1
|
Zhang X, Hu P, Duan M, Chingin K, Balabin R, Zhang X, Chen H. Ambient catalyst-free oxidation reactions of aromatic amines using water radical cations. Chem Sci 2024:d4sc04519j. [PMID: 39290584 PMCID: PMC11403581 DOI: 10.1039/d4sc04519j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Water radical cations play a pivotal role in various scientific and industrial fields due to their unique reactivity and capacity to drive complex chemical transformations. Here we explored the formation of quaternary ammonium cations through the direct oxidation reaction of aromatic amines, facilitated by water radical cations within water microdroplets. This process was monitored via in situ mass spectrometry and occurs under ambient conditions, negating the need for traditional chemical catalysts or oxidants and achieving an impressive yield of approximately 80%. Additionally, we employed a multi-channel spray system and enhanced both the reactant concentration and flow rate, thereby enabling gram-scale synthesis. These findings not only demonstrate the effectiveness and eco-friendliness of microdroplet chemistry but also provide a new understanding of heterogeneous ˙OH generation channels, thereby boosting the synthetic efficiency and sustainability of chemical processes.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology Nanchang 330013 P. R. China
| | - Pinghua Hu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology Nanchang 330013 P. R. China
| | - Minmin Duan
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology Nanchang 330013 P. R. China
| | - Konstantin Chingin
- School of Pharmacy, Jiangxi University of Chinese Medicine Nanchang 330004 P. R. China
| | - Roman Balabin
- School of Pharmacy, Jiangxi University of Chinese Medicine Nanchang 330004 P. R. China
| | - Xinglei Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology Nanchang 330013 P. R. China
| | - Huanwen Chen
- School of Pharmacy, Jiangxi University of Chinese Medicine Nanchang 330004 P. R. China
| |
Collapse
|
2
|
Akhssas F, Lin R, Trojan M, Poyac L, Amiri N, Ertel T, Fournier S, Lerayer E, Cattey H, Clément S, Richeter S, Devillers CH. Azolium-Porphyrin Electrosynthesis. CHEMSUSCHEM 2024:e202401439. [PMID: 39172896 DOI: 10.1002/cssc.202401439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
Electrochemical oxidation of Zn(II) 2,7,12,17-tetra-tert-butylporphyrin in the presence of a series of azole derivatives (1-methylimidazole, 1-vinyl-1H-imidazole, 2-(1H-imidazol-1-yl)pyridine, 1-methylbenzimidazole, 1-methyl-1H-1,2,4-triazole, and benzothiazole) affords the corresponding meso-substituted azolium-porphyrins in very mild conditions and good yields. It was found that these nucleophiles were strongly ligated to the zinc(II) azolium-porphyrin complexes. Thus a demetalation/remetalation procedure was performed to recover the non-azole-coordinated zinc(II) complexes. X-ray crystallographic structures of three azolium-porphyrins were solved. Cyclic voltammetry analyses provided insight into the electron-withdrawing effect of the azolium substituents.
Collapse
Affiliation(s)
- Fatima Akhssas
- Institut de Chimie Moléculaire de l'Université de Bourgogne UMR6302, CNRS, Univ. Bourgogne, 9 avenue Alain Savary, 21000, Dijon, France
| | - Rongning Lin
- Institut de Chimie Moléculaire de l'Université de Bourgogne UMR6302, CNRS, Univ. Bourgogne, 9 avenue Alain Savary, 21000, Dijon, France
| | - Michal Trojan
- Institut de Chimie Moléculaire de l'Université de Bourgogne UMR6302, CNRS, Univ. Bourgogne, 9 avenue Alain Savary, 21000, Dijon, France
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Ludivine Poyac
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34293, Montpellier, France
| | - Nesrine Amiri
- Institut de Chimie Moléculaire de l'Université de Bourgogne UMR6302, CNRS, Univ. Bourgogne, 9 avenue Alain Savary, 21000, Dijon, France
| | - Thibault Ertel
- Institut de Chimie Moléculaire de l'Université de Bourgogne UMR6302, CNRS, Univ. Bourgogne, 9 avenue Alain Savary, 21000, Dijon, France
| | - Sophie Fournier
- Institut de Chimie Moléculaire de l'Université de Bourgogne UMR6302, CNRS, Univ. Bourgogne, 9 avenue Alain Savary, 21000, Dijon, France
| | - Emmanuel Lerayer
- Institut de Chimie Moléculaire de l'Université de Bourgogne UMR6302, CNRS, Univ. Bourgogne, 9 avenue Alain Savary, 21000, Dijon, France
| | - Hélène Cattey
- Institut de Chimie Moléculaire de l'Université de Bourgogne UMR6302, CNRS, Univ. Bourgogne, 9 avenue Alain Savary, 21000, Dijon, France
| | | | | | - Charles H Devillers
- Institut de Chimie Moléculaire de l'Université de Bourgogne UMR6302, CNRS, Univ. Bourgogne, 9 avenue Alain Savary, 21000, Dijon, France
| |
Collapse
|
3
|
Li Z, He Z, Huang Q, Kan M, Li H. Tuning Regioselectivity in the [3 + 2] Cycloaddition of Alkynyl Sulfonium Salts with Binucleophilic N-Aryl Amidines. Org Lett 2024. [PMID: 38788170 DOI: 10.1021/acs.orglett.4c01534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
A tunable reaction manifold of alkynyl sulfonium salts with binucleophilic N-aryl amidines in the absence of any transition metal catalyst is first reported. This methodology involves sequential addition/cyclization that is perfectly tuned by stepwise addition of K2CO3, affording a plethora of valuable 1,2,4- and 1,2,5-trisubstituted imidazoles in good yields with high regioselectivity. Importantly, trapping and isolation of the reactive intermediate unveiled the reaction mechanism of β-attack on the triple bond in this [3 + 2] cycloaddition reaction.
