1
|
Jeong S, Lee H, Jeong Y, Cha HJ. Indocyanine Green-Loaded Adhesive Proteinic Nanoparticles for Effective Locoregional and Prolonged Photothermal Anticancer Therapy. Biomacromolecules 2024; 25:6913-6921. [PMID: 39297577 DOI: 10.1021/acs.biomac.4c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Conventional anticancer therapies, including surgical resection, radiation, and chemotherapy, are the primary modalities for treating various forms of cancer. However, these treatments often bring significant side effects and risk of recurrence, underscoring the need for more targeted and less invasive therapeutic options. To address this challenge, we developed an adhesive nanoparticle (NP)-based effective anticancer photothermal therapy (PTT) system using bioengineered mussel adhesion protein (MAP). The unique underwater tissue adhesive properties of MAP NPs enabled targeted delivery and prolonged retention at the tumor site, thereby improving therapeutic efficacy. Our innovative indocyanine green (ICG)-loaded MAP NPs (MAP@ICG NPs) demonstrated strong photothermal capability and stability, and potent anticancer activity in vitro. In vivo intratumor injection of the MAP@ICG NPs showed remarkable anticancer PTT effects, effectively reducing tumor growth with minimal damage to surrounding tissues. The development and utilization of this adhesive proteinic NP-based PTT system represent a significant advancement in cancer therapy, offering a promising alternative that combines the precision of NP delivery with effective therapeutic efficacy.
Collapse
Affiliation(s)
- Soyeon Jeong
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hyeokjun Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Yeonsu Jeong
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
2
|
Wu Z, Mo L, Wang Z, Song L, Kobatake E, Ito Y, Wang Y, Zhang P. Biointerface engineering through amalgamation of gene technology and site-specific growth factor conjugation for efficient osteodifferentiation. Biotechnol Bioeng 2024. [PMID: 39300684 DOI: 10.1002/bit.28852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/21/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
The development of bone implants through bioinspired immobilization of growth factors remains a key issue in the generation of biological interfaces, especially in enhancing osteodifferentiation ability. In this study, we developed a strategy for surface functionalization of poly(lactide-glycolide) (PLGA) and hydroxyapatite (HA) composite substrates through site-specific conjugation of bone morphogenetic protein 2 containing 3,4-hydroxyphenalyalanine (DOPA-BMP2) mediated by tyrosinase and sortase A (SrtA). Firstly, the growth factor BMP2-LPETG containing LPETG motif was successfully expressed in Escherichia coli through recombinant DNA technology. The excellent binding affinity of binding growth factor (DOPA-BMP2) was achieved by converting the tyrosine residue (Y) of YKYKY-GGG peptide into DOPA (X) by tyrosinase, which bound to the substrates. Then its GGG motif was specifically bound to the end of BMP2-LPETG mediated by SrtA. Therefore, the generated bioactive DOPA-BMP2/PLGA/HA substrates significantly promoted the osteogenic differentiation of MC3T3-E1 cells. Thanks to this microbial-assisted engineering approach, our work presents a facile and highly site-specific strategy to engineer biomimetic materials for orthopedics and dentistry by effectively delivering growth factors, peptides, and other biomacromolecules.
Collapse
Affiliation(s)
- Zhenxu Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
| | - Li Mo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
| | - Liangsong Song
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Eiry Kobatake
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8502, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan
| | - Yi Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
| |
Collapse
|
3
|
Peplau S, Neubert TJ, Balasubramanian K, Polleux J, Börner HG. Statistical Copolymers that Mimic Aspects of Mussel Adhesive Proteins: Access to Robust Adhesive-Domains for Non-Covalent Surface PEGylation. Macromol Rapid Commun 2023; 44:e2300300. [PMID: 37657944 DOI: 10.1002/marc.202300300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Reconstructing functional sequence motifs of proteins, using statistical copolymers greatly reduces the information content, but simplifies synthesis significantly. Key amino acid residues involved in the adhesion of mussel foot proteins are identified. The side-chain functionalities of Dopa, lysine, and arginine are abstracted and incorporated into acrylate monomers to allow controlled radical polymerization. The resulting Dopa-acrylate (Y*-acr), arginine-acrylate (R-acr), and lysine-acrylate (K-acr) monomers are polymerized in different monomer ratios and compositions by reversible addition fragmentation transfer polymerization with a poly(ethylene glycol) (PEG) macrochain transfer agent. This results in two sets of PEG-block-copolymers with statistical mixtures and different monomer ratios of catechol/primary amine and catechol/guanidine side-chain functionalities, both important pairs for mimicking π-cation interactions. The coating behavior of these PEG-block-copolymers is evaluated using quartz crystal microbalance with dissipation energy monitoring (QCM-D), leading to non-covalent PEGylation of the substrates with clear compositional optima in the coating stability and antifouling properties. The coatings prevent non-reversible albumin or serum adsorption, as well as reduce cellular adhesion and fungal spore attachment.
Collapse
Affiliation(s)
- Stefan Peplau
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Tilmann J Neubert
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
- Department of Chemistry, Micro & Nano Analytical Sciences, School of Analytical Sciences Adlershof (SALSA) and IRIS Adlershof, Humboldt-Universität zu Berlin, Albert-Einstein-Str. 5-9, 12489, Berlin, Germany
| | - Kannan Balasubramanian
- Department of Chemistry, Micro & Nano Analytical Sciences, School of Analytical Sciences Adlershof (SALSA) and IRIS Adlershof, Humboldt-Universität zu Berlin, Albert-Einstein-Str. 5-9, 12489, Berlin, Germany
| | - Julien Polleux
- Research & Innovation Unit, Department of Ophthalmic Optics, Health University of Applied Sciences Tyrol, Innrain 98, Innsbruck, 6020, Austria
| | - Hans G Börner
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
4
|
Wang L, Li H, Wang X, Yang X, Tian C, Sun D, Liu L, Li J. Modification of Low-Energy Surfaces Using Bicyclic Peptides Discovered by Phage Display. J Am Chem Soc 2023; 145:17613-17620. [PMID: 37531461 DOI: 10.1021/jacs.3c02943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Solid-binding peptides are a simple and versatile tool for the non-covalent modification of solid material surfaces, and a variety of peptides have been developed by reference to natural proteins or de novo design. Here, for the first time, we report the discovery of a bicyclic peptide targeting the heterogeneous material polypropylene by combining phage display technology and next-generation sequencing. We find that the enrichment properties of bicyclic peptides capable of binding to polypropylene are distinct from linear peptides, as reflected in amino acid abundance and a trend toward negative net charges and high hydrophobicity. The selected bicyclic peptide has a higher binding affinity for polypropylene compared with a previously reported linear peptide, enabling the hydrophilic and adhesive properties of the polypropylene to be more effectively enhanced. Our work paves the way for the exploration and utilization of conformational-restricted cyclic peptides as a new family of functionally evolvable agents for material surface modification.
Collapse
Affiliation(s)
- Lingxiao Wang
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Haodong Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Xinyan Wang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xichu Yang
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Changlin Tian
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Demeng Sun
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jinghong Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
- New Cornerstone Science Laboratory, Shenzhen 518054, China
| |
Collapse
|
5
|
Madeja B, Wilke P, Schreiner E, Konradi R, Scheck J, Bizzozero J, Nicoleau L, Wagner E, Rückel M, Cölfen H, Kellermeier M. Phage Display Screening as a Rational Approach to Design Additives for Selective Crystallization Control in Construction Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210015. [PMID: 36861429 DOI: 10.1002/adma.202210015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/22/2023] [Indexed: 05/19/2023]
Abstract
The design of additives showing strong and selective interactions with certain target surfaces is key to crystallization control in applied reactive multicomponent systems. While suitable chemical motifs can be found through semi-empirical trial-and-error procedures, bioinspired selection techniques offer a more rationally driven approach and explore a much larger space of possible combinations in a single assay. Here, phage display screening is used to characterize the surfaces of crystalline gypsum, a mineral of broad relevance for construction applications. Based on next-generation sequencing of phages enriched during the screening process, a triplet of amino acids, DYH, is identified as the main driver for adsorption on the mineral substrate. Furthermore, oligopeptides containing this motif prove to exert their influence in a strictly selective manner during the hydration of cement, where the sulfate reaction (initial setting) is strongly retarded while the silicate reaction (final hardening) remains unaffected. In the final step, these desired additive characteristics are successfully translated from the level of peptides to that of scalable synthetic copolymers. The approach described in this work demonstrates how modern biotechnological methods can be leveraged for the systematic development of efficient crystallization additives for materials science.
