1
|
Ren C, Han B, Guo H, Yang W, Xia C, Jin XH, Wang F, Wu L. Skeletal Editing of Aromatic N-Heterocycles via Hydroborative Cleavage of C-N Bonds-Scope, Mechanism, and Property. Angew Chem Int Ed Engl 2024; 63:e202407222. [PMID: 39166361 DOI: 10.1002/anie.202407222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/22/2024]
Abstract
Skeletal editing of the core structure of heterocycles offers new opportunities for chemical construction and is a promising yet challenging research topic that has recently gained increasing interest. However, several limitations of the reported systems remain to be addressed. For example, the reagents employed are generally in high-energy, such as chlorocarbene precursors, nitrene species, and metal carbenes, which are also associated with low atomic efficiencies. Thus, the development of simple systems for the skeletal editing of heterocycles is still desired. Herein, a straightforward and facile BH3-mediated skeletal editing of readily available indoles, benzimidazoles, and several other aromatic heterocycles is reported. Structurally diverse products were readily obtained, including tetrahydrobenzo azaborinines, diazaboroles, O-anilinophenylethyl alcohols, benzene-1,2-diamines, and more. Density functional theory (DFT) calculations and natural bond orbital (NBO) analysis revealed a BH3-induced C-N bond cleavage reaction pathway. An exciting and counterintuitive indole hydroboration phenomenon of -BH2 shift from C3-position to C2-position was disclosed. Moreover, the photophysical properties of the synthesized diazaboroles were studied, and an interestingly and pronounced aggregation-induced emission (AIE) behavior was disclosed.
Collapse
Affiliation(s)
- Chunping Ren
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, 730000, Lanzhou, P. R. China
| | - Bo Han
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, 730000, Lanzhou, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Hui Guo
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, P. R. China
| | - Wendi Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, 730000, Lanzhou, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, 730000, Lanzhou, P. R. China
| | - Xu-Hui Jin
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, P. R. China
| | - Fang Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, 730000, Lanzhou, P. R. China
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, 730000, Lanzhou, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 311121, Hangzhou, P. R. China
| |
Collapse
|
2
|
Nguyen VT, Sladek RN, Cao Y, Bhuvanesh N, Zhou J, Ozerov OV. C-H Activation of Pyridines by Boryl Pincer Complexes: Elucidation of Boryl-Directed C-H Oxidative Addition to Ir and Discovery of Transition Metal-Assisted Reductive Elimination from Boron at Rh. J Am Chem Soc 2024; 146:31281-31294. [PMID: 39475560 PMCID: PMC11565645 DOI: 10.1021/jacs.4c12143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/14/2024]
Abstract
Experimental and theoretical techniques were used to investigate the mechanism of pyridine C-H activation by diarylboryl/bis(phosphine) PBP pincer complexes of Ir. The critical intermediate (PBP)IrCO (4) contains a three-coordinate, Ir-bound boron that retains Lewis acidity in the perpendicular direction. Coordination of pyridine to this boron center in 4 leads to fast insertion of Ir into the 2-CH bond of pyridine, providing a different topology of direction than the conventional directed C-H activation where both the directing group coordination and C-H activation happen at the same metal center. Beyond this critical sequence, the system possesses significant complexity in terms of possible isomers and pathways, which have been thoroughly explored. Kinetic and thermodynamic preferences for the activation of differently substituted pyridines were also investigated. In experimental work, the key intermediate 4 is accessed via elimination of benzene from a phenyl/hydride containing precursor (PBPhP)IrHCO (3). Density functional theory (DFT) investigations of the mechanism of benzene loss from 3 revealed the possibility of a genuinely new type of mechanism, whereby the Ph-H bond is made in a concerted process that is best described as C-H reductive elimination from boron, assisted by the transition metal (TMARE). For Ir, this pathway was predicted to be competitive with the more conventional pathways involving C-H reductive elimination from Ir, but still higher in energy barrier. However, for the Rh analog 3-Rh, TMARE was calculated to be the preferred pathway for benzene loss and this prediction was experimentally corroborated through the study of reaction rates and the kinetic isotope effect.
Collapse
Affiliation(s)
- Vinh T. Nguyen
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - R. Noah Sladek
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Yihan Cao
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Nattamai Bhuvanesh
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Jia Zhou
- State
Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Oleg V. Ozerov
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| |
Collapse
|
3
|
Passargus M, Arrowsmith M, Bertermann R, Finze M, Braunschweig H. A-Frame-Templated High-Coordinate Platinum(IV) cis-Bis(boryl) Complexes. Inorg Chem 2024; 63:10657-10670. [PMID: 38795118 DOI: 10.1021/acs.inorgchem.4c01141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
The addition of Et2O·BF3 or Me2S·BCl3 to the BNBN-cumulene-bridged Pt(II) A-frame complexes [(μ-1,1-BNBN(TMS)2)(μ-dmpm)2Pt2X2] (TMS = SiMe3, dmpm = CH2(PMe2)2, X = Br 1Br, I 1I) resulted in the oxidative addition of one B-F or B-Cl bond, respectively, to the internal BN bond of the bridging, iminoborane-like B-N≡B-N moiety, and coordination of one Pt(II) center to the resulting adjacent BF2 (complex 2Br-F) or BCl2 (complexes 2Br-Cl and 2I-Cl) moiety, respectively. X-ray crystallographic and multinuclear NMR-spectroscopic data show that the Pt→BF2 interaction in 2Br-F is very weak and merely electrostatic, while the Pt→BCl2 interaction in 2Br-Cl and 2I-Cl is a stronger donor-acceptor bond. In contrast, the reaction of Me2S·BBr3 with 1Br yielded a ca. 3:2 mixture of the analogous B-Br addition product to the iminoborane, 2Br-Br, and the product of a subsequent oxidative addition of one B-Br bond of the chelating BBr2 moiety to the adjacent platinum center, the mixed-valence boranediyl-bridged, Pt(II)-Pt(IV)-bromoboryl complex 3-Br5. The analogous reactions of Me2S·BI3 with 1Br and Me2S·BBr3 with 1I yielded complex product mixtures of Pt(II)-Pt(II)-borane (2Br-I and 2I-Br, respectively) and Pt(II)-Pt(IV)-boryl complexes (3-BrnI5-n, n = 1-3) analogous to 2X-Y and 3-Br5, respectively, the proportion of the latter increasing with the proportion of iodide in the precursor mixture. Both multinuclear NMR-spectroscopic and X-ray crystallographic data show evidence of complex and extensive inter- and intramolecular bromide-iodide exchanges between the soft, iodide-affine platinum centers and the harder, more bromide-affine boron centers. A clue to the mechanism of these halide exchanges is provided by the reactions of BBr2Ar (Ar = 2,4,6-Me3C6H2 (Mes), 2,3,5,6-Me4C6H (Dur)) with 1Br, which yielded the cationic Pt(II)-Pt(II)-borenium analogues of 2Br-Br, the complexes 4Br-Ar, generated by the sterics-induced displacement of the bromide substituent from the chelating Pt→BBrAr moiety, and displaying a rare metal→borenium donor-acceptor bond.
Collapse
Affiliation(s)
- Max Passargus
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Merle Arrowsmith
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Rüdiger Bertermann
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Maik Finze
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| |
Collapse
|
4
|
Audsley G, Carpentier A, Pécharman AF, Wright J, Roseveare TM, Clark ER, Macgregor SA, Riddlestone IM. Contrasting reactivity of B-Cl and B-H bonds at [Ni(IMes) 2] to form unsupported Ni-boryls. Chem Commun (Camb) 2024; 60:874-877. [PMID: 38164828 DOI: 10.1039/d3cc05369e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
[Ni(IMes)2] reacts with chloroboranes via oxidative addition to form rare unsupported Ni-boryls. In contrast, the oxidative addition of hydridoboranes is not observed and products from competing reaction pathways are identified. Computational studies relate these differences to the mechanism of oxidative addition: B-Cl activation proceeds via nucleophilic displacement of Cl-, while B-H activation would entail high energy concerted bond cleavage.
