1
|
Liu Y, Su X, Ding J, Zhou J, Liu Z, Wei X, Yang HB, Liu B. Progress and challenges in structural, in situ and operando characterization of single-atom catalysts by X-ray based synchrotron radiation techniques. Chem Soc Rev 2024. [PMID: 39434695 DOI: 10.1039/d3cs00967j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Single-atom catalysts (SACs) represent the ultimate size limit of nanoscale catalysts, combining the advantages of homogeneous and heterogeneous catalysts. SACs have isolated single-atom active sites that exhibit high atomic utilization efficiency, unique catalytic activity, and selectivity. Over the past few decades, synchrotron radiation techniques have played a crucial role in studying single-atom catalysis by identifying catalyst structures and enabling the understanding of reaction mechanisms. The profound comprehension of spectroscopic techniques and characteristics pertaining to SACs is important for exploring their catalytic activity origins and devising high-performance and stable SACs for industrial applications. In this review, we provide a comprehensive overview of the recent advances in X-ray based synchrotron radiation techniques for structural characterization and in situ/operando observation of SACs under reaction conditions. We emphasize the correlation between spectral fine features and structural characteristics of SACs, along with their analytical limitations. The development of IMST with spatial and temporal resolution is also discussed along with their significance in revealing the structural characteristics and reaction mechanisms of SACs. Additionally, this review explores the study of active center states using spectral fine characteristics combined with theoretical simulations, as well as spectroscopic analysis strategies utilizing machine learning methods to address challenges posed by atomic distribution inhomogeneity in SACs while envisaging potential applications integrating artificial intelligence seamlessly with experiments for real-time monitoring of single-atom catalytic processes.
Collapse
Affiliation(s)
- Yuhang Liu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xiaozhi Su
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Jie Ding
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China.
| | - Jing Zhou
- College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Zhen Liu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Xiangjun Wei
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China.
- Department of Chemistry, Hong Kong Institute of Clean Energy (HKICE) & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
2
|
Castillo R, Van Kuiken BE, Weyhermüller T, DeBeer S. Experimentally Assessing the Electronic Structure and Spin-State Energetics in MnFe Dimers Using 1s3p Resonant Inelastic X-ray Scattering. Inorg Chem 2024; 63:18468-18483. [PMID: 39282749 PMCID: PMC11445731 DOI: 10.1021/acs.inorgchem.4c01538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 10/01/2024]
Abstract
The synergistic interaction between Mn and Fe centers is investigated via a comprehensive analysis of full 1s3p resonant inelastic X-ray scattering (RIXS) planes at both the Fe and Mn K-edges in a series of homo- and heterometallic molecular systems. Deconvolution of the experimental two-dimensional 1s3p RIXS maps provides insights into the modulation of metal-ligand covalency and variations in the metal multiplet structure induced by subtle electronic structural differences imposed by the presence of the second metal. These modulations in the electronic structure are key toward understanding the reactivity of biological systems with active sites that require heterometallic centers, including MnFe purple acid phosphatases and MnFe ribonucleotide reductases. Herein, we demonstrate the capabilities of 1s3p RIXS to provide information on the excited state energetics in both element- and spin-selective fashion. The contributing excited states are identified and isolated by their multiplicity and π- and σ-contributions, building a conceptual bridge between the electronic structures of metal centers and their reactivity. The ability of the presented 1s3p RIXS methodology to address fundamental questions in transition metal catalysis reactivity is highlighted.
Collapse
Affiliation(s)
- Rebeca
G. Castillo
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, Mülheim an der Ruhr D-45470, Germany
- Laboratory
of Ultrafast Spectroscopy (LSU) and Lausanne Centre for Ultrafast
Science, École Polytechnique Fédérale
de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | | | - Thomas Weyhermüller
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, Mülheim an der Ruhr D-45470, Germany
| | - Serena DeBeer
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, Mülheim an der Ruhr D-45470, Germany
| |
Collapse
|
3
|
Steube J, Fritsch L, Kruse A, Bokareva OS, Demeshko S, Elgabarty H, Schoch R, Alaraby M, Egold H, Bracht B, Schmitz L, Hohloch S, Kühne TD, Meyer F, Kühn O, Lochbrunner S, Bauer M. Isostructural Series of a Cyclometalated Iron Complex in Three Oxidation States. Inorg Chem 2024; 63:16964-16980. [PMID: 39222251 DOI: 10.1021/acs.inorgchem.4c02576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
An isostructural series of FeII, FeIII, and FeIV complexes [Fe(ImP)2]0/+/2+ utilizing the ImP 1,1'-(1,3-phenylene)bis(3-methyl-1-imidazol-2-ylidene) ligand, combining N-heterocyclic carbenes and cyclometalating functions, is presented. The strong donor motif stabilizes the high-valent FeIV oxidation state yet keeps the FeII oxidation state accessible from the parent FeIII compound. Chemical oxidation of [Fe(ImP)2]+ yields stable [FeIV(ImP)2]2+. In contrast, [FeII(ImP)2]0, obtained by reduction, is highly sensitive toward oxygen. Exhaustive ground state characterization by single-crystal X-ray diffraction, 1H NMR, Mössbauer spectroscopy, temperature-dependent magnetic measurements, a combination of X-ray absorption near edge structure and valence-to-core, as well as core-to-core X-ray emission spectroscopy, complemented by detailed density functional theory (DFT) analysis, reveals that the three complexes [Fe(ImP)2]0/+/2+ can be unequivocally attributed to low-spin d6, d5, and d4 complexes. The excited state landscape of the FeII and FeIV complexes is characterized by short-lived 3MLCT and 3LMCT states, with lifetimes of 5.1 and 1.4 ps, respectively. In the FeII-compound, an energetically low-lying MC state leads to fast deactivation of the MLCT state. The distorted square-pyramidal state, where one carbene is dissociated, can not only relax into the ground state, but also into a singlet dissociated state. Its formation was investigated with time-dependent optical spectroscopy, while insights into its structure were gained by NMR spectroscopy.
Collapse
Affiliation(s)
- Jakob Steube
- Institute for Inorganic Chemistry, Paderborn University, 33098 Paderborn, Germany
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
| | - Lorena Fritsch
- Institute for Inorganic Chemistry, Paderborn University, 33098 Paderborn, Germany
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
| | - Ayla Kruse
- Department of Life, Light, and Matter, University of Rostock, 18051 Rostock, Germany
- Institute of Physics, University of Rostock, 18051 Rostock, Germany
| | - Olga S Bokareva
- Institute of Physics, University of Rostock, 18051 Rostock, Germany
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, University of Göttingen, 37077 Göttingen, Germany
| | - Hossam Elgabarty
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
- Institute for Theoretical Chemistry, Paderborn University, 33098 Paderborn, Germany
| | - Roland Schoch
- Institute for Inorganic Chemistry, Paderborn University, 33098 Paderborn, Germany
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
| | - Mohammad Alaraby
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
- Institute for Theoretical Chemistry, Paderborn University, 33098 Paderborn, Germany
| | - Hans Egold
- Institute for Inorganic Chemistry, Paderborn University, 33098 Paderborn, Germany
| | - Bastian Bracht
- Institute for Inorganic Chemistry, Paderborn University, 33098 Paderborn, Germany
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
| | - Lennart Schmitz
- Institute for Inorganic Chemistry, Paderborn University, 33098 Paderborn, Germany
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
| | - Stephan Hohloch
- Institute for Inorganic Chemistry, Paderborn University, 33098 Paderborn, Germany
| | - Thomas D Kühne
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
- Institute for Theoretical Chemistry, Paderborn University, 33098 Paderborn, Germany
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, 37077 Göttingen, Germany
| | - Oliver Kühn
- Department of Life, Light, and Matter, University of Rostock, 18051 Rostock, Germany
- Institute of Physics, University of Rostock, 18051 Rostock, Germany
| | - Stefan Lochbrunner
- Department of Life, Light, and Matter, University of Rostock, 18051 Rostock, Germany
- Institute of Physics, University of Rostock, 18051 Rostock, Germany
| | - Matthias Bauer
- Institute for Inorganic Chemistry, Paderborn University, 33098 Paderborn, Germany
- Center for Sustainable Systems Design (CSSD), Paderborn University, 33098 Paderborn, Germany
| |
Collapse
|
4
|
Rana A, Peredkov S, Behrens M, DeBeer S. Probing the Local Environment in Potassium Salts and Potassium-Promoted Catalysts by Potassium Valence-to-Core X-ray Emission Spectroscopy. Inorg Chem 2024; 63:16217-16223. [PMID: 39162299 PMCID: PMC11372750 DOI: 10.1021/acs.inorgchem.4c02069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Potassium plays an important role in biology as well as a promoter in heterogeneous catalysis. There are, however, limited characterization techniques for potassium available in the literature. This study elucidates the potential of element-selective X-ray emission spectroscopy (XES) for characterizing the coordination environment and the electronic properties of potassium. A series of XES measurements were conducted, primarily focusing on the VtC transition (Kβ2,5) of potassium halides (KCl, KBr, and KI) and oxide-bound potassium salts, including potassium nitrate (KNO3) and potassium carbonate (K2CO3). Across the series of potassium halides, the VtC transition energy is observed to increase, as accurately reproduced by TDDFT calculations. Molecular orbital analysis suggests that the Kβ2,5 transition is primarily derived from halide np contributions, with the primary factor influencing the energy shift being the metal-ligand distances. For oxide ligands, an additional Kβ″ transition appears alongside the Kβ2,5, which is attributed to a low-energy ligand ns, as elucidated by theoretical calculations. Finally, the XES spectra of two potassium-promoted catalysts for ammonia decomposition/synthesis were measured. These spectra show that potassium within the catalyst is distinct from other K salts in the VtC region, which could be promising for understanding the role of potassium as an electronic promoter.
Collapse
Affiliation(s)
- Atanu Rana
- Max Planck Institute for Chemical Energy Conversion, Stiftstraβe 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Sergey Peredkov
- Max Planck Institute for Chemical Energy Conversion, Stiftstraβe 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Malte Behrens
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Str. 2, 24118 Kiel, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstraβe 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
5
|
Sension RJ, McClain TP, Michocki LB, Miller NA, Alonso-Mori R, Lima FA, Ardana-Lamas F, Biednov M, Chung T, Deb A, Jiang Y, Kaneshiro AK, Khakhulin D, Kubarych KJ, Lamb RM, Meadows JH, Otte F, Sofferman DL, Song S, Uemura Y, van Driel TB, Penner-Hahn JE. Structural Evolution of Photoexcited Methylcobalamin toward a CarH-like Metastable State: Evidence from Time-Resolved X-ray Absorption and X-ray Emission. J Phys Chem B 2024; 128:8131-8144. [PMID: 39150518 DOI: 10.1021/acs.jpcb.4c03729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
CarH is a protein photoreceptor that uses a form of B12, adenosylcobalamin (AdoCbl), to sense light via formation of a metastable excited state. Aside from AdoCbl bound to CarH, methylcobalamin (MeCbl) is the only other example─to date─of photoexcited cobalamins forming metastable excited states with lifetimes of nanoseconds or longer. The UV-visible spectra of the excited states of MeCbl and AdoCbl bound to CarH are similar. We have used transient Co K-edge X-ray absorption and X-ray emission spectroscopies in conjunction with transient absorption spectroscopy in the UV-visible region to characterize the excited states of MeCbl. These data show that the metastable excited state of MeCbl has a slightly expanded corrin ring and increased electron density on the cobalt, but only small changes in the axial bond lengths.