Collapse
Affiliation(s)
- Benjamin Madeja
- Physical Chemistry, University of Konstanz, Universitätsstr. 10, D-78464, Konstanz, Germany
| | - Patrick Wilke
- Material Science, BASF SE, Carl-Bosch-Str. 38, D-67056, Ludwigshafen, Germany
| | - Eduard Schreiner
- Molecular Modeling, BASF SE, Carl-Bosch-Str. 38, D-67056, Ludwigshafen, Germany
| | - Rupert Konradi
- Biointerfaces and Delivery Systems, BASF SE, Carl-Bosch-Str. 38, D-67056, Ludwigshafen, Germany
| | - Johanna Scheck
- Mineralogy, BASF Construction Additives GmbH, Dr.-Albert-Frank-Str. 32, D-83308, Trostberg, Germany
| | - Julien Bizzozero
- Mineralogy, BASF Construction Additives GmbH, Dr.-Albert-Frank-Str. 32, D-83308, Trostberg, Germany
| | - Luc Nicoleau
- Mineralogy, BASF Construction Additives GmbH, Dr.-Albert-Frank-Str. 32, D-83308, Trostberg, Germany
| | - Elisabeth Wagner
- Material Science, BASF SE, Carl-Bosch-Str. 38, D-67056, Ludwigshafen, Germany
| | - Markus Rückel
- Material Science, BASF SE, Carl-Bosch-Str. 38, D-67056, Ludwigshafen, Germany
| | - Helmut Cölfen
- Physical Chemistry, University of Konstanz, Universitätsstr. 10, D-78464, Konstanz, Germany
| | | |
Collapse
|
6
|
Yu Y, Lv B, Wu J, Chen W. Mussel-Based Biomimetic Strategies in Musculoskeletal Disorder Treatment: From Synthesis Principles to Diverse Applications. Int J Nanomedicine 2023; 18:455-472. [PMID: 36718191 PMCID: PMC9884062 DOI: 10.2147/ijn.s386635] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/03/2022] [Indexed: 01/26/2023] Open
Abstract
Musculoskeletal disorders are the second leading cause of disability worldwide, posing a huge global burden to the public sanitation system. Currently, tissue engineering-based approaches act as effective strategies, which are, however, challenging in limited application scenarios. Mussel-based biomimetic materials, exhibit numerous unique properties such as intense adhesion, biocompatibility, moisture resistance, and injectability, to name only a few, and have attracted extensive research interest. In particular, featuring state-of-the-art properties, mussel-inspired biomaterials have been widely explored in innumerable musculoskeletal disorder treatments including osteochondral defects, osteosarcoma, osteoarthritis, ligament rupture, and osteoporosis. Nevertheless, a comprehensive and timely discussion of their applications in musculoskeletal disorders is insufficient. In this review, we emphasize on (1) the main categories and characteristics of mussel foot proteins and their fundamental mechanisms for the spectacular adhesion in mussels; (2) the diverse synthetic methods and modification of various polymers; and (3) the emerging applications of mussel-biomimetic materials, the future perspectives, and challenges, especially in the area of musculoskeletal disorder. We envision that this review will provide a unique and insightful perspective to improve the development of a new generation of mussel biomimetic strategies.
Collapse
Affiliation(s)
- Yajie Yu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China,Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China,Hubei Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Bin Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Juntao Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Wei Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China,Hubei Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China,Correspondence: Wei Chen, Email
| |
Collapse
|
7
|
Affiliation(s)
- Youbing Mu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Qian Sun
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Bowen Li
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Xiaobo Wan
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| |
Collapse
|
8
|
Degen GD, Delparastan P, Tiu BDB, Messersmith PB. Surface Force Measurements of Mussel-Inspired Pressure-Sensitive Adhesives. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6212-6220. [PMID: 35050591 DOI: 10.1021/acsami.1c22295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Translating fundamental studies of marine mussel adhesion into practical mussel-inspired wet adhesives remains an important technological challenge. To adhere, mussels secrete adhesive proteins rich in the catecholic amino acid 3,4-dihydroxyphenylalanine (Dopa) and positively charged lysine. Consequently, numerous synthetic adhesives incorporating catecholic and cationic functionalities have been designed. However, despite widespread research, uncertainties remain about the optimal design of synthetic mussel-inspired adhesives. Here, we present a study of the adhesion of mussel-inspired pressure-sensitive adhesives. We explore the effects of catechol content, molecular architecture, and solvent quality on pressure-sensitive adhesive (PSA) adhesion and cohesion measured in a surface forces apparatus. Our findings demonstrate that the influence of catechol content depends on the choice of solvent and that adhesive performance is dictated by film composition rather than molecular architecture. Our results also highlight the importance of electrostatic and hydrophobic interactions for adhesion and cohesion in aqueous environments. Together, our findings contribute to an improved understanding of the interplay between materials chemistry, environmental conditions, and adhesive performance to facilitate the design of bioinspired wet adhesives.
Collapse
Affiliation(s)
- George D Degen
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | | | | | - Phillip B Messersmith
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
9
|
Krüger JM, Choi CY, Lossada F, Wang P, Löschke O, Auhl D, Börner HG. Broadening the Chemical Space of Mussel-Inspired Polymerization: The Roll-out of a TCC-Polymer Platform with Thiol–Catechol Connectivities. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jana M. Krüger
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor Straße 2, 12489 Berlin, Germany
| | - Ching-Yi Choi
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor Straße 2, 12489 Berlin, Germany
| | - Francisco Lossada
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor Straße 2, 12489 Berlin, Germany
| | - Peng Wang
- Department of Polymer Materials and Technologies, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| | - Oliver Löschke
- Department of Polymer Materials and Technologies, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| | - Dietmar Auhl
- Department of Polymer Materials and Technologies, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| | - Hans G. Börner
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor Straße 2, 12489 Berlin, Germany
| |
Collapse
|
10
|
Chen Y, Wang Q, Mills CE, Kann JG, Shull KR, Tullman-Ercek D, Wang M. High-Throughput Screening Test for Adhesion in Soft Materials Using Centrifugation. ACS CENTRAL SCIENCE 2021; 7:1135-1143. [PMID: 34345666 PMCID: PMC8323114 DOI: 10.1021/acscentsci.1c00414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 05/24/2023]
Abstract
High-throughput screening of mechanical properties can transform materials science research by both aiding in materials discovery and developing predictive models. However, only a few such assays have been reported, requiring custom or expensive equipment, while the mounting demand for enormous data sets of materials properties for predictive models is unfulfilled by the current characterization throughput. We address this problem by developing a high-throughput colorimetric adhesion screening method using a common laboratory centrifuge, multiwell plates, and microparticles. The technique uses centrifugation to apply a homogeneous mechanical detachment force across individual formulations in a multiwell plate. We also develop a high-throughput sample deposition method to prepare films with uniform thickness in each well, minimizing well-to-well variability. After establishing excellent agreement with the well-known probe tack adhesion test, we demonstrate the consistency of our method by performing the test on a multiwell plate with two different formulations in an easily discernible pattern. The throughput is limited only by the number of wells in the plates, easily reaching 103 samples/run. With its simplicity, low cost, and large dynamic range, this high-throughput method has the potential to change the landscape of adhesive material characterization.