Collapse
Affiliation(s)
- Zhi Li
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Zhengjun He
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Qiang Huang
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Mei Kan
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Hongji Li
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
4
|
Alvarez EM, Stewart G, Ullah M, Lalisse R, Gutierrez O, Malapit CA. Site-Selective Electrochemical Arene C-H Amination. J Am Chem Soc 2024; 146:3591-3597. [PMID: 38295054 PMCID: PMC11071122 DOI: 10.1021/jacs.3c11506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Here we present the discovery and development of a highly selective aromatic C-H amination reaction. This electrochemical strategy involves a cathodic reduction process that generates highly electrophilic dicationic N-centered radicals that can efficiently engage in aromatic C-H functionalization and channel the regioselectivity of the aromatic substitution. The nitrogen-radical cation-pi interaction with arenes used throughout nature leads to a charge transfer mechanism, with subsequent aromatic C-N bond formation. This electrochemical process generates aryl DABCOnium salts in excellent yields and regioselectivities (single regioisomer in most cases). The scope of the reaction on arene is broad where various functionalities such as aryl halides (bromides, chlorides, fluorides), carbonyls (ketones, esters, imides), sulfonamides, and heteroarenes (pyridines, bipyridines, and terpyridines) are well tolerated. Moreover, we disclose the synthetic utility of the aryl DABCOnium salt adducts leading to the direct access of diverse aryl piperazines and the chemoselective cleavage of the exocyclic aryl C(sp2)-N bond over electrophilic C(sp3)-N+ bonds via photoredox catalysis to afford synthetically useful aryl radicals that can engage in aryl C-C and C-P bond formation.
Collapse
Affiliation(s)
- Eva Maria Alvarez
- Department of Chemistry, Northwestern University, Technological Institute, Evanston, Illinois 60208, United States
| | - Griffin Stewart
- Department of Chemistry, Northwestern University, Technological Institute, Evanston, Illinois 60208, United States
| | - Mohammed Ullah
- Department of Chemistry, Northwestern University, Technological Institute, Evanston, Illinois 60208, United States
| | - Remy Lalisse
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Christian A Malapit
- Department of Chemistry, Northwestern University, Technological Institute, Evanston, Illinois 60208, United States
- Center for Catalysis and Surface Science, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Rao WH, Li YG, Jiang LL, Li Q, Zou GD, Cao X. Metal-Free Selective Ortho-C-H Amidation of Hypervalent(III) Iodobezenes with N-Methoxy Amides under Mild Conditions. J Org Chem 2023; 88:13825-13837. [PMID: 37737590 DOI: 10.1021/acs.joc.3c01472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
A metal-free selective ortho-C-H amidation of aryl iodines(III) with the use of N-methoxy amides as aminating reagents under mild conditions is described here. In the protocol, excellent chemoselectivity and high regioselectivity were obtained. Notably, the iodine substituent rendered the amidation product suitable to be used for further elaboration.
Collapse
Affiliation(s)
- Wei-Hao Rao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| | - Ying-Ge Li
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Li-Li Jiang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Qi Li
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Guo-Dong Zou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Xinhua Cao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
6
|
Li A, Li X, Ma F, Gao H, Li H. Cyclization of Azobenzenes Via Electrochemical Oxidation Induced Benzylic Radical Generation. Org Lett 2023; 25:5978-5983. [PMID: 37548915 DOI: 10.1021/acs.orglett.3c02099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
An electrochemical oxidation-induced cyclization of ortho-alkyl-substituted azobenzenes has been developed. The direct electrochemical benzylic C-H functionalization with respect to azobenzenes could proceed in the absence of any catalyst or external chemical oxidant to afford a number of 2H-indazole derivatives in moderate to good yields. This protocol enables the reuse of the byproduct to the same 2H-indazoles, thus significantly reducing pollution discharge in synthetic chemistry.
Collapse
Affiliation(s)
- Anni Li
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui, P. R. China
| | - Xiangyi Li
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui, P. R. China
| | - Fang Ma
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui, P. R. China
| | - Hui Gao
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui, P. R. China
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hongji Li
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui, P. R. China
| |
Collapse
|
7
|
Zhang X, Xu S, Yang X, Pang W. KI-Catalyzed Allylic Sulfonation of α-Methylstyrene Derivatives with Sulfonylhydrazides via Electrochemistry. J Org Chem 2023. [PMID: 37167344 DOI: 10.1021/acs.joc.3c00147] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A direct allylic C-H bond activation of α-methylstyrene derivatives with sulfonylhydrazines for the synthesis of allylic sulfones has been developed under exogenous oxidant- and metal-catalyst-free electrochemical conditions. Using the transfer of electrons in the current instead of a stoichiometric chemical oxidant, a series of valuable allylic sulfones were accessed with a wide substrate scope and excellent regioselectivity via radical coupling.
Collapse
Affiliation(s)
- Xinghua Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Shuang Xu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiang Yang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wan Pang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
8
|
Kumar R, Khanna Y, Kaushik P, Kamal R, Khokhar S. Recent Advancements on Metal-Free Vicinal Diamination of Alkenes: Synthetic Strategies and Mechanistic Insights. Chem Asian J 2023; 18:e202300017. [PMID: 36869415 DOI: 10.1002/asia.202300017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/05/2023]
Abstract
The oxidative aminative vicinal difunctionalization of alkenes or related chemical feedstocks has emerged as sustainable and multipurpose strategies that can efficiently construct two -N bonds, and simultaneously prepare the synthetically fascinating molecules and catalysis in organic synthesis that typically required multi-step reactions. This review summarized the impressive breakthroughs on synthetic methodologies (2015-2022) documented especially over inter/intra-molecular vicinal diamination of alkenes with electron-rich or deficient diverse nitrogen sources. These unprecedented strategies predominantly involved iodine-based reagents/catalysts, which resent the interest of organic chemists due to their impressive role as flexible, non-toxic, and environmentally friendly reagents, resulting in a wide variety of synthetically useful organic molecules. Moreover, the information collected also describes the significant role of catalyst, terminal oxidant, substrate scope, synthetic applications, and their unsuccessful results to highlight the limitations. Special emphasis has been given to proposed mechanistic pathways to determine the key factors governing the issues of regioselectivity, enantioselectivity, and diastereoselectivity ratios.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana (INDIA
| | - Yugam Khanna
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana (INDIA
| | - Parul Kaushik
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana (INDIA
| | - Raj Kamal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, INDIA
| | - Shiwani Khokhar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, INDIA
| |
Collapse
|
9
|
Lodh J, Paul S, Sun H, Song L, Schöfberger W, Roy S. Electrochemical organic reactions: A tutorial review. Front Chem 2023; 10:956502. [PMID: 36704620 PMCID: PMC9871948 DOI: 10.3389/fchem.2022.956502] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023] Open
Abstract
Although the core of electrochemistry involves simple oxidation and reduction reactions, it can be complicated in real electrochemical organic reactions. The principles used in electrochemical reactions have been derived using physical organic chemistry, which drives other organic/inorganic reactions. This review mainly comprises two themes: the first discusses the factors that help optimize an electrochemical reaction, including electrodes, supporting electrolytes, and electrochemical cell design, and the second outlines studies conducted in the field over a period of 10 years. Electrochemical reactions can be used as a versatile tool for synthetically important reactions by modifying the constant electrolysis current.