Collapse
Affiliation(s)
- Gabrielle Audsley
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK.
| | - Ambre Carpentier
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | | | - James Wright
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK.
| | | | - Ewan R Clark
- School of Physical Sciences, University of Kent, Canterbury, CT2 7NH, UK
| | - Stuart A Macgregor
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Ian M Riddlestone
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
5
|
Fernández S, Fernando S, Planas O. Cooperation towards nobility: equipping first-row transition metals with an aluminium sword. Dalton Trans 2023; 52:14259-14286. [PMID: 37740303 DOI: 10.1039/d3dt02722h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The exploration for noble metals substitutes in catalysis has become a highly active area of research, driven by the pursuit of sustainable chemical processes. Although the utilization of base metals holds great potential as an alternative, their successful implementation in predictable catalytic processes necessitates the development of appropriate ligands. Such ligands must be capable of controlling their intricate redox chemistry and promote two-electron events, thus mimicking well-established organometallic processes in noble metal catalysis. While numerous approaches for infusing nobility to base metals have been explored, metal-ligand cooperation has garnered significant attention in recent years. Within this context, aluminium-based ligands offer interesting features to fine-tune the activity of metal centres, but their application in base metal catalysis remains largely unexplored. This perspective seeks to highlight the most recent breakthroughs in the reactivity of heterobimetallic aluminium-base-metal complexes, while also showcasing their potential to develop novel and predictable catalytic transformations. By turning the spotlight on such heterobimetallic species, we aim to inspire chemists to explore aluminium-base-metal species and expand the range of their applications as catalysts.
Collapse
Affiliation(s)
- Sergio Fernández
- Queen Mary University of London, School of Physical and Chemical Sciences, Department of Chemistry, Mile End Road, London E1 4NS, UK.
| | - Selwin Fernando
- Queen Mary University of London, School of Physical and Chemical Sciences, Department of Chemistry, Mile End Road, London E1 4NS, UK.
| | - Oriol Planas
- Queen Mary University of London, School of Physical and Chemical Sciences, Department of Chemistry, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
6
|
Luque-Gómez A, García-Orduña P, Lahoz FJ, Iglesias M. Synthesis and catalytic activity of well-defined Co(I) complexes based on NHC-phosphane pincer ligands. Dalton Trans 2023; 52:12779-12788. [PMID: 37615585 DOI: 10.1039/d3dt00463e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
A new methodology for the preparation of Co(I)-NHC (NHC = N-heterocyclic carbene) complexes, namely, [Co(PCNHCP)(CO)2][Co(CO)4] (1) and [Co(PCNHCP)(CO)2]BF4 (2), has been developed (PCNHCP = 1,3-bis(2-(diphenylphosphanyl)ethyl)-imidazol-2-ylidene). Both complexes can be straightforwardly prepared by direct reaction of their parent imidazolium salts with the Co(0) complex Co2(CO)8. Complex 1 efficiently catalyses the reductive amination of furfural and levulinic acid employing silanes as reducing agents under mild conditions. Furfural has been converted into a variety of secondary and tertiary amines employing dimethyl carbonate as the solvent, while levulinic acid has been converted into pyrrolidines under solventless conditions. Dehydrocoupling of the silane to give polysilanes has been observed to occur as a side reaction of the hydrosilylation process.
Collapse
Affiliation(s)
- Ana Luque-Gómez
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009-Zaragoza, Spain.
| | - Pilar García-Orduña
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009-Zaragoza, Spain.
| | - Fernando J Lahoz
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009-Zaragoza, Spain.
| | - Manuel Iglesias
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009-Zaragoza, Spain.
| |
Collapse
|
7
|
Fernando-López O, Trujillo-Hernández K, Moreno-Martínez VA, Martínez-Otero D, Bernabé-Pablo E, Huerta-Lavorie R, Jancik V. Molecular Alumo- and Gallosilicate Hydrides Functionalized with Terminal M(NR 2) 3 and Bridging M(NR 2) 2 (M = Ti, Zr, Hf; R = Me, Et) Moieties. Inorg Chem 2023; 62:14533-14545. [PMID: 37642323 DOI: 10.1021/acs.inorgchem.3c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
A general synthetic strategy for the systematic synthesis of group 4 MIV heterometallic complexes LMIII(H)(μ-O)Si(μ-O)(OtBu)2}nMIV(NR2)4-n (L = {[HC{C(Me)N(2,6-iPr2C6H3)}2; MIII = Al or Ga; n = 1 or 2; MIV = Ti, Zr, Hf; R = Me, Et), based on alumo- or gallosilicate hydride ligands bearing a Si-OH moiety, is presented. The challenging isolation of these metalloligands involved two strategies. On the one hand, the acid-base reaction of LAlH2 with (HO)2Si(OtBu)2 yielded LAlH(μ-O)Si(OH)(OtBu)2 (1), while on the other hand, the oxidative addition of (HO)2Si(OtBu)2 to LGa produced the gallium analog (2). These metalloligands successfully stabilized two hydrogen atoms with different acid-base properties (MIII-H and SiO-H) in the same molecule. Reactivity studies between 1 and 2 and group 4 amides MIV(NR2)4 (MIV = Ti, Zr, Hf; R = Me, Et) and tuning the reactions conditions and stoichiometry led to isolation and structural characterization of heterometallic complexes 3-11 with a 1:1 or 2:1 metalloligand/MIV ratio. Notably, some of these molecular heterometallic silicate complexes stabilize for the first time terminal (O3Si-O-)MIV(NR2)3 moieties known from single-site silica-grafted species. Furthermore, the aluminum-containing heterometallic complexes possess Al-H vibrational energies similar to those reported for modified alumina surfaces, which makes them potentially suitable models for the proposed MIV species grafted onto silica/alumina surfaces with hydride and dihydride architectures.
Collapse
Affiliation(s)
- Oscar Fernando-López
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carr. Toluca-Atlacomulco km. 14.5, Toluca, Estado de México 50200, México
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México 04510, México
| | - Karla Trujillo-Hernández
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carr. Toluca-Atlacomulco km. 14.5, Toluca, Estado de México 50200, México
| | - Víctor Augusto Moreno-Martínez
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carr. Toluca-Atlacomulco km. 14.5, Toluca, Estado de México 50200, México
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México 04510, México
| | - Diego Martínez-Otero
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carr. Toluca-Atlacomulco km. 14.5, Toluca, Estado de México 50200, México
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México 04510, México
| | - Erandi Bernabé-Pablo
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carr. Toluca-Atlacomulco km. 14.5, Toluca, Estado de México 50200, México
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México 04510, México
| | - Raúl Huerta-Lavorie
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carr. Toluca-Atlacomulco km. 14.5, Toluca, Estado de México 50200, México
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México 04510, México
| | - Vojtech Jancik
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carr. Toluca-Atlacomulco km. 14.5, Toluca, Estado de México 50200, México
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México 04510, México
| |
Collapse
|
8
|
Rutz PM, Grunenberg J, Kleeberg C. Synthesis, Reactivity and Coordination Chemistry of Group 9 PBP Boryl Pincer Complexes: [(PBP)M(PMe 3) n] (M = Co, Rh, Ir; n = 1, 2). Molecules 2023; 28:6191. [PMID: 37687020 PMCID: PMC10488511 DOI: 10.3390/molecules28176191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
The unsymmetrical diborane(4) derivative [(d(CH2P(iPr)2)abB)-Bpin] (1) proved to be a versatile PBP boryl pincer ligand precursor for Co(I) (2a, 4a), Rh(I) (2-3b) and Ir(I/III) (2-3c, 5-6c) complexes, in particular of the types [(d(CH2P(iPr)2)abB)M(PMe3)2] (2a-c) and [(d(CH2P(iPr)2)abB)M-PMe3] (2b-c). Whilst similar complexes have been obtained before, for the first time, the coordination chemistry of a homologous series of PBP pincer complexes, in particular the interconversion of the five- and four-coordinate complexes 2a-c/3a-c, was studied in detail. For Co, instead of the mono phosphine complex 2a, the dinitrogen complex [(d(CH2P(iPr)2)abB)Co(N2)(PMe3)] (4a) is formed spontaneously upon PMe3 abstraction from 2a in the presence of N2. All complexes were comprehensively characterised spectroscopically in solution via multinuclear (VT-)NMR spectroscopy and structurally in the solid state through single-crystal X-ray diffraction. The unique properties of the PBP ligand with respect to its coordination chemical properties are addressed.
Collapse
Affiliation(s)
- Philipp M. Rutz
- Institute of Inorganic and Analytical Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Jörg Grunenberg
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Christian Kleeberg
- Institute of Inorganic and Analytical Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
9
|
Álvarez-Rodríguez L, Ríos P, Laglera-Gándara CJ, Jurado A, Fernández-de-Córdova FJ, Gunnoe TB, Rodríguez A. Cleavage of Carbon Dioxide C=O Bond Promoted by Nickel-Boron Cooperativity in a PBP-Ni Complex. Angew Chem Int Ed Engl 2023; 62:e202306315. [PMID: 37399341 DOI: 10.1002/anie.202306315] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/05/2023]
Abstract
The synthesis and characterization of (tBu PBP)Ni(OAc) (5) by insertion of carbon dioxide into the Ni-C bond of (tBu PBP)NiMe (1) is presented. An unexpected CO2 cleavage process involving the formation of new B-O and Ni-CO bonds leads to the generation of a butterfly-structured tetra-nickel cluster (tBu PBOP)2 Ni4 (μ-CO)2 (6). Mechanistic investigation of this reaction indicates a reductive scission of CO2 by O-atom transfer to the boron atom via a cooperative nickel-boron mechanism. The CO2 activation reaction produces a three-coordinate (tBu P2 BO)Ni-acyl intermediate (A) that leads to a (tBu P2 BO)-NiI complex (B) via a likely radical pathway. The NiI species is trapped by treatment with the radical trap (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) to give (tBu P2 BO)NiII (η2 -TEMPO) (7). Additionally, 13 C and 1 H NMR spectroscopy analysis using 13 C-enriched CO2 provides information about the species involved in the CO2 activation process.
