1
|
Poptic AL, Chen YP, Chang T, Chen YS, Moore CE, Zhang S. Site-Differentiated Mn IIFe II Complex Reproducing the Selective Assembly of Biological Heterobimetallic Mn/Fe Cofactors. J Am Chem Soc 2023; 145:3491-3498. [PMID: 36749207 DOI: 10.1021/jacs.2c11930] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Class Ic ribonucleotide reductases (RNRIc) and R2-like ligand-binding oxidases (R2lox) are known to contain heterobimetallic MnIIFeII cofactors. How these enzymes assemble MnIIFeII cofactors has been a long-standing puzzle due to the weaker binding affinity of MnII versus FeII. In addition, the heterobimetallic selectivity of RNRIc and R2lox has yet to be reproduced with coordination complexes, leading to the hypothesis that RNRIc and R2lox overcome the thermodynamic preference for coordination of FeII over MnII with their carefully constructed three-dimensional protein structures. Herein, we report the selective formation of a heterobimetallic MnIIFeII complex accomplished in the absence of a protein scaffold. Treatment of the ligand Py4DMcT (L) with equimolar amounts of FeII and MnII along with two equivalents of acetate (OAc) affords [LMnIIFeII (OAc)2(OTf)]+ (MnIIFeII) in 80% yield, while the diiron complex [LFeIIFeII(OAc)2(OTf)]+ (FeIIFeII) is produced in only 8% yield. The formation of MnIIFeII is favored regardless of the order of addition of FeII and MnII sources. X-ray diffraction (XRD) of single crystals of MnIIFeII reveals an unsymmetrically coordinated carboxylate ligand─a primary coordination sphere feature shared by both RNRIc and R2lox that differentiates the two metal binding sites. Anomalous XRD studies confirm that MnIIFeII exhibits the same site selectivity as R2lox and RNRIc, with the FeII (d6) center preferentially occupying the distorted octahedral site. We conclude that the successful assembly of MnIIFeII originates from (1) Fe-deficient conditions, (2) site differentiation, and (3) the inability of ligand L to house a dimanganese complex.
Collapse
Affiliation(s)
- Anna L Poptic
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Ying-Pin Chen
- ChemMatCARS, University of Chicago, Argonne, Illinois 60439, United States
| | - Tieyan Chang
- ChemMatCARS, University of Chicago, Argonne, Illinois 60439, United States
| | - Yu-Sheng Chen
- ChemMatCARS, University of Chicago, Argonne, Illinois 60439, United States
| | - Curtis E Moore
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Shiyu Zhang
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
2
|
Zou J, Yang L, Feng W. Mechanism of Radical Initiation and Transfer in Class Id Ribonucleotide Reductase Based on Density Functional Theory. Inorg Chem 2023; 62:2561-2575. [PMID: 36721875 DOI: 10.1021/acs.inorgchem.2c02926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Class Id ribonucleotide reductase (RNR) is a newly discovered enzyme, which employs the dimanganese cofactor in the superoxidized state (MnIII/MnIV) as the radical initiator. The dimanganese cofactor of class Id RNR in the reduced state (inactive) is clearly based on the crystal structure of the Fj-β subunit. However, the state of the dimanganese cofactor of class Id RNR in the oxidized state (active) is not known. The X-band EPR spectra have shown that the activated Fj-β subunit exists in two distinct complexes, 1 and 2. In this work, quantum mechanical/molecular mechanical calculations were carried out to study class Id RNR. First, we have determined that complex 2 contains a MnIII-(μ-oxo)2-MnIV cluster, and complex 1 contains a MnIII-(μ-hydroxo/μ-oxo)-MnIV cluster. Then, based on the determined dimanganese cofactors, the mechanism of radical initiation and transfer in class Id RNR is revealed. The MnIII-(μ-oxo)2-MnIV cluster in complex 2 has not enough reduction potential to initiate radical transfer directly. Instead, it needs to be monoprotonated into MnIII-(μ-hydroxo/μ-oxo)-MnIV (complex 1) before the radical transfer. The protonation state of μ-oxo can be regulated by changing the protein microenvironment, which is induced by the protein aggregation and separation of β subunits with α subunits. The radical transfer between the cluster of MnIII-(μ-hydroxo/μ-oxo)-MnIV and Trp30 in the radical-transfer chain of the Fj-β subunit (MnIII/MnIV ↔ His100 ↔ Asp194 ↔ Trp30 ↔ Arg99) is a water-mediated tri-proton-coupled electron transfer, which transfers proton from the ε-amino group of Lys71 to the carboxyl group of Glu97 via the water molecule Wat551 and the bridging μ-hydroxo ligand through a three-step reaction. This newly discovered proton-coupled electron-transfer mechanism in class Id RNR is different from those reported in the known Ia-Ic RNRs. The ε-amino group of Lys71, which serves as a proton donor, plays an important role in the radical transfer.
Collapse
Affiliation(s)
- Jinxin Zou
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lu Yang
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Feng
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Self-sacrificial tyrosine cleavage by an Fe:Mn oxygenase for the biosynthesis of para-aminobenzoate in Chlamydia trachomatis. Proc Natl Acad Sci U S A 2022; 119:e2210908119. [PMID: 36122239 PMCID: PMC9522330 DOI: 10.1073/pnas.2210908119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chlamydia protein associating with death domains (CADD) is involved in the biosynthesis of para-aminobenzoate (pABA), an essential component of the folate cofactor that is required for the survival and proliferation of the human pathogen Chlamydia trachomatis. The pathway used by Chlamydiae for pABA synthesis differs from the canonical multi-enzyme pathway used by most bacteria that relies on chorismate as a metabolic precursor. Rather, recent work showed pABA formation by CADD derives from l-tyrosine. As a member of the emerging superfamily of heme oxygenase-like diiron oxidases (HDOs), CADD was proposed to use a diiron cofactor for catalysis. However, we report maximal pABA formation by CADD occurs upon the addition of both iron and manganese, which implicates a heterobimetallic Fe:Mn cluster is the catalytically active form. Isotopic labeling experiments and proteomics studies show that CADD generates pABA from a protein-derived tyrosine (Tyr27), a residue that is ∼14 Å from the dimetal site. We propose that this self-sacrificial reaction occurs through O2 activation by a probable Fe:Mn cluster through a radical relay mechanism that connects to the "substrate" Tyr, followed by amination and direct oxygen insertion. These results provide the molecular basis for pABA formation in C. trachomatis, which will inform the design of novel therapeutics.
Collapse
|
4
|
Zhang B, Chen M, Xia B, Lu Z, Khoo KS, Show PL, Lu F. Characterization and Preliminary Application of a Novel Lipoxygenase from Enterovibrio norvegicus. Foods 2022; 11:2864. [PMID: 36140992 PMCID: PMC9498203 DOI: 10.3390/foods11182864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Lipoxygenases have proven to be a potential biocatalyst for various industrial applications. However, low catalytic activity, low thermostability, and narrow range of pH stability largely limit its application. Here, a lipoxygenase (LOX) gene from Enterovibrio norvegicus DSM 15893 (EnLOX) was cloned and expressed in Escherichia coli BL21 (DE3). EnLOX showed the catalytic activity of 40.34 U mg-1 at 50 °C, pH 8.0. Notably, the enzyme showed superior thermostability, and wide pH range stability. EnLOX remained above 50% of its initial activity after heat treatment below 50 °C for 6 h, and its melting point temperature reached 78.7 °C. More than 70% of its activity was maintained after incubation at pH 5.0-9.5 and 4 °C for 10 h. In addition, EnLOX exhibited high substrate specificity towards linoleic acid, and its kinetic parameters of Vmax, Km, and Kcat values were 12.42 mmol min-1 mg-1, 3.49 μmol L-1, and 16.86 s-1, respectively. LC-MS/MS analysis indicated that EnLOX can be classified as 13-LOX, due to its ability to catalyze C18 polyunsaturated fatty acid to form 13-hydroxy fatty acid. Additionally, EnLOX could improve the farinograph characteristics and rheological properties of wheat dough. These results reveal the potential applications of EnLOX in the food industry.