Collapse
Affiliation(s)
- Yusu Chen
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120, United States
| | - Qifeng Wang
- Department
of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208-3108, United States
| | - Carolyn E. Mills
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120, United States
| | - Johanna G. Kann
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120, United States
| | - Kenneth R. Shull
- Department
of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208-3108, United States
| | - Danielle Tullman-Ercek
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120, United States
| | - Muzhou Wang
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120, United States
| |
Collapse
|
11
|
Rani K. Clinical Approaches of Biomimetic: An Emerging Next Generation Technology. Biomimetics (Basel) 2021. [DOI: 10.5772/intechopen.97148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Biomimetic is the study of various principles of working mechanisms of naturally occurring phenomena and their further respective integrations in to such a modified advanced mechanized instruments/models of digital or artificial intelligence protocols. Hence, biomimetic has been proposed in last decades for betterment of human mankind for improving security systems by developing various convenient robotic vehicles and devices inspired by natural working phenomenon of plants, animals, birds and insects based on biochemical engineering and nanotechnology. Hence, biomimetic will be considered next generation technology to develop various robotic products in the fields of chemistry, medicine, material sciences, regenerative medicine and tissue engineering medicine, biomedical engineering to treat various diseases and congenital disorders. The characteristics of tissue engineered scaffolds are found to possess multifunctional cellular properties like biocompatibility, biodegradability and favorable mechanized properties when comes in close contact with the body fluids in vivo. This chapter will provide overall overview to the readers for the study based on reported data of developed biomimetic materials and tools exploited for various biomedical applications and tissue engineering applications which further helpful to meet the needs of the medicine and health care industries.
Collapse
|
12
|
Huang J, Liu Y, Yang Y, Zhou Z, Mao J, Wu T, Liu J, Cai Q, Peng C, Xu Y, Zeng B, Luo W, Chen G, Yuan C, Dai L. Electrically programmable adhesive hydrogels for climbing robots. Sci Robot 2021; 6:6/53/eabe1858. [PMID: 34043565 DOI: 10.1126/scirobotics.abe1858] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
Although there have been notable advances in adhesive materials, the ability to program attaching and detaching behavior in these materials remains a challenge. Here, we report a borate ester polymer hydrogel that can rapidly switch between adhesive and nonadhesive states in response to a mild electrical stimulus (voltages between 3.0 and 4.5 V). This behavior is achieved by controlling the exposure and shielding of the catechol group through water electrolysis-induced reversible cleavage and reformation of the borate ester moiety. By switching the electric field direction, the hydrogel can repeatedly attach to and detach from various surfaces with a response time as low as 1 s. This programmable attaching/detaching strategy provides an alternative approach for robot climbing. The hydrogel is simply pasted onto the moving parts of climbing robots without complicated engineering and morphological designs. Using our hydrogel as feet and wheels, the tethered walking robots and wheeled robots can climb on both vertical and inverted conductive substrates (i.e., moving upside down) such as stainless steel and copper. Our study establishes an effective route for the design of smart polymer adhesives that are applicable in intelligent devices and an electrochemical strategy to regulate the adhesion.
Collapse
Affiliation(s)
- Junwen Huang
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China.,Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yu Liu
- School of Aerospace Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yuxin Yang
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Zhijun Zhou
- School of Aerospace Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jie Mao
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China.,Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Tong Wu
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jun Liu
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Qipeng Cai
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Chaohua Peng
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yiting Xu
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China.,Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Birong Zeng
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China.,Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Weiang Luo
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China.,Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Guorong Chen
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China.,Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Conghui Yuan
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China. .,Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Lizong Dai
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China. .,Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
13
|
Surface modification by poly(ethylene glycol) with different end-grafted groups: Experimental and theoretical study. Biointerphases 2021; 16:021002. [PMID: 33726496 DOI: 10.1116/6.0000647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dihydroxyphenylalanine (DOPA) is extensively reported to be a surface-independent anchor molecule in bioadhesive surface modification and antifouling biomaterial fabrication. However, the mechanisms of DOPA adsorption on versatile substrates and the comparison between experimental results and theoretical results are less addressed. We report the adsorption of DOPA anchored monomethoxy poly(ethylene glycol) (DOPA-mPEG) on substrates and surface wettability as well as antifouling property in comparison with thiol and hydroxyl anchored mPEG (mPEG-SH and mPEG-OH). Gold and hydroxylated silicon were used as model substrates to study the adsorptions of mPEGs. The experimental results showed that the DOPA-mPEG showed higher affinity to both gold and silicon wafers, and the DOPA-mPEG modified surfaces had higher resistance to protein adsorption than those of mPEG-SH and mPEG-OH. It is revealed that the surface wettability is primary for surface fouling, while polymer flexibility is the secondary parameter. We present ab initio calculations of the adsorption of mEGs with different end-functionalities on Au and hydroxylated silicon wafer (Si-OH), where the binding energies are obtained. It is established that monomethoxy ethylene glycol (mEG) with DOPA terminal DOPA-mEG is clearly favored for the adsorption with both gold and Si-OH surfaces due to the bidentate Au-O interactions and the bidentate O-H bond interactions, in agreement with experimental evidence.
Collapse
|
14
|
Krüger JM, Börner HG. Accessing the Next Generation of Synthetic Mussel-Glue Polymers via Mussel-Inspired Polymerization. Angew Chem Int Ed Engl 2021; 60:6408-6413. [PMID: 33507605 PMCID: PMC7985868 DOI: 10.1002/anie.202015833] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/15/2021] [Indexed: 11/25/2022]
Abstract
The formation of cysteinyldopa as biogenic connectivity in proteins is used to inspire a chemical pathway toward mussel-adhesive mimics. The mussel-inspired polymerization (MIPoly) exploits the chemically diverse family of bisphenol monomers that is oxidizable with 2-iodoxybenzoic acid to give bisquinones. Those react at room temperature with dithiols in Michael-type polyadditions, which leads to polymers with thiol-catechol connectivities (TCC). A set of TCC polymers proved adhesive behavior even on challenging poly(propylene) substrates, where they compete with commercial epoxy resins in dry adhesive strength. MIPoly promises facile scale up and exhibits high modularity to tailor adhesives, as proven on a small library where one candidate showed wet adhesion on aluminum substrates in both water and sea water models.
Collapse
Affiliation(s)
- Jana M. Krüger
- Laboratory for Organic Synthesis of Functional Systems InstitutionDepartment of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems InstitutionDepartment of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| |
Collapse
|
15
|
Krüger JM, Börner HG. Die nächste Generation synthetischer Muschelkleberpolymere durch muschelinspirierte Polymerisation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jana M. Krüger
- Laboratory for Organic Synthesis of Functional Systems Institution Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems Institution Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| |
Collapse
|
16
|
Arias S, Amini S, Krüger JM, Bangert LD, Börner HG. Implementing Zn 2+ ion and pH-value control into artificial mussel glue proteins by abstracting a His-rich domain from preCollagen. SOFT MATTER 2021; 17:2028-2033. [PMID: 33596288 DOI: 10.1039/d0sm02118k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A His-rich domain of preCollagen-D found in byssal threads is derivatized with Cys and Dopa flanks to allow for mussel-inspired polymerization. Artificial mussel glue proteins are accessed that combine cysteinyldopa for adhesion with sequences for pH or Zn2+ induced β-sheet formation. The artificial constructs show strong adsorption to Al2O3, the resulting coatings tolerate hypersaline conditions and cohesion is improved by activating the β-sheet formation, that enhances E-modulus up to 60%.