Collapse
Affiliation(s)
- Lucía Álvarez-Rodríguez
- Instituto de Investigaciones Químicas-Departamento de Química Inorgánica, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
| | - Pablo Ríos
- Instituto de Investigaciones Químicas-Departamento de Química Inorgánica, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
| | - Carlos J Laglera-Gándara
- Instituto de Investigaciones Químicas-Departamento de Química Inorgánica, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
| | - Andrea Jurado
- Instituto de Investigaciones Químicas-Departamento de Química Inorgánica, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
| | - Francisco José Fernández-de-Córdova
- Instituto de Investigaciones Químicas-Departamento de Química Inorgánica, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
| | - T Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Amor Rodríguez
- Instituto de Investigaciones Químicas-Departamento de Química Inorgánica, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
10
|
Wehmeyer FU, Langer R. A hampered oxidative addition of pre-coordinated pincer ligands can favour alternative pathways of activation. Chem Commun (Camb) 2023; 59:6004-6007. [PMID: 37114407 DOI: 10.1039/d3cc00874f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Pre-coordination to a transition metal by the terminal donor groups of a tri-dentate ligand is a common strategy to stabilise elusive groups, to achieve unprecedented bond activation and to develop novel modes of metal-ligand-cooperation for catalysis. In the current manuscript, we demonstrate that the oxidative addition of a central E-H-bond after pre-coordination to the metal centre is disfavoured for metals with d10 electron configuration. For exemplary pincer ligands and metals with d10 electron configuration, quantum chemical calculations suggest a second barrier, which is associated with the rearrangement of the saw-horse structure, obtained after oxidative addition, to the expected square planar geometry for the resulting d8 electron configuration. In the case of PBP-type ligands with a central L2BH2-group (L = R3P) the reaction with Pt0 precursors proceeds via an alternative pathway of activation, which involves the backside attack of a nucleophile to the boron atom, which facilitates the nucleophilic attack of the Pt0 centre and formation of a boryl complex (LBH2). As the corresponding reaction with a PtII precursor leads to B-H- instead of B-L-activation and formation of complex 2 with a L2BH donor, our results show that ligand-stabilized borylenes (L2BH) can in principle be converted to boryls (LBH2) via boronium salts (L2BH2+).
Collapse
Affiliation(s)
- Frerk-Ulfert Wehmeyer
- Institute of Chemistry, Faculty of Natural Sciences II, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany.
| | - Robert Langer
- Institute of Chemistry, Faculty of Natural Sciences II, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany.
| |
Collapse
|
11
|
Titova YY. Dynamic EPR Studies of the Formation of Catalytically Active Centres in Multicomponent Hydrogenation Systems. Catalysts 2023. [DOI: 10.3390/catal13040653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
The formation of catalytically active nano-sized cobalt-containing structures in multicomponent hydrogenation systems based on Co(acac)2 complex and various cocatalysts, namely, AlEt3, AlEt2(OEt), Li-n-Bu, and (PhCH2)MgCl, has been studied for the first time in detail using dynamic EPR spectroscopy. It is shown that after mixing the initial components, paramagnetic structures are formed, which include a fragment containing Co(0) with the electronic configuration 3d9, as well as a fragment bearing an aluminium, lithium, or magnesium atom, depending on the nature of the used cocatalyst. Such bimetallic paramagnetic sites are stabilized by acetylacetonate ligands. In addition, the paramagnetic complex contains the arene molecule(s), and the cobalt atom is bonded with the atom of the corresponding non-transition through the alkyl group of the co-catalyst, in particular through the carbon atom in the α-position with respect to the atom of the non-transition element. Due to the high reactivity of the described intermediates, they, under the conditions of hydrogenation catalysis, are transformed into nano-sized cobalt-containing structures that act as carriers of the catalytically active sites. Furthermore, because of the high reactivity and paramagnetism, such intermediates can be detected only by the EPR technique. The paper describes the whole experimental way of interpreting the EPR signals corresponding to the intermediates, precursors of catalytically active structures. In addition, a possible mathematical model based on the obtained experimental EPR data is presented.
Collapse
|
12
|
De Leon E, Gonzalez F, Bauskar P, Gonzalez-Eymard S, De Los Santos D, Shoshani MM. Amplifying Reactivity of Metal Hydrides: A Heterotrimetallic NiAl 2(μ 2-H) 2 Catalyst for the Dearomatization of N-Heterocycles. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Edgardo De Leon
- Department of Chemistry, University of Texas Rio Grande Valley, 1 W. University Blvd. Brownsville, Texas 78520, United States
| | - Fernando Gonzalez
- Department of Chemistry, University of Texas Rio Grande Valley, 1 W. University Blvd. Brownsville, Texas 78520, United States
| | - Preetika Bauskar
- Department of Chemistry, University of Texas Rio Grande Valley, 1 W. University Blvd. Brownsville, Texas 78520, United States
| | - Sergio Gonzalez-Eymard
- Department of Chemistry, University of Texas Rio Grande Valley, 1 W. University Blvd. Brownsville, Texas 78520, United States
| | - David De Los Santos
- Department of Chemistry, University of Texas Rio Grande Valley, 1 W. University Blvd. Brownsville, Texas 78520, United States
| | - Manar M. Shoshani
- Department of Chemistry, University of Texas Rio Grande Valley, 1 W. University Blvd. Brownsville, Texas 78520, United States
| |
Collapse
|
13
|
Tendera L, Fantuzzi F, Marder TB, Radius U. Nickel boryl complexes and nickel-catalyzed alkyne borylation. Chem Sci 2023; 14:2215-2228. [PMID: 36845942 PMCID: PMC9945561 DOI: 10.1039/d2sc04690c] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/27/2023] [Indexed: 01/28/2023] Open
Abstract
The first nickel bis-boryl complexes cis-[Ni( i Pr2ImMe)2(Bcat)2], cis-[Ni( i Pr2ImMe)2(Bpin)2] and cis-[Ni( i Pr2ImMe)2(Beg)2] are reported, which were prepared via the reaction of a source of [Ni( i Pr2ImMe)2] with the diboron(4) compounds B2cat2, B2pin2 and B2eg2 ( i Pr2ImMe = 1,3-di-iso-propyl-4,5-dimethylimidazolin-2-ylidene; B2cat2 = bis(catecholato)diboron; B2pin2 = bis(pinacolato)diboron; B2eg2 = bis(ethylene glycolato)diboron). X-ray diffraction and DFT calculations strongly suggest that a delocalized, multicenter bonding scheme dictates the bonding situation of the NiB2 moiety in these square planar complexes, reminiscent of the bonding situation of "non-classical" H2 complexes. [Ni( i Pr2ImMe)2] also efficiently catalyzes the diboration of alkynes using B2cat2 as the boron source under mild conditions. In contrast to the known platinum-catalyzed diboration, the nickel system follows a different mechanistic pathway, which not only provides the 1,2-borylation product in excellent yields, but also provides an efficient approach to other products such as C-C coupled borylation products or rare tetra-borylated compounds. The mechanism of the nickel-catalyzed alkyne borylation was examined by means of stoichiometric reactions and DFT calculations. Oxidative addition of the diboron reagent to nickel is not dominant; the first steps of the catalytic cycle are coordination of the alkyne to [Ni( i Pr2ImMe)2] and subsequent borylation at the coordinated and, thus, activated alkyne to yield complexes of the type [Ni(NHC)2(η2-cis-(Bcat)(R)C[double bond, length as m-dash]C(R)(Bcat))], exemplified by the isolation and structural characterization of [Ni( i Pr2ImMe)2(η2-cis-(Bcat)(Me)C[double bond, length as m-dash]C(Me)(Bcat))] and [Ni( i Pr2ImMe)2(η2-cis-(Bcat)(H7C3)C[double bond, length as m-dash]C(C3H7)(Bcat))].