Collapse
Affiliation(s)
- Joyeeta Lodh
- Eco-Friendly Applied Materials Laboratory (EFAML), Materials Science Centre, Department of Chemical Sciences, Mohanpur Campus, Indian Institute of Science, Education and Research, Kolkata, West Bengal, India
| | - Shounik Paul
- Eco-Friendly Applied Materials Laboratory (EFAML), Materials Science Centre, Department of Chemical Sciences, Mohanpur Campus, Indian Institute of Science, Education and Research, Kolkata, West Bengal, India
| | - He Sun
- Institute of Organic Chemistry, Laboratory for Sustainable Chemistry and Catalysis (LSusCat), Johannes Kepler University (JKU), Linz, Austria
| | - Luyang Song
- Institute of Organic Chemistry, Laboratory for Sustainable Chemistry and Catalysis (LSusCat), Johannes Kepler University (JKU), Linz, Austria
| | - Wolfgang Schöfberger
- Institute of Organic Chemistry, Laboratory for Sustainable Chemistry and Catalysis (LSusCat), Johannes Kepler University (JKU), Linz, Austria,*Correspondence: Wolfgang Schöfberger, ; Soumyajit Roy,
| | - Soumyajit Roy
- Eco-Friendly Applied Materials Laboratory (EFAML), Materials Science Centre, Department of Chemical Sciences, Mohanpur Campus, Indian Institute of Science, Education and Research, Kolkata, West Bengal, India,*Correspondence: Wolfgang Schöfberger, ; Soumyajit Roy,
| |
Collapse
|
10
|
Nagare YK, Shah IA, Yadav J, Pawar AP, Rangan K, Choudhary R, Iype E, Kumar I. Electrochemical Oxidative Addition of Nucleophiles on 2-Arylindoles: Synthesis of C2-Heteroquaternary Indolin-3-ones. J Org Chem 2022; 87:15771-15782. [DOI: 10.1021/acs.joc.2c01734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yadav Kacharu Nagare
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Imtiyaz Ahmad Shah
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Jyothi Yadav
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Amol Prakash Pawar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science, Hyderabad 500078, Telangana, India
| | | | - Eldhose Iype
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Indresh Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| |
Collapse
|
11
|
Stangier M, Scheremetjew A, Ackermann L. Chemo- and Site-Selective Electro-Oxidative Alkane Fluorination by C(sp 3 )-H Cleavage. Chemistry 2022; 28:e202201654. [PMID: 35844078 PMCID: PMC9804291 DOI: 10.1002/chem.202201654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Indexed: 01/05/2023]
Abstract
Electrochemical fluorinations of C(sp3 )-H bonds with a nucleophilic fluoride source have been accomplished in a chemo- and site-selective fashion, avoiding the use of electrophilic F+ sources and stoichiometric oxidants. The introduced metal-free strategy exhibits high functional group tolerance, setting the stage for late-stage fluorinations of biorelevant motifs. The synthetic utility of the C(sp3 )-H fluorination was reflected by subsequent one-pot arylation of the generated benzylic fluorides.
Collapse
Affiliation(s)
- Maximilian Stangier
- Institut für Organische und Biomolekulare Chemie Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Alexej Scheremetjew
- Institut für Organische und Biomolekulare Chemie Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| |
Collapse
|
12
|
Photoelectrochemical asymmetric catalysis enables site- and enantioselective cyanation of benzylic C–H bonds. Nat Catal 2022. [DOI: 10.1038/s41929-022-00855-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Zhang D, Yuan X, Gong C, Zhang X. High Electric Field on Water Microdroplets Catalyzes Spontaneous and Ultrafast Oxidative C-H/N-H Cross-Coupling. J Am Chem Soc 2022; 144:16184-16190. [PMID: 35960958 DOI: 10.1021/jacs.2c07385] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxidative C-H/N-H cross-coupling has emerged as an atom-economical method for the construction of C-N bonds. Conventional oxidative C-H/N-H coupling requires at least one of the following: high temperatures, strong oxidizers, transition metal catalysts, organic solvents, light, and electrochemical cells. In this study, by merely spraying the water solutions of the substrates into microdroplets at room temperature, we show a series of oxidative C-H/N-H coupling products that are strikingly produced in a spontaneous and ultrafast manner. The reactions are accelerated by six orders of magnitude compared to the same reactions in the bulk. It has been previously proposed by fluorescence microscopy and theory that the spontaneously generated electric field at the microdroplets peripheries can be in the ∼109 V/m range. Based on mass spectrometric analysis of key radical intermediates, we opine that the ultrahigh electric field catalytically oxidizes the substrates by removing an electron, which further promotes C/N coupling. Taken together, we anticipate that microdroplet chemistry will be an avenue rich in green opportunities of constructing C-heteroatom bonds.
Collapse
Affiliation(s)
- Dongmei Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Shenzhen Research Institute, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Xu Yuan
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Shenzhen Research Institute, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Chu Gong
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Shenzhen Research Institute, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Xinxing Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Shenzhen Research Institute, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.,Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
14
|
Motsch BJ, Wengryniuk SE. Site-Selective Synthesis of N-Benzyl 2,4,6-Collidinium Salts by Electrooxidative C-H Functionalization. Org Lett 2022; 24:6060-6065. [PMID: 35938890 DOI: 10.1021/acs.orglett.2c02376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
N-alkylpyridinium salts are versatile pseudohalides for SET-mediated cross couplings. However, the common 2,4,6-triphenylpyridinium salt is plagued by poor atom economy and high cost of synthesis. Thus, there is a growing need for more practical scaffolds and innovative strategies for pyridinium salt formation. Herein, we report the synthesis of benzylic 2,4,6-collidinium salts via electrooxidative C-H functionalization. This method provides a complementary approach to tradtional strategies relying on substitution and condensation of prefunctionalized substrates.