Collapse
Affiliation(s)
- Sandra Arias
- Humboldt-Universität zu Berlin, Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Brook-Taylor-Str. 2, Berlin D-12489, Germany.
| | - Shahrouz Amini
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam 14424, Germany
| | - Jana M Krüger
- Humboldt-Universität zu Berlin, Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Brook-Taylor-Str. 2, Berlin D-12489, Germany.
| | - Lukas D Bangert
- Humboldt-Universität zu Berlin, Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Brook-Taylor-Str. 2, Berlin D-12489, Germany.
| | - Hans G Börner
- Humboldt-Universität zu Berlin, Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Brook-Taylor-Str. 2, Berlin D-12489, Germany.
| |
Collapse
|
17
|
Vale AC, Pereira PR, Alves NM. Polymeric biomaterials inspired by marine mussel adhesive proteins. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2020.104802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Arias S, Maron E, Börner HG. Information-Based Design of Polymeric Drug Formulation Additives. Biomacromolecules 2020; 22:213-221. [PMID: 33226777 DOI: 10.1021/acs.biomac.0c01284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tailor-made copolymers are designed based on a peptide-poly(ethylene glycol) (QFFLFFQ-PEG) conjugate as a blueprint, to solubilize the photosensitizer meta-tetra(hydroxyphenyl)chlorin (m-THPC). The relevant functionalities of the parent peptide-PEG are mimicked by employing monomer pairs that copolymerize in a strictly alternating manner. While styrene (S) or 4-vinylbenzyl-phthalimide (VBP) provide aromatic moieties like Phe, the aliphatic isobutyl side chain of Leu4 is mimicked by maleic anhydride (MA) that reacts after polymerization with isobutylamine to give the isobutylamide-carboxyl functional unit (iBuMA). A set of copolymer-PEG solubilizers is synthesized by controlled radical polymerization, systematically altering the length of the functional segment (DPn = 2, 4, 6) and the side chain functionalization (iBuMA, iPrMA, MeMA). The m-THPC hosting and release properties of P[S-alt-iBuMA]6-PEG reached higher payload capacities and more favored release rates than the parent peptide-PEG conjugate. Interestingly, P[S-alt-RMA]n-PEG mimics the sensitivity of the peptide-PEG solubilizer well, where the exchange of Leu4 residue by Val and Ala significantly reduces the drug loading by 92%. A similar trend is found with P[S-alt-RMA]n-PEG as the exchange of iBu → iPr → Me reduces the payload capacity up to 78%.
Collapse
Affiliation(s)
- Sandra Arias
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
| | - Eva Maron
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
| | - Hans G Börner
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
| |
Collapse
|
19
|
Arias S, Amini S, Horsch J, Pretzler M, Rompel A, Melnyk I, Sychev D, Fery A, Börner HG. Toward Artificial Mussel-Glue Proteins: Differentiating Sequence Modules for Adhesion and Switchable Cohesion. Angew Chem Int Ed Engl 2020; 59:18495-18499. [PMID: 32596967 PMCID: PMC7590116 DOI: 10.1002/anie.202008515] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Indexed: 12/15/2022]
Abstract
Artificial mussel-glue proteins with pH-triggered cohesion control were synthesized by extending the tyrosinase activated polymerization of peptides to sequences with specific modules for cohesion control. The high propensity of these sequence sections to adopt β-sheets is suppressed by switch defects. This allows enzymatic activation and polymerization to proceed undisturbed. The β-sheet formation is regained after polymerization by changing the pH from 5.5 to 6.8, thereby triggering O→N acyl transfer rearrangements that activate the cohesion mechanism. The resulting artificial mussel glue proteins exhibit rapid adsorption on alumina surfaces. The coatings resist harsh hypersaline conditions, and reach remarkable adhesive energies of 2.64 mJ m-2 on silica at pH 6.8. In in situ switch experiments, the minor pH change increases the adhesive properties of a coating by 300 % and nanoindentation confirms the cohesion mechanism to improve bulk stiffness by around 200 %.
Collapse
Affiliation(s)
- Sandra Arias
- Laboratory for Organic Synthesis of Functional Systems Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Shahrouz Amini
- Max Planck Institute of Colloids and InterfacesDepartment of Biomaterials14424PotsdamGermany
| | - Justus Horsch
- Laboratory for Organic Synthesis of Functional Systems Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Matthias Pretzler
- Universität WienFakultät für Chemie Institut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| | - Annette Rompel
- Universität WienFakultät für Chemie Institut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| | - Inga Melnyk
- Leibniz-Institut für Polymerforschung Dresden e.V. Institute of Physical Chemistry and Polymer PhysicsHohe Straße 601069DresdenGermany
| | - Dmitrii Sychev
- Leibniz-Institut für Polymerforschung Dresden e.V. Institute of Physical Chemistry and Polymer PhysicsHohe Straße 601069DresdenGermany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V. Institute of Physical Chemistry and Polymer PhysicsHohe Straße 601069DresdenGermany
- Technische Universität DresdenChair of Physical Chemistry of Polymeric MaterialsHohe Straße 601069DresdenGermany
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| |
Collapse
|
20
|
Arias S, Amini S, Horsch J, Pretzler M, Rompel A, Melnyk I, Sychev D, Fery A, Börner HG. Toward Artificial Mussel‐Glue Proteins: Differentiating Sequence Modules for Adhesion and Switchable Cohesion. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Sandra Arias
- Laboratory for Organic Synthesis of Functional Systems Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Shahrouz Amini
- Max Planck Institute of Colloids and Interfaces Department of Biomaterials 14424 Potsdam Germany
| | - Justus Horsch
- Laboratory for Organic Synthesis of Functional Systems Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Matthias Pretzler
- Universität Wien Fakultät für Chemie Institut für Biophysikalische Chemie Althanstraße 14 1090 Wien Austria
| | - Annette Rompel
- Universität Wien Fakultät für Chemie Institut für Biophysikalische Chemie Althanstraße 14 1090 Wien Austria
| | - Inga Melnyk
- Leibniz-Institut für Polymerforschung Dresden e.V. Institute of Physical Chemistry and Polymer Physics Hohe Straße 6 01069 Dresden Germany
| | - Dmitrii Sychev
- Leibniz-Institut für Polymerforschung Dresden e.V. Institute of Physical Chemistry and Polymer Physics Hohe Straße 6 01069 Dresden Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V. Institute of Physical Chemistry and Polymer Physics Hohe Straße 6 01069 Dresden Germany
- Technische Universität Dresden Chair of Physical Chemistry of Polymeric Materials Hohe Straße 6 01069 Dresden Germany
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| |
Collapse
|
21
|
Juds C, Schmidt J, Weller MG, Lange T, Beck U, Conrad T, Börner HG. Combining Phage Display and Next-Generation Sequencing for Materials Sciences: A Case Study on Probing Polypropylene Surfaces. J Am Chem Soc 2020; 142:10624-10628. [DOI: 10.1021/jacs.0c03482] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Carmen Juds
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
- Division 1.5 Protein Analysis, Federal Institute for Materials Research and Testing (BAM), D-12489 Berlin, Germany
| | - Johannes Schmidt
- Functional Materials, Department of Chemistry, Technische Universität Berlin, D-10623 Berlin Germany
| | - Michael G. Weller
- Division 1.5 Protein Analysis, Federal Institute for Materials Research and Testing (BAM), D-12489 Berlin, Germany
| | - Thorid Lange
- Surface Modification and Measurement Technology Division, Federal Institute for Materials Research and Testing (BAM), D-12205 Berlin, Germany
| | - Uwe Beck
- Surface Modification and Measurement Technology Division, Federal Institute for Materials Research and Testing (BAM), D-12205 Berlin, Germany
| | - Tim Conrad
- Medical Bioinformatics Division, Department of Mathematics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
| |
Collapse
|
22
|
Claverie M, McReynolds C, Petitpas A, Thomas M, Fernandes SCM. Marine-Derived Polymeric Materials and Biomimetics: An Overview. Polymers (Basel) 2020; 12:E1002. [PMID: 32357448 PMCID: PMC7285066 DOI: 10.3390/polym12051002] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 02/01/2023] Open
Abstract
The review covers recent literature on the ocean as both a source of biotechnological tools and as a source of bio-inspired materials. The emphasis is on marine biomacromolecules namely hyaluronic acid, chitin and chitosan, peptides, collagen, enzymes, polysaccharides from algae, and secondary metabolites like mycosporines. Their specific biological, physicochemical and structural properties together with relevant applications in biocomposite materials have been included. Additionally, it refers to the marine organisms as source of inspiration for the design and development of sustainable and functional (bio)materials. Marine biological functions that mimic reef fish mucus, marine adhesives and structural colouration are explained.