Collapse
Affiliation(s)
- Roseanne J Sension
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States
| | - Taylor P McClain
- Biophysics, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Lindsay B Michocki
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Nicholas A Miller
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Frederico Alves Lima
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Fernando Ardana-Lamas
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Mykola Biednov
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Taewon Chung
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Aniruddha Deb
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Yifeng Jiang
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - April K Kaneshiro
- Department of Biological Chemistry, 1150 W. Medical Center Dr., Ann Arbor, Michigan 48109-0600, United States
| | - Dmitry Khakhulin
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Kevin J Kubarych
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Ryan M Lamb
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Joseph H Meadows
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Florian Otte
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Danielle L Sofferman
- Program in Applied Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States
| | - Sanghoon Song
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Yohei Uemura
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Tim B van Driel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - James E Penner-Hahn
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
- Biophysics, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
6
|
Burrow TG, Alcock NM, Huzan MS, Dunstan MA, Seed JA, Detlefs B, Glatzel P, Hunault MOJY, Bendix J, Pedersen KS, Baker ML. Determination of Uranium Central-Field Covalency with 3 d4 f Resonant Inelastic X-ray Scattering. J Am Chem Soc 2024; 146:22570-22582. [PMID: 39083620 PMCID: PMC11328134 DOI: 10.1021/jacs.4c06869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Understanding the nature of metal-ligand bonding is a major challenge in actinide chemistry. We present a new experimental strategy for addressing this challenge using actinide 3d4f resonant inelastic X-ray scattering (RIXS). Through a systematic study of uranium(IV) halide complexes, [UX6]2-, where X = F, Cl, or Br, we identify RIXS spectral satellites with relative energies and intensities that relate to the extent of uranium-ligand bond covalency. By analyzing the spectra in combination with ligand field density functional theory we find that the sensitivity of the satellites to the nature of metal-ligand bonding is due to the reduction of 5f interelectron repulsion and 4f-5f spin-exchange, caused by metal-ligand orbital mixing and the degree of 5f radial expansion, known as central-field covalency. Thus, this study furthers electronic structure quantification that can be obtained from 3d4f RIXS, demonstrating it as a technique for estimating actinide-ligand covalency.
Collapse
Affiliation(s)
- Timothy G Burrow
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, U.K
- The University of Manchester at Harwell, Diamond Light Source, Harwell Campus, OX11 0DE, U.K
- Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Nathan M Alcock
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, U.K
- The University of Manchester at Harwell, Diamond Light Source, Harwell Campus, OX11 0DE, U.K
- Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Myron S Huzan
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, U.K
- The University of Manchester at Harwell, Diamond Light Source, Harwell Campus, OX11 0DE, U.K
- Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Maja A Dunstan
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - John A Seed
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, U.K
- Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Blanka Detlefs
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Pieter Glatzel
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | | | - Jesper Bendix
- Department of Chemistry, University of Copenhagen, 1172 Copenhagen, Denmark
| | - Kasper S Pedersen
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Michael L Baker
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, U.K
- The University of Manchester at Harwell, Diamond Light Source, Harwell Campus, OX11 0DE, U.K
- Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| |
Collapse
|
7
|
Gera R, De P, Singh KK, Jannuzzi SAV, Mohanty A, Velasco L, Kulbir, Kumar P, Marco JF, Nagarajan K, Pecharromán C, Rodríguez-Pascual PM, DeBeer S, Moonshiram D, Gupta SS, Dasgupta J. Trapping an Elusive Fe(IV)-Superoxo Intermediate Inside a Self-Assembled Nanocage in Water at Room Temperature. J Am Chem Soc 2024; 146:21729-21741. [PMID: 39078020 DOI: 10.1021/jacs.4c05849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Molecular cavities that mimic natural metalloenzymes have shown the potential to trap elusive reaction intermediates. Here, we demonstrate the formation of a rare yet stable Fe(IV)-superoxo intermediate at room temperature subsequent to dioxygen binding at the Fe(III) site of a (Et4N)2[FeIII(Cl)(bTAML)] complex confined inside the hydrophobic interior of a water-soluble Pd6L412+ nanocage. Using a combination of electron paramagnetic resonance, Mössbauer, Raman/IR vibrational, X-ray absorption, and emission spectroscopies, we demonstrate that the cage-encapsulated complex has a Fe(IV) oxidation state characterized by a stable S = 1/2 spin state and a short Fe-O bond distance of ∼1.70 Å. We find that the O2 reaction in confinement is reversible, while the formed Fe(IV)-superoxo complex readily reacts when presented with substrates having weak C-H bonds, highlighting the lability of the O-O bond. We envision that such optimally trapped high-valent superoxos can show new classes of reactivities catalyzing both oxygen atom transfer and C-H bond activation reactions.
Collapse
Affiliation(s)
- Rahul Gera
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
- Department of Education in Science and Mathematics, Regional Institute of Education - Mysuru, NCERT, Mysuru 570006, India
| | - Puja De
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Kundan K Singh
- Chemical Engineering Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008, India
- Chemistry Department, Indian Institute of Technology, Dharwad 580007, India
| | - Sergio A V Jannuzzi
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, Mülheim an der Ruhr 45470, Germany
| | - Aisworika Mohanty
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Lucia Velasco
- Instituto de Ciencia de Materiales de Madrid Consejo Superior de Investigaciones Científicas Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Kulbir
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India
| | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India
| | - J F Marco
- Instituto de Quimica Fisica Blas Cabrera, Consejo Superior de Investigaciones Científicas, Serrano 119, Madrid 28006, Spain
| | - Kalaivanan Nagarajan
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Carlos Pecharromán
- Instituto de Ciencia de Materiales de Madrid Consejo Superior de Investigaciones Científicas Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - P M Rodríguez-Pascual
- Instituto de Ciencia de Materiales de Madrid Consejo Superior de Investigaciones Científicas Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Serena DeBeer
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, Mülheim an der Ruhr 45470, Germany
| | - Dooshaye Moonshiram
- Instituto de Ciencia de Materiales de Madrid Consejo Superior de Investigaciones Científicas Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Jyotishman Dasgupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| |
Collapse
|
8
|
Reinhard M, Kunnus K, Ledbetter K, Biasin E, Zederkof DB, Alonso-Mori R, van Driel TB, Nelson S, Kozina M, Borkiewicz OJ, Lorenc M, Cammarata M, Collet E, Sokaras D, Cordones AA, Gaffney KJ. Observation of a Picosecond Light-Induced Spin Transition in Polymeric Nanorods. ACS NANO 2024; 18:15468-15476. [PMID: 38833689 DOI: 10.1021/acsnano.3c10042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Spin transition (ST) materials are attractive for developing photoswitchable devices, but their slow material transformations limit device applications. Size reduction could enable faster switching, but the photoinduced dynamics at the nanoscale remains poorly understood. Here, we report a femtosecond optical pump multimodal X-ray probe study of polymeric nanorods. Simultaneously tracking the ST order parameter with X-ray emission spectroscopy and structure with X-ray diffraction, we observe photodoping of the low-spin-lattice within ∼150 fs. Above a ∼16% photodoping threshold, the transition to the high-spin phase occurs following an incubation period assigned to vibrational energy redistribution within the nanorods activating the molecular spin switching. Above ∼60% photodoping, the incubation period disappears, and the transition completes within ∼50 ps, preceded by the elastic nanorod expansion in response to the photodoping. These results support the feasibility of ST material-based GHz optical switching applications.
Collapse
Affiliation(s)
- Marco Reinhard
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Kristjan Kunnus
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Kathryn Ledbetter
- Department of Physics, Stanford University, Stanford, California 94305, United States
| | - Elisa Biasin
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | | | - Roberto Alonso-Mori
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Tim Brandt van Driel
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Silke Nelson
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Michael Kozina
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Olaf J Borkiewicz
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Maciej Lorenc
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)─UMR 6251, 35000 Rennes, France
| | - Marco Cammarata
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)─UMR 6251, 35000 Rennes, France
| | - Eric Collet
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)─UMR 6251, 35000 Rennes, France
| | - Dimosthenis Sokaras
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Amy A Cordones
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Kelly J Gaffney
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
9
|
Geoghegan BL, Bilyj JK, Bernhardt PV, DeBeer S, Cutsail GE. X-ray absorption and emission spectroscopy of N 2S 2 Cu(II)/(III) complexes. Dalton Trans 2024; 53:7828-7838. [PMID: 38624161 DOI: 10.1039/d4dt00085d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
This study investigates the influence of ligand charge on transition energies in a series of CuN2S2 complexes based on dithiocarbazate Schiff base ligands using Cu K-edge X-ray absorption spectroscopy (XAS) and Kβ valence-to-core (VtC) X-ray emission spectroscopy (XES). By comparing the formally Cu(II) complexes [CuII(HL1)] (HL12- = dimethyl pentane-2,4-diylidenebis[carbonodithiohydrazonate]) and [CuII(HL2)] (HL22- = dibenzyl pentane-2,4-diylidenebis[carbonodithiohydrazonate]) and the formally Cu(III) complex [CuIII(L2)], distinct changes in transition energies are observed, primarily attributed to the metal oxidation state. Density functional theory (DFT) calculations demonstrate how an increased negative charge on the deprotonated L23- ligand stabilizes the Cu(III) center through enhanced charge donation, modulating the core transition energies. Overall, significant shifts to higher energies are noted upon metal oxidation, emphasizing the importance of scrutinizing ligand structure in XAS/VtC XES analysis. The data further support the redox-innocent role of the Schiff base ligands and underscore the criticality of ligand protonation levels in future spectroscopic studies, particularly for catalytic intermediates. The combined XAS-VtC XES methodology validates the Cu(III) oxidation state assignment while offering insights into ligand protonation effects on core-level spectroscopic transitions.
Collapse
Affiliation(s)
- Blaise L Geoghegan
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstrasse 5-7, 45117 Essen, Germany
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, W12 0BZ, London, UK
| | - Jessica K Bilyj
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.
| | - George E Cutsail
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstrasse 5-7, 45117 Essen, Germany
| |
Collapse
|
10
|
Guo M, Braun A, Sokaras D, Kroll T. Iron Kβ X-ray Emission Spectroscopy: The Origin of Spectral Features from Atomic to Molecular Systems Using Multi-configurational Calculations. J Phys Chem A 2024; 128:1260-1273. [PMID: 38329897 DOI: 10.1021/acs.jpca.3c07949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Kβ X-ray emission spectroscopy (XES) is widely used to fingerprint the local spin of transition-metal ions, including in pump-probe experiments, to identify excited states or in chemical and biological reactions to characterize short-lived intermediates. In this study, the spectra of ferrous and ferric complexes for various spin states were measured experimentally and described theoretically through restricted active space (RAS) calculations including dynamic correlations. Through the RAS calculations from simple atomic models to complex molecular systems, spectral effects such as the exchange interactions, crystal-field strength, and covalent orbital mixing were evaluated and discussed. The calculations find that only the spectral features of low-spin cases show a dependence on the crystal-field strength, particularly for ferrous low spin. The effect of the covalent orbital mixing strength on the first moment of the Kβ1,3 main line and the Kβ1,3-Kβ' energy splitting is quantitatively described. Clear relationships are found within a given nominal spin but less between different spin states, which calls for careful selection of reference spectra in future experiments. This study further advances our understanding of the correlation between changes in experimental spectral features and their corresponding electronic structure information.