Collapse
Affiliation(s)
- Lukas Tendera
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Felipe Fantuzzi
- School of Chemistry and Forensic Science, University of KentPark Wood RdCanterburyCT2 7NHUK
| | - Todd B. Marder
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität WürzburgAm Hubland97074 WürzburgGermany,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität WürzburgAm Hubland97074 WürzburgGermany
| | - Udo Radius
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
14
|
Handford RC, Nguyen TT, Teat SJ, Britt RD, Tilley TD. Direct Transformation of SiH 4 to a Molecular L(H) 2Co═Si═Co(H) 2L Silicide Complex. J Am Chem Soc 2023; 145:3031-3039. [PMID: 36696099 DOI: 10.1021/jacs.2c11569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The synthesis of bimetallic molecular silicide complexes is reported, based on the use of multiple Si-H bond activations in SiH4 at the metal centers of 14-electron LCoI fragments (L = Tp″, HB(3,5-diisopropylpyrazolyl)3-; [BP2tBuPz], PhB(CH2PtBu2)2(pyrazolyl)). Upon exposure of (Tp″Co)2(μ-N2) (1) to SiH4, a mixture of (Tp″Co)2(μ-H) (2) and (Tp″Co)2(μ-H)2 (3) was formed and no evidence for Si-H oxidative addition products was observed. In contrast, [BP2tBuPz]-supported Co complexes led to Si-H oxidative additions with the generation of silylene and silicide complexes as products. Notably, the reaction of ([BP2tBuPz]Co)2(μ-N2) (5) with SiH4 gave the dicobalt silicide complex [BP2tBuPz](H)2Co═Si═Co(H)2[BP2tBuPz] (8) in high yield, representing the first direct route to a symmetrical bimetallic silicide. The effect of the [BP2tBuPz] ligand on Co-Si bonding in 7 and 8 was explored by analysis of solid-state molecular structures and density functional theory (DFT) investigations. Upon exposure to CO or DMAP (DMAP = 4-dimethylaminopyridine), 8 converted to the corresponding [BP2tBuPz]Co(L)x adducts (L = CO, x = 2; L = DMAP, x = 1) with concomitant loss of SiH4, despite the lack of significant Si-H interactions in the starting complex. On heating to 60 °C, 8 underwent reaction with MeCl to produce small quantities of MexSiH4-x (x = 1-3), demonstrating functionalization of the μ-silicon atom in a molecular silicide to form organosilanes.
Collapse
Affiliation(s)
- Rex C Handford
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Trisha T Nguyen
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Simon J Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - T Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
15
|
Kong F, Ríos P, Hauck C, Fernández-de-Córdova FJ, Dickie DA, Habgood LG, Rodríguez A, Gunnoe TB. Ethylene Dimerization and Oligomerization Using Bis(phosphino)boryl Supported Ni Complexes. J Am Chem Soc 2023; 145:179-193. [PMID: 36542802 DOI: 10.1021/jacs.2c09471] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report the dimerization and oligomerization of ethylene using bis(phosphino)boryl supported Ni(II) complexes as catalyst precursors. By using alkylaluminum(III) compounds or other Lewis acid additives, Ni(II) complexes of the type (RPBP)NiBr (R = tBu or Ph) show activity for the production of butenes and higher olefins. Optimized turnover frequencies of 640 molethylene·molNi-1·s-1 for the formation of butenes with 41(1)% selectivity for 1-butene using (PhPBP)NiBr, and 68 molethylene·molNi-1·s-1 for butenes production with 87.2(3)% selectivity for 1-butene using (tBuPBP)NiBr, have been demonstrated. With methylaluminoxane as a co-catalyst and (tBuPBP)NiBr as the precatalyst, ethylene oligomerization to form C4 through C20 products was achieved, while the use of (PhPBP)NiBr as the pre-catalyst retained selectivity for C4 products. Our studies suggest that the ethylene dimerization is not initiated by Ni hydride or alkyl intermediates. Rather, our studies point to a mechanism that involves a cooperative B/Ni activation of ethylene to form a key 6-membered borametallacycle intermediate. Thus, a cooperative activation of ethylene by the Ni-B unit of the (RPBP)Ni catalysts is proposed as a key element of the Ni catalysis.
Collapse
Affiliation(s)
- Fanji Kong
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Pablo Ríos
- Department of Inorganic Chemistry CSIC and. University of Seville, Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Instituto de Investigaciones Quimicas (IIQ), C/Américo Vespucio 49, Seville 41092, Spain
| | - Conner Hauck
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Francisco José Fernández-de-Córdova
- Department of Inorganic Chemistry CSIC and. University of Seville, Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Instituto de Investigaciones Quimicas (IIQ), C/Américo Vespucio 49, Seville 41092, Spain
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Laurel G Habgood
- Department of Chemistry, Rollins College, Winter Park, Florida 32789, United States
| | - Amor Rodríguez
- Department of Inorganic Chemistry CSIC and. University of Seville, Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Instituto de Investigaciones Quimicas (IIQ), C/Américo Vespucio 49, Seville 41092, Spain
| | - T Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
16
|
Rutz PM, Grunenberg J, Kleeberg C. Unsymmetrical Diborane(4) as a Precursor to PBP Boryl Pincer Complexes: Synthesis and Cu(I) and Pt(II) PBP Complexes with Unusual Structural Features. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Philipp M. Rutz
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Jörg Grunenberg
- Institut für Organische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Christian Kleeberg
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
17
|
Cai Y, Jiang S, Rajeshkumar T, Maron L, Xu X. A Planar Nickelaspiropentane Complex with Magnesium-Based Metalloligands: Synthesis, Structure, and Synergistic Dihydrogen Activation. J Am Chem Soc 2022; 144:16647-16655. [PMID: 36041123 DOI: 10.1021/jacs.2c07402] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nature of transition-metal-olefin bonding has been explained by the Dewar-Chatt-Duncanson model within a continuum of two extremes, namely, a π-complex and a metallacyclopropane. The textbook rule suggests that a low-spin late-transition-metal-ethylene complex more likely forms a π-complex rather than a metallacyclopropane. Herein, we report a low-spin late-transition-metal-bis-ethylene complex forming an unprecedented planar metalla-bis-cyclopropane structure with magnesium-based metalloligands. Treatment of LMgEt (L = [(DippNCMe)2CH]-, Dipp = 2,6-iPr2C6H3) with Ni(cod)2 (cod = 1,5-cyclooctadiene) formed the heterotrimetallic complex (LMg)2Ni(C2H4)2, which features a linear Mg-Ni-Mg linkage and a planar coordination geometry at the nickel center. Both structural features and computational studies strongly supported the Ni(C2H4)2 moiety as a nickelaspiropentane. The exposure of (LMg)2Ni(C2H4)2 to 1 bar H2 at room temperature produced a four-hydride-bridged complex (LMg)2Ni(μ-H)4. The profile of H2 activation was elucidated by density functional theory calculations, which indicated a novel Mg/Ni cooperative activation mechanism with no oxidation occurring at the metal center, differing from the prevailing mono-metal-based redox mechanism. Moreover, the heterotrimetallic complex (LMg)2Ni(C2H4)2 catalyzed the hydrogenation of a wide range of unsaturated substrates under mild conditions.
Collapse
Affiliation(s)
- Yanping Cai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, P. R. China
| | - Shengjie Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, P. R. China
| | - Thayalan Rajeshkumar
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077Toulouse, France
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077Toulouse, France
| | - Xin Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, P. R. China
| |
Collapse
|
18
|
Anferov SW, Filatov AS, Anderson JS. Cobalt-Catalyzed Hydrogenation Reactions Enabled by Ligand-Based Storage of Dihydrogen. ACS Catal 2022; 12:9933-9943. [PMID: 36033368 PMCID: PMC9396622 DOI: 10.1021/acscatal.2c02467] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/18/2022] [Indexed: 12/18/2022]
Abstract
The use of supporting ligands that can store either protons or electrons has emerged as a powerful strategy in catalysis. While these strategies are potent individually, natural systems mediate remarkable transformations by combining the storage of both protons and electrons in the secondary coordination sphere. As such, there has been recent interest in using this strategy to enable fundamentally different transformations. Furthermore, outsourcing H-atom or hydrogen storage to ancillary ligands can also enable alternative mechanistic pathways and thereby selectivity. Here, we describe the application of this strategy to facilitate radical reactivity in Co-based hydrogenation catalysis. Metalation of previously reported dihydrazonopyrrole ligands with Co results in paramagnetic complexes, which are best described as having Co(II) oxidation states. These complexes catalytically hydrogenate olefins with low catalyst loadings under mild conditions (1 atm H2, 23 °C). Mechanistic, spectroscopic, and computational investigations indicate that this system goes through a radical hydrogen-atom transfer (HAT) type pathway that is distinct from classic organometallic mechanisms and is supported by the ability of the ligand to store H2. These results show how ancillary ligands can facilitate efficient catalysis, and furthermore how classic organometallic mechanisms for catalysis can be altered by the secondary coordination sphere.