Collapse
Affiliation(s)
- Marion Claverie
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
| | - Colin McReynolds
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
| | - Arnaud Petitpas
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
| | - Martin Thomas
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
| | - Susana C. M. Fernandes
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
- Department of Chemistry—Angstrom Laboratory, Polymer Chemistry, Uppsala University, Lagerhyddsvagen 1, 75120 Uppsala, Sweden
| |
Collapse
|
23
|
Bhuiyan MSA, Roland JD, Liu B, Reaume M, Zhang Z, Kelley JD, Lee BP. In Situ Deactivation of Catechol-Containing Adhesive Using Electrochemistry. J Am Chem Soc 2020; 142:4631-4638. [PMID: 32046478 PMCID: PMC7068691 DOI: 10.1021/jacs.9b11266] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Marine mussels secret catechol-containing adhesive proteins that enable these organisms to bind to various surfaces underwater. Synthetic mimics of these proteins have been created to function as adhesives and coatings for a wide range of applications. Here, we demonstrated the use of in situ electrical field stimulation to deactivate the adhesive property of catechol-containing adhesive that is in direct contact with a surface. Johnson-Kendall-Roberts (JKR) contact mechanics test was performed using a titanium (Ti) sphere in the presence of a pH 7.5 aqueous buffer. The Ti sphere also served as a conductive electrode for applying electricity to the adhesive, while a platinum (Pt) wire served as the counter electrode. Work of adhesion (Wadh) decreased with increased levels of applied voltage and current, exposure time to the applied electricity, and salt concentration of the interfacial buffer. Application of 9 V for 1 min completely deactivated the adhesive. UV-vis diffuse reflectance spectra and tracking of catechol oxidation byproduct, hydrogen peroxide, confirmed that catechol was oxidized as a result of applied electricity. Contact mechanics testing further confirmed that the Young's modulus of the adhesive increased by nearly 4 folds at the interface as a result of oxidative cross-linking, even though the modulus of the bulk of the adhesive was unaffected by applied electricity. The accumulation of hydroxyl ions near the cathode increased the local solution pH, which promoted oxidation-induced cross-linking of catechol and subsequently decreased its adhesive property. Tuning adhesive properties through in situ electrochemical oxidation provides on-demand control over the adhesive, which will potentially add another dimension in designing synthetic mimics of mussel adhesive proteins.
Collapse
Affiliation(s)
- Md. Saleh Akram Bhuiyan
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI-49931, USA
| | - James D. Roland
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI-49931, USA
| | - Bo Liu
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI-49931, USA
| | - Max Reaume
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI-49931, USA
| | - Zhongtian Zhang
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI-49931, USA
| | - Jonathan D. Kelley
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI-49931, USA
| | - Bruce P. Lee
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI-49931, USA
| |
Collapse
|
24
|
Guo Q, Chen J, Wang J, Zeng H, Yu J. Recent progress in synthesis and application of mussel-inspired adhesives. NANOSCALE 2020; 12:1307-1324. [PMID: 31907498 DOI: 10.1039/c9nr09780e] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The rapid and robust adhesion of marine mussels to diverse solid surfaces in wet environments is mediated by the secreted mussel adhesive proteins which are abundant in a catecholic amino acid, l-3,4-dihydroxyphenylalanine (Dopa). Over the last two decades, enormous efforts have been devoted to the development of synthetic mussel-inspired adhesives with water-resistant adhesion and cohesion properties by modifying polymer systems with Dopa and its analogues. In the present review, an overview of the unique features of various mussel foot proteins is provided in combination with an up-to-date understanding of catechol chemistry, which contributes to the strong interfacial binding via balancing a variety of covalent and noncovalent interactions including oxidative cross-linking, electrostatic interaction, metal-catechol coordination, hydrogen bonding, hydrophobic interactions and π-π/cation-π interactions. The recent developments of novel Dopa-containing adhesives with on-demand mechanical properties and other functionalities are then summarized under four broad categories: viscous coacervated adhesives, soft adhesive hydrogels, smart adhesives, and stiff adhesive polyesters, where their emerging applications in engineering, biological and biomedical fields are discussed. Limitations of the developed adhesives are identified and future research perspectives in this field are proposed.
Collapse
Affiliation(s)
- Qi Guo
- School of Materials Science and Engineering, Nanyang Technological University, Singapore.
| | | | | | | | | |
Collapse
|
25
|
Kohn JM, Riedel J, Horsch J, Stephanowitz H, Börner HG. Mussel‐Inspired Polymerization of Peptides: The Chemical Activation Route as Key to Broaden the Sequential Space of Artificial Mussel‐Glue Proteins. Macromol Rapid Commun 2019; 41:e1900431. [DOI: 10.1002/marc.201900431] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/07/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Jana M. Kohn
- Laboratory for Organic Synthesis of Functional SystemsDepartment of ChemistryHumboldt‐Universität zu Berlin Brook‐Taylor‐Straße 2 12489 Berlin Germany
| | - Jerome Riedel
- Laboratory for Organic Synthesis of Functional SystemsDepartment of ChemistryHumboldt‐Universität zu Berlin Brook‐Taylor‐Straße 2 12489 Berlin Germany
| | - Justus Horsch
- Laboratory for Organic Synthesis of Functional SystemsDepartment of ChemistryHumboldt‐Universität zu Berlin Brook‐Taylor‐Straße 2 12489 Berlin Germany
| | - Heike Stephanowitz
- Leibniz Institute for Molecular Pharmacology Robert‐Rössle‐Straße 10 13125 Berlin Germany
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional SystemsDepartment of ChemistryHumboldt‐Universität zu Berlin Brook‐Taylor‐Straße 2 12489 Berlin Germany
| |
Collapse
|
26
|
Maron E, Swisher JH, Haven JJ, Meyer TY, Junkers T, Börner HG. Von Peptiden lernen: eine Strategie für das Design funktionaler Präzisionspolymer‐Sequenzen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Eva Maron
- Institut für ChemieHumboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | | | - Joris J. Haven
- Polymer Reaction Design GroupSchool of ChemistryMonash University 19 Rainforest Walk VIC 3800 Australien
| | - Tara Y. Meyer
- Department of ChemistryUniversity of Pittsburgh Pittsburgh PA USA
| | - Tanja Junkers
- Polymer Reaction Design GroupSchool of ChemistryMonash University 19 Rainforest Walk VIC 3800 Australien
- Institute for Materials ResearchHasselt University Martelarenlaan 42 3500 Hasselt Belgium
| | - Hans G. Börner
- Institut für ChemieHumboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| |
Collapse
|
27
|
Narkar AR, Kendrick C, Bellur K, Leftwich T, Zhang Z, Lee BP. Rapidly responsive smart adhesive-coated micropillars utilizing catechol-boronate complexation chemistry. SOFT MATTER 2019; 15:5474-5482. [PMID: 31237299 PMCID: PMC6776246 DOI: 10.1039/c9sm00649d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Smart adhesive hydrogels containing 10 mol% each of dopamine methacrylamide (DMA) and 3-acrylamido phenylboronic acid (APBA) were polymerized in situ onto polydimethylsiloxane (PMDS) micropillars with different aspect ratios (AR = 0.4, 1 and 2). Using Johnson-Kendall-Roberts (JKR) contact mechanics tests, the adhesive-coated pillars demonstrated strong wet adhesion at pH 3 (Wadh = 420 mJ m-2) and can be repeatedly deactivated and reactivated by changing the pH value (pH 9 and 3, respectively). When compared to the bulk adhesive hydrogel of the same composition, the adhesive-coated pillars exhibited a significantly faster rate of transition (1 min) between strong and weak adhesion. This was attributed to an increased surface area to volume ratio of the adhesive hydrogel-coated pillars, which permitted rapid diffusion of ions into the adhesive matrix to form or break the catechol-boronate complex.