Collapse
Affiliation(s)
- Meiyuan Guo
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Augustin Braun
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
11
|
He Y, Dreyer SL, Ting YY, Ma Y, Hu Y, Goonetilleke D, Tang Y, Diemant T, Zhou B, Kowalski PM, Fichtner M, Hahn H, Aghassi-Hagmann J, Brezesinski T, Breitung B, Ma Y. Entropy-Mediated Stable Structural Evolution of Prussian White Cathodes for Long-Life Na-Ion Batteries. Angew Chem Int Ed Engl 2024; 63:e202315371. [PMID: 38014650 DOI: 10.1002/anie.202315371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
The high-entropy approach is applied to monoclinic Prussian White (PW) Na-ion cathodes to address the issue of unfavorable multilevel phase transitions upon electrochemical cycling, leading to poor stability and capacity decay. A series of Mn-based samples with up to six metal species sharing the N-coordinated positions was synthesized. The material of composition Na1.65 Mn0.4 Fe0.12 Ni0.12 Cu0.12 Co0.12 Cd0.12 [Fe(CN)6 ]0.92 □0.08 ⋅ 1.09H2 O was found to exhibit superior cyclability over medium/low-entropy and conventional single-metal PWs. We also report, to our knowledge for the first time, that a high-symmetry crystal structure may be advantageous for high-entropy PWs during battery operation. Computational comparisons of the formation enthalpy demonstrate that the compositionally less complex materials are prone to phase transitions, which negatively affect cycling performance. Based on data from complementary characterization techniques, an intrinsic mechanism for the stability improvement of the disordered PW structure upon Na+ insertion/extraction is proposed, namely the dual effect of suppression of phase transitions and mitigation of gas evolution.
Collapse
Affiliation(s)
- Yueyue He
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Sören L Dreyer
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Yin-Ying Ting
- Institute of Energy and Climate Research (IEK-13), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52428, Jülich, Germany
- Chair of Theory and Computation of Energy Materials, Faculty of Georesources and Materials Engineering, RWTH Aachen University, 52062, Aachen, Germany
| | - Yuan Ma
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Yang Hu
- Helmholtz Institute Ulm (HIU) for Electrochemical Energy Storage, Helmholtzstr. 11, 89081, Ulm, Germany
| | - Damian Goonetilleke
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Current address: Corporate Research and Development, Umicore, Watertorenstraat 33, 2250, Olen, Belgium
| | - Yushu Tang
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Thomas Diemant
- Helmholtz Institute Ulm (HIU) for Electrochemical Energy Storage, Helmholtzstr. 11, 89081, Ulm, Germany
| | - Bei Zhou
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Piotr M Kowalski
- Chair of Theory and Computation of Energy Materials, Faculty of Georesources and Materials Engineering, RWTH Aachen University, 52062, Aachen, Germany
- Jülich Aachen Research Alliance, JARA Energy & Center for Simulation and Data Science (CSD), 52425, Jülich, Germany
| | - Maximilian Fichtner
- Helmholtz Institute Ulm (HIU) for Electrochemical Energy Storage, Helmholtzstr. 11, 89081, Ulm, Germany
| | - Horst Hahn
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- School of Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, OK, 73019, USA
| | - Jasmin Aghassi-Hagmann
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Torsten Brezesinski
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ben Breitung
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Yanjiao Ma
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Current address: School of Energy and Mechanical Engineering, Jiangsu Key Laboratory of New Power Batteries, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
12
|
Yang J, Tripodi GL, Derks MTGM, Seo MS, Lee YM, Southwell KW, Shearer J, Roithová J, Nam W. Generation, Spectroscopic Characterization, and Computational Analysis of a Six-Coordinate Cobalt(III)-Imidyl Complex with an Unusual S = 3/2 Ground State that Promotes N-Group and Hydrogen Atom-Transfer Reactions with Exogenous Substrates. J Am Chem Soc 2023; 145:26106-26121. [PMID: 37997643 PMCID: PMC11175169 DOI: 10.1021/jacs.3c08117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
We report the synthesis and characterization of a mononuclear nonheme cobalt(III)-imidyl complex, [Co(NTs)(TQA)(OTf)]+ (1), with an S = 3/2 spin state that is capable of facilitating exogenous substrate modifications. Complex 1 was generated from the reaction of CoII(TQA)(OTf)2 with PhINTs at -20 °C. A flow setup with ESI-MS detection was used to explore the kinetics of the formation, stability, and degradation pathway of 1 in solution by treating the Co(II) precursor with PhINTs. Co K-edge XAS data revealed a distinct shift in the Co K-edge compared to the Co(II) precursor, in agreement with the formation of a Co(III) intermediate. The unusual S = 3/2 spin state was proposed based on EPR, DFT, and CASSCF calculations and Co Kβ XES results. Co K-edge XAS and IR photodissociation (IRPD) spectroscopies demonstrate that 1 is a six-coordinate species, and IRPD and resonance Raman spectroscopies are consistent with 1 being exclusively the isomer with the NT ligand occupying the vacant site trans to the TQA aliphatic amine nitrogen atom. Electronic structure calculations (broken symmetry DFT and CASSCF/NEVPT2) demonstrate an S = 3/2 oxidation state resulting from the strong antiferromagnetic coupling of an •NTs spin to the high-spin S = 2 Co(III) center. Reactivity studies of 1 with PPh3 derivatives revealed its electrophilic characteristic in the nitrene-transfer reaction. While the activation of C-H bonds by 1 was proved to be kinetically challenging, 1 could oxidize weak O-H and N-H bonds. Complex 1 is, therefore, a rare example of a Co(III)-imidyl complex capable of exogenous substrate transformations.
Collapse
Affiliation(s)
- Jindou Yang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Guilherme L. Tripodi
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Max T. G. M. Derks
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Kendal W. Southwell
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Jason Shearer
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Jana Roithová
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
13
|
Hou K, Börgel J, Jiang HZH, SantaLucia DJ, Kwon H, Zhuang H, Chakarawet K, Rohde RC, Taylor JW, Dun C, Paley MV, Turkiewicz AB, Park JG, Mao H, Zhu Z, Alp EE, Zhao J, Hu MY, Lavina B, Peredkov S, Lv X, Oktawiec J, Meihaus KR, Pantazis DA, Vandone M, Colombo V, Bill E, Urban JJ, Britt RD, Grandjean F, Long GJ, DeBeer S, Neese F, Reimer JA, Long JR. Reactive high-spin iron(IV)-oxo sites through dioxygen activation in a metal-organic framework. Science 2023; 382:547-553. [PMID: 37917685 DOI: 10.1126/science.add7417] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/24/2023] [Indexed: 11/04/2023]
Abstract
In nature, nonheme iron enzymes use dioxygen to generate high-spin iron(IV)=O species for a variety of oxygenation reactions. Although synthetic chemists have long sought to mimic this reactivity, the enzyme-like activation of O2 to form high-spin iron(IV) = O species remains an unrealized goal. Here, we report a metal-organic framework featuring iron(II) sites with a local structure similar to that in α-ketoglutarate-dependent dioxygenases. The framework reacts with O2 at low temperatures to form high-spin iron(IV) = O species that are characterized using in situ diffuse reflectance infrared Fourier transform, in situ and variable-field Mössbauer, Fe Kβ x-ray emission, and nuclear resonance vibrational spectroscopies. In the presence of O2, the framework is competent for catalytic oxygenation of cyclohexane and the stoichiometric conversion of ethane to ethanol.
Collapse
Affiliation(s)
- Kaipeng Hou
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jonas Börgel
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Henry Z H Jiang
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Daniel J SantaLucia
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Hyunchul Kwon
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Hao Zhuang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | | | - Rachel C Rohde
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Jordan W Taylor
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Chaochao Dun
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Maria V Paley
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ari B Turkiewicz
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Jesse G Park
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Haiyan Mao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Ziting Zhu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - E Ercan Alp
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Jiyong Zhao
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Michael Y Hu
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Barbara Lavina
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA
| | - Sergey Peredkov
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| | - Xudong Lv
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Julia Oktawiec
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Katie R Meihaus
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | - Marco Vandone
- Department of Chemistry, University of Milan, 20133 Milan, Italy
| | - Valentina Colombo
- Department of Chemistry, University of Milan, 20133 Milan, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), UdR Milano, Via Golgi 19, 20133 Milano, Italy
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| | - Jeffrey J Urban
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - R David Britt
- Department of Chemistry, University of California, Davis, CA 95616, USA
- Miller Institute for Basic Research in Science, University of California, Berkeley CA 94720, USA
| | - Fernande Grandjean
- Department of Chemistry, Missouri University of Science and Technology, University of Missouri, Rolla, MO 65409, USA
| | - Gary J Long
- Department of Chemistry, Missouri University of Science and Technology, University of Missouri, Rolla, MO 65409, USA
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Jeffrey A Reimer
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Jeffrey R Long
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
14
|
Novichkov D, Trigub A, Gerber E, Nevolin I, Romanchuk A, Matveev P, Kalmykov S. Laboratory-based X-ray spectrometer for actinide science. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:1114-1126. [PMID: 37738030 PMCID: PMC10624025 DOI: 10.1107/s1600577523006926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/06/2023] [Indexed: 09/23/2023]
Abstract
X-ray absorption and emission spectroscopies nowadays are advanced characterization methods for fundamental and applied actinide research. One of the advantages of these methods is to reveal slight changes in the structural and electronic properties of radionuclides. The experiments are generally carried out at synchrotrons. However, considerable progress has been made to construct laboratory-based X-ray spectrometers for X-ray absorption and emission spectroscopies. Laboratory spectrometers are reliable, effective and accessible alternatives to synchrotrons, especially for actinide research, which allow dispensing with high costs of the radioactive sample transport and synchrotron time. Moreover, data from laboratory spectrometers, obtained within a reasonable time, are comparable with synchrotron results. Thereby, laboratory spectrometers can complement synchrotrons or can be used for preliminary experiments to find perspective samples for synchrotron experiments with better resolution. Here, the construction and implementation of an X-ray spectrometer (LomonosovXAS) in Johann-geometry at a radiochemistry laboratory is reported. Examples are given of the application of LomonosovXAS to actinide systems relevant to the chemistry of f-elements, the physical chemistry of nuclear power engineering and the long-term disposal of spent nuclear fuel.
Collapse
Affiliation(s)
- Daniil Novichkov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russian Federation
| | - Alexander Trigub
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russian Federation
- National Research Centre Kurchatov Institute, Ploshchad Akademika Kurchatova 1, Moscow 123182, Russian Federation
| | - Evgeny Gerber
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russian Federation
| | - Iurii Nevolin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russian Federation
| | - Anna Romanchuk
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russian Federation
| | - Petr Matveev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russian Federation
| | - Stepan Kalmykov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russian Federation
| |
Collapse
|
15
|
Wang J, Hsu CS, Wu TS, Chan TS, Suen NT, Lee JF, Chen HM. In situ X-ray spectroscopies beyond conventional X-ray absorption spectroscopy on deciphering dynamic configuration of electrocatalysts. Nat Commun 2023; 14:6576. [PMID: 37852958 PMCID: PMC10584842 DOI: 10.1038/s41467-023-42370-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
Realizing viable electrocatalytic processes for energy conversion/storage strongly relies on an atomic-level understanding of dynamic configurations on catalyst-electrolyte interface. X-ray absorption spectroscopy (XAS) has become an indispensable tool to in situ investigate dynamic natures of electrocatalysts but still suffers from limited energy resolution, leading to significant electronic transitions poorly resolved. Herein, we highlight advanced X-ray spectroscopies beyond conventional XAS, with emphasis on their unprecedented capabilities of deciphering key configurations of electrocatalysts. The profound complementarities of X-ray spectroscopies from various aspects are established in a probing energy-dependent "in situ spectroscopy map" for comprehensively understanding the solid-liquid interface. This perspective establishes an indispensable in situ research model for future studies and offers exciting research prospects for scientists and spectroscopists.
Collapse
Affiliation(s)
- Jiali Wang
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan
| | - Chia-Shuo Hsu
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan
| | - Tai-Sing Wu
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan.
| | - Nian-Tzu Suen
- College of Chemistry & Chemical Engineering, Yangzhou University, 225002, Yangzhou, China
| | - Jyh-Fu Lee
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Hao Ming Chen
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan.