Collapse
Affiliation(s)
- Sophie W Anferov
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60627, United States
| | - Alexander S Filatov
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60627, United States
| | - John S Anderson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60627, United States
| |
Collapse
|
19
|
Chang J, Ding M, Kang JX, Zhang J, Chen X. Coordination mode and stability of the tetrahydroborate ligand in group 10 metal pincer complexes. Dalton Trans 2022; 51:11507-11514. [PMID: 35833572 DOI: 10.1039/d2dt01357f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The coordination mode of the BH4- ligand in transition metal tetrahydroborate complexes is mainly dominated by the nature of the metal centres. However, other factors can also play important roles sometimes. In order to rationalize the coordination modes and the stability of the BH4- ligand in group 10 metal tetrahydroborate pincer complexes, [2,6-(tBu2PO)2C6H3]Pt(η1-HBH3) and [C6H4-o-(NCH2PtBu2)2B]M(η2-H2BH2) (M = Ni, Pt) were prepared and characterized. A structural comparison of [2,6-(tBu2PCH2)2C6H3]Ni(BH4), [2,6-(tBu2PO)2C6H3]M(BH4) and [C6H4-o-(NCH2PtBu2)2B]M(BH4) (M = Ni, Pd, and Pt) indicates that the M-P bond length, the P-M-P bite angle and the trans-influence of the central atom in the pincer platform also affect the coordination mode of the BH4- ligand. The nickel complexes tend to adopt a monodentate coordination mode while the palladium and platinum complexes can adopt either the monodentate or the bidentate mode depending on the structural features of the pincer platforms. Longer M-P bonds and smaller P-M-P bite angles favour the bidentate mode. The stability of the BH4- ligand is influenced by both the coordination mode and the nature of the metal centre. The BH3 species is released more easily from complexes with less electron rich metal centres. Following the series of Ni, Pd, and Pt, complexes with the same pincer ligand more easily lose a BH3 moiety.
Collapse
Affiliation(s)
- Jiarui Chang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Man Ding
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Jia-Xin Kang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Jie Zhang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Xuenian Chen
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China. .,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
20
|
Kessete JM, Demissie TB, Chilume M, Mohammed AM, Andrushchenko V. Phosphine–borane catalysts for CO 2 activation and reduction: a computational study. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2087566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Taye B. Demissie
- Department of Chemistry, University of Botswana, Gabrone, Botswana
| | - Misha Chilume
- Department of Chemistry, University of Botswana, Gabrone, Botswana
| | - Ahmed M. Mohammed
- Department of chemistry, Addis Ababa University, Addis Ababa, Ethiopia
| | - Valery Andrushchenko
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
21
|
Ghosh T, Kedarnath G, Mobin SM. A Highly Active Nitrogen‐Doped Mixed‐Phase Mixed‐Valence Cobalt Nanocatalyst for Olefins and Nitroarenes Hydrogenation. ChemistrySelect 2022. [DOI: 10.1002/slct.202200204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Topi Ghosh
- Discipline of Chemistry Indian Institute of Technology Indore, Simrol Khandwa Road Indore 453552 India
| | - Gotluru Kedarnath
- Chemistry Division Bhabha Atomic Research Centre Mumbai 400 085 India
- Homi Bhabha National Institute, Anushaktinagar Mumbai 400 094 India
| | - Shaikh M. Mobin
- Discipline of Chemistry Indian Institute of Technology Indore, Simrol Khandwa Road Indore 453552 India
- Discipline of Metallurgy Engineering and Materials Science Indian Institute of Technology Indore, Simrol Khandwa Road Indore 453552 India
- Discipline of Biosciences and Bio-Medical Engineering Indian Institute of Technology Indore, Simrol Khandwa Road Indore 453552 India
| |
Collapse
|
22
|
Spielvogel KD, Durgaprasad G, Daly SR. Configurational Flexibility of a Triaryl-Supported SBS Ligand with Rh and Ir: Structural Investigations and Olefin Isomerization Catalysis. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kyle D. Spielvogel
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| | - Gummadi Durgaprasad
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242-1294, United States
- Department of Chemistry, RGUKT-AP, IIIT-Ongole, Andhra Pradesh 523225, India
| | - Scott R. Daly
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| |
Collapse
|
23
|
Kishino M, Takaoka S, Shibutani Y, Kusumoto S, Nozaki K. Synthesis and reactivity of PC(sp 3)P-pincer iridium complexes bearing a diborylmethyl anion. Dalton Trans 2022; 51:5009-5015. [PMID: 35296874 DOI: 10.1039/d2dt00513a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel PCP-pincer iridium complexes bearing a diborylmethyl anion were synthesized. Strong σ-electron-donation to the metal and significant π-backdonation from the metal to boron atoms at the β-position were observed both experimentally and computationally. H/D exchange of the aromatic C-H bond proceeded smoothly and, in addition, the α-methine-hydrogen between boron atoms was found to be replaced with deuterium in benzene-d6 solution possibly through diborylcarbene metal complexes as intermediates.
Collapse
Affiliation(s)
- Masamichi Kishino
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Satoko Takaoka
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Yuki Shibutani
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Shuhei Kusumoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
24
|
Cai Y, Jiang S, Dong L, Xu X. Synthesis and reactivity of heterometallic complexes containing Mg- or Zn-metalloligands. Dalton Trans 2022; 51:3817-3827. [PMID: 35107467 DOI: 10.1039/d1dt04117g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Heteronuclear metal complexes comprising main group metals and transition metals have attracted widespread attention from researchers due to their applications in stoichiometric and catalytic activation of small molecules with possible cooperative effects. Herein, the advances of heterometallic complexes containing Mg- or Zn-metalloligands over the past ten years are reviewed. They consist of two parts: (i) synthetic approaches to heterometallic complexes. Only a brief discussion is made on the different Mg/Zn precursors since they have been summarized before. (ii) Stoichiometric and catalytic reactivities of heterometallic complexes containing Mg/Zn metalloligands. The exploration of the cooperative catalytic reaction of heterometallic complexes is still in its infancy, promising but challenging; thus, further investigations are required in the future.
Collapse
Affiliation(s)
- Yanping Cai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Shengjie Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Liqiu Dong
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Xin Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
25
|
Semba K, Shimoura F, Nakao Y. Synthesis and Reactivity of Heterobimetallic Co-PAlP Pincer Complexes. CHEM LETT 2022. [DOI: 10.1246/cl.220008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kazuhiko Semba
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510
| | - Fumiya Shimoura
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510
| | - Yoshiaki Nakao
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510
| |
Collapse
|
26
|
Seidel FW, Nozaki K. A Ni
0
σ‐Borane Complex Bearing a Rigid Bidentate Borane/Phosphine Ligand: Boryl Complex Formation by Oxidative Dehydrochloroborylation and Catalytic Activity for Ethylene Polymerization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Falk William Seidel
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo Japan
| |
Collapse
|
27
|
Affiliation(s)
- Naofumi Hara
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Kazuhiko Semba
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yoshiaki Nakao
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
28
|
Ju F, Li L, Wu T, Sun Y, Ling H. Competition between reactive adsorption desulfurization and olefin hydrogenation over the NiO/ZnO–Al 2O 3–SiO 2 adsorbent. NEW J CHEM 2022. [DOI: 10.1039/d2nj01050j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The RADS process inhibits olefin hydrogenation by competitive adsorption, which is affected by temperature and Ni loading.