Collapse
Affiliation(s)
- Bingjie Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Meirong Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bingjie Xia
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Pau Loke Show
- Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Malaysia
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Kisgeropoulos EC, Gan YJ, Greer SM, Hazel JM, Shafaat HS. Pulsed Multifrequency Electron Paramagnetic Resonance Spectroscopy Reveals Key Branch Points for One- vs Two-Electron Reactivity in Mn/Fe Proteins. J Am Chem Soc 2022; 144:11991-12006. [PMID: 35786920 DOI: 10.1021/jacs.1c13738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Traditionally, the ferritin-like superfamily of proteins was thought to exclusively use a diiron active site in catalyzing a diverse array of oxygen-dependent reactions. In recent years, novel redox-active cofactors featuring heterobimetallic Mn/Fe active sites have been discovered in both the radical-generating R2 subunit of class Ic (R2c) ribonucleotide reductases (RNRs) and the related R2-like ligand-binding oxidases (R2lox). However, the protein-specific factors that differentiate the radical reactivity of R2c from the C-H activation reactions of R2lox remain unknown. In this work, multifrequency pulsed electron paramagnetic resonance (EPR) spectroscopy and ligand hyperfine techniques in conjunction with broken-symmetry density functional theory calculations are used to characterize the molecular and electronic structures of two EPR-active intermediates trapped during aerobic assembly of the R2lox Mn/Fe cofactor. A MnIII(μ-O)(μ-OH)FeIII species is identified as the first EPR-active species and represents a common state between the two classes of redox-active Mn/Fe proteins. The species downstream from the MnIII(μ-O)(μ-OH)FeIII state exhibits unique EPR properties, including unprecedented spectral breadth and isotope-dependent g-tensors, which are attributed to a weakly coupled, hydrogen-bonded MnIII(μ-OH)FeIII species. This final intermediate precedes formation of the MnIII/FeIII resting state and is suggested to be relevant to understanding the endogenous reactivity of R2lox.
Collapse
Affiliation(s)
- Effie C Kisgeropoulos
- The Ohio State Biochemistry Program, The Ohio State University, 100 W 18th Avenue, Columbus, Ohio 43210, United States
| | - Yunqiao J Gan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W 18th Avenue, Columbus, Ohio 43210, United States
| | - Samuel M Greer
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States.,Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Joseph M Hazel
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W 18th Avenue, Columbus, Ohio 43210, United States
| | - Hannah S Shafaat
- The Ohio State Biochemistry Program, The Ohio State University, 100 W 18th Avenue, Columbus, Ohio 43210, United States.,Department of Chemistry and Biochemistry, The Ohio State University, 100 W 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Diamanti R, Srinivas V, Johansson A, Nordström A, Griese JJ, Lebrette H, Högbom M. Comparative structural analysis provides new insights into the function of R2-like ligand-binding oxidase. FEBS Lett 2022; 596:1600-1610. [PMID: 35175627 PMCID: PMC9314684 DOI: 10.1002/1873-3468.14319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/11/2022]
Abstract
R2‐like ligand‐binding oxidase (R2lox) is a ferritin‐like protein that harbours a heterodinuclear manganese–iron active site. Although R2lox function is yet to be established, the enzyme binds a fatty acid ligand coordinating the metal centre and catalyses the formation of a tyrosine–valine ether cross‐link in the protein scaffold upon O2 activation. Here, we characterized the ligands copurified with R2lox by mass spectrometry‐based metabolomics. Moreover, we present the crystal structures of two new homologs of R2lox, from Saccharopolyspora erythraea and Sulfolobus acidocaldarius, at 1.38 Å and 2.26 Å resolution, respectively, providing the highest resolution structure for R2lox, as well as new insights into putative mechanisms regulating the function of the enzyme.
Collapse
Affiliation(s)
- Riccardo Diamanti
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Vivek Srinivas
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden
| | | | | | - Julia J Griese
- Department of Cell and Molecular Biology, Uppsala University, SE-751 24, Uppsala, Sweden
| | - Hugo Lebrette
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden.,Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
7
|
Paramagnetic resonance investigation of mono- and di-manganese-containing systems in biochemistry. Methods Enzymol 2022; 666:315-372. [DOI: 10.1016/bs.mie.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Drosou M, Zahariou G, Pantazis DA. Orientational Jahn-Teller Isomerism in the Dark-Stable State of Nature's Water Oxidase. Angew Chem Int Ed Engl 2021; 60:13493-13499. [PMID: 33830630 PMCID: PMC8252073 DOI: 10.1002/anie.202103425] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 01/31/2023]
Abstract
The tetramanganese–calcium cluster of the oxygen‐evolving complex of photosystem II adopts electronically and magnetically distinct but interconvertible valence isomeric forms in its first light‐driven oxidized catalytic state, S2. This bistability is implicated in gating the final catalytic states preceding O−O bond formation, but it is unknown how the biological system enables its emergence and controls its effect. Here we show that the Mn4CaO5 cluster in the resting (dark‐stable) S1 state adopts orientational Jahn–Teller isomeric forms arising from a directional change in electronic configuration of the “dangler” MnIII ion. The isomers are consistent with available structural data and explain previously unresolved electron paramagnetic resonance spectroscopic observations on the S1 state. This unique isomerism in the resting state is shown to be the electronic origin of valence isomerism in the S2 state, establishing a functional role of orientational Jahn–Teller isomerism unprecedented in biological or artificial catalysis.
Collapse
Affiliation(s)
- Maria Drosou
- Inorganic Chemistry Laboratory, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Greece
| | - Georgia Zahariou
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Athens, 15310, Greece
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
9
|
Drosou M, Zahariou G, Pantazis DA. Orientational Jahn–Teller Isomerism in the Dark‐Stable State of Nature's Water Oxidase. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Maria Drosou
- Inorganic Chemistry Laboratory National and Kapodistrian University of Athens, Panepistimiopolis Zografou 15771 Greece
| | - Georgia Zahariou
- Institute of Nanoscience & Nanotechnology, NCSR “Demokritos” Athens 15310 Greece
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
10
|
Gómez-Piñeiro RJ, Pantazis DA, Orio M. Comparison of Density Functional and Correlated Wave Function Methods for the Prediction of Cu(II) Hyperfine Coupling Constants. Chemphyschem 2020; 21:2667-2679. [PMID: 33201578 PMCID: PMC7756273 DOI: 10.1002/cphc.202000649] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/13/2020] [Indexed: 12/19/2022]
Abstract
The reliable prediction of Cu(II) hyperfine coupling constants remains a challenge for quantum chemistry. Until recently only density functional theory (DFT) could target this property for systems of realistic size. However, wave function based methods become increasingly applicable. In the present work, we define a large set of Cu(II) complexes with experimentally known hyperfine coupling constants and use it to investigate the performance of modern quantum chemical methods for the prediction of this challenging spectroscopic parameter. DFT methods are evaluated against orbital‐optimized second‐order Møller‐Plesset (OO‐MP2) theory and coupled cluster calculations including singles and doubles excitations, driven by the domain‐based local pair natural orbital approach (DLPNO‐CCSD). Special attention is paid to the definition of a basis set that converges adequately toward the basis set limit for the given property for all methods considered in this study, and a specifically optimized basis set is proposed for this purpose. The results suggest that wave function based methods can supplant but do not outcompete DFT for the calculation of Cu(II) hyperfine coupling constants. Mainstream hybrid functionals such as B3PW91 remain on average the best choice.