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan.
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
16
|
Reinhard M, Skoien D, Spies JA, Garcia-Esparza AT, Matson BD, Corbett J, Tian K, Safranek J, Granados E, Strader M, Gaffney KJ, Alonso-Mori R, Kroll T, Sokaras D. Solution phase high repetition rate laser pump x-ray probe picosecond hard x-ray spectroscopy at the Stanford Synchrotron Radiation Lightsource. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:054304. [PMID: 37901682 PMCID: PMC10613086 DOI: 10.1063/4.0000207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/11/2023] [Indexed: 10/31/2023]
Abstract
We present a dedicated end-station for solution phase high repetition rate (MHz) picosecond hard x-ray spectroscopy at beamline 15-2 of the Stanford Synchrotron Radiation Lightsource. A high-power ultrafast ytterbium-doped fiber laser is used to photoexcite the samples at a repetition rate of 640 kHz, while the data acquisition operates at the 1.28 MHz repetition rate of the storage ring recording data in an alternating on-off mode. The time-resolved x-ray measurements are enabled via gating the x-ray detectors with the 20 mA/70 ps camshaft bunch of SPEAR3, a mode available during the routine operations of the Stanford Synchrotron Radiation Lightsource. As a benchmark study, aiming to demonstrate the advantageous capabilities of this end-station, we have conducted picosecond Fe K-edge x-ray absorption spectroscopy on aqueous [FeII(phen)3]2+, a prototypical spin crossover complex that undergoes light-induced excited spin state trapping forming an electronic excited state with a 0.6-0.7 ns lifetime. In addition, we report transient Fe Kβ main line and valence-to-core x-ray emission spectra, showing a unique detection sensitivity and an excellent agreement with model spectra and density functional theory calculations, respectively. Notably, the achieved signal-to-noise ratio, the overall performance, and the routine availability of the developed end-station have enabled a systematic time-resolved science program using the monochromatic beam at the Stanford Synchrotron Radiation Lightsource.
Collapse
Affiliation(s)
- Marco Reinhard
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Dean Skoien
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | | | | | - Jeff Corbett
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Kai Tian
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - James Safranek
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Eduardo Granados
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Matthew Strader
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Kelly J. Gaffney
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | - Thomas Kroll
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | |
Collapse
|
17
|
Hwang IH, Kelly SD, Chan MKY, Stavitski E, Heald SM, Han SW, Schwarz N, Sun CJ. The AXEAP2 program for Kβ X-ray emission spectra analysis using artificial intelligence. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:923-933. [PMID: 37526993 PMCID: PMC10481262 DOI: 10.1107/s1600577523005684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023]
Abstract
The processing and analysis of synchrotron data can be a complex task, requiring specialized expertise and knowledge. Our previous work addressed the challenge of X-ray emission spectrum (XES) data processing by developing a standalone application using unsupervised machine learning. However, the task of analyzing the processed spectra remains another challenge. Although the non-resonant Kβ XES of 3d transition metals are known to provide electronic structure information such as oxidation and spin state, finding appropriate parameters to match experimental data is a time-consuming and labor-intensive process. Here, a new XES data analysis method based on the genetic algorithm is demonstrated, applying it to Mn, Co and Ni oxides. This approach is also implemented as a standalone application, Argonne X-ray Emission Analysis 2 (AXEAP2), which finds a set of parameters that result in a high-quality fit of the experimental spectrum with minimal intervention. AXEAP2 is able to find a set of parameters that reproduce the experimental spectrum, and provide insights into the 3d electron spin state, 3d-3p electron exchange force and Kβ emission core-hole lifetime.
Collapse
Affiliation(s)
- In-Hui Hwang
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Shelly D. Kelly
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Maria K. Y. Chan
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Eli Stavitski
- National Synchrotron Light Source II, Brookhaven National Laboratory, NY 11973, USA
| | - Steve M. Heald
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Sang-Wook Han
- Department of Physics Education and Institute of Fusion Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Nicholas Schwarz
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Cheng-Jun Sun
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| |
Collapse
|
18
|
Follmer AH, Borovik AS. The role of basicity in selective C-H bond activation by transition metal-oxidos. Dalton Trans 2023; 52:11005-11016. [PMID: 37497779 PMCID: PMC10619463 DOI: 10.1039/d3dt01781h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The development of (bio)catalysts capable of selectively activating strong C-H bonds is a continuing challenge in modern chemistry. In both metalloenzymes and synthetic systems capable of activating C-H bonds, transition metal-oxido intermediates serve as the active species for reactivity whose thermodynamic properties influence the bond strengths they are capable of activating. In this Frontier article, we present current ideas of how the basicity of transition metal-oxidos impacts their reactivity with C-H bonds and present new opportunities within this field. We highlight recent insights into the role basicity plays in the activation process and its influence on mechanism, as well as the important role that secondary coordination sphere effects, such as hydrogen bonds, in tuning the basicity of the metal-oxido species is discussed.
Collapse
Affiliation(s)
- Alec H Follmer
- Department of Chemistry, University of California-Irvine, Irvine, CA 92697-3900, USA.
| | - A S Borovik
- Department of Chemistry, University of California-Irvine, Irvine, CA 92697-3900, USA.
| |
Collapse
|
19
|
Sension RJ, McClain TP, Lamb RM, Alonso-Mori R, Lima FA, Ardana-Lamas F, Biednov M, Chollet M, Chung T, Deb A, Dewan PA, Gee LB, Huang Ze En J, Jiang Y, Khakhulin D, Li J, Michocki LB, Miller NA, Otte F, Uemura Y, van Driel TB, Penner-Hahn JE. Watching Excited State Dynamics with Optical and X-ray Probes: The Excited State Dynamics of Aquocobalamin and Hydroxocobalamin. J Am Chem Soc 2023. [PMID: 37327324 DOI: 10.1021/jacs.3c04099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Femtosecond time-resolved X-ray absorption (XANES) at the Co K-edge, X-ray emission (XES) in the Co Kβ and valence-to-core regions, and broadband UV-vis transient absorption are combined to probe the femtosecond to picosecond sequential atomic and electronic dynamics following photoexcitation of two vitamin B12 compounds, hydroxocobalamin and aquocobalamin. Polarized XANES difference spectra allow identification of sequential structural evolution involving first the equatorial and then the axial ligands, with the latter showing rapid coherent bond elongation to the outer turning point of the excited state potential followed by recoil to a relaxed excited state structure. Time-resolved XES, especially in the valence-to-core region, along with polarized optical transient absorption suggests that the recoil results in the formation of a metal-centered excited state with a lifetime of 2-5 ps. This combination of methods provides a uniquely powerful tool to probe the electronic and structural dynamics of photoactive transition-metal complexes and will be applicable to a wide variety of systems.
Collapse
Affiliation(s)
- Roseanne J Sension
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States
| | - Taylor P McClain
- Department of Biophysics, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Ryan M Lamb
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Frederico Alves Lima
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Fernando Ardana-Lamas
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Mykola Biednov
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Matthieu Chollet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Taewon Chung
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Aniruddha Deb
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
- Department of Biophysics, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Paul A Dewan
- Department of Biophysics, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Leland B Gee
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Joel Huang Ze En
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Yifeng Jiang
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Dmitry Khakhulin
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Jianhao Li
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Lindsay B Michocki
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Nicholas A Miller
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Florian Otte
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Yohei Uemura
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Tim B van Driel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - James E Penner-Hahn
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
- Department of Biophysics, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
20
|
Detlefs B, Graziano S, Glatzel P. Fast Chemical Contrast by X-ray Fluorescence Intensity Ratio Detection. Anal Chem 2023. [PMID: 37235752 DOI: 10.1021/acs.analchem.3c00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We describe a protocol for efficient detection of the chemical state of an element based on X-ray emission (fluorescence) spectroscopy using a Bragg optics spectrometer. The ratio of intensities at two appropriately chosen X-ray emission energies is a self-normalized quantity largely free of experimental artifacts and can thus be recorded with high accuracy. As the X-ray fluorescence lines are chemically sensitive, the intensity ratio identifies the chemical state. Differences between chemical states in spatially inhomogeneous or temporally evolving samples can be identified already with low numbers of photon events. This reduces the time required for data acquisition by 2 orders of magnitude as compared to recording a full spectrum.
Collapse
Affiliation(s)
- Blanka Detlefs
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Serena Graziano
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Pieter Glatzel
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
21
|
Reinhard M, Gallo A, Guo M, Garcia-Esparza AT, Biasin E, Qureshi M, Britz A, Ledbetter K, Kunnus K, Weninger C, van Driel T, Robinson J, Glownia JM, Gaffney KJ, Kroll T, Weng TC, Alonso-Mori R, Sokaras D. Ferricyanide photo-aquation pathway revealed by combined femtosecond Kβ main line and valence-to-core x-ray emission spectroscopy. Nat Commun 2023; 14:2443. [PMID: 37147295 PMCID: PMC10163258 DOI: 10.1038/s41467-023-37922-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/30/2023] [Indexed: 05/07/2023] Open
Abstract
Reliably identifying short-lived chemical reaction intermediates is crucial to elucidate reaction mechanisms but becomes particularly challenging when multiple transient species occur simultaneously. Here, we report a femtosecond x-ray emission spectroscopy and scattering study of the aqueous ferricyanide photochemistry, utilizing the combined Fe Kβ main and valence-to-core emission lines. Following UV-excitation, we observe a ligand-to-metal charge transfer excited state that decays within 0.5 ps. On this timescale, we also detect a hitherto unobserved short-lived species that we assign to a ferric penta-coordinate intermediate of the photo-aquation reaction. We provide evidence that bond photolysis occurs from reactive metal-centered excited states that are populated through relaxation of the charge transfer excited state. Beyond illuminating the elusive ferricyanide photochemistry, these results show how current limitations of Kβ main line analysis in assigning ultrafast reaction intermediates can be circumvented by simultaneously using the valence-to-core spectral range.
Collapse
Affiliation(s)
- Marco Reinhard
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| | | | - Meiyuan Guo
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | | | - Elisa Biasin
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | | | - Kathryn Ledbetter
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | | | - Clemens Weninger
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - Tim van Driel
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | | | | | | | - Thomas Kroll
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Tsu-Chien Weng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | | | | |
Collapse
|
22
|
Yogendra S, Wilson DWN, Hahn AW, Weyhermüller T, Van Stappen C, Holland P, DeBeer S. Sulfur-Ligated [2Fe-2C] Clusters as Synthetic Model Systems for Nitrogenase. Inorg Chem 2023; 62:2663-2671. [PMID: 36715662 PMCID: PMC9930126 DOI: 10.1021/acs.inorgchem.2c03693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 01/31/2023]
Abstract
Metal clusters featuring carbon and sulfur donors have coordination environments comparable to the active site of nitrogenase enzymes. Here, we report a series of di-iron clusters supported by the dianionic yldiide ligands, in which the Fe sites are bridged by two μ2-C atoms and four pendant S donors.The [L2Fe2] (L = {[Ph2P(S)]2C}2-) cluster is isolable in two oxidation levels, all-ferrous Fe2II and mixed-valence FeIIFeIII. The mixed-valence cluster displays two peaks in the Mössbauer spectra, indicating slow electron transfer between the two sites. The addition of the Lewis base 4-dimethylaminopyridine to the Fe2II cluster results in coordination with only one of the two Fe sites, even in the presence of an excess base. Conversely, the cluster reacts with 8 equiv of isocyanide tBuNC to give a monometallic complex featuring a new C-C bond between the ligand backbone and the isocyanide. The electronic structure descriptions of these complexes are further supported by X-ray absorption and resonant X-ray emission spectroscopies.