Collapse
Affiliation(s)
- Feng Ju
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lan Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Tian Wu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yao Sun
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hao Ling
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
29
|
Deziel AP, Espinosa MR, Pavlovic L, Charboneau DJ, Hazari N, Hopmann KH, Mercado BQ. Ligand and solvent effects on CO2 insertion into group 10 metal alkyl bonds. Chem Sci 2022; 13:2391-2404. [PMID: 35342547 PMCID: PMC8867079 DOI: 10.1039/d1sc06346d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 11/29/2022] Open
Abstract
The insertion of carbon dioxide into metal element σ-bonds is an important elementary step in many catalytic reactions for carbon dioxide valorization. Here, the insertion of carbon dioxide into a family of group 10 alkyl complexes of the type (RPBP)M(CH3) (RPBP = B(NCH2PR2)2C6H4−; R = Cy or tBu; M = Ni or Pd) to generate κ1-acetate complexes of the form (RPBP)M{OC(O)CH3} is investigated. This involved the preparation and characterization of a number of new complexes supported by the unusual RPBP ligand, which features a central boryl donor that exerts a strong trans-influence, and the identification of a new decomposition pathway that results in C–B bond formation. In contrast to other group 10 methyl complexes supported by pincer ligands, carbon dioxide insertion into (RPBP)M(CH3) is facile and occurs at room temperature because of the high trans-influence of the boryl donor. Given the mild conditions for carbon dioxide insertion, we perform a rare kinetic study on carbon dioxide insertion into a late-transition metal alkyl species using (tBuPBP)Pd(CH3). These studies demonstrate that the Dimroth–Reichardt parameter for a solvent correlates with the rate of carbon dioxide insertion and that Lewis acids do not promote insertion. DFT calculations indicate that insertion into (tBuPBP)M(CH3) (M = Ni or Pd) proceeds via an SE2 mechanism and we compare the reaction pathway for carbon dioxide insertion into group 10 methyl complexes with insertion into group 10 hydrides. Overall, this work provides fundamental insight that will be valuable for the development of improved and new catalysts for carbon dioxide utilization. The kinetics of carbon dioxide insertion into a pincer-supported palladium methyl complex are studied. The complex inserts carbon dioxide at room temperature, and we explore both solvent and Lewis acid effects on carbon dioxide insertion.![]()
Collapse
Affiliation(s)
- Anthony P. Deziel
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Matthew R. Espinosa
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Ljiljana Pavlovic
- Department of Chemistry, UiT The Arctic University of Norway, N-9307 Tromsø, Norway
| | - David J. Charboneau
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Nilay Hazari
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Kathrin H. Hopmann
- Department of Chemistry, UiT The Arctic University of Norway, N-9307 Tromsø, Norway
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| |
Collapse
|
30
|
Seidel FW, Nozaki K. A Ni 0 σ-Borane Complex Bearing a Rigid Bidentate Borane/Phosphine Ligand: Boryl Complex Formation by Oxidative Dehydrochloroborylation and Catalytic Activity for Ethylene Polymerization. Angew Chem Int Ed Engl 2021; 61:e202111691. [PMID: 34854528 DOI: 10.1002/anie.202111691] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Indexed: 11/08/2022]
Abstract
While of interest, synthetically feasible access to boryl ligands and complexes remains limited, meaning such complexes remain underexploited in catalysis. For bidentate boryl ligands, oxidative addition of boranes to low-valent IrI or Pt0 are the only examples yet reported. As part of our interest in developing improved group 10 ethylene polymerization catalysts, we present here an optimized synthesis of a novel, rigid borane/phosphine ligand and its Ni0 σ-borane complex. From the latter, an unprecedented oxidative dehydrochloroborylation, to give a NiII boryl complex, was achieved. Furthermore, this new B/P ligand allowed the nickel-catalyzed polymerization of ethylene, which suggests that Ni0 σ-hydroborane complexes act as masked NiII boryl hydride reagents.
Collapse
Affiliation(s)
- Falk William Seidel
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
31
|
Trans Influence of Boryl Ligands in CO2 Hydrogenation on Ruthenium Complexes: Theoretical Prediction of Highly Active Catalysts for CO2 Reduction. Catalysts 2021. [DOI: 10.3390/catal11111356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this work, we study the trans influence of boryl ligands and other commonly used non-boryl ligands in order to search for a more active catalyst than the ruthenium dihydride complex Ru(PNP)(CO)H2 for the hydrogenation of CO2. The theoretical calculation results show that only the B ligands exhibit a stronger trans influence than the hydride ligand and are along increasing order of trans influence as follows: –H < –BBr2 < –BCl2 ≈ –B(OCH)2 < –Bcat < –B(OCH2)2 ≈ –B(OH)2 < –Bpin < –B(NHCH2)2 < –B(OCH3)2 < –B(CH3)2 < –BH2. The computed activation free energy for the direct hydride addition to CO2 and the NBO analysis of the property of the Ru–H bond indicate that the activity of the hydride can be enhanced by the strong trans influence of the B ligands through the change in the Ru–H bond property. The function of the strong trans influence of B ligands is to decrease the d orbital component of Ru in the Ru–H bond. The design of a more active catalyst than the Ru(PNP)(CO)H2 complex is possible.
Collapse
|
32
|
Bose SK, Mao L, Kuehn L, Radius U, Nekvinda J, Santos WL, Westcott SA, Steel PG, Marder TB. First-Row d-Block Element-Catalyzed Carbon-Boron Bond Formation and Related Processes. Chem Rev 2021; 121:13238-13341. [PMID: 34618418 DOI: 10.1021/acs.chemrev.1c00255] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Organoboron reagents represent a unique class of compounds because of their utility in modern synthetic organic chemistry, often affording unprecedented reactivity. The transformation of the carbon-boron bond into a carbon-X (X = C, N, and O) bond in a stereocontrolled fashion has become invaluable in medicinal chemistry, agrochemistry, and natural products chemistry as well as materials science. Over the past decade, first-row d-block transition metals have become increasingly widely used as catalysts for the formation of a carbon-boron bond, a transformation traditionally catalyzed by expensive precious metals. This recent focus on alternative transition metals has enabled growth in fundamental methods in organoboron chemistry. This review surveys the current state-of-the-art in the use of first-row d-block element-based catalysts for the formation of carbon-boron bonds.
Collapse
Affiliation(s)
- Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India
| | - Lujia Mao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 571199 Haikou, Hainan, P. R. China
| | - Laura Kuehn
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jan Nekvinda
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stephen A Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Patrick G Steel
- Department of Chemistry, University of Durham, Science Laboratories South Road, Durham DH1 3LE, U.K
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
33
|
Cao Y, Shih WC, Bhuvanesh N, Zhou J, Ozerov OV. Cooperative C-H activation of pyridine by PBP complexes of Rh and Ir can lead to bridging 2-pyridyls with different connectivity to the B-M unit. Chem Sci 2021; 12:14167-14173. [PMID: 34760201 PMCID: PMC8565379 DOI: 10.1039/d1sc01850g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022] Open
Abstract
Pyridine and quinoline undergo selective C–H activation in the 2-position with Rh and Ir complexes of a boryl/bis(phosphine) PBP pincer ligand, resulting in a 2-pyridyl bridging the transition metal and the boron center. Examination of this reactivity with Rh and Ir complexes carrying different non-pincer ligands on the transition metal led to the realization of the possible isomerism derived from the 2-pyridyl fragment connecting either via B–N/C–M bonds or via B–C/N–M bonds. This M–C/M–N isomerism was systematically examined for four structural types. Each of these types has a defined set of ligands on Rh/Ir besides 2-pyridyl and PBP. A pair of M–C/M–N isomers for each type was computationally examined for Rh and for Ir, totaling 16 compounds. Several of these compounds were isolated or observed in solution by experimental methods, in addition to a few 2-quinolyl variants. The DFT predictions concerning the thermodynamic preference within each M–C/M–N isomeric match the experimental findings very well. In two cases where DFT predicts <2 kcal mol−1 difference in free energy, both isomers were experimentally observed in solution. Analysis of the structural data, of the relevant Wiberg bond indices, and of the ETS-NOCV partitioning of the interaction of the 2-pyridyl fragment with the rest of the molecule points to the strength of the M–C(pyridyl) bond as the dominant parameter determining the relative M–C/M–N isomer favorability. This M–C bond is always stronger for the analogous Ir vs. Rh compounds, but the nature of the ligand trans to it has a significant influence, as well. DFT calculations were used to evaluate the mechanism of isomerization for one of the molecule types. The thermodynamic preference between two isomeric products of C–H activation of pyridine, with 2-pyridyl bridging boron and iridium or rhodium, primarily depends on the M–C bond strength.![]()
Collapse
Affiliation(s)
- Yihan Cao
- Department of Chemistry, Texas A&M University 3255 TAMU College Station Texas 77842 USA
| | - Wei-Chun Shih
- Department of Chemistry, Texas A&M University 3255 TAMU College Station Texas 77842 USA
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University 3255 TAMU College Station Texas 77842 USA
| | - Jia Zhou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Harbin 150090 China
| | - Oleg V Ozerov
- Department of Chemistry, Texas A&M University 3255 TAMU College Station Texas 77842 USA
| |
Collapse
|
34
|
|
35
|
Lapointe S, Pandey DK, Gallagher JM, Osborne J, Fayzullin RR, Khaskin E, Khusnutdinova JR. Cobalt Complexes of Bulky PNP Ligand: H2 Activation and Catalytic Two-Electron Reactivity in Hydrogenation of Alkenes and Alkynes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sébastien Lapointe
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Dilip K. Pandey
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - James M. Gallagher
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - James Osborne
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Robert R. Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russian Federation
| | - Eugene Khaskin
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Julia R. Khusnutdinova
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
36
|
Wentz KE, Molino A, Freeman LA, Dickie DA, Wilson DJD, Gilliard RJ. Reactions of 9-Carbene-9-Borafluorene Monoanion and Selenium: Synthesis of Boryl-Substituted Selenides and Diselenides. Inorg Chem 2021; 60:13941-13949. [PMID: 34472333 DOI: 10.1021/acs.inorgchem.1c02124] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reactions of 9-carbene-9-borafluorene monoanion (1) with elemental selenium and selenium-containing reagents are reported. When compound 1 is reacted with grey selenium in THF, various boryl-substituted selenides and diselenides are produced (2-6), including molecules resulting from migration of the carbene ligand Dipp group (Dipp = 2,6-diisopropylphenyl). However, when a similar reaction between 1 and grey selenium is performed in toluene in the presence of 18-crown-6, boryl-substituted selenide 7 is obtained as the sole boron-containing product. As compound 7 is the monomeric variant of organoselenide 3, 18-crown-6 promotes both product selectivity and solubility in a nonpolar solvent. Diselenide 5, which features a trans-bent B-Se-Se-B core, was directly isolated via reaction of 1 with Se2Cl2 in THF. Computational modeling suggests that the formation of 5 proceeds via a radical mechanism. This was supported by an experiment demonstrating that the CAAC-borafluorene radical also reacts with SeCl2 to yield 5 [CAAC = (2,6-diisopropylphenyl)-4,4-diethyl-2,2-dimethyl-pyrrolidin-5-ylidene]. Energy decomposition analysis of 5 indicates a covalent borafluorene-diselenide bond (ΔEint, -168.9 kcal mol-1). All of the new compounds were fully characterized via single-crystal X-ray diffraction and multinuclear nuclear magnetic resonance (1H, 13C, 11B, and 77Se).