Collapse
Affiliation(s)
- Bill J Motsch
- Temple University, Department of Chemistry, 1901 North 13th Street, Philadephia, Pennsylvania 19122, United States
| | - Sarah E Wengryniuk
- Temple University, Department of Chemistry, 1901 North 13th Street, Philadephia, Pennsylvania 19122, United States
| |
Collapse
|
15
|
Ravindar L, Hasbullah SA, Hassan NI, Qin HL. Cross‐Coupling of C‐H and N‐H Bonds: a Hydrogen Evolution Strategy for the Construction of C‐N Bonds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lekkala Ravindar
- Universiti Kebangsaan Malaysia Fakulti Teknologi dan Sains Maklumat Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Siti Aishah Hasbullah
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Nurul Izzaty Hassan
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Hua-Li Qin
- Wuhan University of Technology School of Chemistry 430070 Hubei CHINA
| |
Collapse
|
16
|
Ritter-type amination of C(sp 3)-H bonds enabled by electrochemistry with SO 42. Nat Commun 2022; 13:4138. [PMID: 35842447 PMCID: PMC9288499 DOI: 10.1038/s41467-022-31813-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
By merging electricity with sulfate, the Ritter-type amination of C(sp3)-H bonds is developed in an undivided cell under room temperature. This method features broad substrate generality (71 examples, up to 93% yields), high functional-group compatibility, facile scalability, excellent site-selectivity and mild conditions. Common alkanes and electron-deficient alkylbenzenes are viable substrates. It also provides a straightforward protocol for incorporating C-deuterated acetylamino group into C(sp3)-H sites. Application in the synthesis or modification of pharmaceuticals or their derivatives and gram-scale synthesis demonstrate the practicability of this method. Mechanistic experiments show that sulfate radical anion, formed by electrolysis of sulfate, served as hydrogen atom transfer agent to provide alkyl radical intermediate. This method paves a convenient and flexible pathway for realizing various synthetically useful transformations of C(sp3)-H bonds mediated by sulfate radical anion generated via electrochemistry. The amination of C(sp3)–H bonds is an appealing and challenging task in organic synthesis. Here, by using an electrogenerated sulfate radical an HAT agent, the authors report a practical Ritter-type amination of C(sp3)–H bonds.
Collapse
|
17
|
Basantcev AV, Danilin AA, Golovanov AA, Purygin PP. Synthesis of 1-(4-Alkoxybenzyl)-1H-(benz)imidazoles. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222070167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Danilin AA, Guzman VL, Basantsev AV, Golovanov AA, Purygin PP. Synthesis of 1-(1-Adamantyl)-2-[4-(1H-imidazol-1-ylmethyl)phenoxy]ethanone Derivatives. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022050074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Yount J, Piercey DG. Electrochemical Synthesis of High-Nitrogen Materials and Energetic Materials. Chem Rev 2022; 122:8809-8840. [PMID: 35290022 DOI: 10.1021/acs.chemrev.1c00935] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrochemical synthesis is a valuable method for the preparation of molecules. It is innately eco-friendly, as potentially hazardous oxidation and reduction agents are replaced with electrochemical potentials. Electrochemistry is commonly applied globally in the synthesis of numerous chemicals, but the energetic materials field lags in this regard. In this review, we endeavor to cover the entire history of synthetic electrochemistry for the preparation of energetic materials and detail the electrochemical transformations of high-nitrogen materials that are relevant for the preparation of new energetic molecules. We hope this review serves as a starting point to inform those involved in synthetic energetic materials chemistry, and those interested in other applications of high-nitrogen molecules, about the environmentally friendly electrochemical methods available for such compounds.
Collapse
Affiliation(s)
- Joseph Yount
- Department of Materials Engineering, Purdue University, 205 Gates Road, West Lafayette, Indiana 47906, United States.,Purdue Energetics Research Center, Purdue University, 205 Gates Road, West Lafayette, Indiana 47906, United States
| | - Davin G Piercey
- Department of Materials Engineering, Purdue University, 205 Gates Road, West Lafayette, Indiana 47906, United States.,Purdue Energetics Research Center, Purdue University, 205 Gates Road, West Lafayette, Indiana 47906, United States.,Department of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47906, United States
| |
Collapse
|
20
|
Tang S, Guillot R, Grimaud L, Vitale MR, Vincent G. Electrochemical Benzylic C-H Functionalization with Isocyanides. Org Lett 2022; 24:2125-2130. [PMID: 35286094 DOI: 10.1021/acs.orglett.2c00364] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We report the challenging direct carbamoylation or cyanation of benzylic C(sp3)-H bonds with an isocyanide via an electrochemical process giving rise to structures that are encountered in several biologically relevant compounds and drugs. This transformation proceeds under mild conditions without the need for any external oxidant and avoids the necessity to start from a prefunctionalized benzylic substrate or the deployment of the cation pool method. The anodic oxidation of the benzylic position and the subsequent addition of the isocyanide lead to the formation of a C-C bond and to a nitrilium cation that hydrolyzes to yield α-aryl acetamide derivatives, whereas the elimination of a t-butyl cation delivers α-aryl acetonitrile derivatives.
Collapse
Affiliation(s)
- Shanyu Tang
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Laurence Grimaud
- Laboratoire des Biomolécules (LBM), Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Maxime R Vitale
- Laboratoire des Biomolécules (LBM), Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Guillaume Vincent
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 91405 Orsay, France
| |
Collapse
|
21
|
Wang Q, Yao X, Xu XJ, Zhang S, Ren L. Electrochemical [4 + 1] Tandem sp 3(C-H) Double Amination for the Direct Synthesis of 3-Acyl-Functionalized Imidazo[1,5- a]pyridines. ACS OMEGA 2022; 7:4305-4310. [PMID: 35155923 PMCID: PMC8829863 DOI: 10.1021/acsomega.1c06029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
3-Acyl imidazo[1,5-a]pyridines, featured pharmaceutical moieties that were prepared by a three-step reaction conventionally, could be obtained in one step by an electrochemical tandem sp3 (C-H) double amination of acetophenones with pyridine ethylamines using ammonium iodide as a redox mediator.
