1
|
Goodwin MJ, Dickenson JC, Ripak A, Deetz AM, McCarthy JS, Meyer GJ, Troian-Gautier L. Factors that Impact Photochemical Cage Escape Yields. Chem Rev 2024; 124:7379-7464. [PMID: 38743869 DOI: 10.1021/acs.chemrev.3c00930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The utilization of visible light to mediate chemical reactions in fluid solutions has applications that range from solar fuel production to medicine and organic synthesis. These reactions are typically initiated by electron transfer between a photoexcited dye molecule (a photosensitizer) and a redox-active quencher to yield radical pairs that are intimately associated within a solvent cage. Many of these radicals undergo rapid thermodynamically favored "geminate" recombination and do not diffuse out of the solvent cage that surrounds them. Those that do escape the cage are useful reagents that may undergo subsequent reactions important to the above-mentioned applications. The cage escape process and the factors that determine the yields remain poorly understood despite decades of research motivated by their practical and fundamental importance. Herein, state-of-the-art research on light-induced electron transfer and cage escape that has appeared since the seminal 1972 review by J. P. Lorand entitled "The Cage Effect" is reviewed. This review also provides some background for those new to the field and discusses the cage escape process of both homolytic bond photodissociation and bimolecular light induced electron transfer reactions. The review concludes with some key goals and directions for future research that promise to elevate this very vibrant field to even greater heights.
Collapse
Affiliation(s)
- Matthew J Goodwin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - John C Dickenson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alexia Ripak
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| | - Alexander M Deetz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jackson S McCarthy
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ludovic Troian-Gautier
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
- Wel Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium
| |
Collapse
|
2
|
Diao D, Baidiuk A, Chaussy L, De Assis Modenez I, Ribas X, Réglier M, Martin-Diaconescu V, Nava P, Simaan AJ, Martinez A, Colomban C. Light-Induced Reactivity Switch at O 2-Activating Bioinspired Copper(I) Complexes. JACS AU 2024; 4:1966-1974. [PMID: 38818064 PMCID: PMC11134348 DOI: 10.1021/jacsau.4c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 06/01/2024]
Abstract
Using light to unveil unexplored reactivities of earth-abundant metal-oxygen intermediates is a formidable challenge, given the already remarkable oxidation ability of these species in the ground state. However, the light-induced reactivity of Cu-O2 intermediates still remains unexplored, due to the photoejection of O2 under irradiation. Herein, we describe a photoinduced reactivity switch of bioinspired O2-activating CuI complexes, based on the archetypal tris(2-pyridyl-methyl)amine (TPA) ligand. This report represents a key precedent for light-induced reactivity switch in Cu-O2 chemistry, obtained by positioning C-H substrates in close proximity of the active site. Open and caged CuI complexes displaying an internal aryl ether substrate were evaluated. Under light, a Cu-O2 mediated reaction takes place that induces a selective conversion of the internal aryl ether unit to a phenolate-CH2- moiety with excellent yields. This light-induced transformation displays high selectivity and allows easy postfunctionalization of TPA-based ligands for straightforward preparation of challenging heteroleptic structures. In the absence of light, O2 activation results in the standard oxidative cleavage of the covalently attached substrate. A reaction mechanism that supports a monomeric cupric-superoxide-dependent reactivity promoted by light is proposed on the basis of reactivity studies combined with (TD-) DFT calculations.
Collapse
Affiliation(s)
- Donglin Diao
- Aix
Marseille Univ, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France
| | - Anna Baidiuk
- Aix
Marseille Univ, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France
| | - Leo Chaussy
- Aix
Marseille Univ, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France
| | | | - Xavi Ribas
- Institut
de Quimica Computacional i Catalisi (IQCC), Departament de Quimica, Universitat de Girona, Girona E-17003, Catalonia, Spain
| | - Marius Réglier
- Aix
Marseille Univ, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France
| | | | - Paola Nava
- Aix
Marseille Univ, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France
| | - A. Jalila Simaan
- Aix
Marseille Univ, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France
| | - Alexandre Martinez
- Aix
Marseille Univ, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France
| | - Cédric Colomban
- Aix
Marseille Univ, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France
| |
Collapse
|
3
|
Interplay of electronic and geometric structure on Cu phenanthroline, bipyridine and derivative complexes, synthesis, characterization, and reactivity towards oxygen. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Zhu L, Zhang S, Yang XC, Zhuang Q, Sun JK. Toward the Controlled Synthesis of Highly Dispersed Metal Clusters Enabled by Downsizing Crystalline Porous Organic Cage Supports. SMALL METHODS 2022; 6:e2200591. [PMID: 35708206 DOI: 10.1002/smtd.202200591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Indexed: 06/15/2023]
Abstract
The controlled synthesis of subnanometer-sized metal clusters (MCs) presents a fascinating prospect for the research of size-dependent properties. In this study, a facile approach by employing porous racemic organic cage crystals as supports for immobilizing a broad range of noble MCs (e.g., Ru, Ir, Rh) is reported. Downsizing the support to the nanoscale leads to resultant MCs with precisely controlled sizes < 0.7 nm. Such enhanced stabilization ability is a result of enhanced metal-support interactions as well as the nanoconfinement of organic cages in controlling the growth of MCs. Moreover, the obtained MCs display excellent catalytic performance in a series of liquid-phase reactions owing to a decrease in the diffusion resistance from the substrate to MCs immobilized by the nano-sized cage support.