Collapse
Affiliation(s)
- Ameya R Narkar
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| | - Chito Kendrick
- Department of Electrical and Computer Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Kishan Bellur
- Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA
| | - Timothy Leftwich
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Zhongtian Zhang
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| | - Bruce P Lee
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| |
Collapse
|
28
|
Maron E, Swisher JH, Haven JJ, Meyer TY, Junkers T, Börner HG. Learning from Peptides to Access Functional Precision Polymer Sequences. Angew Chem Int Ed Engl 2019; 58:10747-10751. [DOI: 10.1002/anie.201902217] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Eva Maron
- Department of ChemistryHumboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | | | - Joris J. Haven
- Polymer Reaction Design GroupSchool of ChemistryMonash University 19 Rainforest Walk Clayton VIC 3800 Australia
| | - Tara Y. Meyer
- Department of ChemistryUniversity of Pittsburgh Pittsburgh PA USA
| | - Tanja Junkers
- Polymer Reaction Design GroupSchool of ChemistryMonash University 19 Rainforest Walk Clayton VIC 3800 Australia
- Institute for Materials ResearchHasselt University Martelarenlaan 42 3500 Hasselt Belgium
| | - Hans G. Börner
- Department of ChemistryHumboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| |
Collapse
|
29
|
Horsch J, Wilke P, Stephanowitz H, Krause E, Börner HG. Fish and Clips: A Convenient Strategy to Identify Tyrosinase Substrates with Rapid Activation Behavior for Materials Science Applications. ACS Macro Lett 2019; 8:724-729. [PMID: 35619530 DOI: 10.1021/acsmacrolett.9b00244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptides with suitable substrate properties for a specific tyrosinase are selected by combinatorial means from a one-bead-one-compound (OBOC) peptide library. The identified sequences exhibit tyrosine residues that are rapidly oxidized to 3,4-dihydroxyphenylalanine (Dopa), making the peptides interesting for enzyme-activated adhesives. The selection process of peptides involves tyrosinase oxidation of tyrosine-bearing sequences on a solid support, yielding dopaquinone residues (fish from the sequence pool), to which thiol-functional fluorescent probes attach by Michael-reaction (clip to mark). Labeled supports are isolated and sequence readout is feasible by MALDI-TOF-MS/MS to reveal peptides, while activation kinetics as well as enzyme-activated coating behavior are verifying the proper selection.
Collapse
Affiliation(s)
- Justus Horsch
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Patrick Wilke
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Heike Stephanowitz
- Leibniz Institute for Molecular Pharmacology, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Eberhard Krause
- Leibniz Institute for Molecular Pharmacology, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Hans G. Börner
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| |
Collapse
|
30
|
Bas O, Hanßke F, Lim J, Ravichandran A, Kemnitz E, Teoh SH, Hutmacher DW, Börner HG. Tuning mechanical reinforcement and bioactivity of 3D printed ternary nanocomposites by interfacial peptide-polymer conjugates. Biofabrication 2019; 11:035028. [DOI: 10.1088/1758-5090/aafec8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Celasun S, Remmler D, Schwaar T, Weller MG, Du Prez F, Börner HG. Eintauchen in den Sequenzraum der Thiolacton-Präzisionspolymere: eine kombinatorische Strategie zur Identifizierung funktionaler Domänen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201810393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Sensu Celasun
- Organische Synthese funktionaler Systeme; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 12489 Berlin Deutschland
| | - Dario Remmler
- Organische Synthese funktionaler Systeme; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 12489 Berlin Deutschland
- Bundesanstalt für Materialforschung und -prüfung (BAM); Richard-Willstätter-Straße 11 12489 Berlin Deutschland
| | - Timm Schwaar
- Bundesanstalt für Materialforschung und -prüfung (BAM); Richard-Willstätter-Straße 11 12489 Berlin Deutschland
| | - Michael G. Weller
- Bundesanstalt für Materialforschung und -prüfung (BAM); Richard-Willstätter-Straße 11 12489 Berlin Deutschland
| | - Filip Du Prez
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC); Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 S4 9000 Ghent Belgien
| | - Hans G. Börner
- Organische Synthese funktionaler Systeme; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 12489 Berlin Deutschland
| |
Collapse
|
32
|
Celasun S, Remmler D, Schwaar T, Weller MG, Du Prez F, Börner HG. Digging into the Sequential Space of Thiolactone Precision Polymers: A Combinatorial Strategy to Identify Functional Domains. Angew Chem Int Ed Engl 2019; 58:1960-1964. [DOI: 10.1002/anie.201810393] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/14/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Sensu Celasun
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Strassse 2 12489 Berlin Germany
| | - Dario Remmler
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Strassse 2 12489 Berlin Germany
- Division 1.5 Protein Analysis; Federal Institute for Materials Research and Testing (BAM); Richard-Willstätter-Strasse 11 12489 Berlin Germany
| | - Timm Schwaar
- Division 1.5 Protein Analysis; Federal Institute for Materials Research and Testing (BAM); Richard-Willstätter-Strasse 11 12489 Berlin Germany
| | - Michael G. Weller
- Division 1.5 Protein Analysis; Federal Institute for Materials Research and Testing (BAM); Richard-Willstätter-Strasse 11 12489 Berlin Germany
| | - Filip Du Prez
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC); Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 S4 9000 Ghent Belgium
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Strassse 2 12489 Berlin Germany
| |
Collapse
|
33
|
Horsch J, Wilke P, Pretzler M, Seuss M, Melnyk I, Remmler D, Fery A, Rompel A, Börner HG. Polymerizing Like Mussels Do: Toward Synthetic Mussel Foot Proteins and Resistant Glues. Angew Chem Int Ed Engl 2018; 57:15728-15732. [PMID: 30246912 PMCID: PMC6282983 DOI: 10.1002/anie.201809587] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Indexed: 11/08/2022]
Abstract
A novel strategy to generate adhesive protein analogues by enzyme-induced polymerization of peptides is reported. Peptide polymerization relies on tyrosinase oxidation of tyrosine residues to Dopaquinones, which rapidly form cysteinyldopa-moieties with free thiols from cysteine residues, thereby linking unimers and generating adhesive polymers. The resulting artificial protein analogues show strong adsorption to different surfaces, even resisting hypersaline conditions. Remarkable adhesion energies of up to 10.9 mJ m-2 are found in single adhesion events and average values are superior to those reported for mussel foot proteins that constitute the gluing interfaces.