Collapse
Affiliation(s)
- Sivathmeehan Yogendra
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Daniel W. N. Wilson
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Anselm W. Hahn
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Thomas Weyhermüller
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Casey Van Stappen
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Patrick Holland
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Serena DeBeer
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
23
|
Emamian S, Ireland KA, Purohit V, McWhorter KL, Maximova O, Allen W, Jensen S, Casa DM, Pushkar Y, Davis KM. X-ray Emission Spectroscopy of Single Protein Crystals Yields Insights into Heme Enzyme Intermediates. J Phys Chem Lett 2023; 14:41-48. [PMID: 36566390 PMCID: PMC9990082 DOI: 10.1021/acs.jpclett.2c03018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Enzyme reactivity is often enhanced by changes in oxidation state, spin state, and metal-ligand covalency of associated metallocofactors. The development of spectroscopic methods for studying these processes coincidentally with structural rearrangements is essential for elucidating metalloenzyme mechanisms. Herein, we demonstrate the feasibility of collecting X-ray emission spectra of metalloenzyme crystals at a third-generation synchrotron source. In particular, we report the development of a von Hamos spectrometer for the collection of Fe Kβ emission optimized for analysis of dilute biological samples. We further showcase its application in crystals of the immunosuppressive heme-dependent enzyme indoleamine 2,3-dioxygenase. Spectra from protein crystals in different states were compared with relevant reference compounds. Complementary density functional calculations assessing covalency support our spectroscopic analysis and identify active site conformations that correlate to high- and low-spin states. These experiments validate the suitability of an X-ray emission approach for determining spin states of previously uncharacterized metalloenzyme reaction intermediates.
Collapse
Affiliation(s)
- Sahand Emamian
- Department of Physics, Emory University, Atlanta, GA 30322, USA
| | | | - Vatsal Purohit
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | | - Olga Maximova
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Winter Allen
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Scott Jensen
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Diego M. Casa
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
24
|
Simonelli L, Marini C, Ribo L, Homs R, Avila J, Heinis D, Preda I, Klementiev K. The CLEAR X-ray emission spectrometer available at the CLAESS beamline of ALBA synchrotron. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:235-241. [PMID: 36601942 PMCID: PMC9814063 DOI: 10.1107/s1600577522009821] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/06/2022] [Indexed: 06/17/2023]
Abstract
The CLEAR X-ray emission spectrometer installed at the CLAESS beamline of the ALBA synchrotron is described. It is an energy-dispersive spectrometer based on Rowland circle geometry with 1 m-diameter circle. The energy dispersion is achieved by the combination of a diced analyzer crystal and a unidimensional detector. A single unconventional dynamically bent analyzer crystal (Si 111) permits a wide energy range to be covered, just by exploiting its different reflections (333, 444, 555, 777, 888): 6-22 keV, with a spectrometer efficiency that decreases above 11 keV because of the Si detector thickness (Mythen, 350 µm), while the relative scattering intensities for the Si 333, 444, 555, 777 and 888 reflections correspond to 36, 40, 21, 13 and 15, respectively. The provided energy resolution is typically below 1-2 eV and depends on the beam size, working Bragg angle and reflection exploited. In most cases the energy dispersion ranges from 10 to 20 eV and can be enlarged by working in the out-of-Rowland geometry up to 40 eV. The spectrometer works in full backscattering geometry with the beam passing through the two halves of the analyzer. The vacuum beam path and the particular geometry allow a typical average noise of only 0.5 counts per second per pixel. The spectrometer is mainly used for measuring emission lines and high-resolution absorption spectra, with a typical scanning time for highly concentrated systems of around half an hour, including several repeats. The intrinsic energy dispersion allows systematic collection of resonant X-ray emission maps by measuring high-resolution absorption spectra. Moreover, it allows spectra to be measured on a single-shot basis. Resonant inelastic X-ray scattering experiments to probe electronic excitations are feasible, although the spectrometer is not optimized for this purpose due to the limited energy resolution and scattering geometry provided. In that case, to minimize the quasi-elastic line, the spectrometer is able to rotate along the beam path. Advantages and disadvantages with respect to other existing spectrometers are highlighted.
Collapse
Affiliation(s)
- L. Simonelli
- CELLS-ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - C. Marini
- CELLS-ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - L. Ribo
- CELLS-ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - R. Homs
- CELLS-ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - J. Avila
- CELLS-ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - D. Heinis
- CELLS-ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - I. Preda
- CELLS-ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - K. Klementiev
- CELLS-ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Barcelona, Spain
- MAX IV Laboratory, Fotongatan 2, 225 94 Lund, Sweden
| |
Collapse
|
25
|
Yu M, Weidenthaler C, Wang Y, Budiyanto E, Onur Sahin E, Chen M, DeBeer S, Rüdiger O, Tüysüz H. Surface Boron Modulation on Cobalt Oxide Nanocrystals for Electrochemical Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2022; 61:e202211543. [PMID: 36001016 PMCID: PMC9826365 DOI: 10.1002/anie.202211543] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 01/11/2023]
Abstract
Herein, we show that coupling boron with cobalt oxide tunes its structure and significantly boost its electrocatalytic performance for the oxygen evolution reaction (OER). Through a simple precipitation and thermal treatment process, a series of Co-B oxides with tunable morphologies and textural parameters were prepared. Detailed structural analysis supported first the formation of an disordered and partially amorphous material with nanosized Co3 BO5 and/or Co2 B2 O6 being present on the local atomic scale. The boron modulation resulted in a superior OER reactivity by delivering a large current and an overpotential of 338 mV to reach a current density of 10 mA cm-2 in 1 M KOH electrolyte. Identical location transmission electron microscopy and in situ electrochemical Raman spectroscopy studies revealed alteration and surface re-construction of materials, and formation of CoO2 and (oxy)hydroxide intermediate, which were found to be highly dependent on crystallinity of the samples.
Collapse
Affiliation(s)
- Mingquan Yu
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 1D-45470Mülheim an der RuhrGermany
| | - Claudia Weidenthaler
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 1D-45470Mülheim an der RuhrGermany
| | - Yue Wang
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 1D-45470Mülheim an der RuhrGermany
| | - Eko Budiyanto
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 1D-45470Mülheim an der RuhrGermany
| | - Ezgi Onur Sahin
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 1D-45470Mülheim an der RuhrGermany
| | - Minmin Chen
- Max Planck Institute for Chemical Energy ConversionStiftstrasse 34–36D-45470Mülheim an der RuhrGermany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy ConversionStiftstrasse 34–36D-45470Mülheim an der RuhrGermany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy ConversionStiftstrasse 34–36D-45470Mülheim an der RuhrGermany
| | - Harun Tüysüz
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 1D-45470Mülheim an der RuhrGermany
| |
Collapse
|
26
|
Penfold TJ, Rankine CD. A deep neural network for valence-to-core X-ray emission spectroscopy. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2123406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- T. J. Penfold
- Chemistry–School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - C. D. Rankine
- Chemistry–School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
27
|
Hwang IH, Solovyev MA, Han SW, Chan MKY, Hammonds JP, Heald SM, Kelly SD, Schwarz N, Zhang X, Sun CJ. AXEAP: a software package for X-ray emission data analysis using unsupervised machine learning. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1309-1317. [PMID: 36073891 PMCID: PMC9455206 DOI: 10.1107/s1600577522006786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The Argonne X-ray Emission Analysis Package (AXEAP) has been developed to calibrate and process X-ray emission spectroscopy (XES) data collected with a two-dimensional (2D) position-sensitive detector. AXEAP is designed to convert a 2D XES image into an XES spectrum in real time using both calculations and unsupervised machine learning. AXEAP is capable of making this transformation at a rate similar to data collection, allowing real-time comparisons during data collection, reducing the amount of data stored from gigabyte-sized image files to kilobyte-sized text files. With a user-friendly interface, AXEAP includes data processing for non-resonant and resonant XES images from multiple edges and elements. AXEAP is written in MATLAB and can run on common operating systems, including Linux, Windows, and MacOS.
Collapse
Affiliation(s)
- In-Hui Hwang
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Mikhail A. Solovyev
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Sang-Wook Han
- Department of Physics Education and Institute of Fusion Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Maria K. Y. Chan
- Center for Nanoscale Nanomaterials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - John P. Hammonds
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Steve M. Heald
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Shelly D. Kelly
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Nicholas Schwarz
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Xiaoyi Zhang
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Cheng-Jun Sun
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| |
Collapse
|
28
|
Yu M, Weidenthaler C, Wang Y, Budiyanto E, Sahin EO, Chen M, DeBeer S, Rüdiger O, Tüysüz H. Surface boron modulation on cobalt oxide nanocrystals for electrochemical oxygen evolution reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mingquan Yu
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Heterogeneous Catalysis GERMANY
| | - Claudia Weidenthaler
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Powder Diffraction and Surface Spectroscopy GERMANY
| | - Yue Wang
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Heterogeneous Catalysis GERMANY
| | - Eko Budiyanto
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Heterogeneous Catalysis GERMANY
| | - Ezgi Onur Sahin
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Powder Diffraction and Surface Spectroscopy GERMANY
| | - Minmin Chen
- Max-Planck-Institute for Chemical Energy Conversion: Max-Planck-Institut fur chemische Energiekonversion Inorganic Spectroscopy GERMANY
| | - Serena DeBeer
- Max-Planck-Institut für chemische Energiekonversion: Max-Planck-Institut fur chemische Energiekonversion Inorganic Spectroscopy GERMANY
| | - Olaf Rüdiger
- Max-Planck-Institut für chemische Energiekonversion: Max-Planck-Institut fur chemische Energiekonversion Inorganic Spectroscopy GERMANY
| | - Harun Tüysüz
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Heterogeneous Catalysis Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr GERMANY
| |
Collapse
|
29
|
Cutsail GE, Banerjee R, Rice DB, McCubbin Stepanic O, Lipscomb JD, DeBeer S. Determination of the iron(IV) local spin states of the Q intermediate of soluble methane monooxygenase by Kβ X-ray emission spectroscopy. J Biol Inorg Chem 2022; 27:573-582. [PMID: 35988092 PMCID: PMC9470658 DOI: 10.1007/s00775-022-01953-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/07/2022] [Indexed: 11/29/2022]
Abstract
Soluble methane monooxygenase (sMMO) facilitates the conversion of methane to methanol at a non-heme FeIV2 intermediate MMOHQ, which is formed in the active site of the sMMO hydroxylase component (MMOH) during the catalytic cycle. Other biological systems also employ high-valent FeIV sites in catalysis; however, MMOHQ is unique as Nature’s only identified FeIV2 intermediate. Previous 57Fe Mössbauer spectroscopic studies have shown that MMOHQ employs antiferromagnetic coupling of the two FeIV sites to yield a diamagnetic cluster. Unfortunately, this lack of net spin prevents the determination of the local spin state (Sloc) of each of the irons by most spectroscopic techniques. Here, we use Fe Kβ X-ray emission spectroscopy (XES) to characterize the local spin states of the key intermediates of the sMMO catalytic cycle, including MMOHQ trapped by rapid-freeze-quench techniques. A pure XES spectrum of MMOHQ is obtained by subtraction of the contributions from other reaction cycle intermediates with the aid of Mössbauer quantification. Comparisons of the MMOHQ spectrum with those of known Sloc = 1 and Sloc = 2 FeIV sites in chemical and biological models reveal that MMOHQ possesses Sloc = 2 iron sites. This experimental determination of the local spin state will help guide future computational and mechanistic studies of sMMO catalysis.
Collapse
Affiliation(s)
- George E Cutsail
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany.