Collapse
Affiliation(s)
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Maylis Orio
- Aix-Marseille Université, CNRS, iSm2, Marseille, France
| |
Collapse
|
11
|
Grāve K, Griese JJ, Berggren G, Bennett MD, Högbom M. The Bacillus anthracis class Ib ribonucleotide reductase subunit NrdF intrinsically selects manganese over iron. J Biol Inorg Chem 2020; 25:571-582. [PMID: 32296998 PMCID: PMC7239806 DOI: 10.1007/s00775-020-01782-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/22/2020] [Indexed: 01/30/2023]
Abstract
Abstract Correct protein metallation in the complex mixture of the cell is a prerequisite for metalloprotein function. While some metals, such as Cu, are commonly chaperoned, specificity towards metals earlier in the Irving–Williams series is achieved through other means, the determinants of which are poorly understood. The dimetal carboxylate family of proteins provides an intriguing example, as different proteins, while sharing a common fold and the same 4-carboxylate 2-histidine coordination sphere, are known to require either a Fe/Fe, Mn/Fe or Mn/Mn cofactor for function. We previously showed that the R2lox proteins from this family spontaneously assemble the heterodinuclear Mn/Fe cofactor. Here we show that the class Ib ribonucleotide reductase R2 protein from Bacillus anthracis spontaneously assembles a Mn/Mn cofactor in vitro, under both aerobic and anoxic conditions, when the metal-free protein is subjected to incubation with MnII and FeII in equal concentrations. This observation provides an example of a protein scaffold intrinsically predisposed to defy the Irving–Williams series and supports the assumption that the Mn/Mn cofactor is the biologically relevant cofactor in vivo. Substitution of a second coordination sphere residue changes the spontaneous metallation of the protein to predominantly form a heterodinuclear Mn/Fe cofactor under aerobic conditions and a Mn/Mn metal center under anoxic conditions. Together, the results describe the intrinsic metal specificity of class Ib RNR and provide insight into control mechanisms for protein metallation. Graphical Abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s00775-020-01782-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kristīne Grāve
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Julia J Griese
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden.,Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, 75124, Uppsala, Sweden
| | - Gustav Berggren
- Department of Chemistry, Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, 75120, Uppsala, Sweden
| | - Matthew D Bennett
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden.
| |
Collapse
|
12
|
Stamos NA, Ferentinos E, Chrysina M, Raptopoulou CP, Psycharis V, Sanakis Y, Pantazis DA, Kyritsis P, Mitrikas G. Unusual 31P Hyperfine Strain Effects in a Conformationally Flexible Cu(II) Complex Revealed by Two-Dimensional Pulse EPR Spectroscopy. Inorg Chem 2020; 59:3666-3676. [PMID: 32077279 DOI: 10.1021/acs.inorgchem.9b03237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Strain effects on g and metal hyperfine coupling tensors, A, are often manifested in Electron Paramagnetic Resonance (EPR) spectra of transition metal complexes, as a result of their intrinsic and/or solvent-mediated structural variations. Although distributions of these tensors are quite common and well understood in continuous-wave (cw) EPR spectroscopy, reported strain effects on ligand hyperfine coupling constants are rather scarce. Here we explore the case of a conformationally flexible Cu(II) complex, [Cu{Ph2P(O)NP(O)Ph2-κ2O,O'}2], bearing P atoms in its second coordination sphere and exhibiting two structurally distinct CuO4 coordination spheres, namely a square planar and a tetrahedrally distorted one, as revealed by X-ray crystallography. The Hyperfine Sublevel Correlation (HYSCORE) spectra of this complex exhibit 31P correlation ridges that have unusual inverse or so-called "boomerang" shapes and features that cannot be reproduced by standard simulation procedures assuming only one set of magnetic parameters. Our work shows that a distribution of isotropic hyperfine coupling constants (hfc) spanning a range between negative and positive values is necessary in order to describe in detail the unusual shapes of HYSCORE spectra. By employing DFT calculations we show that these hfc correspond to molecules showing variable distortions from square planar to tetrahedral geometry, and we demonstrate that line shape analysis of such HYSCORE spectra provides new insight into the conformation-dependent spectroscopic response of the spin system under investigation.
Collapse
Affiliation(s)
- Nikolaos-Angelos Stamos
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", 15310 Athens, Greece.,Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Eleftherios Ferentinos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Maria Chrysina
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", 15310 Athens, Greece
| | | | - Vassilis Psycharis
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", 15310 Athens, Greece
| | - Yiannis Sanakis
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", 15310 Athens, Greece
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Panayotis Kyritsis
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - George Mitrikas
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", 15310 Athens, Greece
| |
Collapse
|
13
|
Kisgeropoulos EC, Griese JJ, Smith ZR, Branca RMM, Schneider CR, Högbom M, Shafaat HS. Key Structural Motifs Balance Metal Binding and Oxidative Reactivity in a Heterobimetallic Mn/Fe Protein. J Am Chem Soc 2020; 142:5338-5354. [PMID: 32062969 DOI: 10.1021/jacs.0c00333] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heterobimetallic Mn/Fe proteins represent a new cofactor paradigm in bioinorganic chemistry and pose countless outstanding questions. The assembly of the active site defies common chemical convention by contradicting the Irving-Williams series, while the scope of reactivity remains unexplored. In this work, the assembly and C-H bond activation process in the Mn/Fe R2-like ligand-binding oxidase (R2lox) protein is investigated using a suite of biophysical techniques, including time-resolved optical spectroscopy, global kinetic modeling, X-ray crystallography, electron paramagnetic resonance spectroscopy, protein electrochemistry, and mass spectrometry. Selective metal binding is found to be under thermodynamic control, with the binding sites within the apo-protein exhibiting greater MnII affinity than FeII affinity. The comprehensive analysis of structure and reactivity of wild-type R2lox and targeted primary and secondary sphere mutants indicate that the efficiency of C-H bond activation directly correlates with the Mn/Fe cofactor reduction potentials and is inversely related to divalent metal binding affinity. These findings suggest the R2lox active site is precisely tuned for achieving both selective heterobimetallic binding and high levels of reactivity and offer a mechanism to examine the means by which proteins achieve appropriate metal incorporation.