Collapse
Affiliation(s)
- Justus Horsch
- Laboratory for Organic Synthesis of Functional SystemsDepartment of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Patrick Wilke
- Laboratory for Organic Synthesis of Functional SystemsDepartment of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Matthias Pretzler
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| | - Maximilian Seuss
- Leibniz-Institut für Polymerforschung Dresden e.V.Institute of Physical Chemistry and Polymer PhysicsHohe Straße 601069DresdenGermany
| | - Inga Melnyk
- Leibniz-Institut für Polymerforschung Dresden e.V.Institute of Physical Chemistry and Polymer PhysicsHohe Straße 601069DresdenGermany
| | - Dario Remmler
- Laboratory for Organic Synthesis of Functional SystemsDepartment of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V.Institute of Physical Chemistry and Polymer PhysicsHohe Straße 601069DresdenGermany
- Technische Universität DresdenChair of Physical Chemistry of Polymeric MaterialsHohe Straße 601069DresdenGermany
| | - Annette Rompel
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional SystemsDepartment of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| |
Collapse
|
34
|
Horsch J, Wilke P, Pretzler M, Seuss M, Melnyk I, Remmler D, Fery A, Rompel A, Börner HG. Polymerizing Like Mussels Do: Toward Synthetic Mussel Foot Proteins and Resistant Glues. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809587] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Justus Horsch
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Patrick Wilke
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Matthias Pretzler
- Universität Wien; Fakultät für Chemie; Institut für Biophysikalische Chemie; Althanstraße 14 1090 Wien Austria
| | - Maximilian Seuss
- Leibniz-Institut für Polymerforschung Dresden e.V.; Institute of Physical Chemistry and Polymer Physics; Hohe Straße 6 01069 Dresden Germany
| | - Inga Melnyk
- Leibniz-Institut für Polymerforschung Dresden e.V.; Institute of Physical Chemistry and Polymer Physics; Hohe Straße 6 01069 Dresden Germany
| | - Dario Remmler
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V.; Institute of Physical Chemistry and Polymer Physics; Hohe Straße 6 01069 Dresden Germany
- Technische Universität Dresden; Chair of Physical Chemistry of Polymeric Materials; Hohe Straße 6 01069 Dresden Germany
| | - Annette Rompel
- Universität Wien; Fakultät für Chemie; Institut für Biophysikalische Chemie; Althanstraße 14 1090 Wien Austria
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Straße 2 12489 Berlin Germany
| |
Collapse
|
35
|
Remmler D, Schwaar T, Pickhardt M, Donth C, Mandelkow E, Weller M, Börner H. On the way to precision formulation additives: 2D-screening to select solubilizers with tailored host and release capabilities. J Control Release 2018; 285:96-105. [DOI: 10.1016/j.jconrel.2018.06.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/14/2018] [Accepted: 06/26/2018] [Indexed: 02/04/2023]
|
36
|
Narkar AR, Lee BP. Incorporation of Anionic Monomer to Tune the Reversible Catechol-Boronate Complex for pH-Responsive, Reversible Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9410-9417. [PMID: 30032614 DOI: 10.1021/acs.langmuir.8b00373] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Up to 30 mol % of acrylic acid (AAc) was incorporated into a pH-responsive smart adhesive consisting of dopamine methacrylamide and 3-acrylamido phenylboronic acid. Fourier transform infrared spectroscopy and rheometry confirmed that the incorporation of AAc shifted the pH of catechol-boronate complexation to a more basic pH. Correspondingly, adhesive formulations with elevated AAc contents demonstrated strong adhesion to quartz substrate at a neutral to mildly basic pH (7.5-8.5) based on Johnson-Kendall-Roberts contact mechanics test. When pH was further increased to 9.0, there was a drastic reduction in the measured work of adhesion (18- and 7-fold reduction compared to values measured at pHs 7.5 and 8.5, respectively) due to the formation of catechol-boronate complex. The complex remained reversible, and the interfacial binding property of the adhesive was successfully tuned with changing pH in successive contact cycles. However, an acidic pH (3.0) was required to break the catechol-boronate complex to recover the elevated adhesive property. Adding AAc enables the smart adhesive to function in physiological or marine pH ranges.
Collapse
Affiliation(s)
- Ameya R Narkar
- Department of Biomedical Engineering , Michigan Technological University , Houghton , Michigan 49931 , United States
| | - Bruce P Lee
- Department of Biomedical Engineering , Michigan Technological University , Houghton , Michigan 49931 , United States
| |
Collapse
|
37
|
K C TB, Tada S, Zhu L, Uzawa T, Minagawa N, Luo SC, Zhao H, Yu HH, Aigaki T, Ito Y. In vitro selection of electrochemical peptide probes using bioorthogonal tRNA for influenza virus detection. Chem Commun (Camb) 2018; 54:5201-5204. [PMID: 29718049 DOI: 10.1039/c8cc01775a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrosensitive peptide probe has been developed from an in vitro selection technique using biorthogonal tRNA prepared with an electroreactive non-natural amino acid, 3,4-ethylenedioxythiophene-conjugated aminophenylalanine. The selected probe quantitatively detected the influenza virus based on a signal "turn-on" mechanism. The developed strategy could be used to develop electrochemical biosensors toward a variety of targets.
Collapse
Affiliation(s)
- Tara Bahadur K C
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, Saitama 351-0198, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kim JH, Joshi MK, Lee J, Park CH, Kim CS. Polydopamine-assisted immobilization of hierarchical zinc oxide nanostructures on electrospun nanofibrous membrane for photocatalysis and antimicrobial activity. J Colloid Interface Sci 2018; 513:566-574. [DOI: 10.1016/j.jcis.2017.11.061] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/18/2017] [Accepted: 11/20/2017] [Indexed: 01/20/2023]
|
39
|
Bauri K, Nandi M, De P. Amino acid-derived stimuli-responsive polymers and their applications. Polym Chem 2018. [DOI: 10.1039/c7py02014g] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The recent advances achieved in the study of various stimuli-responsive polymers derived from natural amino acids have been reviewed.
