1
|
Zhang S, Yao H, Deng R, Zhan J, Tong T, Wang Y, Yan H, Wang C, Li C, Dong H, Ma S. In situ fabrication of Ni 3S 2/Cu 2S heterojunction on nickel foam as a highly efficient and durable electrocatalyst for overall water splitting. J Colloid Interface Sci 2025; 678:804-818. [PMID: 39312869 DOI: 10.1016/j.jcis.2024.09.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
The development of cost-efficient bifunctional electrocatalysts is significant for overall water splitting. Herein, we report the in situ fabrication of heterogeneous NF/Ni3S2/Cu2S-X (where X refers to Cu2+ concentrations of 50, 75, and 100 mM) on nickel foam (NF) using an electrodeposition-hydrothermal method. The in situ electrodeposited metallic Cu0 layers on the NF conferred higher stability to the resulting bimetallic sulfide of Ni3S2/Cu2S. In alkaline media (1 M KOH), the optimized NF/Ni3S2/Cu2S-75 exhibited ultra-low overpotentials of 108 and 166 mV during the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) at 10 mA·cm-2. For overall water splitting, the catalyst showed a significantly low cell voltage of 1.50 V and long stabilization time (≥150h)at15mA·cm-2. Density functional theory calculations revealed that the formation of Ni3S2/Cu2S heterojunction reduced the Gibbs free energy of hydrogen adsorption (ΔGH*) on the S site, thus facilitating H2 generation. This study serves as a guide for tailoring transition metal-based catalysts with enhanced activity and long-term durability, thereby contributing to highly efficient water electrolysis for large-scale hydrogen production.
Collapse
Affiliation(s)
- Siqi Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Huiqin Yao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| | - Ruxin Deng
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jiayi Zhan
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Tian Tong
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yixuan Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Haiqing Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chaonan Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Cheng Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China; Shanghai Key Laboratory of Material Frontiers Research in Extreme Environments (MFree), Shanghai Advanced Research in Physical Sciences (SHARPS), Pudong, Shanghai 201203, China.
| | - Shulan Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
2
|
Liu Z, Xue J, Fan Y, Li Y. Mo Doping Induced Ni Surface Enrichment of Porous Spherical Core-Shell Bifunctional Electrocatalyst for Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407907. [PMID: 39487637 DOI: 10.1002/smll.202407907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Rational design of efficient and non-noble metal bifunctional catalysts for alkaline overall water splitting (OWS) electrochemical reactions is of top priority in the development of hydrogen-based energy. Constructing catalysts with unique structures to optimize the intrinsic activity is a promising strategy. In this work, a newly developed Ni3Co3Mo100-BTC-15h catalyst consisting of Ni nanoparticles enriched on the surface along with a core-shell porous structure is prepared via a hydrothermal process. Due to the unique composition and Ni-enriched core-shell structure, the Ni3Co3Mo100-BTC-15h catalyst exhibits enhanced electrocatalytic properties for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline media. Under the dual tuning and intermetallic phase, the Ni3Co3Mo100-BTC-15h catalyst deliver a lower overpotential of 151 mV and ≈ 136 mV exceeding commercial catalysts for OER and HER. When the Ni3Co3Mo100-BTC-15h is used as bifunctional catalyst for OWS in a two-electrode alkaline electrolyzer, a cell voltage of 1.62 V is required to drive 10 mA·cm-2 comparable to that of commercial Pt/C and RuO2 catalysts. This work proposes a potential strategy for optimizing the electrocatalytic performance of non-noble metal catalysts for OWS.
Collapse
Affiliation(s)
- Zhipeng Liu
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jinling Xue
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yibin Fan
- School of Future Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yinshi Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
3
|
Liu X, Wang W, Wan L, Hu Y, Xia C, Cao L, Dong B. Partially Amorphous Ru-Doped CoSe Nanoparticles with Optimized Intermediates Adsorption for Highly Efficient Sulfur Oxidation Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406012. [PMID: 39394916 DOI: 10.1002/smll.202406012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/28/2024] [Indexed: 10/14/2024]
Abstract
The application of thermodynamically more favorable sulfur oxidation reaction (SOR) to replace oxygen evolution reaction (OER) in electrocatalytic water electrolysis is an appealing strategy to achieve low-energy hydrogen production while removing toxic sulfur ions from wastewater. However, the study of SOR catalysts with both activity and stability still faces great challenges. Herein, this study prepares partially amorphous Ru-doped CoSe (pa-Ru-CoSe) nanoparticles for SOR. The doping of Ru keeps Co in an electron-deficient state, which enhances the adsorption of SOR intermediates and improves the catalytic activity. Meanwhile, the partially amorphous selenide possesses great corrosion resistance to sulfur species, thus ensuring stability in long-term SOR. In addition, the pa-Ru-CoSe requires only 0.566 V to reach a current density of 100 mA cm-2 in the SOR-HER coupled system and remains stable for 200 h. This work provides a promising partially amorphous strategy for SOR catalysts with both catalytic activity and long-term stability, enabling hydrogen production with low energy consumption and simultaneous sulfur production.