Collapse
Affiliation(s)
| | - Julia J Griese
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.,Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden
| | | | - Rui M M Branca
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, SE-171 21 Solna, Sweden
| | | | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | |
Collapse
|
14
|
First-Principles Calculation of Transition Metal Hyperfine Coupling Constants with the Strongly Constrained and Appropriately Normed (SCAN) Density Functional and its Hybrid Variants. MAGNETOCHEMISTRY 2019. [DOI: 10.3390/magnetochemistry5040069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Density functional theory (DFT) is used extensively for the first-principles calculation of hyperfine coupling constants in both main-group and transition metal systems. As with many other properties, the performance of DFT for hyperfine coupling constants is of variable quality, particularly for transition metal complexes, because it strongly depends on the nature of the chemical system and the type of approximation to the exchange-correlation functional. Recently, a meta-generalized-gradient approximation (mGGA) functional was proposed that obeys all known exact constraints for such a method, known as the Strongly Constrained and Appropriately Normed (SCAN) functional. In view of its theoretically superior formulation a benchmark set of complexes is used to assess the performance of SCAN for the challenging case of transition metal hyperfine coupling constants. In addition, two global hybrid versions of the functional, SCANh and SCAN0, are described and tested. The values computed with the new functionals are compared with experiment and with those of other DFT approximations. Although the original SCAN and the SCAN-based hybrids may offer improved hyperfine coupling constants for specific systems, no uniform improvement is observed. On the contrary, there are specific cases where the new functionals fail badly due to a flawed description of the underlying electronic structure. Therefore, despite these methodological advances, systematically accurate and system-independent prediction of transition metal hyperfine coupling constants with DFT remains an unmet challenge.
Collapse
|
15
|
Mebs S, Srinivas V, Kositzki R, Griese JJ, Högbom M, Haumann M. Fate of oxygen species from O 2 activation at dimetal cofactors in an oxidase enzyme revealed by 57Fe nuclear resonance X-ray scattering and quantum chemistry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:148060. [PMID: 31394094 DOI: 10.1016/j.bbabio.2019.148060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 10/26/2022]
Abstract
Oxygen (O2) activation is a central challenge in chemistry and catalyzed at prototypic dimetal cofactors in biological enzymes with diverse functions. Analysis of intermediates is required to elucidate the reaction paths of reductive O2 cleavage. An oxidase protein from the bacterium Geobacillus kaustophilus, R2lox, was used for aerobic in-vitro reconstitution with only 57Fe(II) or Mn(II) plus 57Fe(II) ions to yield [FeFe] or [MnFe] cofactors under various oxygen and solvent isotopic conditions including 16/18O and H/D exchange. 57Fe-specific X-ray scattering techniques were employed to collect nuclear forward scattering (NFS) and nuclear resonance vibrational spectroscopy (NRVS) data of the R2lox proteins. NFS revealed Fe/Mn(III)Fe(III) cofactor states and Mössbauer quadrupole splitting energies. Quantum chemical calculations of NRVS spectra assigned molecular structures, vibrational modes, and protonation patterns of the cofactors, featuring a terminal water (H2O) bound at iron or manganese in site 1 and a metal-bridging hydroxide (μOH-) ligand. A procedure for quantitation and correlation of experimental and computational NRVS difference signals due to isotope labeling was developed. This approach revealed that the protons of the ligands as well as the terminal water at the R2lox cofactors exchange with the bulk solvent whereas 18O from 18O2 cleavage is incorporated in the hydroxide bridge. In R2lox, the two water molecules from four-electron O2 reduction are released in a two-step reaction to the solvent. These results establish combined NRVS and QM/MM for tracking of iron-based oxygen activation in biological and chemical catalysts and clarify the reductive O2 cleavage route in an enzyme.
Collapse
Affiliation(s)
- Stefan Mebs
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Vivek Srinivas
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16, 10691 Stockholm, Sweden
| | - Ramona Kositzki
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Julia J Griese
- Department of Cell and Molecular Biology, Structural Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16, 10691 Stockholm, Sweden
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| |
Collapse
|
16
|
Kutin Y, Kositzki R, Branca RMM, Srinivas V, Lundin D, Haumann M, Högbom M, Cox N, Griese JJ. Chemical flexibility of heterobimetallic Mn/Fe cofactors: R2lox and R2c proteins. J Biol Chem 2019; 294:18372-18386. [PMID: 31591267 DOI: 10.1074/jbc.ra119.010570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/04/2019] [Indexed: 11/06/2022] Open
Abstract
A heterobimetallic Mn/Fe cofactor is present in the R2 subunit of class Ic ribonucleotide reductases (R2c) and in R2-like ligand-binding oxidases (R2lox). Although the protein-derived metal ligands are the same in both groups of proteins, the connectivity of the two metal ions and the chemistry each cofactor performs are different: in R2c, a one-electron oxidant, the Mn/Fe dimer is linked by two oxygen bridges (μ-oxo/μ-hydroxo), whereas in R2lox, a two-electron oxidant, it is linked by a single oxygen bridge (μ-hydroxo) and a fatty acid ligand. Here, we identified a second coordination sphere residue that directs the divergent reactivity of the protein scaffold. We found that the residue that directly precedes the N-terminal carboxylate metal ligand is conserved as a glycine within the R2lox group but not in R2c. Substitution of the glycine with leucine converted the resting-state R2lox cofactor to an R2c-like cofactor, a μ-oxo/μ-hydroxo-bridged MnIII/FeIII dimer. This species has recently been observed as an intermediate of the oxygen activation reaction in WT R2lox, indicating that it is physiologically relevant. Cofactor maturation in R2c and R2lox therefore follows the same pathway, with structural and functional divergence of the two cofactor forms following oxygen activation. We also show that the leucine-substituted variant no longer functions as a two-electron oxidant. Our results reveal that the residue preceding the N-terminal metal ligand directs the cofactor's reactivity toward one- or two-electron redox chemistry, presumably by setting the protonation state of the bridging oxygens and thereby perturbing the redox potential of the Mn ion.
Collapse
Affiliation(s)
- Yury Kutin
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Ramona Kositzki
- Institut für Experimentalphysik, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Rui M M Branca
- Cancer Proteomics Mass Spectrometry, Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, Box 1031, SE-171 21 Solna, Sweden
| | - Vivek Srinivas
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Daniel Lundin
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Michael Haumann
- Institut für Experimentalphysik, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Nicholas Cox
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia.
| | - Julia J Griese
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden; Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
17
|
Xu H, Lebrette H, Clabbers MTB, Zhao J, Griese JJ, Zou X, Högbom M. Solving a new R2lox protein structure by microcrystal electron diffraction. SCIENCE ADVANCES 2019; 5:eaax4621. [PMID: 31457106 PMCID: PMC6685719 DOI: 10.1126/sciadv.aax4621] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/27/2019] [Indexed: 05/06/2023]
Abstract
Microcrystal electron diffraction (MicroED) has recently shown potential for structural biology. It enables the study of biomolecules from micrometer-sized 3D crystals that are too small to be studied by conventional x-ray crystallography. However, to date, MicroED has only been applied to redetermine protein structures that had already been solved previously by x-ray diffraction. Here, we present the first new protein structure-an R2lox enzyme-solved using MicroED. The structure was phased by molecular replacement using a search model of 35% sequence identity. The resulting electrostatic scattering potential map at 3.0-Å resolution was of sufficient quality to allow accurate model building and refinement. The dinuclear metal cofactor could be located in the map and was modeled as a heterodinuclear Mn/Fe center based on previous studies. Our results demonstrate that MicroED has the potential to become a widely applicable tool for revealing novel insights into protein structure and function.