Collapse
Affiliation(s)
- Kamal Bauri
- Department of Chemistry
- Raghunathpur College
- India
| | - Mridula Nandi
- Polymer Research Centre and Centre for Advanced Functional Materials
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- India
| |
Collapse
|
40
|
Celasun S, Du Prez FE, Börner HG. PEGylated Precision Segments Based on Sequence-Defined Thiolactone Oligomers. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700688] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 10/16/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Sensu Celasun
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Filip E. Du Prez
- Polymer Chemistry Research Group; Centre of Macromolecular Chemistry (CMaC); Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 S4 9000 Ghent Belgium
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 D-12489 Berlin Germany
| |
Collapse
|
41
|
Mu Y, Wu X, Pei D, Wu Z, Zhang C, Zhou D, Wan X. Contribution of the Polarity of Mussel-Inspired Adhesives in the Realization of Strong Underwater Bonding. ACS Biomater Sci Eng 2017; 3:3133-3140. [DOI: 10.1021/acsbiomaterials.7b00673] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Youbing Mu
- The
Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling
Road, Qingdao 266101, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Xiao Wu
- The
Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling
Road, Qingdao 266101, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Danfeng Pei
- The
Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling
Road, Qingdao 266101, P. R. China
| | - Zelin Wu
- The
Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling
Road, Qingdao 266101, P. R. China
| | - Chen Zhang
- Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu Province 210093, P. R. China
| | - Dongshan Zhou
- Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu Province 210093, P. R. China
| | - Xiaobo Wan
- The
Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling
Road, Qingdao 266101, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| |
Collapse
|
42
|
ten Brummelhuis N, Wilke P, Börner HG. Identification of Functional Peptide Sequences to Lead the Design of Precision Polymers. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700632] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 09/26/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Niels ten Brummelhuis
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Patrick Wilke
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 D-12489 Berlin Germany
| |
Collapse
|
43
|
Walsh TR, Knecht MR. Biointerface Structural Effects on the Properties and Applications of Bioinspired Peptide-Based Nanomaterials. Chem Rev 2017; 117:12641-12704. [DOI: 10.1021/acs.chemrev.7b00139] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tiffany R. Walsh
- Institute
for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Marc R. Knecht
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| |
Collapse
|
44
|
Lawatscheck C, Pickhardt M, Grafl A, Linkert K, Polster F, Mandelkow E, Börner HG. Gaining Insights into Specific Drug Formulation Additives for Solubilizing a Potential Anti-Alzheimer Disease Drug B4A1. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/07/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Carmen Lawatscheck
- Department of Chemistry; Laboratory for Organic Synthesis of Functional Systems; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Marcus Pickhardt
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE); Sigmund-Freud-Str. 27, 53127 Bonn, Forschungszentrum CAESAR, Ludwig-Erhard-Allee 2 53175 Bonn Germany
| | - Anna Grafl
- Department of Chemistry; Laboratory for Organic Synthesis of Functional Systems; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Katharina Linkert
- Department of Chemistry; Laboratory for Organic Synthesis of Functional Systems; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Frank Polster
- Department of Chemistry; Laboratory for Organic Synthesis of Functional Systems; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Eckhard Mandelkow
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE); Sigmund-Freud-Str. 27, 53127 Bonn, Forschungszentrum CAESAR, Ludwig-Erhard-Allee 2 53175 Bonn Germany
| | - Hans G. Börner
- Department of Chemistry; Laboratory for Organic Synthesis of Functional Systems; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 12489 Berlin Germany
| |
Collapse
|
45
|
Wieczorek S, Remmler D, Masini T, Kochovski Z, Hirsch AKH, Börner HG. Fine-tuning Nanocarriers Specifically toward Cargo: A Competitive Study on Solubilizing Related Photosensitizers for Photodynamic Therapy. Bioconjug Chem 2017; 28:760-767. [DOI: 10.1021/acs.bioconjchem.6b00549] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sebastian Wieczorek
- Department
of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Dario Remmler
- Department
of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Tiziana Masini
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, NL-9747 AG Groningen, The Netherlands
| | - Zdravko Kochovski
- Soft
Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, Berlin, Germany
| | - Anna K. H. Hirsch
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, NL-9747 AG Groningen, The Netherlands
| | - Hans G. Börner
- Department
of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| |
Collapse
|
46
|
Kord Forooshani P, Lee BP. Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein. JOURNAL OF POLYMER SCIENCE. PART A, POLYMER CHEMISTRY 2017; 55:9-33. [PMID: 27917020 PMCID: PMC5132118 DOI: 10.1002/pola.28368] [Citation(s) in RCA: 358] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/03/2016] [Indexed: 12/11/2022]
Abstract
Marine mussels secret protein-based adhesives, which enable them to anchor to various surfaces in a saline, intertidal zone. Mussel foot proteins (Mfps) contain a large abundance of a unique, catecholic amino acid, Dopa, in their protein sequences. Catechol offers robust and durable adhesion to various substrate surfaces and contributes to the curing of the adhesive plaques. In this article, we review the unique features and the key functionalities of Mfps, catechol chemistry, and strategies for preparing catechol-functionalized polymers. Specifically, we reviewed recent findings on the contributions of various features of Mfps on interfacial binding, which include coacervate formation, surface drying properties, control of the oxidation state of catechol, among other features. We also summarized recent developments in designing advanced biomimetic materials including coacervate-forming adhesives, mechanically improved nano- and micro-composite adhesive hydrogels, as well as smart and self-healing materials. Finally, we review the applications of catechol-functionalized materials for the use as biomedical adhesives, therapeutic applications, and antifouling coatings. © 2016 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 9-33.
Collapse
Affiliation(s)
- Pegah Kord Forooshani
- Department of Biomedical EngineeringMichigan Technological UniversityHoughtonMichigan49931
| | - Bruce P. Lee
- Department of Biomedical EngineeringMichigan Technological UniversityHoughtonMichigan49931
| |
Collapse
|
47
|
Interactions of in vitro selected fluorogenic peptide aptamers with calmodulin. Biotechnol Lett 2016; 39:375-382. [DOI: 10.1007/s10529-016-2257-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/10/2016] [Indexed: 10/20/2022]
|
48
|
Wang W, Xu Y, Han H, Micciulla S, Backes S, Li A, Xu J, Shen W, von Klitzing R, Guo X. Odd-even effect during layer-by-layer assembly of polyelectrolytes inspired by marine mussel. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/polb.24266] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Weina Wang
- State Key Laboratory of Chemical Engineering; East China University of Science and Technology; Shanghai 200237 People's Republic of China
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Technische Universität Berlin; Berlin D-10623 Germany
| | - Yisheng Xu
- State Key Laboratory of Chemical Engineering; East China University of Science and Technology; Shanghai 200237 People's Republic of China
| | - Haoya Han
- State Key Laboratory of Chemical Engineering; East China University of Science and Technology; Shanghai 200237 People's Republic of China
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Technische Universität Berlin; Berlin D-10623 Germany
| | - Samantha Micciulla
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Technische Universität Berlin; Berlin D-10623 Germany
| | - Sebastian Backes
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Technische Universität Berlin; Berlin D-10623 Germany
| | - Ang Li
- State Key Laboratory of Chemical Engineering; East China University of Science and Technology; Shanghai 200237 People's Republic of China
| | - Jun Xu
- State Key Laboratory of Chemical Engineering; East China University of Science and Technology; Shanghai 200237 People's Republic of China
| | - Weihua Shen
- State Key Laboratory of Chemical Engineering; East China University of Science and Technology; Shanghai 200237 People's Republic of China
| | - Regine von Klitzing
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Technische Universität Berlin; Berlin D-10623 Germany
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering; East China University of Science and Technology; Shanghai 200237 People's Republic of China
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bintuan; Shihezi University; Xinjiang 832000 People's Republic of China
| |
Collapse
|
49
|
Intradermal drug delivery by nanogel-peptide conjugates; specific and efficient transport of temoporfin. J Control Release 2016; 242:35-41. [DOI: 10.1016/j.jconrel.2016.07.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/19/2016] [Accepted: 07/22/2016] [Indexed: 02/01/2023]
|
50
|
Meißig;ler M, Wieczorek S, ten Brummelhuis N, Börner HG. Synthetic Aspects of Peptide– and Protein–Polymer Conjugates in the Post-click Era. BIO-INSPIRED POLYMERS 2016. [DOI: 10.1039/9781782626664-00001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Biomacromolecules offer complex and precise functions embedded in their monomer sequence such as enzymatic activity or specific interactions towards other molecules. Their informational content and capability to organize in higher ordered structures is superior to those of synthetic molecules. In comparison, synthetic polymers are easy to access even at large production scales and they are chemically more diverse. Solubilization, shielding against enzymatic degradation to more advanced functions like switchability or protein mimicry, etc., are accessible through the world of polymer chemistry. Bio-inspired hybrid materials consisting of peptides or proteins and synthetic polymers thereby combine the properties of both molecules to give rise to a new class of materials with unique characteristics and performance. To obtain well-defined bioconjugate materials, high yielding and site-specific as well as biorthogonal ligation techniques are mandatory. Since the first attempts of protein PEGylation in the 1970s and the concept of “click” chemistry arising in 2001, continuous progress in the field of peptide– and protein–polymer conjugate preparation has been gained. Herein, we provide an overview on ligation techniques to prepare functional bioconjugates published in the last decade, also referred to as “post-click” methods. Furthermore, chemoenzymatic approaches and biotransformation reactions used in peptide or protein modification, as well as highly site-specific and efficient reactions originated in synthetic macromolecular chemistry, which could potentially be adapted for bioconjugation, are presented. Finally, future perspectives for the preparation and application of bioconjugates at the interface between biology and synthetic materials are given.
Collapse
Affiliation(s)
- Maria Meißig;ler
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Sebastian Wieczorek
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Niels ten Brummelhuis
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 D-12489 Berlin Germany
| |
Collapse
|