Collapse
Affiliation(s)
- Liying Zhu
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Suyun Zhang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xin-Chun Yang
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, P. R. China
| | - Qiang Zhuang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Jian-Ke Sun
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
5
|
Kosar N, Ayub K, Gilani MA, Muhammad S, Mahmood T. Benchmark Density Functional Theory Approach for the Calculation of Bond Dissociation Energies of the M-O 2 Bond: A Key Step in Water Splitting Reactions. ACS OMEGA 2022; 7:20800-20808. [PMID: 35935283 PMCID: PMC9348009 DOI: 10.1021/acsomega.2c01331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
A very fascinating aspect in quantum chemical research is to determine the accurate and cost-effective methods for the calculation of electronic and structural properties through a benchmark study. The current study focuses on the performance evaluation of density functional theory methods for the accurate measurement of bond dissociation energies (BDEs) of chemically important M-O2 bonds in water splitting reactions. The BDE measurement has got noteworthy attention due to its importance in all areas of chemistry. For BDE measurements of M-O2 bonds in five metal complexes with oxygen molecules, 14 density functionals (DFs) are chosen from seven classes of DFs with two series of mixed basis sets. A combination of pseudopotential and Pople basis sets [LANL2DZ & 6-31G(d) and SDD & 6-31+G(d)] are used as a series of mixed basis sets. The B3LYP-GD3BJ functional with LANL2DZ & 6-31G(d) gives outstanding results due to low deviations, error, and the best Pearson's correlation (R) between the experimental and theoretical data. Our study suggested an efficient, low-cost, precise, and accurate B3LYP-GD3BJ/LANL2DZ & 6-31G(d) level of theory for BDE of the M-O2 bond, which may be useful for chemists working in the field of energy generation and utilization.
Collapse
Affiliation(s)
- Naveen Kosar
- Department
of Chemistry, University of Management and
Technology (UMT), C11,
Johar Town, Lahore 54770, Pakistan
| | - Khurshid Ayub
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Mazhar Amjad Gilani
- Department
of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore 54600, Pakistan
| | - Shabbir Muhammad
- Department
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Tariq Mahmood
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| |
Collapse
|
6
|
Smith B, Akimov AV. Modeling nonadiabatic dynamics in condensed matter materials: some recent advances and applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:073001. [PMID: 31661681 DOI: 10.1088/1361-648x/ab5246] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This review focuses on recent developments in the field of nonadiabatic molecular dynamics (NA-MD), with particular attention given to condensed-matter systems. NA-MD simulations for small molecular systems can be performed using high-level electronic structure (ES) calculations, methods accounting for the quantization of nuclear motion, and using fewer approximations in the dynamical methodology itself. Modeling condensed-matter systems imposes many limitations on various aspects of NA-MD computations, requiring approximations at various levels of theory-from the ES, to the ways in which the coupling of electrons and nuclei are accounted for. Nonetheless, the approximate treatment of NA-MD in condensed-phase materials has gained a spin lately in many applied studies. A number of advancements of the methodology and computational tools have been undertaken, including general-purpose methods, as well as those tailored to nanoscale and condensed matter systems. This review summarizes such methodological and software developments, puts them into the broader context of existing approaches, and highlights some of the challenges that remain to be solved.