Collapse
Affiliation(s)
- Kelsie E Wentz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Andrew Molino
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Lucas A Freeman
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - David J D Wilson
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Robert J Gilliard
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
37
|
Li QZ, Hara N, Semba K, Nakao Y, Sakaki S. Rh Complex with Unique Rh–Al Direct Bond: Theoretical Insight into its Characteristic Features and Application to Catalytic Reaction via σ-Bond Activation. Top Catal 2021. [DOI: 10.1007/s11244-021-01491-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Fang F, Xue MM, Ding M, Zhang J, Li S, Chen X. The Stability of Diphosphino-Boryl PBP Pincer Backbone: PBP to POP Ligand Hydrolysis. Chem Asian J 2021; 16:2489-2494. [PMID: 34254470 DOI: 10.1002/asia.202100690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/10/2021] [Indexed: 01/25/2023]
Abstract
Since moisture may frequently be present in many solvents, it is important to know the reactivity of a catalyst against water for catalytic reactions. In order to explore the stability and understand the transformation process of diphosphino-boryl-based PBP pincer platform, [PdCl{B(NCH2 Pt Bu2 )2 -o-C6 H4 }] (1) was treated with PdCl2 , HB(NCH2 PPh2 )2 -o-C6 H4 was reacted with [PdCl2 (cod)] (cod=cyclo-octa-1,5-diene) and [Pd2 (dba)3 ] (dba=dibenzylideneacetone), respectively, in the presence of water. Some novel palladium POP complexes, [Pd2 Cl2 (μ-Cl){μ-κ3 -P,O,P-OB(NCH2 Pt Bu2 )2 -o-C6 H4 }] (2 a), [Pd4 (μ-Cl)2 (μ-O)2 {μ-κ3 -P,O,P-OB(NCH2 PPh2 )2 -o-C6 H4 }2 ] (2 b), [Pd2 {μ-κ4 -P,P,P,P-O(B(NCH2 PPh2 )2 -o-C6 H4 )2 }{μ-κ2 -P,P-(NHCH2 PPh2 )2 -o-C6 H4 }] (3), were obtained. It was found that the PBP pincer backbone can easily be converted into a POP backbone in the presence of water. From the crystal structures of the resultant palladium complexes, possible pincer backbone transformation pathways were discussed.
Collapse
Affiliation(s)
- Fei Fang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Man-Man Xue
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Man Ding
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Jie Zhang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Shujun Li
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Xuenian Chen
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| |
Collapse
|
39
|
Wiedmaier NR, Schubert H, Mayer HA, Wesemann L. Carbocyclic pincer carbene complexes of ruthenium: syntheses and reversible hydrogenation. Dalton Trans 2021; 50:11814-11820. [PMID: 34369545 DOI: 10.1039/d1dt02266k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ruthenium carbene pincer complex 2 was synthesized treating the benzo annulated cycloheptatriene bisphosphine 1 with RuCl3. Addition of three equivalents of hydrogen to the carbocyclic carbene complex 2 was achieved in reaction of 2 with hydrogen at elevated temperatures. Hydrogenated complex 4, exhibiting a rigid chair conformation in solution, was dehydrogenated by heating a toluene solution of complex 4 to reflux for 5-7 d. In reaction with ethylene, complex 4 transfers one equivalent of hydrogen, forming ethane and alkyl complex 5.
Collapse
Affiliation(s)
- Nicholas R Wiedmaier
- Institut für Anorganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
40
|
Hara N, Yamamoto K, Tanaka Y, Saito T, Sakaki S, Nakao Y. Synthesis, Electronic Properties, and Lewis Acidity of Rhodium Complexes Bearing X-Type PBP, PAlP, and PGaP Pincer Ligands. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Naofumi Hara
- Department of Material Chemistry, Institution Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Konosuke Yamamoto
- Department of Material Chemistry, Institution Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yuuki Tanaka
- Department of Material Chemistry, Institution Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Teruhiko Saito
- Department of Material Chemistry, Institution Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Shigeyoshi Sakaki
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto 615-8510, Japan
| | - Yoshiaki Nakao
- Department of Material Chemistry, Institution Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
41
|
Zhang S, Zhai X, Song Y, Feng L, Tung CH, Wang W. Insertion of BH3 into a Cobalt–Aryl Bond: Synthetic Routes to Arylborohydride and Borane-Amino Hydride Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shengnan Zhang
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, People’s Republic of China
| | - Xiaofang Zhai
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, People’s Republic of China
| | - Yike Song
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, People’s Republic of China
| | - Lei Feng
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, People’s Republic of China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, People’s Republic of China
| | - Wenguang Wang
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, People’s Republic of China
- College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, People’s Republic of China
| |
Collapse
|
42
|
Antil N, Kumar A, Akhtar N, Newar R, Begum W, Dwivedi A, Manna K. Aluminum Metal–Organic Framework-Ligated Single-Site Nickel(II)-Hydride for Heterogeneous Chemoselective Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04379] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Neha Antil
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ajay Kumar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Naved Akhtar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Rajashree Newar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Wahida Begum
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ashutosh Dwivedi
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Kuntal Manna
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
43
|
Sun X, Zhu C. Synthesis, characterization and reactivity of a neutral antimony(III) complex. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Mechanistic Insights into Selective Hydrogenation of C=C Bonds Catalyzed by CCC Cobalt Pincer Complexes: A DFT Study. Catalysts 2021. [DOI: 10.3390/catal11020168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The mechanistic insights into hydrogenations of hex-5-en-2-one, isoprene, and 4-vinylcyclohex-1-ene catalyzed by pincer (MesCCC)Co (Mes = bis(mesityl-benzimidazol-2-ylidene)phenyl) complexes are computationally investigated by using the density functional theory. Different from a previously proposed mechanism with a cobalt dihydrogen complex (MesCCC)Co-H2 as the catalyst, we found that its less stable dihydride isomer, (MesCCC)Co(H)2, is the real catalyst in those catalytic cycles. The generations of final products with H2 cleavages for the formations of C−H bonds are the turnover-limiting steps in all three hydrogenation reactions. We found that the hydrogenation selectivity of different C=C bonds in the same compound is dominated by the steric effects, while the hydrogenation selectivity of C=C and C=O bonds in the same compound could be primarily influenced by the electronic effects. In addition, the observed inhabition of the hydrogenation reactions by excessive addition of PPh3 could be explained by a 15.8 kcal/mol free energy barrier for the dissociation of PPh3 from the precatalyst.