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstrasse 5-7, 45117, Essen, Germany.
| | - Rahul Banerjee
- Department of Biochemistry Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Derek B Rice
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Olivia McCubbin Stepanic
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - John D Lipscomb
- Department of Biochemistry Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany.
| |
Collapse
|
30
|
Nematollahi P, Barbiellini B, Bansil A, Lamoen D, Qingying J, Mukerjee S, Neyts EC. Identification of a Robust and Durable FeN 4C x Catalyst for ORR in PEM Fuel Cells and the Role of the Fifth Ligand. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Parisa Nematollahi
- Research Group PLASMANT, NANO Lab Center of Excellence, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp B-2610, Belgium
| | - Bernardo Barbiellini
- Department of Physics, School of Engineering Science, LUT University, FI-53851 Lappeenranta, Finland
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Arun Bansil
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Dirk Lamoen
- EMAT & NanoLab Center of Excellence, Department of Physics, University of Antwerp, Wilrijk, Antwerp B-2610, Belgium
| | - Jia Qingying
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Sanjeev Mukerjee
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Erik C. Neyts
- Research Group PLASMANT, NANO Lab Center of Excellence, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp B-2610, Belgium
| |
Collapse
|
31
|
Cutsail III GE, DeBeer S. Challenges and Opportunities for Applications of Advanced X-ray Spectroscopy in Catalysis Research. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- George E. Cutsail III
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
32
|
Sergentu DC, Autschbach J. Covalency in actinide(iv) hexachlorides in relation to the chlorine K-edge X-ray absorption structure. Chem Sci 2022; 13:3194-3207. [PMID: 35414875 PMCID: PMC8926251 DOI: 10.1039/d1sc06454a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/03/2022] [Indexed: 12/02/2022] Open
Abstract
Chlorine K-edge X-ray absorption near edge structure (XANES) in actinideIV hexachlorides, [AnCl6]2- (An = Th-Pu), is calculated with relativistic multiconfiguration wavefunction theory (WFT). Of particular focus is a 3-peak feature emerging from U toward Pu, and its assignment in terms of donation bonding to the An 5f vs. 6d shells. With or without spin-orbit coupling, the calculated and previously measured XANES spectra are in excellent agreement with respect to relative peak positions, relative peak intensities, and peak assignments. Metal-ligand bonding analyses from WFT and Kohn-Sham theory (KST) predict comparable An 5f and 6d covalency from U to Np and Pu. Although some frontier molecular orbitals in the KST calculations display increasing An 5f-Cl 3p mixing from Th to Pu, because of energetic stabilization of 5f relative to the Cl 3p combinations of the matching symmetry, increasing hybridization is neither seen in the WFT natural orbitals, nor is it reflected in the calculated bond orders. The appearance of the pre-edge peaks from U to Pu and their relative intensities are rationalized simply by the energetic separation of transitions to 6d t2g versus transitions to weakly-bonded and strongly stabilized a2u, t2u and t1u orbitals with 5f character. The study highlights potential pitfalls when interpreting XANES spectra based on ground state Kohn-Sham molecular orbitals.
Collapse
Affiliation(s)
- Dumitru-Claudiu Sergentu
- Department of Chemistry, University at Buffalo State University of New York Buffalo NY 14260-3000 USA
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo State University of New York Buffalo NY 14260-3000 USA
| |
Collapse
|
33
|
Sergentu DC, Autschbach J. X-ray absorption spectra of f-element complexes: insight from relativistic multiconfigurational wavefunction theory. Dalton Trans 2022; 51:1754-1764. [PMID: 35022645 DOI: 10.1039/d1dt04075h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
X-ray absorption near edge structure (XANES) spectroscopy, coupled with ab initio calculations, has emerged as the state-of-the-art tool for elucidating the metal-ligand bonding in f-element complexes. This highlight presents recent efforts in calculating XANES spectra of lanthanide and actinide compounds with relativistic multiconfiguration wavefunction approaches that account for differences in donation bonding in the ground state (GS) versus a core-excited state (ES), multiplet effects, and spin-orbit-coupling. With the GS and ES wavefunctions available, including spin-orbit effects, an arsenal of chemical bonding tools that are popular among chemists can be applied to rationalize the observed intensities in terms of covalent bonding.
Collapse
Affiliation(s)
- Dumitru-Claudiu Sergentu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260-3000, USA.
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260-3000, USA.
| |
Collapse
|
34
|
Stabilization of intermediate spin states in mixed-valent diiron dichalcogenide complexes. Nat Chem 2022; 14:328-333. [PMID: 35058610 PMCID: PMC8898764 DOI: 10.1038/s41557-021-00853-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022]
Abstract
The electronic structure and ground spin states, S, observed for mixed-valent iron–sulfur dimers (FeII-FeIII) are typically determined by the Heisenberg exchange interaction, J, that couples the magnetic interaction of the two metal centres either ferromagnetically (J > 0, S = 9/2) or antiferromagnetically (J < 0, S = 1/2). In the case of antiferromagnetically coupled iron centres, stabilization of the high-spin S = 9/2 ground state is also feasible through a Heisenberg double-exchange interaction, B, which lifts the degeneracy of the Heisenberg spin states. This theorem also predicts intermediate spin states for mixed-valent dimers, but those have so far remained elusive. Herein, we describe the structural, electron paramagnetic resonance and Mössbauer spectroscopic, and magnetic characterization of a series of mixed-valent complexes featuring [Fe2Q2]+ (Q = S2–, Se2–, Te2–), where the Se and Te complexes favour S = 3/2 spin states. The incorporation of heavier chalcogenides in this series reveals a delicate balance of antiferromagnetic coupling, Heisenberg double-exchange and vibronic coupling. ![]()
Despite extensive investigations of mixed-valence complexes, molecules with intermediate spin states have remained elusive. Now, selenium- and tellurium-bridged mixed-valent iron dimers have been prepared in which a balance of Heisenberg exchange and double-exchange coupling of the unpaired electron, combined with moderate vibronic contributions, stabilizes S = 3/2 ground spin states.
Collapse
|
35
|
Geoghegan BL, Liu Y, Peredkov S, Dechert S, Meyer F, DeBeer S, Cutsail GE. Combining Valence-to-Core X-ray Emission and Cu K-edge X-ray Absorption Spectroscopies to Experimentally Assess Oxidation State in Organometallic Cu(I)/(II)/(III) Complexes. J Am Chem Soc 2022; 144:2520-2534. [PMID: 35050605 PMCID: PMC8855422 DOI: 10.1021/jacs.1c09505] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A series of organometallic
copper complexes in formal oxidation
states ranging from +1 to +3 have been characterized by a combination
of Cu K-edge X-ray absorption (XAS) and Cu Kβ valence-to-core
X-ray emission spectroscopies (VtC XES). Each formal oxidation state
exhibits distinctly different XAS and VtC XES transition energies
due to the differences in the Cu Zeff, concomitant with
changes in physical oxidation state from +1 to +2 to +3. Herein, we
demonstrate the sensitivity of XAS and VtC XES to the physical oxidation
states of a series of N-heterocyclic carbene (NHC) ligated organocopper
complexes. We then extend these methods to the study of the [Cu(CF3)4]− ion. Complemented by computational
methods, the observed spectral transitions are correlated with the
electronic structure of the complexes and the Cu Zeff.
These calculations demonstrate that a contraction of the Cu 1s orbitals
to deeper binding energy upon oxidation of the Cu center manifests
spectroscopically as a stepped increase in the energy of both XAS
and Kβ2,5 emission features with increasing formal
oxidation state within the [Cun+(NHC2)]n+ series. The newly synthesized Cu(III) cation
[CuIII(NHC4)]3+ exhibits spectroscopic
features and an electronic structure remarkably similar to [Cu(CF3)4]−, supporting a physical oxidation
state assignment of low-spin d8 Cu(III) for [Cu(CF3)4]−. Combining XAS and VtC XES
further demonstrates the necessity of combining multiple spectroscopies
when investigating the electronic structures of highly covalent copper
complexes, providing a template for future investigations into both
synthetic and biological metal centers.
Collapse
Affiliation(s)
- Blaise L. Geoghegan
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstrasse 5-7, 45117 Essen, Germany
| | - Yang Liu
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Sergey Peredkov
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Sebastian Dechert
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - George E. Cutsail
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstrasse 5-7, 45117 Essen, Germany
| |
Collapse
|
36
|
Gaffney KJ. Capturing photochemical and photophysical transformations in iron complexes with ultrafast X-ray spectroscopy and scattering. Chem Sci 2021; 12:8010-8025. [PMID: 34194691 PMCID: PMC8208315 DOI: 10.1039/d1sc01864g] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/25/2021] [Indexed: 12/31/2022] Open
Abstract
Light-driven chemical transformations provide a compelling approach to understanding chemical reactivity with the potential to use this understanding to advance solar energy and catalysis applications. Capturing the non-equilibrium trajectories of electronic excited states with precision, particularly for transition metal complexes, would provide a foundation for advancing both of these objectives. Of particular importance for 3d metal compounds is characterizing the population dynamics of charge-transfer (CT) and metal-centered (MC) electronic excited states and understanding how the inner coordination sphere structural dynamics mediate the interaction between these states. Recent advances in ultrafast X-ray laser science has enabled the electronic excited state dynamics in 3d metal complexes to be followed with unprecedented detail. This review will focus on simultaneous X-ray emission spectroscopy (XES) and X-ray solution scattering (XSS) studies of iron coordination and organometallic complexes. These simultaneous XES-XSS studies have provided detailed insight into the mechanism of light-induced spin crossover in iron coordination compounds, the interaction of CT and MC excited states in iron carbene photosensitizers, and the mechanism of Fe-S bond dissociation in cytochrome c.
Collapse
Affiliation(s)
- Kelly J Gaffney
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University Menlo Park California 94025 USA
| |
Collapse
|
37
|
Saveleva VA, Ebner K, Ni L, Smolentsev G, Klose D, Zitolo A, Marelli E, Li J, Medarde M, Safonova OV, Nachtegaal M, Jaouen F, Kramm UI, Schmidt TJ, Herranz J. Potential-Induced Spin Changes in Fe/N/C Electrocatalysts Assessed by In Situ X-ray Emission Spectroscopy. Angew Chem Int Ed Engl 2021; 60:11707-11712. [PMID: 33605017 DOI: 10.1002/anie.202016951] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/09/2021] [Indexed: 11/12/2022]
Abstract
The commercial success of the electrochemical energy conversion technologies required for the decarbonization of the energy sector requires the replacement of the noble metal-based electrocatalysts currently used in (co-)electrolyzers and fuel cells with inexpensive, platinum-group metal-free analogs. Among these, Fe/N/C-type catalysts display promising performances for the reduction of O2 or CO2 , but their insufficient activity and stability jeopardize their implementation in such devices. To circumvent these issues, a better understanding of the local geometric and electronic structure of their catalytic active sites under reaction conditions is needed. Herein we shed light on the electronic structure of the molecular sites in two Fe/N/C catalysts by probing their average spin state with X-ray emission spectroscopy (XES). Chiefly, our in situ XES measurements reveal for the first time the existence of reversible, potential-induced spin state changes in these materials.