Collapse
Affiliation(s)
- Qiang Wang
- Research
Center For Biomedical And Health Science, Anhui Science and Technology University, Fengyang 233100, P. R. China
| | - Xia Yao
- Research
Center For Biomedical And Health Science, Anhui Science and Technology University, Fengyang 233100, P. R. China
| | - Xian-jing Xu
- Research
Center For Biomedical And Health Science, Anhui Science and Technology University, Fengyang 233100, P. R. China
| | - Shuai Zhang
- Nanjing
Harris Bio-Pharmaceutical Technology Co., Ltd., Nanjing, Jiangsu 210000, China
| | - Lei Ren
- Department
of Material and Chemical Engineering, Bengbu
University, Bengbu, Anhui 233030, P. R. China
| |
Collapse
|
22
|
Buglioni L, Raymenants F, Slattery A, Zondag SDA, Noël T. Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chem Rev 2022; 122:2752-2906. [PMID: 34375082 PMCID: PMC8796205 DOI: 10.1021/acs.chemrev.1c00332] [Citation(s) in RCA: 245] [Impact Index Per Article: 122.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 02/08/2023]
Abstract
Photoinduced chemical transformations have received in recent years a tremendous amount of attention, providing a plethora of opportunities to synthetic organic chemists. However, performing a photochemical transformation can be quite a challenge because of various issues related to the delivery of photons. These challenges have barred the widespread adoption of photochemical steps in the chemical industry. However, in the past decade, several technological innovations have led to more reproducible, selective, and scalable photoinduced reactions. Herein, we provide a comprehensive overview of these exciting technological advances, including flow chemistry, high-throughput experimentation, reactor design and scale-up, and the combination of photo- and electro-chemistry.
Collapse
Affiliation(s)
- Laura Buglioni
- Micro
Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14—Helix, 5600 MB, Eindhoven, The Netherlands
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Fabian Raymenants
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Aidan Slattery
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D. A. Zondag
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Tay NES, Lehnherr D, Rovis T. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem Rev 2022; 122:2487-2649. [PMID: 34751568 PMCID: PMC10021920 DOI: 10.1021/acs.chemrev.1c00384] [Citation(s) in RCA: 143] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox processes are at the heart of synthetic methods that rely on either electrochemistry or photoredox catalysis, but how do electrochemistry and photoredox catalysis compare? Both approaches provide access to high energy intermediates (e.g., radicals) that enable bond formations not constrained by the rules of ionic or 2 electron (e) mechanisms. Instead, they enable 1e mechanisms capable of bypassing electronic or steric limitations and protecting group requirements, thus enabling synthetic chemists to disconnect molecules in new and different ways. However, while providing access to similar intermediates, electrochemistry and photoredox catalysis differ in several physical chemistry principles. Understanding those differences can be key to designing new transformations and forging new bond disconnections. This review aims to highlight these differences and similarities between electrochemistry and photoredox catalysis by comparing their underlying physical chemistry principles and describing their impact on electrochemical and photochemical methods.
Collapse
Affiliation(s)
- Nicholas E. S. Tay
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| | - Dan Lehnherr
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| |
Collapse
|
24
|
Bugaenko DI, Karchava AV, Yurovskaya MA. Transition metal-free cross-coupling reactions with the formation of carbon-heteroatom bonds. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Lu L, Shi R, Lei A. Single-electron transfer oxidation-induced C–H bond functionalization via photo-/electrochemistry. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2021.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Buglioni L, Beslać M, Noël T. Dehydrogenative Azolation of Arenes in a Microflow Electrochemical Reactor. J Org Chem 2021; 86:16195-16203. [PMID: 34455793 PMCID: PMC8609577 DOI: 10.1021/acs.joc.1c01409] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The electrochemical
synthesis of aryl azoles was performed for
the first time in a microflow reactor. The reaction relies on the
anodic oxidation of the arene partners making these substrates susceptible
for C–H functionalization with azoles, thus requiring no homogeneous
transition-metal-based catalysts. The synthetic protocol benefits
from the implementation of a microflow setup, leading to shorter residence
times (10 min), compared to previously reported batch systems. Various
azolated compounds (22 examples) are obtained in good to excellent
yields.
Collapse
Affiliation(s)
- Laura Buglioni
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Marko Beslać
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Timothy Noël
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park, 904 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
27
|
Nagare YK, Shah IA, Yadav J, Pawar AP, Choudhary R, Chauhan P, Kumar I. Electrochemical Oxidative Coupling Between Benzylic C(sp 3)-H and N-H of Secondary Amines: Rapid Synthesis of α-Amino α-Aryl Esters. J Org Chem 2021; 86:9682-9691. [PMID: 34184902 DOI: 10.1021/acs.joc.1c00944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An intermolecular electrochemical coupling between the benzylic C(sp3)-H bond and various secondary amines is reported. The electronic behavior of two electronically rich units viz the α-position of α-aryl acetates and amines was engineered electrochemically, thus facilitating their reactivity for the direct access of α-amino esters. A series of acyclic/cyclic secondary amines and α-aryl acetates were tested to furnish the corresponding α-amino esters with high yields (up to 92%) under mild conditions.