Collapse
Affiliation(s)
- Hongyi Xu
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
- Corresponding author. (H.X.); (M.H.); (X.Z.)
| | - Hugo Lebrette
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Max T. B. Clabbers
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Jingjing Zhao
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Julia J. Griese
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
- Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
- Corresponding author. (H.X.); (M.H.); (X.Z.)
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
- Corresponding author. (H.X.); (M.H.); (X.Z.)
| |
Collapse
|
18
|
Griese JJ, Kositzki R, Haumann M, Högbom M. Assembly of a heterodinuclear Mn/Fe cofactor is coupled to tyrosine-valine ether cross-link formation in the R2-like ligand-binding oxidase. J Biol Inorg Chem 2019; 24:211-221. [PMID: 30689052 PMCID: PMC6399176 DOI: 10.1007/s00775-019-01639-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/18/2019] [Indexed: 11/28/2022]
Abstract
R2-like ligand-binding oxidases (R2lox) assemble a heterodinuclear Mn/Fe cofactor which performs reductive dioxygen (O2) activation, catalyzes formation of a tyrosine-valine ether cross-link in the protein scaffold, and binds a fatty acid in a putative substrate channel. We have previously shown that the N-terminal metal binding site 1 is unspecific for manganese or iron in the absence of O2, but prefers manganese in the presence of O2, whereas the C-terminal site 2 is specific for iron. Here, we analyze the effects of amino acid exchanges in the cofactor environment on cofactor assembly and metalation specificity using X-ray crystallography, X-ray absorption spectroscopy, and metal quantification. We find that exchange of either the cross-linking tyrosine or the valine, regardless of whether the mutation still allows cross-link formation or not, results in unspecific manganese or iron binding at site 1 both in the absence or presence of O2, while site 2 still prefers iron as in the wild-type. In contrast, a mutation that blocks binding of the fatty acid does not affect the metal specificity of either site under anoxic or aerobic conditions, and cross-link formation is still observed. All variants assemble a dinuclear trivalent metal cofactor in the aerobic resting state, independently of cross-link formation. These findings imply that the cross-link residues are required to achieve the preference for manganese in site 1 in the presence of O2. The metalation specificity, therefore, appears to be established during the redox reactions leading to cross-link formation.
Collapse
Affiliation(s)
- Julia J Griese
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden. .,Department of Cell and Molecular Biology, Uppsala University, 751 24, Uppsala, Sweden.
| | - Ramona Kositzki
- Institut für Experimentalphysik, Freie Universität Berlin, 14195, Berlin, Germany
| | - Michael Haumann
- Institut für Experimentalphysik, Freie Universität Berlin, 14195, Berlin, Germany
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden.
| |
Collapse
|
19
|
Griese JJ, Branca RMM, Srinivas V, Högbom M. Ether cross-link formation in the R2-like ligand-binding oxidase. J Biol Inorg Chem 2018; 23:879-886. [PMID: 29946980 PMCID: PMC6060897 DOI: 10.1007/s00775-018-1583-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/20/2018] [Indexed: 12/27/2022]
Abstract
R2-like ligand-binding oxidases contain a dinuclear metal cofactor which can consist either of two iron ions or one manganese and one iron ion, but the heterodinuclear Mn/Fe cofactor is the preferred assembly in the presence of MnII and FeII in vitro. We have previously shown that both types of cofactor are capable of catalyzing formation of a tyrosine–valine ether cross-link in the protein scaffold. Here we demonstrate that Mn/Fe centers catalyze cross-link formation more efficiently than Fe/Fe centers, indicating that the heterodinuclear cofactor is the biologically relevant one. We further explore the chemical potential of the Mn/Fe cofactor by introducing mutations at the cross-linking valine residue. We find that cross-link formation is possible also to the tertiary beta-carbon in an isoleucine, but not to the secondary beta-carbon or tertiary gamma-carbon in a leucine, nor to the primary beta-carbon of an alanine. These results illustrate that the reactivity of the cofactor is highly specific and directed.
Collapse
Affiliation(s)
- Julia J Griese
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden. .,Department of Cell and Molecular Biology, Uppsala University, 751 24, Uppsala, Sweden.
| | - Rui M M Branca
- Cancer Proteomics Mass Spectrometry, Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Box 1031, 171 21, Solna, Sweden
| | - Vivek Srinivas
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden.
| |
Collapse
|
20
|
Decaneto E, Vasilevskaya T, Kutin Y, Ogata H, Grossman M, Sagi I, Havenith M, Lubitz W, Thiel W, Cox N. Solvent water interactions within the active site of the membrane type I matrix metalloproteinase. Phys Chem Chem Phys 2018; 19:30316-30331. [PMID: 28951896 DOI: 10.1039/c7cp05572b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Matrix metalloproteinases (MMP) are an important family of proteases which catalyze the degradation of extracellular matrix components. While the mechanism of peptide cleavage is well established, the process of enzyme regeneration, which represents the rate limiting step of the catalytic cycle, remains unresolved. This step involves the loss of the newly formed N-terminus (amine) and C-terminus (carboxylate) protein fragments from the site of catalysis coupled with the inclusion of one or more solvent waters. Here we report a novel crystal structure of membrane type I MMP (MT1-MMP or MMP-14), which includes a small peptide bound at the catalytic Zn site via its C-terminus. This structure models the initial product state formed immediately after peptide cleavage but before the final proton transfer to the bound amine; the amine is not present in our system and as such proton transfer cannot occur. Modeling of the protein, including earlier structural data of Bertini and coworkers [I. Bertini, et al., Angew. Chem., Int. Ed., 2006, 45, 7952-7955], suggests that the C-terminus of the peptide is positioned to form an H-bond network to the amine site, which is mediated by a single oxygen of the functionally important Glu240 residue, facilitating efficient proton transfer. Additional quantum chemical calculations complemented with magneto-optical and magnetic resonance spectroscopies clarify the role of two additional, non-catalytic first coordination sphere waters identified in the crystal structure. One of these auxiliary waters acts to stabilize key intermediates of the reaction, while the second is proposed to facilitate C-fragment release, triggered by protonation of the amine. Together these results complete the enzymatic cycle of MMPs and provide new design criteria for inhibitors with improved efficacy.
Collapse
Affiliation(s)
- Elena Decaneto
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße. 34-36, D-45470, Mülheim an der Ruhr, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Maugeri PT, Griese JJ, Branca RM, Miller EK, Smith ZR, Eirich J, Högbom M, Shafaat HS. Driving Protein Conformational Changes with Light: Photoinduced Structural Rearrangement in a Heterobimetallic Oxidase. J Am Chem Soc 2018; 140:1471-1480. [PMID: 29268610 DOI: 10.1021/jacs.7b11966] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The heterobimetallic R2lox protein binds both manganese and iron ions in a site-selective fashion and activates oxygen, ultimately performing C-H bond oxidation to generate a tyrosine-valine cross-link near the active site. In this work, we demonstrate that, following assembly, R2lox undergoes photoinduced changes to the active site geometry and metal coordination motif. Through spectroscopic, structural, and mass spectrometric characterization, the photoconverted species is found to consist of a tyrosinate-bound iron center following light-induced decarboxylation of a coordinating glutamate residue and cleavage of the tyrosine-valine cross-link. This process occurs with high quantum efficiencies (Φ = 3%) using violet and near-ultraviolet light, suggesting that the photodecarboxylation is initiated via ligand-to-metal charge transfer excitation. Site-directed mutagenesis and structural analysis suggest that the cross-linked tyrosine-162 is the coordinating residue. One primary product is observed following irradiation, indicating potential use of this class of proteins, which contains a putative substrate channel, for controlled photoinduced decarboxylation processes, with relevance for in vivo functionality of R2lox as well as application in environmental remediation.
