were calculated using thermodynamic integration. We also demonstrate the features for excited state properties. We calculate the time-averaged solution absorption spectrum of indole, the emission spectrum of the indole 1La excited state, and the electronic circular dichroism spectrum of an oxacepham.
Collapse
Affiliation(s)
- Saleh Riahi
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X7, Canada
| | | |
Collapse
|
46
|
Vidossich P, Magistrato A. QM/MM molecular dynamics studies of metal binding proteins. Biomolecules 2014; 4:616-45. [PMID: 25006697 PMCID: PMC4192665 DOI: 10.3390/biom4030616] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 11/16/2022] Open
Abstract
Mixed quantum-classical (quantum mechanical/molecular mechanical (QM/MM)) simulations have strongly contributed to providing insights into the understanding of several structural and mechanistic aspects of biological molecules. They played a particularly important role in metal binding proteins, where the electronic effects of transition metals have to be explicitly taken into account for the correct representation of the underlying biochemical process. In this review, after a brief description of the basic concepts of the QM/MM method, we provide an overview of its capabilities using selected examples taken from our work. Specifically, we will focus on heme peroxidases, metallo-β-lactamases, α-synuclein and ligase ribozymes to show how this approach is capable of describing the catalytic and/or structural role played by transition (Fe, Zn or Cu) and main group (Mg) metals. Applications will reveal how metal ions influence the formation and reduction of high redox intermediates in catalytic cycles and enhance drug metabolism, amyloidogenic aggregate formation and nucleic acid synthesis. In turn, it will become manifest that the protein frame directs and modulates the properties and reactivity of the metal ions.
Collapse
Affiliation(s)
- Pietro Vidossich
- Department of Chemistry, Autonomous University of Barcelona, 08193 Cerdanyola del Vallés, Spain.
| | - Alessandra Magistrato
- CNR-IOM-Democritos National Simulation Center c/o, International School for Advanced Studies (SISSA/ISAS), via Bonomea 265, 34165 Trieste, Italy.
| |
Collapse
|
47
|
Mlýnský V, Banáš P, Šponer J, van der Kamp MW, Mulholland AJ, Otyepka M. Comparison of ab Initio, DFT, and Semiempirical QM/MM Approaches for Description of Catalytic Mechanism of Hairpin Ribozyme. J Chem Theory Comput 2014; 10:1608-22. [PMID: 26580373 DOI: 10.1021/ct401015e] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have analyzed the capability of state-of-the-art multiscale computational approaches to provide atomic-resolution electronic structure insights into possible catalytic scenarios of the hairpin ribozyme by evaluating potential and free energy surfaces of the reactions by various hybrid QM/MM methods. The hairpin ribozyme is a unique catalytic RNA that achieves rate acceleration similar to other small self-cleaving ribozymes but without direct metal ion participation. Guanine 8 (G8) and adenine 38 (A38) have been identified as the catalytically essential nucleobases. However, their exact catalytic roles are still being investigated. In line with the available experimental data, we considered two reaction scenarios involving protonated A38H(+) as a general acid which is further assisted by either canonical G8 or deprotonated G8(-) forms. We used the spin-component scaled Møller-Plesset (SCS-MP2) method at the complete basis set limit as the reference method. The semiempirical AM1/d-PhoT and SCC-DFTBPR methods provided acceptable activation barriers with respect to the SCS-MP2 data but predicted significantly different reaction pathways. DFT functionals (BLYP and MPW1K) yielded the same reaction pathway as the SCS-MP2 method. The activation barriers were slightly underestimated by the GGA BLYP functional, although with accuracy comparable to the semiempirical methods. The SCS-MP2 method and hybrid MPW1K functional gave activation barriers that were closest to those derived from experimentally measured rate constants.
Collapse
Affiliation(s)
- Vojtěch Mlýnský
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , tr. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , tr. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics , Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
- CEITEC-Central European Institute of Technology, Masaryk University , Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Marc W van der Kamp
- Centre for Computational Chemistry, School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , tr. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| |
Collapse
|