Collapse
Affiliation(s)
- Xinzheng Liu
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| | - Wenwen Wang
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| | - Li Wan
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| | - Yubin Hu
- Institute of Marine Science and Technology, Shandong University, 72 Coastal Highway, Qingdao, 266237, P. R. China
| | - Chenghui Xia
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| | - Lixin Cao
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| | - Bohua Dong
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| |
Collapse
|
4
|
Zhang W, Wen Y, Chen H, Wang M, Zhu C, Wang Y, Lu Z. Sulfur-regulated CoSe 2 nanowires with high-charge active centers for electrochemical nitrate reduction to ammonium. MATERIALS HORIZONS 2024; 11:4454-4461. [PMID: 38958934 DOI: 10.1039/d4mh00593g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Developing high-efficiency electrocatalysts for nitrate-to-ammonia transformation holds significant promise for the production of ammonia, a crucial component in agricultural fertilizers and as a carbon-free energy carrier. In this study, we propose a viable strategy involving sulfur doping to modulate both the microstructure and electronic properties of CoSe2 for nitrate reduction. This approach remarkably enhances the conversion of nitrate to ammonia by effectively regulating the adsorption capability of nitrogenous intermediates. Specifically, sulfur-doped CoSe2 nanowires (S-CoSe2 NWs) exhibit a peak faradaic efficiency of 93.1% at -0.6 V vs. RHE and achieve the highest NH3 yield rate of 11.6 mg h-1 cm-2. Mechanistic investigations reveal that sulfur doping facilitates the creation of highly charged active sites, which enhance the adsorption of nitrite and subsequent hydrogenation, leading to improved selectivity towards ammonia production.
Collapse
Affiliation(s)
- Wuyong Zhang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China.
| | - Yingjie Wen
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China.
| | - Haocheng Chen
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China.
| | - Minli Wang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China.
| | - Caihan Zhu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China.
| | - Yunan Wang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China.
| | - Zhiyi Lu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China.
| |
Collapse
|
5
|
Roy S, Joseph A, Zhang X, Bhattacharyya S, Puthirath AB, Biswas A, Tiwary CS, Vajtai R, Ajayan PM. Engineered Two-Dimensional Transition Metal Dichalcogenides for Energy Conversion and Storage. Chem Rev 2024; 124:9376-9456. [PMID: 39042038 DOI: 10.1021/acs.chemrev.3c00937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Designing efficient and cost-effective materials is pivotal to solving the key scientific and technological challenges at the interface of energy, environment, and sustainability for achieving NetZero. Two-dimensional transition metal dichalcogenides (2D TMDs) represent a unique class of materials that have catered to a myriad of energy conversion and storage (ECS) applications. Their uniqueness arises from their ultra-thin nature, high fractions of atoms residing on surfaces, rich chemical compositions featuring diverse metals and chalcogens, and remarkable tunability across multiple length scales. Specifically, the rich electronic/electrical, optical, and thermal properties of 2D TMDs have been widely exploited for electrochemical energy conversion (e.g., electrocatalytic water splitting), and storage (e.g., anodes in alkali ion batteries and supercapacitors), photocatalysis, photovoltaic devices, and thermoelectric applications. Furthermore, their properties and performances can be greatly boosted by judicious structural and chemical tuning through phase, size, composition, defect, dopant, topological, and heterostructure engineering. The challenge, however, is to design and control such engineering levers, optimally and specifically, to maximize performance outcomes for targeted applications. In this review we discuss, highlight, and provide insights on the significant advancements and ongoing research directions in the design and engineering approaches of 2D TMDs for improving their performance and potential in ECS applications.