Collapse
Affiliation(s)
- Pearson T Maugeri
- Biophysics Graduate Program, The Ohio State University , Columbus, Ohio 43210, United States
| | - Julia J Griese
- Department of Biochemistry and Biophysics, Stockholm University , SE-106 91 Stockholm, Sweden
| | - Rui M Branca
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet , SE-17165 Stockholm, Sweden
| | - Effie K Miller
- Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| | - Zachary R Smith
- Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | - Jürgen Eirich
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet , SE-17165 Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University , SE-106 91 Stockholm, Sweden
| | - Hannah S Shafaat
- Biophysics Graduate Program, The Ohio State University , Columbus, Ohio 43210, United States.,Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States.,Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
22
|
Balamurugan M, Saravanan N, Ha H, Lee YH, Nam KT. Involvement of high-valent manganese-oxo intermediates in oxidation reactions: realisation in nature, nano and molecular systems. NANO CONVERGENCE 2018; 5:18. [PMID: 30101051 PMCID: PMC6061251 DOI: 10.1186/s40580-018-0150-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/19/2018] [Indexed: 05/12/2023]
Abstract
Manganese plays multiple role in many biological redox reactions in which it exists in different oxidation states from Mn(II) to Mn(IV). Among them the high-valent manganese-oxo intermediate plays important role in the activity of certain enzymes and lessons from the natural system provide inspiration for new developments of artificial systems for a sustainable energy supply and various organic conversions. This review describes recent advances and key lessons learned from the nature on high-valent Mn-oxo intermediates. Also we focus on the elemental science developed from the natural system, how the novel strategies are realised in nano particles and molecular sites at heterogeneous and homogeneous reaction conditions respectively. Finally, perspectives on the utilisation of the high-valent manganese-oxo species towards other organic reactions are proposed.
Collapse
Affiliation(s)
- Mani Balamurugan
- Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744 South Korea
| | - Natarajan Saravanan
- Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744 South Korea
| | - Heonjin Ha
- Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744 South Korea
| | - Yoon Ho Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744 South Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744 South Korea
| |
Collapse
|
23
|
Zhou A, Crossland PM, Draksharapu A, Jasniewski AJ, Kleespies ST, Que L. Oxoiron(IV) complexes as synthons for the assembly of heterobimetallic centers such as the Fe/Mn active site of Class Ic ribonucleotide reductases. J Biol Inorg Chem 2018; 23:155-165. [PMID: 29218640 PMCID: PMC5756673 DOI: 10.1007/s00775-017-1517-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/11/2017] [Indexed: 10/18/2022]
Abstract
Nonheme oxoiron(IV) complexes can serve as synthons for generating heterobimetallic oxo-bridged dimetal complexes by reaction with divalent metal complexes. The formation of FeIII-O-CrIII and FeIII-O-MnIII complexes is described herein. The latter complexes may serve as models for the FeIII-X-MnIII active sites of an emerging class of Fe/Mn enzymes represented by the Class 1c ribonucleotide reductase from Chlamydia trachomatis and the R2-like ligand-binding oxidase (R2lox) found in Mycobacterium tuberculosis. These synthetic complexes have been characterized by UV-Vis, resonance Raman, and X-ray absorption spectroscopy, as well as electrospray mass spectrometry. The FeIII-O-CrIII complexes exhibit a three-band UV-Vis pattern that differs from the simpler features associated with FeIII-O-FeIII complexes. The positions of these features are modulated by the nature of the supporting polydentate ligand on the iron center, and their bands intensify dramatically in two examples upon the binding of an axial cyanate or thiocyanate ligand trans to the oxo bridge. In contrast, the FeIII-O-MnIII complexes resemble FeIII-O-FeIII complexes more closely. Resonance Raman characterization of the FeIII-O-MIII complexes reveals an 18O-sensitive vibration in the range of 760-890 cm-1. This feature has been assigned to the asymmetric FeIII-O-MIII stretching mode and correlates reasonably with the Fe-O bond distance determined by EXAFS analysis. The likely binding of an acetate as a bridging ligand to the FeIII-O-MnIII complex 12 lays the foundation for further efforts to model the heterobimetallic active sites of Fe/Mn enzymes.
Collapse
Affiliation(s)
- Ang Zhou
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE., Minneapolis, MN, 55455, USA
| | - Patrick M Crossland
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE., Minneapolis, MN, 55455, USA
| | - Apparao Draksharapu
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE., Minneapolis, MN, 55455, USA
| | - Andrew J Jasniewski
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE., Minneapolis, MN, 55455, USA
| | - Scott T Kleespies
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE., Minneapolis, MN, 55455, USA
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE., Minneapolis, MN, 55455, USA.
| |
Collapse
|
24
|
Lohmiller T, Krewald V, Sedoud A, Rutherford AW, Neese F, Lubitz W, Pantazis DA, Cox N. The First State in the Catalytic Cycle of the Water-Oxidizing Enzyme: Identification of a Water-Derived μ-Hydroxo Bridge. J Am Chem Soc 2017; 139:14412-14424. [DOI: 10.1021/jacs.7b05263] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Thomas Lohmiller
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Vera Krewald
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Arezki Sedoud
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
- iBiTec-S, URA
CNRS 2096, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - A. William Rutherford
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
- iBiTec-S, URA
CNRS 2096, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Frank Neese
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Nicholas Cox
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
- Research
School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
25
|
Miller EK, Trivelas NE, Maugeri PT, Blaesi EJ, Shafaat HS. Time-Resolved Investigations of Heterobimetallic Cofactor Assembly in R2lox Reveal Distinct Mn/Fe Intermediates. Biochemistry 2017; 56:3369-3379. [PMID: 28574263 DOI: 10.1021/acs.biochem.7b00403] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The assembly mechanism of the Mn/Fe ligand-binding oxidases (R2lox), a family of proteins that are homologous to the nonheme diiron carboxylate enzymes, has been investigated using time-resolved techniques. Multiple heterobimetallic intermediates that exhibit unique spectral features, including visible absorption bands and exceptionally broad electron paramagnetic resonance signatures, are observed through optical and magnetic resonance spectroscopies. On the basis of comparison to known diiron species and model compounds, the spectra have been attributed to (μ-peroxo)-MnIII/FeIII and high-valent Mn/Fe species. Global spectral analysis coupled with isotopic substitution and kinetic modeling reveals elementary rate constants for the assembly of Mn/Fe R2lox under aerobic conditions. A complete reaction mechanism for cofactor maturation that is consistent with experimental data has been developed. These results suggest that the Mn/Fe cofactor can perform direct C-H bond abstraction, demonstrating the potential for potent chemical reactivity that remains unexplored.