Collapse
Affiliation(s)
| | - Kathrin Ebner
- Paul Scherrer Institut, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - Lingmei Ni
- Technische Universität Darmstadt, Department of Chemistry and Department of Materials- and Earth Sciences, Otto-Berndt-Strasse 3, 64287, Darmstadt, Germany
| | - Grigory Smolentsev
- Paul Scherrer Institut, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - Daniel Klose
- ETH Zürich, Departement of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Andrea Zitolo
- Synchrotron SOLEIL, L'orme des Merisiers, BP 48, Saint Aubin, 91192, Gif-sur-Yvette, France
| | - Elena Marelli
- Paul Scherrer Institut, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - Jingkun Li
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - Marisa Medarde
- Paul Scherrer Institut, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - Olga V Safonova
- Paul Scherrer Institut, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - Maarten Nachtegaal
- Paul Scherrer Institut, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | | | - Ulrike I Kramm
- Technische Universität Darmstadt, Department of Chemistry and Department of Materials- and Earth Sciences, Otto-Berndt-Strasse 3, 64287, Darmstadt, Germany
| | - Thomas J Schmidt
- Paul Scherrer Institut, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland.,ETH Zürich, Departement of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Juan Herranz
- Paul Scherrer Institut, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| |
Collapse
|
38
|
Castillo RG, Hahn AW, Van Kuiken BE, Henthorn JT, McGale J, DeBeer S. Probing Physical Oxidation State by Resonant X-ray Emission Spectroscopy: Applications to Iron Model Complexes and Nitrogenase. Angew Chem Int Ed Engl 2021; 60:10112-10121. [PMID: 33497500 PMCID: PMC8252016 DOI: 10.1002/anie.202015669] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Indexed: 11/07/2022]
Abstract
The ability of resonant X-ray emission spectroscopy (XES) to recover physical oxidation state information, which may often be ambiguous in conventional X-ray spectroscopy, is demonstrated. By combining Kβ XES with resonant excitation in the XAS pre-edge region, resonant Kβ XES (or 1s3p RXES) data are obtained, which probe the 3dn+1 final-state configuration. Comparison of the non-resonant and resonant XES for a series of high-spin ferrous and ferric complexes shows that oxidation state assignments that were previously unclear are now easily made. The present study spans iron tetrachlorides, iron sulfur clusters, and the MoFe protein of nitrogenase. While 1s3p RXES studies have previously been reported, to our knowledge, 1s3p RXES has not been previously utilized to resolve questions of metal valency in highly covalent systems. As such, the approach presented herein provides chemists with means to more rigorously and quantitatively address challenging electronic-structure questions.
Collapse
Affiliation(s)
- Rebeca G. Castillo
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Anselm W. Hahn
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | | | - Justin T. Henthorn
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Jeremy McGale
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Serena DeBeer
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| |
Collapse
|
39
|
Castillo RG, Hahn AW, Van Kuiken BE, Henthorn JT, McGale J, DeBeer S. Probing Physical Oxidation State by Resonant X‐ray Emission Spectroscopy: Applications to Iron Model Complexes and Nitrogenase. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rebeca G. Castillo
- Department of Inorganic Spectroscopy Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | - Anselm W. Hahn
- Department of Inorganic Spectroscopy Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | | | - Justin T. Henthorn
- Department of Inorganic Spectroscopy Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | - Jeremy McGale
- Department of Inorganic Spectroscopy Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | - Serena DeBeer
- Department of Inorganic Spectroscopy Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
40
|
Saveleva VA, Ebner K, Ni L, Smolentsev G, Klose D, Zitolo A, Marelli E, Li J, Medarde M, Safonova OV, Nachtegaal M, Jaouen F, Kramm UI, Schmidt TJ, Herranz J. Potential‐Induced Spin Changes in Fe/N/C Electrocatalysts Assessed by In Situ X‐ray Emission Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Kathrin Ebner
- Paul Scherrer Institut Forschungsstrasse 111 5232 Villigen PSI Switzerland
| | - Lingmei Ni
- Technische Universität Darmstadt Department of Chemistry and Department of Materials- and Earth Sciences Otto-Berndt-Strasse 3 64287 Darmstadt Germany
| | - Grigory Smolentsev
- Paul Scherrer Institut Forschungsstrasse 111 5232 Villigen PSI Switzerland
| | - Daniel Klose
- ETH Zürich Departement of Chemistry and Applied Biosciences Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| | - Andrea Zitolo
- Synchrotron SOLEIL L'orme des Merisiers, BP 48, Saint Aubin 91192 Gif-sur-Yvette France
| | - Elena Marelli
- Paul Scherrer Institut Forschungsstrasse 111 5232 Villigen PSI Switzerland
| | - Jingkun Li
- ICGM Univ. Montpellier CNRS ENSCM Montpellier France
| | - Marisa Medarde
- Paul Scherrer Institut Forschungsstrasse 111 5232 Villigen PSI Switzerland
| | - Olga V. Safonova
- Paul Scherrer Institut Forschungsstrasse 111 5232 Villigen PSI Switzerland
| | - Maarten Nachtegaal
- Paul Scherrer Institut Forschungsstrasse 111 5232 Villigen PSI Switzerland
| | | | - Ulrike I. Kramm
- Technische Universität Darmstadt Department of Chemistry and Department of Materials- and Earth Sciences Otto-Berndt-Strasse 3 64287 Darmstadt Germany
| | - Thomas J. Schmidt
- Paul Scherrer Institut Forschungsstrasse 111 5232 Villigen PSI Switzerland
- ETH Zürich Departement of Chemistry and Applied Biosciences Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| | - Juan Herranz
- Paul Scherrer Institut Forschungsstrasse 111 5232 Villigen PSI Switzerland
| |
Collapse
|
41
|
Kubas A. How the Donor/Acceptor Spin States Affect the Electronic Couplings in Molecular Charge-Transfer Processes? J Chem Theory Comput 2021; 17:2917-2927. [PMID: 33830757 PMCID: PMC8154369 DOI: 10.1021/acs.jctc.1c00126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The electronic coupling
matrix element HAB is an essential ingredient
of most electron-transfer theories. HAB depends on the overlap between donor and
acceptor wave functions and is affected by the involved states’
spin. We classify the spin-state effects into three categories: orbital
occupation, spin-dependent electron density, and density delocalization.
The orbital occupancy reflects the diverse chemical nature and reactivity
of the spin states of interest. The effect of spin-dependent density
is related to a more compact electron density cloud at lower spin
states due to decreased exchange interactions between electrons. Density
delocalization is strongly connected with the covalency concept that
increases the spatial extent of the diabatic state’s electron
density in specific directions. We illustrate these effects with high-level ab initio calculations on model direct donor–acceptor
systems relevant to metal oxide materials and biological electron
transfer. Obtained results can be used to benchmark existing methods
for HAB calculations in complicated cases
such as spin-crossover materials or antiferromagnetically coupled
systems.
Collapse
Affiliation(s)
- A Kubas
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
42
|
Winkler M, Schnierle M, Ehrlich F, Mehnert KI, Hunger D, Sheveleva AM, Burkhardt L, Bauer M, Tuna F, Ringenberg MR, van Slageren J. Electronic Structure of a Diiron Complex: A Multitechnique Experimental Study of [(dppf)Fe(CO) 3] +/0. Inorg Chem 2021; 60:2856-2865. [PMID: 33569942 DOI: 10.1021/acs.inorgchem.0c03259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we explore the electronic structure of the diiron complex [(dppf)Fe(CO)3]0/+ [10/+; dppf = 1,1'-bis(diphenylphosphino)ferrocene] in two oxidation states by an advanced multitechnique experimental approach. A combination of magnetic circular dichroism, X-ray absorption and emission, high-frequency electron paramagnetic resonance (EPR), and Mössbauer spectroscopies is used to establish that oxidation of 10 occurs on the carbonyl iron ion, resulting in a low-spin iron(I) ion. It is shown that an unequivocal result is obtained by combining several methods. Compound 1+ displays slow spin dynamics, which is used here to study its geometric structure by means of pulsed EPR methods. Surprisingly, these data show an association of the tetrakis[3,5-bis(trifluoromethylphenyl)]borate counterion with 1+.
Collapse
Affiliation(s)
- Mario Winkler
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Marc Schnierle
- Institute of Inorganic Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Felix Ehrlich
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Kim-Isabelle Mehnert
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - David Hunger
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Alena M Sheveleva
- Department of Chemistry and Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Lukas Burkhardt
- Department of Chemistry and Center for Sustainable Systems Design, Paderborn University, Warburger Strasse 100, Paderborn 33098, Germany
| | - Matthias Bauer
- Department of Chemistry and Center for Sustainable Systems Design, Paderborn University, Warburger Strasse 100, Paderborn 33098, Germany
| | - Floriana Tuna
- Department of Chemistry and Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Mark R Ringenberg
- Institute of Inorganic Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Joris van Slageren
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| |
Collapse
|
43
|
Short-lived metal-centered excited state initiates iron-methionine photodissociation in ferrous cytochrome c. Nat Commun 2021; 12:1086. [PMID: 33597529 PMCID: PMC7889893 DOI: 10.1038/s41467-021-21423-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
The dynamics of photodissociation and recombination in heme proteins represent an archetypical photochemical reaction widely used to understand the interplay between chemical dynamics and reaction environment. We report a study of the photodissociation mechanism for the Fe(II)-S bond between the heme iron and methionine sulfur of ferrous cytochrome c. This bond dissociation is an essential step in the conversion of cytochrome c from an electron transfer protein to a peroxidase enzyme. We use ultrafast X-ray solution scattering to follow the dynamics of Fe(II)-S bond dissociation and 1s3p (Kβ) X-ray emission spectroscopy to follow the dynamics of the iron charge and spin multiplicity during bond dissociation. From these measurements, we conclude that the formation of a triplet metal-centered excited state with anti-bonding Fe(II)-S interactions triggers the bond dissociation and precedes the formation of the metastable Fe high-spin quintet state.
Collapse
|
44
|
Miaja-Avila L, O’Neil GC, Joe YI, Morgan KM, Fowler JW, Doriese WB, Ganly B, Lu D, Ravel B, Swetz DS, Ullom JN. Valence-to-core X-ray emission spectroscopy of titanium compounds using energy dispersive detectors. X-RAY SPECTROMETRY : XRS 2021; 50:10.1002/xrs.3183. [PMID: 39391149 PMCID: PMC11465483 DOI: 10.1002/xrs.3183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/26/2020] [Indexed: 10/12/2024]
Abstract
X-ray emission spectroscopy (XES) of transition metal compounds is a powerful tool for investigating the spin and oxidation state of the metal centers. Valence-to-core (vtc) XES is of special interest, as it contains information on the ligand nature, hybridization, and protonation. To date, most vtc-XES studies have been performed with high-brightness sources, such as synchrotrons, due to the weak fluorescence lines from vtc transitions. Here, we present a systematic study of the vtc-XES for different titanium compounds in a laboratory setting using an X-ray tube source and energy dispersive microcalorimeter sensors. With a full-width at half-maximum energy resolution of approximately 4 eV at the Ti Kβ lines, we measure the XES features of different titanium compounds and compare our results for the vtc line shapes and energies to previously published and newly acquired synchrotron data as well as to new theoretical calculations. Finally, we report simulations of the feasibility of performing time-resolved vtc-XES studies with a laser-based plasma source in a laboratory setting. Our results show that microcalorimeter sensors can already perform high-quality measurements of vtc-XES features in a laboratory setting under static conditions and that dynamic measurements will be possible in the future after reasonable technological developments.