Collapse
Affiliation(s)
- Brendan Smith
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States of America
| | | |
Collapse
|
7
|
Gordon JB, Vilbert AC, Siegler MA, Lancaster KM, Moënne-Loccoz P, Goldberg DP. A Nonheme Thiolate-Ligated Cobalt Superoxo Complex: Synthesis and Spectroscopic Characterization, Computational Studies, and Hydrogen Atom Abstraction Reactivity. J Am Chem Soc 2019; 141:3641-3653. [PMID: 30776222 DOI: 10.1021/jacs.8b13134] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The synthesis and characterization of a Co(II) dithiolato complex Co(Me3TACN)(S2SiMe2) (1) are reported. Reaction of 1 with O2 generates a rare thiolate-ligated cobalt-superoxo species Co(O2)(Me3TACN)(S2SiMe2) (2) that was characterized spectroscopically and structurally by resonance Raman, EPR, and X-ray absorption spectroscopies as well as density functional theory. Metal-superoxo species are proposed to S-oxygenate metal-bound thiolate donors in nonheme thiol dioxygenases, but 2 does not lead to S-oxygenation of the intramolecular thiolate donors and does not react with exogenous sulfur donors. However, complex 2 is capable of oxidizing the O-H bonds of 2,2,6,6-tetramethylpiperidin-1-ol derivatives via H atom abstraction. Complementary proton-coupled electron-transfer reactivity is seen for 2 with separated proton/reductant pairs. The reactivity studies indicate that 2 can abstract H atoms from weak X-H bonds with bond dissociation free energy (BDFE) ≤ 70 kcal mol-1. DFT calculations predict that the putative Co(OOH) product has an O-H BDFE = 67 kcal mol-1, which matches the observed pattern of reactivity seen for 2. These data provide new information regarding the selectivity of S-oxygenation versus H atom abstraction in thiolate-ligated nonheme metalloenzymes that react with O2.
Collapse
Affiliation(s)
- Jesse B Gordon
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Avery C Vilbert
- Department of Chemistry and Chemical Biology, Baker Laboratory , Cornell University , Ithaca , New York 14853 , United States
| | - Maxime A Siegler
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Baker Laboratory , Cornell University , Ithaca , New York 14853 , United States
| | - Pierre Moënne-Loccoz
- Department of Biochemistry & Molecular Biology , Oregon Health & Science University , Portland , Oregon 97239-3098 , United States
| | - David P Goldberg
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| |
Collapse
|
8
|
Fukuzumi S, Lee YM, Nam W. Structure and reactivity of the first-row d-block metal-superoxo complexes. Dalton Trans 2019; 48:9469-9489. [DOI: 10.1039/c9dt01402k] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review discusses the structure and reactivity of metal-superoxo complexes covering all ten first-row d-block metals from Sc to Zn.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- Graduate School of Science and Technology
| | - Yong-Min Lee
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- Research Institute for Basic Sciences
| | - Wonwoo Nam
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
| |
Collapse
|
9
|
Saracini C, Fukuzumi S, Lee YM, Nam W. Photoexcited state chemistry of metal-oxygen complexes. Dalton Trans 2018; 47:16019-16026. [PMID: 30324192 DOI: 10.1039/c8dt03604g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent advances on the excited state chemistry of metal-oxygen synthetic complexes based on earth-abundant metals such as copper, cobalt, and manganese are reviewed to show a much enhanced reactivity of the photoexcited states as compared with their relative ground states. Mononuclear copper(ii)-superoxide and dinuclear copper(ii)-peroxo complexes underwent copper-oxygen bond cleavage, dioxygen release, and copper(i)/dioxygen rebinding upon photoexcitation at low temperature. Photoirradiation of the cobalt-oxygen compound [(TAML)CoIV(O)]2- (6) (TAML = tetraamidomacrocyclic ligand) at 5 °C yielded a cobalt-oxygen excited state with 0.6(1) ns lifetime, showing a high reactivity in the bimolecular electron-transfer oxidations of m-xylene and anisole. An extremely long-lived excited state was generated upon photoexcitation of a manganese(iv)-oxo complex binding two Sc(OTf)3 molecules, which enabled the hydroxylation of benzene.
Collapse
Affiliation(s)
- Claudio Saracini
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | | | | | | |
Collapse
|
10
|
De Leener G, Over D, Smet C, Cornut D, Porras-Gutierrez AG, López I, Douziech B, Le Poul N, Topić F, Rissanen K, Le Mest Y, Jabin I, Reinaud O. "Two-Story" Calix[6]arene-Based Zinc and Copper Complexes: Structure, Properties, and O 2 Binding. Inorg Chem 2017; 56:10971-10983. [PMID: 28853565 DOI: 10.1021/acs.inorgchem.7b01225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new "two-story" calix[6]arene-based ligand was synthesized, and its coordination chemistry was explored. It presents a tren cap connected to the calixarene small rim through three amido spacers. X-ray diffraction studies of its metal complexes revealed a six-coordinate ZnII complex with all of the carbonyl groups of the amido arms bound and a five-coordinate CuII complex with only one amido arm bound. These dicationic complexes were poorly responsive toward exogenous neutral donors, but the amido arms were readily displaced by small anions or deprotonated with a base to give the corresponding monocationic complexes. Cyclic voltammetry in various solvents showed a reversible wave for the CuII/CuI couple at very negative potentials, denoting an electron-rich environment. The reversibility of the system was attributed to the amido arms, which can coordinate the metal center in both its +II and +I redox states. The reversibility was lost upon anion binding to Cu. Upon exposure of the CuI complex to O2 at low temperature, a green species was obtained with a UV-vis signature typical of an end-on superoxide CuII complex. Such a species was proposed to be responsible for oxygen insertion reactions onto the ligand according to the unusual and selective four-electron oxidative pathway previously described with a "one-story" calix[6]tren ligand.