Collapse
Affiliation(s)
- Yadav Kacharu Nagare
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Imtiyaz Ahmad Shah
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Jyothi Yadav
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Amol Prakash Pawar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Rahul Choudhary
- Praveen Laboratories Pvt. Ltd., Surat 394304, Gujarat, India
| | - Pankaj Chauhan
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu 181221, India
| | - Indresh Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| |
Collapse
|
28
|
Wang T, Hoffmann M, Dreuw A, Hasagić E, Hu C, Stein PM, Witzel S, Shi H, Yang Y, Rudolph M, Stuck F, Rominger F, Kerscher M, Comba P, Hashmi ASK. A Metal‐Free Direct Arene C−H Amination. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100236] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Tao Wang
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Marvin Hoffmann
- Interdisciplinary Center for Scientific Computing Heidelberg University Im Neuenheimer Feld 205 A D-69120 Heidelberg Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing Heidelberg University Im Neuenheimer Feld 205 A D-69120 Heidelberg Germany
| | - Edina Hasagić
- Chemistry Department Faculty of Natural Science Sarajevo University Zmaja od Bosne 33-35 71000 Sarajevo Bosnia and Herzegovina
| | - Chao Hu
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Philipp M. Stein
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Sina Witzel
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Hongwei Shi
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Yangyang Yang
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Fabian Stuck
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Marion Kerscher
- Anorganisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Peter Comba
- Anorganisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Chemistry Department Faculty of Science King Abdulaziz University (KAU) Jeddah 21589 Saudi Arabia
| |
Collapse
|
29
|
Schotten C, Bourne RA, Kapur N, Nguyen BN, Willans CE. Electrochemical Generation of
N
‐Heterocyclic Carbenes for Use in Synthesis and Catalysis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100264] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | - Richard A. Bourne
- School of Chemical and Process Engineering University of Leeds Leeds LS2 9JT UK
| | - Nikil Kapur
- School of Mechanical Engineering University of Leeds Leeds LS2 9JT UK
| | - Bao N. Nguyen
- School of Chemistry University of Leeds Leeds LS2 9JT UK
| | | |
Collapse
|
30
|
Guo J, Zhang L, Du X, Zhang L, Cai Y, Xia Q. Metal‐Free Direct Oxidative C−N Bond Coupling of Quinoxalin‐2(1
H
)‐ones with Azoles under Mild Conditions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100269] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jingwen Guo
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou 325035 P. R. China
| | - Lina Zhang
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou 325035 P. R. China
| | - Xinyue Du
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou 325035 P. R. China
| | - Liting Zhang
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou 325035 P. R. China
| | - Yuepiao Cai
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou 325035 P. R. China
| | - Qinqin Xia
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou 325035 P. R. China
| |
Collapse
|
31
|
Liu Z, Guo S, Wang P, Yan Z, Mu T. Oxidative annulations via double CH bond cleavages: Approach to quinoline derivatives. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhenghui Liu
- School of Pharmaceutical and Materials Engineering Taizhou University Taizhou China
| | - Shien Guo
- State‐Province Joint Engineering Laboratory of Zeolite Membrane Materials Institute of Advanced Materials (IAM) Nanchang China
| | - Peng Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences Beijing China
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Henan Normal University Xinxiang China
| | - Zhenzhong Yan
- School of Pharmaceutical and Materials Engineering Taizhou University Taizhou China
| | - Tiancheng Mu
- Department of Chemistry Renmin University of China Beijing China
| |
Collapse
|
32
|
|
33
|
Meng H, Sun K, Xu Z, Tian L, Wang Y. P(III)‐Assisted Electrochemical Access to Ureas via in situ Generation of Isocyanates from Hydroxamic Acids. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Haiwen Meng
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| | - Kunhui Sun
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| | - Zhimin Xu
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| | - Lifang Tian
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| | - Yahui Wang
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| |
Collapse
|
34
|
Oliva M, Coppola GA, Van der Eycken EV, Sharma UK. Photochemical and Electrochemical Strategies towards Benzylic C−H Functionalization: A Recent Update. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001581] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Monica Oliva
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Guglielmo A. Coppola
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
- Peoples' Friendship University of Russia (RUDN University) 6 Miklukho-Maklaya street RU-117198 Moscow Russia
| | - Upendra K. Sharma
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| |
Collapse
|
35
|
Shi TT, Wang SZ, Yang Z, Wang Y, Liu C, He W, Fang Z, Guo K. Enzymatic electrochemical continuous flow cascade synthesis of substituted benzimidazoles. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00058f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An industrially practical method for the synthesis of substituted benzimidazoles was developed from an enzymatic electrochemical cascade method.
Collapse
Affiliation(s)
- Ting-Ting Shi
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
- Department of Chemistry
| | - Shu-Zhan Wang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Zhao Yang
- School of Engineering
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Yilin Wang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| |
Collapse
|
36
|
Wesenberg LJ, Diehl E, Zähringer TJB, Dörr C, Schollmeyer D, Shimizu A, Yoshida J, Hellmich UA, Waldvogel SR. Metal-Free Twofold Electrochemical C-H Amination of Activated Arenes: Application to Medicinally Relevant Precursor Synthesis. Chemistry 2020; 26:17574-17580. [PMID: 32866328 PMCID: PMC7839481 DOI: 10.1002/chem.202003852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 08/28/2020] [Indexed: 01/13/2023]
Abstract
The efficient production of many medicinally or synthetically important starting materials suffers from wasteful or toxic precursors for the synthesis. In particular, the aromatic non-protected primary amine function represents a versatile synthetic precursor, but its synthesis typically requires toxic oxidizing agents and transition metal catalysts. The twofold electrochemical amination of activated benzene derivatives via Zincke intermediates provides an alternative sustainable strategy for the formation of new C-N bonds of high synthetic value. As a proof of concept, we use our approach to generate a benzoxazinone scaffold that gained attention as a starting structure against castrate-resistant prostate cancer. Further improvement of the structure led to significantly increased cancer cell line toxicity. Thus, exploiting environmentally benign electrooxidation, we present a new versatile and powerful method based on direct C-H activation that is applicable for example the production of medicinally relevant compounds.
Collapse
Affiliation(s)
- Lars J. Wesenberg
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Erika Diehl
- Department of ChemistryJohannes Gutenberg University MainzJohann-Joachim Becherweg 3055128MainzGermany
- Center for Biomolecular Magnetic Resonance (BMRZ)Goethe-University FrankfurtMax-von-Laue Str. 960438Frankfurt/MGermany
| | - Till J. B. Zähringer
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Carolin Dörr
- Department of ChemistryJohannes Gutenberg University MainzJohann-Joachim Becherweg 3055128MainzGermany
| | - Dieter Schollmeyer
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Akihiro Shimizu
- Department Materials Engineering ScienceGraduate School of Engineering ScienceOsaka UniversityToyonakaOsaka 560–8531Japan
| | - Jun‐ichi Yoshida
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Ute A. Hellmich
- Department of ChemistryJohannes Gutenberg University MainzJohann-Joachim Becherweg 3055128MainzGermany
- Center for Biomolecular Magnetic Resonance (BMRZ)Goethe-University FrankfurtMax-von-Laue Str. 960438Frankfurt/MGermany
| | - Siegfried R. Waldvogel
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
37
|
Wang Q, Zhang X, Wang P, Gao X, Zhang H, Lei A. Electrochemical
Palladium‐Catalyzed
Intramolecular C—H Amination of
2‐Amidobiaryls
for Synthesis of Carbazoles. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000407] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Qingqing Wang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS) Wuhan University Wuhan Hubei 430072 China
| | - Xiaojing Zhang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS) Wuhan University Wuhan Hubei 430072 China
| | - Pan Wang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS) Wuhan University Wuhan Hubei 430072 China
| | - Xinlong Gao
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS) Wuhan University Wuhan Hubei 430072 China
| | - Heng Zhang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS) Wuhan University Wuhan Hubei 430072 China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS) Wuhan University Wuhan Hubei 430072 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032 China
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University Nanchang Jiangxi 330022 China
| |
Collapse
|
38
|
Yang L, Gridnev ID, Terada M, Jin T. Intermolecular Oxidative Friedel-Crafts Reaction Triggered Ring Expansion Affording 9,10-Diarylphenanthrenes. Org Lett 2020; 22:8920-8924. [PMID: 33147023 DOI: 10.1021/acs.orglett.0c03283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel intermolecular tandem oxidative aromatic coupling between arylidene fluorenes and unfunctionalized aromatics mediated by a DDQ/TFA oxidation system has been developed for the construction of 9,10-diarylphenanthrenes (DAPs). The formation of a benzylic carbocation species possessing a quaternary sp3-carbon center on the fluorene moiety by an intermolecular oxidative Friedel-Crafts reaction of two different arenes successfully triggered the subsequent ring expansion to afford DAPs.