Collapse
Affiliation(s)
| | | | | | - Elizabeth J Blaesi
- Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | | |
Collapse
|
26
|
Tebo AG, Quaranta A, Herrero C, Pecoraro VL, Aukauloo A. Intramolecular Photogeneration of a Tyrosine Radical in a Designed Protein. CHEMPHOTOCHEM 2017; 1:89-92. [PMID: 29046892 DOI: 10.1002/cptc.201600044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Long-distance biological electron transfer occurs through a hopping mechanism and often involves tyrosine as a high potential intermediate, for example in the early charge separation steps during photosynthesis. Protein design allows for the development of minimal systems to study the underlying principles of complex systems. Herein, we report the development of the first ruthenium-linked designed protein for the photogeneration of a tyrosine radical by intramolecular electron transfer.
Collapse
Affiliation(s)
- Alison G Tebo
- Dr. A. G. Tebo, Prof. V. L. Pecoraro, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 (USA)
| | - Annamaria Quaranta
- Dr. A. Quaranta, Prof. A. Aukauloo, CEA Saclay, iBiTecS, Service de Bioénergétique Biologie Structurale et Mécanismes (SB2SM), Gif-sur-Yvette, 91191 (France)
| | - Christian Herrero
- Dr. C. Herrero, Prof. A. Aukauloo, Institut de Chimie Moléculaire et des Matériaux D'Orsay, Université Paris Sud, Université Paris Saclay, CNRS UMR 8182, 91405 Orsay Cedex (France)
| | - Vincent L Pecoraro
- Dr. A. G. Tebo, Prof. V. L. Pecoraro, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 (USA)
| | - Ally Aukauloo
- Dr. C. Herrero, Prof. A. Aukauloo, Institut de Chimie Moléculaire et des Matériaux D'Orsay, Université Paris Sud, Université Paris Saclay, CNRS UMR 8182, 91405 Orsay Cedex (France).,Dr. A. Quaranta, Prof. A. Aukauloo, CEA Saclay, iBiTecS, Service de Bioénergétique Biologie Structurale et Mécanismes (SB2SM), Gif-sur-Yvette, 91191 (France)
| |
Collapse
|
27
|
Martinie RJ, Blaesi EJ, Krebs C, Bollinger JM, Silakov A, Pollock CJ. Evidence for a Di-μ-oxo Diamond Core in the Mn(IV)/Fe(IV) Activation Intermediate of Ribonucleotide Reductase from Chlamydia trachomatis. J Am Chem Soc 2017; 139:1950-1957. [PMID: 28075562 DOI: 10.1021/jacs.6b11563] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-valent iron and manganese complexes effect some of the most challenging biochemical reactions known, including hydrocarbon and water oxidations associated with the global carbon cycle and oxygenic photosynthesis, respectively. Their extreme reactivity presents an impediment to structural characterization, but their biological importance and potential chemical utility have, nevertheless, motivated extensive efforts toward that end. Several such intermediates accumulate during activation of class I ribonucleotide reductase (RNR) β subunits, which self-assemble dimetal cofactors with stable one-electron oxidants that serve to initiate the enzyme's free-radical mechanism. In the class I-c β subunit from Chlamydia trachomatis, a heterodinuclear Mn(II)/Fe(II) complex reacts with dioxygen to form a Mn(IV)/Fe(IV) intermediate, which undergoes reduction of the iron site to produce the active Mn(IV)/Fe(III) cofactor. Herein, we assess the structure of the Mn(IV)/Fe(IV) activation intermediate using Fe- and Mn-edge extended X-ray absorption fine structure (EXAFS) analysis and multifrequency pulse electron paramagnetic resonance (EPR) spectroscopy. The EXAFS results reveal a metal-metal vector of 2.74-2.75 Å and an intense light-atom (C/N/O) scattering interaction 1.8 Å from the Fe. Pulse EPR data reveal an exchangeable deuterium hyperfine coupling of strength |T| = 0.7 MHz, but no stronger couplings. The results suggest that the intermediate possesses a di-μ-oxo diamond core structure with a terminal hydroxide ligand to the Mn(IV).
Collapse
Affiliation(s)
- Ryan J Martinie
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Elizabeth J Blaesi
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Carsten Krebs
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - J Martin Bollinger
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Alexey Silakov
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Christopher J Pollock
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
28
|
Kositzki R, Mebs S, Marx J, Griese JJ, Schuth N, Högbom M, Schünemann V, Haumann M. Protonation State of MnFe and FeFe Cofactors in a Ligand-Binding Oxidase Revealed by X-ray Absorption, Emission, and Vibrational Spectroscopy and QM/MM Calculations. Inorg Chem 2016; 55:9869-9885. [PMID: 27610479 DOI: 10.1021/acs.inorgchem.6b01752] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Enzymes with a dimetal-carboxylate cofactor catalyze reactions among the top challenges in chemistry such as methane and dioxygen (O2) activation. Recently described proteins bind a manganese-iron cofactor (MnFe) instead of the classical diiron cofactor (FeFe). Determination of atomic-level differences of homo- versus hetero-bimetallic cofactors is crucial to understand their diverse redox reactions. We studied a ligand-binding oxidase from the bacterium Geobacillus kaustophilus (R2lox) loaded with a FeFe or MnFe cofactor, which catalyzes O2 reduction and an unusual tyrosine-valine ether cross-link formation, as revealed by X-ray crystallography. Advanced X-ray absorption, emission, and vibrational spectroscopy methods and quantum chemical and molecular mechanics calculations provided relative Mn/Fe contents, X-ray photoreduction kinetics, metal-ligand bond lengths, metal-metal distances, metal oxidation states, spin configurations, valence-level degeneracy, molecular orbital composition, nuclear quadrupole splitting energies, and vibrational normal modes for both cofactors. A protonation state with an axial water (H2O) ligand at Mn or Fe in binding site 1 and a metal-bridging hydroxo group (μOH) in a hydrogen-bonded network is assigned. Our comprehensive picture of the molecular, electronic, and dynamic properties of the cofactors highlights reorientation of the unique axis along the Mn-OH2 bond for the Mn1(III) Jahn-Teller ion but along the Fe-μOH bond for the octahedral Fe1(III). This likely corresponds to a more positive redox potential of the Mn(III)Fe(III) cofactor and higher proton affinity of its μOH group. Refined model structures for the Mn(III)Fe(III) and Fe(III)Fe(III) cofactors are presented. Implications of our findings for the site-specific metalation of R2lox and performance of the O2 reduction and cross-link formation reactions are discussed.