Collapse
Affiliation(s)
- Gaël De Leener
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB) , Avenue F. D. Roosevelt 50 CP160/06, B-1050 Brussels, Belgium.,Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes , Sorbonne Paris Cité, CNRS UMR 8601, 45 rue des Saints Pères, 75006 Paris, France
| | - Diana Over
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes , Sorbonne Paris Cité, CNRS UMR 8601, 45 rue des Saints Pères, 75006 Paris, France
| | - Coryse Smet
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB) , Avenue F. D. Roosevelt 50 CP160/06, B-1050 Brussels, Belgium
| | - Damien Cornut
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB) , Avenue F. D. Roosevelt 50 CP160/06, B-1050 Brussels, Belgium
| | | | - Isidoro López
- UMR CNRS 6521, Université de Bretagne Occidentale , 6 Avenue Le Gorgeu, CS 93837, 29238 Brest, France
| | - Bénédicte Douziech
- UMR CNRS 6521, Université de Bretagne Occidentale , 6 Avenue Le Gorgeu, CS 93837, 29238 Brest, France
| | - Nicolas Le Poul
- UMR CNRS 6521, Université de Bretagne Occidentale , 6 Avenue Le Gorgeu, CS 93837, 29238 Brest, France
| | - Filip Topić
- Department of Chemistry, University of Jyväskylä , Nanoscience Center, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Kari Rissanen
- Department of Chemistry, University of Jyväskylä , Nanoscience Center, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Yves Le Mest
- UMR CNRS 6521, Université de Bretagne Occidentale , 6 Avenue Le Gorgeu, CS 93837, 29238 Brest, France
| | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB) , Avenue F. D. Roosevelt 50 CP160/06, B-1050 Brussels, Belgium
| | - Olivia Reinaud
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes , Sorbonne Paris Cité, CNRS UMR 8601, 45 rue des Saints Pères, 75006 Paris, France
| |
Collapse
|
11
|
Quist DA, Diaz DE, Liu JJ, Karlin KD. Activation of dioxygen by copper metalloproteins and insights from model complexes. J Biol Inorg Chem 2017; 22:253-288. [PMID: 27921179 PMCID: PMC5600896 DOI: 10.1007/s00775-016-1415-2] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/11/2016] [Indexed: 02/08/2023]
Abstract
Nature uses dioxygen as a key oxidant in the transformation of biomolecules. Among the enzymes that are utilized for these reactions are copper-containing metalloenzymes, which are responsible for important biological functions such as the regulation of neurotransmitters, dioxygen transport, and cellular respiration. Enzymatic and model system studies work in tandem in order to gain an understanding of the fundamental reductive activation of dioxygen by copper complexes. This review covers the most recent advancements in the structures, spectroscopy, and reaction mechanisms for dioxygen-activating copper proteins and relevant synthetic models thereof. An emphasis has also been placed on cofactor biogenesis, a fundamentally important process whereby biomolecules are post-translationally modified by the pro-enzyme active site to generate cofactors which are essential for the catalytic enzymatic reaction. Significant questions remaining in copper-ion-mediated O2-activation in copper proteins are addressed.
Collapse
Affiliation(s)
- David A Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Daniel E Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jeffrey J Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kenneth D Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
12
|
Hong S, Lee YM, Ray K, Nam W. Dioxygen activation chemistry by synthetic mononuclear nonheme iron, copper and chromium complexes. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.07.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
13
|
Elwell CE, Gagnon NL, Neisen BD, Dhar D, Spaeth AD, Yee GM, Tolman WB. Copper-Oxygen Complexes Revisited: Structures, Spectroscopy, and Reactivity. Chem Rev 2017; 117:2059-2107. [PMID: 28103018 PMCID: PMC5963733 DOI: 10.1021/acs.chemrev.6b00636] [Citation(s) in RCA: 465] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A longstanding research goal has been to understand the nature and role of copper-oxygen intermediates within copper-containing enzymes and abiological catalysts. Synthetic chemistry has played a pivotal role in highlighting the viability of proposed intermediates and expanding the library of known copper-oxygen cores. In addition to the number of new complexes that have been synthesized since the previous reviews on this topic in this journal (Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Chem. Rev. 2004, 104, 1013-1046 and Lewis, E. A.; Tolman, W. B. Chem. Rev. 2004, 104, 1047-1076), the field has seen significant expansion in the (1) range of cores synthesized and characterized, (2) amount of mechanistic work performed, particularly in the area of organic substrate oxidation, and (3) use of computational methods for both the corroboration and prediction of proposed intermediates. The scope of this review has been limited to well-characterized examples of copper-oxygen species but seeks to provide a thorough picture of the spectroscopic characteristics and reactivity trends of the copper-oxygen cores discussed.