Collapse
Affiliation(s)
- Lu Yang
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Ilya D Gridnev
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Tienan Jin
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
39
|
Hou J, Wang K, Zhang C, Wei T, Bai R, Xie Y. Metal‐Free Electrochemical Oxidative Dihalogenation of Quinolines on the C5 and C7 Positions Using
N
‐Halosuccinimides. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jiahao Hou
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou P.R. China
| | - Kai Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou P.R. China
| | - Changjun Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou P.R. China
| | - Tingting Wei
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou P.R. China
| | - Renren Bai
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou P.R. China
| | - Yuanyuan Xie
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou P.R. China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou P.R. China
| |
Collapse
|
40
|
Niu L, Jiang C, Liang Y, Liu D, Bu F, Shi R, Chen H, Chowdhury AD, Lei A. Manganese-Catalyzed Oxidative Azidation of C(sp 3)-H Bonds under Electrophotocatalytic Conditions. J Am Chem Soc 2020; 142:17693-17702. [PMID: 32941025 DOI: 10.1021/jacs.0c08437] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The selective installation of azide groups into C(sp3)-H bonds is a priority research topic in organic synthesis, particularly in pharmaceutical discovery and late-stage diversification. Herein, we demonstrate a generalized manganese-catalyzed oxidative azidation methodology of C(sp3)-H bonds using nucleophilic NaN3 as an azide source under electrophotocatalytic conditions. This approach allows us to perform the reaction without the necessity of adding an excess of the substrate and successfully avoiding the use of stoichiometric chemical oxidants such as iodine(III) reagent or NFSI. A series of tertiary and secondary benzylic C(sp3)-H, aliphatic C(sp3)-H, and drug-molecule-based C(sp3)-H bonds in substrates are well tolerated under our protocol. The simultaneous gram-scale synthesis and the ease of transformation of azide to amine collectively advocate for the potential application in the preparative synthesis. Good reactivity of the tertiary benzylic C(sp3)-H bond and selectivity of the tertiary aliphatic C(sp3)-H bond in substrates to incorporate nitrogen-based functionality at the tertiary alkyl group also provide opportunities to manipulate numerous potential medicinal candidates. We anticipate our synthetic protocol, consisting of metal catalysis, electrochemistry, and photochemistry, would provide a new sustainable option to execute challenging organic synthetic transformations.
Collapse
Affiliation(s)
- Linbin Niu
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| | - Chongyu Jiang
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| | - Yuwei Liang
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| | - Dingdong Liu
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| | - Faxiang Bu
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| | - Renyi Shi
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| | - Hong Chen
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| | - Abhishek Dutta Chowdhury
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
41
|
He X, Wu Y, Zhou T, Zuo Y, Xie M, Li R, Duan J, Shang Y. Rh-catalyzed C–N coupling of N-sulfonyl-1,2,3-trizales with secondary amines for regioselective synthesis of phenylvinyl-1,2-diamines. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1781185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China
| | - Yuhao Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China
| | - Tongtong Zhou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China
| | - Youpeng Zuo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China
| | - Mengqing Xie
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China
| | - Ruxue Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China
| | - Jiahui Duan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China
| |
Collapse
|
42
|
Pollok D, Waldvogel SR. Electro-organic synthesis - a 21 st century technique. Chem Sci 2020; 11:12386-12400. [PMID: 34123227 PMCID: PMC8162804 DOI: 10.1039/d0sc01848a] [Citation(s) in RCA: 272] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022] Open
Abstract
The severe limitations of fossil fuels and finite resources influence the scientific community to reconsider chemical synthesis and establish sustainable techniques. Several promising methods have emerged, and electro-organic conversion has attracted particular attention from international academia and industry as an environmentally benign and cost-effective technique. The easy application, precise control, and safe conversion of substrates with intermediates only accessible by this method reveal novel pathways in synthetic organic chemistry. The popularity of electricity as a reagent is accompanied by the feasible conversion of bio-based feedstocks to limit the carbon footprint. Several milestones have been achieved in electro-organic conversion at rapid frequency, which have opened up various perspectives for forthcoming processes.
Collapse
Affiliation(s)
- Dennis Pollok
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany www.aksw.uni-mainz.de
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany www.aksw.uni-mainz.de
| |
Collapse
|
43
|
Thobokholt EN, Larghi EL, Bracca ABJ, Kaufman TS. Isolation and synthesis of cryptosanguinolentine (isocryptolepine), a naturally-occurring bioactive indoloquinoline alkaloid. RSC Adv 2020; 10:18978-19002. [PMID: 35518305 PMCID: PMC9054090 DOI: 10.1039/d0ra03096a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/04/2020] [Indexed: 11/28/2022] Open
Abstract
Cryptosanguinolentine (isocryptolepine) is one of the minor naturally-occurring monomeric indoloquinoline alkaloids, isolated from the West African climbing shrub Cryptolepis sanguinolenta. The natural product displays such a simple and unique skeleton, which chemists became interested in well before it was found in Nature. Because of its structure and biological activity, the natural product has been targeted for synthesis on numerous occasions, employing a wide range of different strategies. Hence, discussed here are aspects related to the isolation of isocryptolepine, as well as the various approaches toward its total synthesis.