Collapse
Affiliation(s)
- Ramona Kositzki
- Fachbereich Physik, Freie Universität Berlin , 14195 Berlin, Germany
| | - Stefan Mebs
- Fachbereich Physik, Freie Universität Berlin , 14195 Berlin, Germany
| | - Jennifer Marx
- Fachbereich Physik, Technische Universität Kaiserslautern , 67663 Kaiserslautern, Germany
| | - Julia J Griese
- Department of Biochemistry and Biophysics, Stockholm University , 10691 Stockholm, Sweden
| | - Nils Schuth
- Fachbereich Physik, Freie Universität Berlin , 14195 Berlin, Germany
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University , 10691 Stockholm, Sweden.,Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Volker Schünemann
- Fachbereich Physik, Technische Universität Kaiserslautern , 67663 Kaiserslautern, Germany
| | - Michael Haumann
- Fachbereich Physik, Freie Universität Berlin , 14195 Berlin, Germany
| |
Collapse
|
29
|
Kutin Y, Srinivas V, Fritz M, Kositzki R, Shafaat HS, Birrell J, Bill E, Haumann M, Lubitz W, Högbom M, Griese JJ, Cox N. Divergent assembly mechanisms of the manganese/iron cofactors in R2lox and R2c proteins. J Inorg Biochem 2016; 162:164-177. [PMID: 27138102 DOI: 10.1016/j.jinorgbio.2016.04.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/04/2016] [Accepted: 04/12/2016] [Indexed: 01/22/2023]
Abstract
A manganese/iron cofactor which performs multi-electron oxidative chemistry is found in two classes of ferritin-like proteins, the small subunit (R2) of class Ic ribonucleotide reductase (R2c) and the R2-like ligand-binding oxidase (R2lox). It is unclear how a heterodimeric Mn/Fe metallocofactor is assembled in these two related proteins as opposed to a homodimeric Fe/Fe cofactor, especially considering the structural similarity and proximity of the two metal-binding sites in both protein scaffolds and the similar first coordination sphere ligand preferences of MnII and FeII. Using EPR and Mössbauer spectroscopies as well as X-ray anomalous dispersion, we examined metal loading and cofactor activation of both proteins in vitro (in solution). We find divergent cofactor assembly mechanisms for the two systems. In both cases, excess MnII promotes heterobimetallic cofactor assembly. In the absence of FeII, R2c cooperatively binds MnII at both metal sites, whereas R2lox does not readily bind MnII at either site. Heterometallic cofactor assembly is favored at substoichiometric FeII concentrations in R2lox. FeII and MnII likely bind to the protein in a stepwise fashion, with FeII binding to site 2 initiating cofactor assembly. In R2c, however, heterometallic assembly is presumably achieved by the displacement of MnII by FeII at site 2. The divergent metal loading mechanisms are correlated with the putative in vivo functions of R2c and R2lox, and most likely with the intracellular MnII/FeII concentrations in the host organisms from which they were isolated.
Collapse
Affiliation(s)
- Yuri Kutin
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Vivek Srinivas
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Matthieu Fritz
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ramona Kositzki
- Institut für Experimentalphysik, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Hannah S Shafaat
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - James Birrell
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Michael Haumann
- Institut für Experimentalphysik, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden; Department of Chemistry, Stanford University, Stanford, CA 94305, United States.
| | - Julia J Griese
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Nicholas Cox
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany; Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
30
|
Griese JJ, Kositzki R, Schrapers P, Branca RMM, Nordström A, Lehtiö J, Haumann M, Högbom M. Structural Basis for Oxygen Activation at a Heterodinuclear Manganese/Iron Cofactor. J Biol Chem 2015; 290:25254-72. [PMID: 26324712 PMCID: PMC4646176 DOI: 10.1074/jbc.m115.675223] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 08/24/2015] [Indexed: 12/31/2022] Open
Abstract
Two recently discovered groups of prokaryotic di-metal carboxylate proteins harbor a heterodinuclear Mn/Fe cofactor. These are the class Ic ribonucleotide reductase R2 proteins and a group of oxidases that are found predominantly in pathogens and extremophiles, called R2-like ligand-binding oxidases (R2lox). We have recently shown that the Mn/Fe cofactor of R2lox self-assembles from Mn(II) and Fe(II) in vitro and catalyzes formation of a tyrosine-valine ether cross-link in the protein scaffold (Griese, J. J., Roos, K., Cox, N., Shafaat, H. S., Branca, R. M., Lehtiö, J., Gräslund, A., Lubitz, W., Siegbahn, P. E., and Högbom, M. (2013) Proc. Natl. Acad. Sci. U.S.A. 110, 17189-17194). Here, we present a detailed structural analysis of R2lox in the nonactivated, reduced, and oxidized resting Mn/Fe- and Fe/Fe-bound states, as well as the nonactivated Mn/Mn-bound state. X-ray crystallography and x-ray absorption spectroscopy demonstrate that the active site ligand configuration of R2lox is essentially the same regardless of cofactor composition. Both the Mn/Fe and the diiron cofactor activate oxygen and catalyze formation of the ether cross-link, whereas the dimanganese cluster does not. The structures delineate likely routes for gated oxygen and substrate access to the active site that are controlled by the redox state of the cofactor. These results suggest that oxygen activation proceeds via similar mechanisms at the Mn/Fe and Fe/Fe center and that R2lox proteins might utilize either cofactor in vivo based on metal availability.
Collapse
Affiliation(s)
- Julia J Griese
- From the Stockholm Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ramona Kositzki
- the Institut für Experimentalphysik, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Peer Schrapers
- the Institut für Experimentalphysik, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Rui M M Branca
- the Cancer Proteomics Mass Spectrometry, Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Box 1031, SE-171 21 Solna, Sweden, and
| | - Anders Nordström
- the Department of Molecular Biology, Umeå University, SE-90187 Umeå, Sweden
| | - Janne Lehtiö
- the Cancer Proteomics Mass Spectrometry, Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Box 1031, SE-171 21 Solna, Sweden, and
| | - Michael Haumann
- the Institut für Experimentalphysik, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Martin Högbom
- From the Stockholm Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden,
| |
Collapse
|
31
|
Rapatskiy L, Ames WM, Pérez-Navarro M, Savitsky A, Griese JJ, Weyhermüller T, Shafaat HS, Högbom M, Neese F, Pantazis DA, Cox N. Characterization of Oxygen Bridged Manganese Model Complexes Using Multifrequency 17O-Hyperfine EPR Spectroscopies and Density Functional Theory. J Phys Chem B 2015. [DOI: 10.1021/acs.jpcb.5b04614] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Leonid Rapatskiy
- Max-Planck Institute for Chemical Energy, Stiftstr. 34-36, Mülheim an der Ruhr, DE-45470 Germany
| | - William M. Ames
- Max-Planck Institute for Chemical Energy, Stiftstr. 34-36, Mülheim an der Ruhr, DE-45470 Germany
| | - Montserrat Pérez-Navarro
- Max-Planck Institute for Chemical Energy, Stiftstr. 34-36, Mülheim an der Ruhr, DE-45470 Germany
| | - Anton Savitsky
- Max-Planck Institute for Chemical Energy, Stiftstr. 34-36, Mülheim an der Ruhr, DE-45470 Germany
| | - Julia J. Griese
- Department
of Biochemistry and Biophysics, Stockholm University, Stockholm SE-106 91, Sweden
| | - Thomas Weyhermüller
- Max-Planck Institute for Chemical Energy, Stiftstr. 34-36, Mülheim an der Ruhr, DE-45470 Germany
| | - Hannah S. Shafaat
- Max-Planck Institute for Chemical Energy, Stiftstr. 34-36, Mülheim an der Ruhr, DE-45470 Germany
| | - Martin Högbom
- Department
of Biochemistry and Biophysics, Stockholm University, Stockholm SE-106 91, Sweden
| | - Frank Neese
- Max-Planck Institute for Chemical Energy, Stiftstr. 34-36, Mülheim an der Ruhr, DE-45470 Germany
| | - Dimitrios A. Pantazis
- Max-Planck Institute for Chemical Energy, Stiftstr. 34-36, Mülheim an der Ruhr, DE-45470 Germany
| | - Nicholas Cox
- Max-Planck Institute for Chemical Energy, Stiftstr. 34-36, Mülheim an der Ruhr, DE-45470 Germany
| |
Collapse
|