Collapse
Affiliation(s)
- Courtney E Elwell
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Nicole L Gagnon
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Benjamin D Neisen
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Debanjan Dhar
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Andrew D Spaeth
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Gereon M Yee
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - William B Tolman
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
14
|
Hoffmann A, Stanek J, Dicke B, Peters L, Grimm-Lebsanft B, Wetzel A, Jesser A, Bauer M, Gnida M, Meyer-Klaucke W, Rübhausen M, Herres-Pawlis S. Implications of Guanidine Substitution on Copper Complexes as Entatic-State Models. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600655] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alexander Hoffmann
- Institut für Anorganische Chemie; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Julia Stanek
- Institut für Anorganische Chemie; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Benjamin Dicke
- Universität Hamburg; Institut für Nanostruktur- und Festkörperphysik and Center for Free-Electron Laser Science; Notkestrasse 85 22607 Hamburg Germany
| | - Laurens Peters
- Department Chemie; Ludwig-Maximilians Universität München; Butenandtstraße 5-13 81377 München Germany
| | - Benjamin Grimm-Lebsanft
- Universität Hamburg; Institut für Nanostruktur- und Festkörperphysik and Center for Free-Electron Laser Science; Notkestrasse 85 22607 Hamburg Germany
| | - Alina Wetzel
- Universität Hamburg; Institut für Nanostruktur- und Festkörperphysik and Center for Free-Electron Laser Science; Notkestrasse 85 22607 Hamburg Germany
| | - Anton Jesser
- Department Chemie; Ludwig-Maximilians Universität München; Butenandtstraße 5-13 81377 München Germany
| | - Matthias Bauer
- Universität Paderborn; Department Chemie; Warburger Str. 100 33098 Paderborn Germany
| | - Manuel Gnida
- Universität Paderborn; Department Chemie; Warburger Str. 100 33098 Paderborn Germany
| | - Wolfram Meyer-Klaucke
- Universität Paderborn; Department Chemie; Warburger Str. 100 33098 Paderborn Germany
| | - Michael Rübhausen
- Universität Hamburg; Institut für Nanostruktur- und Festkörperphysik and Center for Free-Electron Laser Science; Notkestrasse 85 22607 Hamburg Germany
| | - Sonja Herres-Pawlis
- Institut für Anorganische Chemie; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
15
|
Maji RC, Das PP, Mishra S, Bhandari A, Maji M, Patra AK. Electron transfer mechanism of catalytic superoxide dismutation via Cu(ii/i) complexes: evidence of cupric-superoxo/-hydroperoxo species. Dalton Trans 2016; 45:11898-910. [PMID: 27383660 DOI: 10.1039/c6dt02220k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To understand the electron transfer mechanisms (outer versus inner sphere) of catalytic superoxide dismutation via a Cu(ii/i) redox couple such as occur in the enzyme copper-zinc superoxide dismutase, the Cu(ii/i) complexes [(L1)2Cu](ClO4)2·CH3CN, (1·CH3CN) and [(L1)2Cu](ClO4), (2) supported by a bis-N2Sthioether ligand, 2-pyridyl-N-(2'-methylthiophenyl)methyleneimine (L1) have been synthesized and structurally characterised. Both 1 and 2 display the same cyclic voltammogram (CV) featuring a quasireversible response at E1/2 = +0.33 V vs. SCE that falls in the SOD potential window of -0.04 V to +0.99 V. These complexes catalytically dismutate superoxide radicals at 298 K in aqueous medium (the IC50 for 1 is 2.15 μM). Electronic absorption spectra (233 K and 298 K), FTIR, ESI mass spectra, CV (233 K and 298 K) and DFT calculations collectively indicate formation of [(L1)2Cu(O2˙(-))](+), [(L1)2Cu(O2(2-))] and [(L1)2Cu(OOH(-))](+) species and help to elucidate the electron transfer mechanism for the SOD function of 1 and 2. Once O2˙(-) binds to Cu(II) (evident at 233 K), the first step of the catalytic cycle (Cu(II) + O2˙(-)→ Cu(I) + O2) does not follow but the second step (Cu(I) + O2˙(-) + 2H(+)→ H2O2 + Cu(II)) does follow. Therefore, the catalytic disproportionation of superoxide radicals via1 and 2 at 298 K indicates that the first and second steps of the catalytic cycle proceed through outer and inner sphere electron transfer mechanisms, respectively. Feasibility of the first step to occur in pure aprotic solvent (where 18-crown-6-ether is used to solubilise KO2) was tested and also supports the same notion of the electron transfer mechanisms as stated above.