Collapse
|
45
|
Lücke MP, Yao S, Driess M. Boosting homogeneous chemoselective hydrogenation of olefins mediated by a bis(silylenyl)terphenyl-nickel(0) pre-catalyst. Chem Sci 2021; 12:2909-2915. [PMID: 34164057 PMCID: PMC8179395 DOI: 10.1039/d0sc06471h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/04/2021] [Indexed: 11/21/2022] Open
Abstract
The isolable chelating bis(N-heterocyclic silylenyl)-substituted terphenyl ligand [SiII(Terp)SiII] as well as its bis(phosphine) analogue [PIII(Terp)PIII] have been synthesised and fully characterised. Their reaction with Ni(cod)2 (cod = cycloocta-1,5-diene) affords the corresponding 16 VE nickel(0) complexes with an intramolecular η 2-arene coordination of Ni, [E(Terp)E]Ni(η 2-arene) (E = PIII, SiII; arene = phenylene spacer). Due to a strong cooperativity of the Si and Ni sites in H2 activation and H atom transfer, [SiII(Terp)SiII]Ni(η 2-arene) mediates very effectively and chemoselectively the homogeneously catalysed hydrogenation of olefins bearing functional groups at 1 bar H2 pressure and room temperature; in contrast, the bis(phosphine) analogous complex shows only poor activity. Catalytic and stoichiometric experiments revealed the important role of the η2-coordination of the Ni(0) site by the intramolecular phenylene with respect to the hydrogenation activity of [SiII(Terp)SiII]Ni(η 2-arene). The mechanism has been established by kinetic measurements, including kinetic isotope effect (KIE) and Hammet-plot correlation. With this system, the currently highest performance of a homogeneous nickel-based hydrogenation catalyst of olefins (TON = 9800, TOF = 6800 h-1) could be realised.
Collapse
Affiliation(s)
- Marcel-Philip Lücke
- Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 115, Sekr. C2 D-10623 Berlin Germany
| | - Shenglai Yao
- Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 115, Sekr. C2 D-10623 Berlin Germany
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 115, Sekr. C2 D-10623 Berlin Germany
| |
Collapse
|
46
|
Ríos P, Borge J, Fernández de Córdova F, Sciortino G, Lledós A, Rodríguez A. Ambiphilic boryl groups in a neutral Ni(ii) complex: a new activation mode of H 2. Chem Sci 2020; 12:2540-2548. [PMID: 34164022 PMCID: PMC8179274 DOI: 10.1039/d0sc06014c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
The concept of metal-ligand cooperation opens new avenues for the design of catalytic systems that may offer alternative reactivity patterns to the existing ones. Investigations of this concept with ligands bearing a boron center in their skeleton established mechanistic pathways for the activation of small molecules in which the boron atom usually performs as an electrophile. Here, we show how this electrophilic behavior can be modified by the ligand trans to the boron center, evincing its ambiphilic nature. Treatment of diphosphinoboryl (PBP) nickel-methyl complex 1 with bis(catecholato)diboron (B2Cat2) allows for the synthesis of nickel(ii) bis-boryl complex 3 that promotes the clean and reversible heterolytic cleavage of dihydrogen leading to the formation of dihydroborate nickel complex 4. Density functional theory analysis of this reaction revealed that the heterolytic activation of H2 is facilitated by the cooperation of both boryl moieties and the metal atom in a concerted mechanism that involves a Ni(ii)/Ni(0)/Ni(ii) process. Contrary to 1, the boron atom from the PBP ligand in 3 behaves as a nucleophile, accepting a formally protic hydrogen, whereas the catecholboryl moiety acts as an electrophile, receiving the attack from the hydride-like fragment. This manifests the dramatic change in the electronic properties of a ligand by tuning the substituent trans to it and constitutes an unprecedented cooperative mechanism that involves two boryl ligands in the same molecule operating differently, one as a Lewis acid and the other one as a Lewis base, in cooperation with the metal. In addition, reactivity towards different nucleophiles such as amines or ammonia confirmed the electrophilic nature of the Bcat moiety, allowing the formation of aminoboranes.
Collapse
Affiliation(s)
- Pablo Ríos
- Instituto de Investigaciones Químicas, Departamento de Química Inorgánica, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/Américo Vespucio 49 41092 Sevilla Spain
| | - Javier Borge
- Departamento de Química Física y Analítica, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo C/Julián Clavería 8 33006 Oviedo Spain
| | - Francisco Fernández de Córdova
- Instituto de Investigaciones Químicas, Departamento de Química Inorgánica, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/Américo Vespucio 49 41092 Sevilla Spain
| | - Giuseppe Sciortino
- Departament de Química, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona Campus UAB 08193 Cerdanyola del Vallès Spain
| | - Agustí Lledós
- Departament de Química, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona Campus UAB 08193 Cerdanyola del Vallès Spain
| | - Amor Rodríguez
- Instituto de Investigaciones Químicas, Departamento de Química Inorgánica, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/Américo Vespucio 49 41092 Sevilla Spain
| |
Collapse
|
47
|
Lai Q, Bhuvanesh N, Ozerov OV. Unexpected B/Al Transelementation within a Rh Pincer Complex. J Am Chem Soc 2020; 142:20920-20923. [DOI: 10.1021/jacs.0c09344] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qingheng Lai
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77842, United States
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77842, United States
| | - Oleg V. Ozerov
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77842, United States
| |
Collapse
|
48
|
Chatterjee B, Chang WC, Jena S, Werlé C. Implementation of Cooperative Designs in Polarized Transition Metal Systems—Significance for Bond Activation and Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03794] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Basujit Chatterjee
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany
- Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Wei-Chieh Chang
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany
- Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Soumyashree Jena
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany
- Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany
- Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
49
|
Li QZ, Hara N, Nakao Y, Sakaki S. Coordination Flexibility of the Rh(PXP) Complex to NH 3, CO, and C 2H 4 (PXP = Diphosphine-Based Pincer Ligand; X = B, Al, and Ga): Theoretical Insight. Inorg Chem 2020; 59:15862-15876. [PMID: 33054207 DOI: 10.1021/acs.inorgchem.0c02390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The recently synthesized rhodium-aluminum bimetallic complex Rh(PAlP) 1 (PAlP = pincer-type diphosphino-aluminyl ligand Al{[N(C6H4)]2NMe}[CH2P(iPr)2]2) containing a unique Rh-Al direct bond exhibits coordination flexibility because Rh and Al can play the role of coordination site for the substrate. DFT calculations of NH3, CO, and C2H4 adducts with 1 show that the Rh atom is favorable for all these substrate but the Al atom is as favorable as the Rh atom for NH3 and unfavorable for CO and C2H4. NH3 and CO prefer the coordination at the Rh-axial (Ax) site to the Rh-equatorial (Eq) site, but C2H4 prefers coordination at the Rh-Eq site to the Rh-Ax site. Consequently, two CO and C2H4 molecules coordinate with 1 at the Rh-Ax and Rh-Eq sites to afford trigonal bipyramidal complexes Rh(PAlP)(CO)2 and Rh(PAlP)(C2H4)2, which is consistent with the experimental observation of Rh(PAlP)(CO)2. Energy decomposition analysis reveals that an electrostatic term plays an important role for NH3 coordination with the Al atom of 1, because Al has a significantly large positive charge and NH3 has a much negatively charged N atom and exhibits a considerably negative electrostatic potential at the Al position. In B and Ga analogues Rh(PBP) 2 and Rh(PGaP) 3, B and Ga atoms are not good for CO and C2H4 like the Al atom in 1. NH3 adducts with 2 and 3 at the B and Ga sites are less stable than those adducts at the Rh-Ax site unlike the NH3 adduct with 1 at the Al site. This difference in the NH3 adduct between Rh(PAlP) and others (Rh(PBP) and Rh(PGaP)) arises from much less positive charges of B and Ga and a smaller atomic size of B than that of Al. These results indicate that the significantly large electropositive nature and appropriate atomic size of Al are responsible for the characteristic coordination flexibility of Rh(PAlP).
Collapse
Affiliation(s)
- Qiao-Zhi Li
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-Nishi-hiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103, Japan
| | - Naofumi Hara
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yoshiaki Nakao
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Shigeyoshi Sakaki
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Goryo-Ohara 1-30, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
50
|
Rahaman SMW, Pandey DK, Rivada‐Wheelaghan O, Dubey A, Fayzullin RR, Khusnutdinova JR. Hydrogenation of Alkenes Catalyzed by a Non‐pincer Mn Complex. ChemCatChem 2020. [DOI: 10.1002/cctc.202001158] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- S. M. Wahidur Rahaman
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna Okinawa 904-0495 Japan
| | - Dilip K. Pandey
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna Okinawa 904-0495 Japan
| | - Orestes Rivada‐Wheelaghan
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna Okinawa 904-0495 Japan
| | - Abhishek Dubey
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna Okinawa 904-0495 Japan
| | - Robert R. Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center Russian Academy of Sciences 8 Arbuzov Street Kazan 420088 Russia
| | - Julia R. Khusnutdinova
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna Okinawa 904-0495 Japan
| |
Collapse
|