Collapse
Affiliation(s)
- Elida N Thobokholt
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina +54-341-4370477 +54-341-4370477
| | - Enrique L Larghi
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina +54-341-4370477 +54-341-4370477
| | - Andrea B J Bracca
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina +54-341-4370477 +54-341-4370477
| | - Teodoro S Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina +54-341-4370477 +54-341-4370477
| |
Collapse
|
44
|
Cui HL. Recent progress in (hetero)arene cation radical-based heteroarene modification. Org Biomol Chem 2020; 18:2975-2990. [PMID: 32239015 DOI: 10.1039/d0ob00441c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The transformation of (hetero)arene cation radicals has become a powerful tool for the construction of highly functionalized (hetero)arenes. These (hetero)arene cation radicals could be generated under electrochemical, photochemical or chemical oxidation systems. The in situ generated (hetero)arene cation radicals can be attacked by various nucleophiles, such as (hetero)aromatics and anions, yielding structurally diverse molecules. Recently, a large number of impressive heteroarene modifications have been designed by this strategy. This review summarizes the advances in heteroarene modification via reactions of in situ formed (hetero)arene cation radicals, ranging from 2010 to 2020.
Collapse
Affiliation(s)
- Hai-Lei Cui
- Laboratory of Asymmetric Synthesis, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing, 402160, PR China.
| |
Collapse
|
45
|
Qiu Y, Scheremetjew A, Finger LH, Ackermann L. Electrophotocatalytic Undirected C-H Trifluoromethylations of (Het)Arenes. Chemistry 2020; 26:3241-3246. [PMID: 31875327 PMCID: PMC7155051 DOI: 10.1002/chem.201905774] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 12/31/2022]
Abstract
Electrophotochemistry has enabled arene C-H trifluoromethylation with the Langlois reagent CF3 SO2 Na under mild reaction conditions. The merger of electrosynthesis and photoredox catalysis provided a chemical oxidant-free approach for the generation of the CF3 radical. The electrophotochemistry was carried out in an operationally simple manner, setting the stage for challenging C-H trifluoromethylations of unactivated arenes and heteroarenes. The robust nature of the electrophotochemical manifold was reflected by a wide scope, including electron-rich and electron-deficient benzenes, as well as naturally occurring heteroarenes. Electrophotochemical C-H trifluoromethylation was further achieved in flow with a modular electro-flow-cell equipped with an in-operando monitoring unit for on-line flow-NMR spectroscopy, providing support for the single electron transfer processes.
Collapse
Affiliation(s)
- Youai Qiu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Alexej Scheremetjew
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Lars H. Finger
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| |
Collapse
|
46
|
Wang Y, Tian B, Ding M, Shi Z. Electrochemical Cross-Dehydrogenative Coupling between Phenols and β-Dicarbonyl Compounds: Facile Construction of Benzofurans. Chemistry 2020; 26:4297-4303. [PMID: 31900957 DOI: 10.1002/chem.201904750] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Indexed: 11/10/2022]
Abstract
Preparative electrochemical synthesis is an ideal method for establishing green, sustainable processes. The major benefits of an electro-organic strategy over that of conventional chemical synthesis are the avoidance of reagent waste and mild reaction conditions. Here, an intermolecular cross-dehydrogenative coupling between phenols and β-dicarbonyl compounds has been developed to build various benzofurans under undivided electrolytic conditions. Neither transition metals nor external chemical oxidants are required to facilitate the dehydrogenation and dehydration processes. The key factor in success was the use of nBu4 NBF4 as the electrolyte and hexafluoroisopropanol as the solvent, which play key roles in the cyclocondensation step. This electrolysis is scalable and can be used as a key step in drug synthesis. On the basis of several experimental results, the mechanism, particularly of the remarkable anodic oxidation and cyclization process, was illustrated.
Collapse
Affiliation(s)
- Yandong Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China
| | - Bailin Tian
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China
| | - Mengning Ding
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China
| |
Collapse
|
47
|
Schulz L, Husmann JÅ, Waldvogel SR. Outstandingly robust anodic dehydrogenative aniline coupling reaction. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
48
|
Yu J, Li J, Wang P, Yu J. Cu‐Mediated Amination of (Hetero)Aryl C−H bonds with NH Azaheterocycles. Angew Chem Int Ed Engl 2019; 58:18141-18145. [DOI: 10.1002/anie.201910395] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Jin‐Feng Yu
- State key laboratory of organometallic chemistryCenter for excellence in molecular synthesisShanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Jian‐Jun Li
- State key laboratory of organometallic chemistryCenter for excellence in molecular synthesisShanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Peng Wang
- State key laboratory of organometallic chemistryCenter for excellence in molecular synthesisShanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
- CAS Key Laboratory of Energy Regulation MaterialsShanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Jin‐Quan Yu
- The Scripps Research Institute (TSRI) 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
49
|
Yu J, Li J, Wang P, Yu J. Cu‐Mediated Amination of (Hetero)Aryl C−H bonds with NH Azaheterocycles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jin‐Feng Yu
- State key laboratory of organometallic chemistryCenter for excellence in molecular synthesisShanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Jian‐Jun Li
- State key laboratory of organometallic chemistryCenter for excellence in molecular synthesisShanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Peng Wang
- State key laboratory of organometallic chemistryCenter for excellence in molecular synthesisShanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
- CAS Key Laboratory of Energy Regulation MaterialsShanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Jin‐Quan Yu
- The Scripps Research Institute (TSRI) 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
50
|
Practical and stereoselective electrocatalytic 1,2-diamination of alkenes. Nat Commun 2019; 10:4953. [PMID: 31672991 PMCID: PMC6823458 DOI: 10.1038/s41467-019-13024-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/17/2019] [Indexed: 12/22/2022] Open
Abstract
The 1,2-diamine motif is widely present in natural products, pharmaceutical compounds, and catalysts used in asymmetric synthesis. The simultaneous introduction of two amino groups across an alkene feedstock is an appealing yet challenging approach for the synthesis of 1,2-diamines, primarily due to the inhibitory effect of the diamine products to transition metal catalysts and the difficulty in controlling reaction diastereoselectivity and regioselectivity. Herein we report a scalable electrocatalytic 1,2-diamination reaction that can be used to convert stable, easily available aryl alkenes and sulfamides to 1,2-diamines with excellent diastereoselectivity. Monosubstituted sulfamides react in a regioselective manner to afford 1,2-diamines bearing different substituents on the two amino groups. The combination of an organic redox catalyst and electricity not only obviates the use of any transition metal catalyst and oxidizing reagent, but also ensures broad reaction compatibility with a variety of electronically and sterically diverse substrates. Methods to prepare 1,2-diamines are desirable due the importance of these compounds as drug scaffolds and organic ligands for metals. Here, the authors report an electrochemical metal-free 1,2- diamination of aryl alkenes with sulfamides to 1,2-diamines with excellent diastereoselectivity.
Collapse
|