Collapse
Affiliation(s)
- Ram Chandra Maji
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India.
| | | | | | | | | | | |
Collapse
|
16
|
Cao R, Saracini C, Ginsbach JW, Kieber-Emmons MT, Siegler MA, Solomon EI, Fukuzumi S, Karlin KD. Peroxo and Superoxo Moieties Bound to Copper Ion: Electron-Transfer Equilibrium with a Small Reorganization Energy. J Am Chem Soc 2016; 138:7055-66. [PMID: 27228314 DOI: 10.1021/jacs.6b02404] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oxygenation of [Cu2(UN-O(-))(DMF)](2+) (1), a structurally characterized dicopper Robin-Day class I mixed-valent Cu(II)Cu(I) complex, with UN-O(-) as a binucleating ligand and where dimethylformamide (DMF) binds to the Cu(II) ion, leads to a superoxo-dicopper(II) species [Cu(II)2(UN-O(-))(O2(•-))](2+) (2). The formation kinetics provide that kon = 9 × 10(-2) M(-1) s(-1) (-80 °C), ΔH(‡) = 31.1 kJ mol(-1) and ΔS(‡) = -99.4 J K(-1) mol(-1) (from -60 to -90 °C data). Complex 2 can be reversibly reduced to the peroxide species [Cu(II)2(UN-O(-))(O2(2-))](+) (3), using varying outer-sphere ferrocene or ferrocenium redox reagents. A Nernstian analysis could be performed by utilizing a monodiphenylamine substituted ferrocenium salt to oxidize 3, leading to an equilibrium mixture with Ket = 5.3 (-80 °C); a standard reduction potential for the superoxo-peroxo pair is calculated to be E° = +130 mV vs SCE. A literature survey shows that this value falls into the range of biologically relevant redox reagents, e.g., cytochrome c and an organic solvent solubilized ascorbate anion. Using mixed-isotope resonance Raman (rRaman) spectroscopic characterization, accompanied by DFT calculations, it is shown that the superoxo complex consists of a mixture of μ-1,2- (2(1,2)) and μ-1,1- (2(1,1)) isomers, which are in rapid equilibrium. The electron transfer process involves only the μ-1,2-superoxo complex [Cu(II)2(UN-O(-))(μ-1,2-O2(•-))](2+) (2(1,2)) and μ-1,2-peroxo structures [Cu(II)2(UN-O(-))(O2(2-))](+) (3) having a small bond reorganization energy of 0.4 eV (λin). A stopped-flow kinetic study results reveal an outer-sphere electron transfer process with a total reorganization energy (λ) of 1.1 eV between 2(1,2) and 3 calculated in the context of Marcus theory.
Collapse
Affiliation(s)
- Rui Cao
- Department of Chemistry, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Claudio Saracini
- Department of Chemistry, Johns Hopkins University , Baltimore, Maryland 21218, United States.,Department of Chemistry and Nano Science, Ewha Womans University , Seoul 120-750, Korea
| | - Jake W Ginsbach
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | | | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Edward I Solomon
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Shunichi Fukuzumi
- Faculty of Science and Engineering, ALCA, SENTAN, Japan Science and Technology Agency (JST), Meijo University , Nagoya, Aichi 468-0073, Japan.,Department of Chemistry and Nano Science, Ewha Womans University , Seoul 120-750, Korea
| | - Kenneth D Karlin
- Department of Chemistry, Johns Hopkins University , Baltimore, Maryland 21218, United States
| |
Collapse
|
17
|
Eberle B, Damjanović M, Enders M, Leingang S, Pfisterer J, Krämer C, Hübner O, Kaifer E, Himmel HJ. Radical Monocationic Guanidino-Functionalized Aromatic Compounds (GFAs) as Bridging Ligands in Dinuclear Metal Acetate Complexes: Synthesis, Electronic Structure, and Magnetic Coupling. Inorg Chem 2016; 55:1683-96. [DOI: 10.1021/acs.inorgchem.5b02614] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Benjamin Eberle
- Ruprecht-Karls-Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Marko Damjanović
- Ruprecht-Karls-Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Markus Enders
- Ruprecht-Karls-Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Simone Leingang
- Ruprecht-Karls-Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Jessica Pfisterer
- Ruprecht-Karls-Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Christoph Krämer
- Ruprecht-Karls-Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Olaf Hübner
- Ruprecht-Karls-Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Elisabeth Kaifer