Collapse
Affiliation(s)
- Luis Miaja-Avila
- National Institute of Standards and Technology, Boulder, Colorado
| | - Galen C. O’Neil
- National Institute of Standards and Technology, Boulder, Colorado
| | - Young Il Joe
- National Institute of Standards and Technology, Boulder, Colorado
| | - Kelsey M. Morgan
- National Institute of Standards and Technology, Boulder, Colorado
| | - Joseph W. Fowler
- National Institute of Standards and Technology, Boulder, Colorado
| | | | | | - Deyu Lu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York
| | - Bruce Ravel
- National Institute of Standards and Technology, Gaithersburg, Maryland
| | - Daniel S. Swetz
- National Institute of Standards and Technology, Boulder, Colorado
| | - Joel N. Ullom
- National Institute of Standards and Technology, Boulder, Colorado
| |
Collapse
|
45
|
Lim H, Baker ML, Cowley RE, Kim S, Bhadra M, Siegler MA, Kroll T, Sokaras D, Weng TC, Biswas DR, Dooley DM, Karlin KD, Hedman B, Hodgson KO, Solomon EI. Kβ X-ray Emission Spectroscopy as a Probe of Cu(I) Sites: Application to the Cu(I) Site in Preprocessed Galactose Oxidase. Inorg Chem 2020; 59:16567-16581. [PMID: 33136386 DOI: 10.1021/acs.inorgchem.0c02495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cu(I) active sites in metalloproteins are involved in O2 activation, but their O2 reactivity is difficult to study due to the Cu(I) d10 closed shell which precludes the use of conventional spectroscopic methods. Kβ X-ray emission spectroscopy (XES) is a promising technique for investigating Cu(I) sites as it detects photons emitted by electronic transitions from occupied orbitals. Here, we demonstrate the utility of Kβ XES in probing Cu(I) sites in model complexes and a metalloprotein. Using Cu(I)Cl, emission features from double-ionization (DI) states are identified using varying incident X-ray photon energies, and a reasonable method to correct the data to remove DI contributions is presented. Kβ XES spectra of Cu(I) model complexes, having biologically relevant N/S ligands and different coordination numbers, are compared and analyzed, with the aid of density functional theory (DFT) calculations, to evaluate the sensitivity of the spectral features to the ligand environment. While the low-energy Kβ2,5 emission feature reflects the ionization energy of ligand np valence orbitals, the high-energy Kβ2,5 emission feature corresponds to transitions from molecular orbitals (MOs) having mainly Cu 3d character with the intensities determined by ligand-mediated d-p mixing. A Kβ XES spectrum of the Cu(I) site in preprocessed galactose oxidase (GOpre) supports the 1Tyr/2His structural model that was determined by our previous X-ray absorption spectroscopy and DFT study. The high-energy Kβ2,5 emission feature in the Cu(I)-GOpre data has information about the MO containing mostly Cu 3dx2-y2 character that is the frontier molecular orbital (FMO) for O2 activation, which shows the potential of Kβ XES in probing the Cu(I) FMO associated with small-molecule activation in metalloproteins.
Collapse
Affiliation(s)
- Hyeongtaek Lim
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael L Baker
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Ryan E Cowley
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Sunghee Kim
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Mayukh Bhadra
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Tsu-Chien Weng
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Dalia R Biswas
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - David M Dooley
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States.,University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Kenneth D Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Keith O Hodgson
- Department of Chemistry, Stanford University, Stanford, California 94305, United States.,Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States.,Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| |
Collapse
|
46
|
Zimmermann P, Peredkov S, Abdala PM, DeBeer S, Tromp M, Müller C, van Bokhoven JA. Modern X-ray spectroscopy: XAS and XES in the laboratory. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213466] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Huzan MS, Fix M, Aramini M, Bencok P, Mosselmans JFW, Hayama S, Breitner FA, Gee LB, Titus CJ, Arrio MA, Jesche A, Baker ML. Single-ion magnetism in the extended solid-state: insights from X-ray absorption and emission spectroscopy. Chem Sci 2020; 11:11801-11810. [PMID: 34123206 PMCID: PMC8162461 DOI: 10.1039/d0sc03787g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Large single-ion magnetic anisotropy is observed in lithium nitride doped with iron. The iron sites are two-coordinate, putting iron doped lithium nitride amongst a growing number of two coordinate transition metal single-ion magnets (SIMs). Uniquely, the relaxation times to magnetisation reversal are over two orders of magnitude longer in iron doped lithium nitride than other 3d-metal SIMs, and comparable with high-performance lanthanide-based SIMs. To understand the origin of these enhanced magnetic properties a detailed characterisation of electronic structure is presented. Access to dopant electronic structure calls for atomic specific techniques, hence a combination of detailed single-crystal X-ray absorption and emission spectroscopies are applied. Together K-edge, L2,3-edge and Kβ X-ray spectroscopies probe local geometry and electronic structure, identifying iron doped lithium nitride to be a prototype, solid-state SIM, clean of stoichiometric vacancies where Fe lattice sites are geometrically equivalent. Extended X-ray absorption fine structure and angular dependent single-crystal X-ray absorption near edge spectroscopy measurements determine FeI dopant ions to be linearly coordinated, occupying a D6h symmetry pocket. The dopant engages in strong 3dπ-bonding, resulting in an exceptionally short Fe–N bond length (1.873(7) Å) and rigorous linearity. It is proposed that this structure protects dopant sites from Renner–Teller vibronic coupling and pseudo Jahn–Teller distortions, enhancing magnetic properties with respect to molecular-based linear complexes. The Fe ligand field is quantified by L2,3-edge XAS from which the energy reduction of 3dz2 due to strong 4s mixing is deduced. Quantification of magnetic anisotropy barriers in low concentration dopant sites is inhibited by many established methods, including far-infrared and neutron scattering. We deduce variable temperature L3-edge XAS can be applied to quantify the J = 7/2 magnetic anisotropy barrier, 34.80 meV (∼280 cm−1), that corresponds with Orbach relaxation via the first excited, MJ = ±5/2 doublet. The results demonstrate that dopant sites within solid-state host lattices could offer a viable alternative to rare-earth bulk magnets and high-performance SIMs, where the host matrix can be tailored to impose high symmetry and control lattice induced relaxation effects. Taking advantage of synchrotron light source methods, we present the geometric and electronic structure of iron doped in lithium nitride.![]()
Collapse
Affiliation(s)
- Myron S Huzan
- The University of Manchester at Harwell, Diamond Light Source Harwell Campus OX11 0DE UK .,Department of Chemistry, The University of Manchester Manchester M13 9PL UK
| | - Manuel Fix
- EP VI, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg D-86159 Augsburg Germany
| | - Matteo Aramini
- Diamond Light Source, Harwell Science and Innovation Campus Chilton Didcot OX11 0DE UK
| | - Peter Bencok
- Diamond Light Source, Harwell Science and Innovation Campus Chilton Didcot OX11 0DE UK
| | | | - Shusaku Hayama
- Diamond Light Source, Harwell Science and Innovation Campus Chilton Didcot OX11 0DE UK
| | - Franziska A Breitner
- EP VI, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg D-86159 Augsburg Germany
| | - Leland B Gee
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | - Charles J Titus
- Department of Physics, Stanford University Stanford CA 94305 USA
| | - Marie-Anne Arrio
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS, Sorbonne Université, IRD, MNHN, UMR7590 75252 Paris Cedex 05 France
| | - Anton Jesche
- EP VI, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg D-86159 Augsburg Germany
| | - Michael L Baker
- The University of Manchester at Harwell, Diamond Light Source Harwell Campus OX11 0DE UK .,Department of Chemistry, The University of Manchester Manchester M13 9PL UK
| |
Collapse
|
48
|
McCubbin Stepanic O, Ward J, Penner-Hahn JE, Deb A, Bergmann U, DeBeer S. Probing a Silent Metal: A Combined X-ray Absorption and Emission Spectroscopic Study of Biologically Relevant Zinc Complexes. Inorg Chem 2020; 59:13551-13560. [PMID: 32893611 PMCID: PMC7509839 DOI: 10.1021/acs.inorgchem.0c01931] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As the second most common transition metal in the human body, zinc is of great interest to research but has few viable routes for its direct structural study in biological systems. Herein, Zn valence-to-core X-ray emission spectroscopy (VtC XES) and Zn K-edge X-ray absorption spectroscopy (XAS) are presented as a means to understand the local structure of zinc in biological systems through the application of these methods to a series of biologically relevant molecular model complexes. Taken together, the Zn K-edge XAS and VtC XES provide a means to establish the ligand identity, local geometry, and metal-ligand bond lengths. Experimental results are supported by correlation with density-functional-theory-based calculations. Combining these theoretical and experimental approaches will enable future applications to protein systems in a predictive manner.
Collapse
Affiliation(s)
- Olivia McCubbin Stepanic
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Jesse Ward
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - James E Penner-Hahn
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Aniruddha Deb
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
49
|
Lafuerza S, Carlantuono A, Retegan M, Glatzel P. Chemical Sensitivity of Kβ and Kα X-ray Emission from a Systematic Investigation of Iron Compounds. Inorg Chem 2020; 59:12518-12535. [PMID: 32830953 DOI: 10.1021/acs.inorgchem.0c01620] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
K-fluorescence X-ray emission spectroscopy (XES) is receiving growing interest in all fields of natural sciences to investigate the local spin. The spin sensitivity in Kβ (Kα) XES stems from the exchange interaction between the unpaired 3p (2p) and the 3d electrons, which is greater for Kβ than for Kα. We present a thorough investigation of a large number of iron-bearing compounds. The experimental spectra were analyzed in terms of commonly used quantitative parameters (Kβ1,3-first moment, Kα1-full width at half-maximum, and integrated absolute difference -IAD-), and we carefully examined the difference spectra. Multiplet calculations were also performed to elucidate the underlying mechanisms that lead to the chemical sensitivity. Our results confirm a strong influence of covalency on both Kβ and Kα lines. We establish a reliable spin sensitivity of Kβ XES as it is dominated by the exchange interaction, whose variations can be quantified by either Kβ1,3-first moment or Kβ-IAD and result in a systematic difference signal line shape. We find an exception in the Kβ XES of Fe3+ and Fe2+ in water solution, where a new difference spectrum is identified that cannot be reproduced by scaling the exchange integrals. We explain this by strong differences in orbital mixing between the valence orbitals. This result calls for caution in the interpretation of Kβ XES spectral changes as due to spin variations without a careful analysis of the line shape. For Kα XES, the smaller exchange interaction and the influence of other electron-electron interactions make it difficult to extract a quantity that directly relates to the spin.
Collapse
Affiliation(s)
- Sara Lafuerza
- ESRF-The European Synchrotron, 71, Avenue des Martyrs, Grenoble, France
| | - Andrea Carlantuono
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Marius Retegan
- ESRF-The European Synchrotron, 71, Avenue des Martyrs, Grenoble, France
| | - Pieter Glatzel
- ESRF-The European Synchrotron, 71, Avenue des Martyrs, Grenoble, France
| |
Collapse
|
50
|
Femtosecond X-ray emission study of the spin cross-over dynamics in haem proteins. Nat Commun 2020; 11:4145. [PMID: 32811825 PMCID: PMC7434878 DOI: 10.1038/s41467-020-17923-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/21/2020] [Indexed: 12/27/2022] Open
Abstract
In haemoglobin the change from the low-spin (LS) hexacoordinated haem to the high spin (HS, S = 2) pentacoordinated domed deoxy-myoglobin (deoxyMb) form upon ligand detachment from the haem and the reverse process upon ligand binding are what ultimately drives the respiratory function. Here we probe them in the case of Myoglobin-NO (MbNO) using element- and spin-sensitive femtosecond Fe Kα and Kβ X-ray emission spectroscopy at an X-ray free-electron laser (FEL). We find that the change from the LS (S = 1/2) MbNO to the HS haem occurs in ~800 fs, and that it proceeds via an intermediate (S = 1) spin state. We also show that upon NO recombination, the return to the planar MbNO ground state is an electronic relaxation from HS to LS taking place in ~30 ps. Thus, the entire ligand dissociation-recombination cycle in MbNO is a spin cross-over followed by a reverse spin cross-over process. The change from low-spin hexacoordinated to high-spin pentacoordinated domed form in heam upon ligand detachment and the reverse process underlie the respiratory function. The authors, using femtosecond time-resolved X-ray emission spectroscopy, capture the transient states connecting the two forms in myoglobin-NO upon NO photoinduced detachment.
Collapse
|