- Ruprecht-Karls-Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Hans-Jörg Himmel
- Ruprecht-Karls-Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
18
|
Saracini C, Ohkubo K, Suenobu T, Meyer GJ, Karlin KD, Fukuzumi S. Laser-Induced Dynamics of Peroxodicopper(II) Complexes Vary with the Ligand Architecture. One-Photon Two-Electron O2 Ejection and Formation of Mixed-Valent Cu(I)Cu(II)-Superoxide Intermediates. J Am Chem Soc 2015; 137:15865-74. [PMID: 26651492 DOI: 10.1021/jacs.5b10177] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Photoexcitation of end-on trans-μ-1,2-peroxodicopper(II) complex [(tmpa)2Cu(II)2(O2)](2+) (1) (λmax = 525 and 600 nm) and side-on μ-η(2):η(2)-peroxodicopper(II) complexes [(N5)Cu(II)2(O2)](2+) (2) and [(N3)Cu(II)2(O2)](2+) (3) at -80 °C in acetone led to one-photon two-electron peroxide-to-dioxygen oxidation chemistry (O2(2-) + hν → O2 + 2e(-)). Interestingly, light excitation of 2 and 3 (having side-on μ-η(2):η(2)-peroxo ligation) led to release of dioxygen, while photoexcitation of 1 (having an end-on trans-1,2-peroxo geometry) did not, even though spectroscopic studies revealed that both reactions proceeded through previously unknown mixed-valent superoxide species: [Cu(II)(O2(•-))Cu(I)](2+) (λmax = 685-740 nm). For 1, this intermediate underwent further fast intramolecular electron transfer to yield an "O2-caged" dicopper(I) adduct, Cu(I)2-O2, and a barrierless stepwise back electron transfer to regenerate 1 occurred. Femtosecond laser excitation of 2 and 3 under the same conditions still led to [Cu(II)(O2(•-))Cu(I)](2+) intermediates that, instead, underwent O2 release with a quantum yield of 0.14 ± 0.1 for 3. Such remarkable differences in reaction pathways likely result from the well-known ligand-derived stability of 2 and 3 vs 1 indicated by ligand-Cu(II/I) redox potentials; (N5)Cu(I) and (N3)Cu(I) complexes are far more stable than (tmpa)Cu(I) species. The fast Cu(I)2/O2 rebinding kinetics was also measured after photoexcitation of 2 and 3, with the results closely tracking those known for the dicopper proteins hemocyanin and tyrosinase, for which the synthetic dicopper(I) precursors [(N5)Cu(I)2](2+) and [(N3)Cu(I)2](2+) and their dioxygen adducts serve as models. The biological relevance of the present findings is discussed, including the potential impact on the solar water splitting process.
Collapse
Affiliation(s)
- Claudio Saracini
- Department of Chemistry, The Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Kei Ohkubo
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA and SENTAN, Japan Science and Technology Agency (JST) , Suita, Osaka 565-0871, Japan.,Department of Chemistry and Nano Science, Ewha Womans University , Seoul 120-750, Korea
| | - Tomoyoshi Suenobu
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA and SENTAN, Japan Science and Technology Agency (JST) , Suita, Osaka 565-0871, Japan
| | - Gerald J Meyer
- Department of Chemistry, The Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Kenneth D Karlin
- Department of Chemistry, The Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Shunichi Fukuzumi
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA and SENTAN, Japan Science and Technology Agency (JST) , Suita, Osaka 565-0871, Japan.,Department of Chemistry and Nano Science, Ewha Womans University , Seoul 120-750, Korea.,Faculty of Science and Engineering, Meijo University, ALCA and SENTAN, Japan Science and Technology Agency (JST) , Nagoya, Aichi 468-0073, Japan
| |
Collapse
|
19
|
Wild U, Kaifer E, Wadepohl H, Himmel HJ. Combined Oxidation, Deprotonation, and Metal Coordination of a Redox-Active Guanidine Ligand. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500597] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Bindewald E, Lorenz R, Hübner O, Brox D, Herten DP, Kaifer E, Himmel HJ. Tetraguanidino-functionalized phenazine and fluorene dyes: synthesis, optical properties and metal coordination. Dalton Trans 2015; 44:3467-85. [DOI: 10.1039/c4dt03572k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Functionalization of phenazine with guanidino groups leads to new highly fluorescent dyes and ligands, and metal coordination is shown to alter significantly the optical properties.
Collapse
Affiliation(s)
- Elvira Bindewald
- Anorganisch-Chemisches Institut
- Ruprecht-Karls-Universität Heidelberg
- 69120 Heidelberg
- Germany
| | - Roxana Lorenz
- Anorganisch-Chemisches Institut
- Ruprecht-Karls-Universität Heidelberg
- 69120 Heidelberg
- Germany
| | - Olaf Hübner
- Anorganisch-Chemisches Institut
- Ruprecht-Karls-Universität Heidelberg
- 69120 Heidelberg
- Germany
| | - Dominik Brox
- Cellnetworks Cluster and Inst. for Physical Chemistry
- Ruprecht-Karls-Universität Heidelberg
- 69120 Heidelberg
- Germany
| | - Dirk-Peter Herten
- Cellnetworks Cluster and Inst. for Physical Chemistry
- Ruprecht-Karls-Universität Heidelberg
- 69120 Heidelberg
- Germany
| | - Elisabeth Kaifer
- Anorganisch-Chemisches Institut
- Ruprecht-Karls-Universität Heidelberg
- 69120 Heidelberg
- Germany
| | - Hans-Jörg Himmel
- Anorganisch-Chemisches Institut
- Ruprecht-Karls-Universität Heidelberg
- 69120 Heidelberg
- Germany
| |
Collapse
|
21
|
Ziesak A, Wesp T, Hübner O, Kaifer E, Wadepohl H, Himmel HJ. Counter-ligand control of the electronic structure in dinuclear copper-tetrakisguanidine complexes. Dalton Trans 2015; 44:19111-25. [DOI: 10.1039/c5dt03270a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Decision-making counter-ligands: a bridging redox-active ligand in a dinuclear copper complex could be either neutral (complex type [CuII-GFA-CuII]) or dicationic (complex type [CuI-GFA-CuI]), depending on the nature of the counter-ligands X.
Collapse
Affiliation(s)
- Alexandra Ziesak
- Anorganisch-Chemisches Institut
- Ruprecht-Karls Universität Heidelberg
- 69120 Heidelberg
- Germany
| | - Tobias Wesp
- Anorganisch-Chemisches Institut
- Ruprecht-Karls Universität Heidelberg
- 69120 Heidelberg
- Germany
| | - Olaf Hübner
- Anorganisch-Chemisches Institut
- Ruprecht-Karls Universität Heidelberg
- 69120 Heidelberg
- Germany
| | - Elisabeth Kaifer
- Anorganisch-Chemisches Institut
- Ruprecht-Karls Universität Heidelberg
- 69120 Heidelberg
- Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut
- Ruprecht-Karls Universität Heidelberg
- 69120 Heidelberg
- Germany
| | - Hans-Jörg Himmel
- Anorganisch-Chemisches Institut
- Ruprecht-Karls Universität Heidelberg
- 69120 Heidelberg
- Germany
| |
Collapse
|
22
|
Trumm C, Hübner O, Walter P, Leingang S, Wild U, Kaifer E, Eberle B, Himmel HJ. One- versus Two-Electron Oxidation of Complexed Guanidino-Functionalized Aromatic Compounds. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402840] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
23
|
Lebkücher A, Wagner C, Hübner O, Kaifer E, Himmel HJ. Trinuclear Complexes and Coordination Polymers of Redox-Active Guanidino-Functionalized Aromatic (GFA) Compounds with a Triphenylene Core. Inorg Chem 2014; 53:9876-96. [DOI: 10.1021/ic501482u] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Anna Lebkücher
- Anorganisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Christoph Wagner
- Anorganisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Olaf Hübner
- Anorganisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Elisabeth Kaifer
- Anorganisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Hans-Jörg Himmel
- Anorganisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
24
|
Hoffmann A, Grunzke R, Herres-Pawlis S. Insights into the influence of dispersion correction in the theoretical treatment of guanidine-quinoline copper(I) complexes. J Comput Chem 2014; 35:1943-50. [DOI: 10.1002/jcc.23706] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Alexander Hoffmann
- Department of Chemistry; Ludwig-Maximilians-Universität München, Butenandtstr. 5 - 13; 81377 München Germany
| | - Richard Grunzke
- Zentrum für Informationsdienste und Hochleistungsrechnen; Technische Universität Dresden; Zellescher Weg 12-14 01062 Dresden Germany
| | - Sonja Herres-Pawlis
- Department of Chemistry; Ludwig-Maximilians-Universität München, Butenandtstr. 5 - 13; 81377 München Germany
| |
Collapse
|
25
|
Liu LL, Wu Y, Wang Z, Zhu J, Zhao Y. Mechanistic Insight into the Copper-Catalyzed Phosphorylation of Terminal Alkynes: A Combined Theoretical and Experimental Study. J Org Chem 2014; 79:6816-22. [DOI: 10.1021/jo5007174] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Liu Leo Liu
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0343, United States
| | - Yile Wu
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Zeshu Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yufen Zhao
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
26
|
Tsipis AC. DFT/TDDFT insights into the chemistry, biochemistry and photophysics of copper coordination compounds. RSC Adv 2014. [DOI: 10.1039/c4ra04921g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Highlighting the recent progress in DFT/TDDFT application to coordination chemistry of copper.
Collapse
Affiliation(s)
- Athanassios C. Tsipis
- Laboratory of Inorganic and General Chemistry
- Department of Chemistry
- University of Ioannina
- 451 10 Ioannina
- Greece
| |
Collapse
|