Collapse
Affiliation(s)
- Soumyabrata Roy
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Antony Joseph
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Xiang Zhang
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Sohini Bhattacharyya
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Anand B Puthirath
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Abhijit Biswas
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Chandra Sekhar Tiwary
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Robert Vajtai
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
6
|
Cui C, Zhang H, Wang D, Song J, Yang Y. Multifunctional Design of Catalysts for Seawater Electrolysis for Hydrogen Production. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4057. [PMID: 39203235 PMCID: PMC11356654 DOI: 10.3390/ma17164057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024]
Abstract
Direct seawater electrolysis is a promising technology within the carbon-neutral energy framework, leveraging renewable resources such as solar, tidal, and wind energy to generate hydrogen and oxygen without competing with the demand for pure water. High-selectivity, high-efficiency, and corrosion-resistant multifunctional electrocatalysts are essential for practical applications, yet producing stable and efficient catalysts under harsh conditions remains a significant challenge. This review systematically summarizes recent advancements in advanced electrocatalysts for seawater splitting, focusing on their multifunctional designs for selectivity and chlorine corrosion resistance. We analyze the fundamental principles and mechanisms of seawater electrocatalytic reactions, discuss the challenges, and provide a detailed overview of the progress in nanostructures, alloys, multi-metallic systems, atomic dispersion, interface engineering, and functional modifications. Continuous research and innovation aim to develop efficient, eco-friendly seawater electrolysis systems, promoting hydrogen energy application, addressing efficiency and stability challenges, reducing costs, and achieving commercial viability.
Collapse
Affiliation(s)
| | | | | | | | - Ying Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China; (C.C.); (H.Z.); (D.W.); (J.S.)
| |
Collapse
|
7
|
Yu J, Huang C, Usoltsev O, Black AP, Gupta K, Spadaro MC, Pinto-Huguet I, Botifoll M, Li C, Herrero-Martín J, Zhou J, Ponrouch A, Zhao R, Balcells L, Zhang CY, Cabot A, Arbiol J. Promoting Polysulfide Redox Reactions through Electronic Spin Manipulation. ACS NANO 2024; 18:19268-19282. [PMID: 38981060 PMCID: PMC11271176 DOI: 10.1021/acsnano.4c05278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
Catalytic additives able to accelerate the lithium-sulfur redox reaction are a key component of sulfur cathodes in lithium-sulfur batteries (LSBs). Their design focuses on optimizing the charge distribution within the energy spectra, which involves refinement of the distribution and occupancy of the electronic density of states. Herein, beyond charge distribution, we explore the role of the electronic spin configuration on the polysulfide adsorption properties and catalytic activity of the additive. We showcase the importance of this electronic parameter by generating spin polarization through a defect engineering approach based on the introduction of Co vacancies on the surface of CoSe nanosheets. We show vacancies change the electron spin state distribution, increasing the number of unpaired electrons with aligned spins. This local electronic rearrangement enhances the polysulfide adsorption, reducing the activation energy of the Li-S redox reactions. As a result, more uniform nucleation and growth of Li2S and an accelerated liquid-solid conversion in LSB cathodes are obtained. These translate into LSB cathodes exhibiting capacities up to 1089 mA h g-1 at 1 C with 0.017% average capacity loss after 1500 cycles, and up to 5.2 mA h cm-2, with 0.16% decay per cycle after 200 cycles in high sulfur loading cells.
Collapse
Affiliation(s)
- Jing Yu
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST,
Campus UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
- Catalonia
Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, 08930 Catalonia, Spain
| | - Chen Huang
- Catalonia
Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, 08930 Catalonia, Spain
- Department
of Chemistry, University of Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Oleg Usoltsev
- ALBA
Synchrotron, 08290 Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| | - Ashley P. Black
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Kapil Gupta
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST,
Campus UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Maria Chiara Spadaro
- Department
of Physics and Astronomy “Ettore Majorana”, University of Catania, via S. Sofia 64, 95123 Catania, Italy
- CNR-IMM, via S. Sofia
64, 95123 Catania, Italy
| | - Ivan Pinto-Huguet
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST,
Campus UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Marc Botifoll
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST,
Campus UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Canhuang Li
- Catalonia
Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, 08930 Catalonia, Spain
- Department
of Chemistry, University of Barcelona, 08028 Barcelona, Catalonia, Spain
| | | | - Jinyuan Zhou
- Key
Laboratory for Magnetism and Magnetic Materials of the Ministry of
Education & School of Physical Science & Technology, Lanzhou University, 730000 Lanzhou, China
| | - Alexandre Ponrouch
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Ruirui Zhao
- School
of Chemistry, South China Normal University, 510006 Guangzhou, China
| | - Lluís Balcells
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Chao Yue Zhang
- Key
Laboratory for Magnetism and Magnetic Materials of the Ministry of
Education & School of Physical Science & Technology, Lanzhou University, 730000 Lanzhou, China
| | - Andreu Cabot
- Catalonia
Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, 08930 Catalonia, Spain
- ICREA, Passeig Lluìs
Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Jordi Arbiol
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST,
Campus UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
- ICREA, Passeig Lluìs
Companys 23, 08010 Barcelona, Catalonia, Spain
| |
Collapse
|
8
|
Pan Y, Zou Y, Ma C, Nga TTT, An Q, Miao R, Xia Z, Fan Y, Dong CL, Liu Q, Wang S. Electrocatalytic Coupling of Nitrate and Formaldehyde for Hexamethylenetetramine Synthesis via C-N Bond Construction and Ring Formation. J Am Chem Soc 2024; 146:19572-19579. [PMID: 38973100 DOI: 10.1021/jacs.4c06840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Hexamethylenetetramine (HMTA) is extensively used in the defense industry, medicines, food, plastics, rubber, and other applications. Traditional organic synthesis of HMTA relies on ammonia derived from the Haber process at high temperatures and pressures. In contrast, electrochemical methods enable a safe and green one-pot synthesis of HMTA from waste NO3-. However, HMTA synthesis through the electrochemical method is challenging owing to the complex reaction pathways involving C-N bond construction and ring formation. In this study, HMTA was efficiently synthesized over electrochemical oxidation-derived copper (e-OD-Cu), with a yield of 76.8% and a Faradaic efficiency of 74.9% at -0.30 VRHE. The catalytic mechanism and reaction pathway of HMTA synthesis on e-OD-Cu were investigated through a series of in situ characterization methods and density-functional theory calculations. The results demonstrated that the electrocatalytic synthesis of HMTA involved a tandem electrochemical-chemical reaction. Additionally, the results indicated that the presence of Cu vacancies enhanced substrate adsorption and inhibited the further hydrogenation of C═N. Overall, this study provides an electrocatalytic method for HMTA synthesis and an electrochemical strategy for constructing multiple C-N bonds.
Collapse
Affiliation(s)
- Yuping Pan
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha 410082, P. R. China
| | - Yuqin Zou
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha 410082, P. R. China
| | - Chongyang Ma
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha 410082, P. R. China
| | - Ta Thi Thuy Nga
- Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Qizheng An
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Rong Miao
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha 410082, P. R. China
| | - Zhongcheng Xia
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha 410082, P. R. China
| | - Yun Fan
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha 410082, P. R. China
| | - Chung-Li Dong
- Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha 410082, P. R. China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, P. R. China
| |
Collapse
|
9
|
Di J, Chen C, Wu Y, Chen H, Xiong J, Long R, Li S, Song L, Jiang W, Liu Z. Asymmetric Electron Redistribution in Niobic-Oxygen Vacancy Associates to Tune Noncovalent Interaction in CO 2 Photoreduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401914. [PMID: 38436110 DOI: 10.1002/adma.202401914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Indexed: 03/05/2024]
Abstract
The role of vacancy associates in photocatalytic CO2 reduction is an open question. Herein, the Nb─O vacancy associates (VNb─O) are engineered into niobic acid (NA) atomic layers to tailor the CO2 photoreduction performance. The intrinsic charge compensation from O to Nb around Nb─O vacancy associates can manipulate the active electronic states, leading to the asymmetric electron redistribution. These local symmetry breaking sites show a charge density gradient, forming a localized polarization field to polarize nonpolar CO2 molecules and tune the noncovalent interaction of reaction intermediates. This unique configuration contributes to the 9.3 times increased activity for photocatalytic CO2 reduction. Meantime, this VNb─O NA also shows excellent photocatalytic activity for NO3 --NH4 + synthesis, with NH4 + formation rate up to 3442 µmol g-1 h-1. This work supplies fresh insights into the vacancy associate design for electron redistribution and noncovalent interaction tuning in photocatalysis.
Collapse
Affiliation(s)
- Jun Di
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Chao Chen
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, P. R. China
| | - Yao Wu
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Hao Chen
- National Synchrotron Radiation Laboratory, State Key Laboratory of Particle Detection and Electronics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jun Xiong
- Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Ran Long
- National Synchrotron Radiation Laboratory, State Key Laboratory of Particle Detection and Electronics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shuzhou Li
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Li Song
- National Synchrotron Radiation Laboratory, State Key Laboratory of Particle Detection and Electronics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zheng Liu
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
10
|
Li L, Qu J, Zhang L, Wei L, Su J, Guo L. RuSe 2 and CoSe 2 Nanoparticles Incorporated Nitrogen-Doped Carbon as Efficient Trifunctional Electrocatalyst for Zinc-Air Batteries and Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38710018 DOI: 10.1021/acsami.4c02766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The development of affordable, highly active, and stable trifunctional electrocatalysts is imperative for sustainable energy applications such as overall water splitting and rechargeable Zn-air battery. Herein, we report a composite electrocatalyst with RuSe2 and CoSe2 hybrid nanoparticles embedded in nitrogen-doped carbon (RuSe2CoSe2/NC) synthesized through a carbonization-adsorption-selenylation strategy. This electrocatalyst is a trifunctional electrocatalyst with excellent hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) activities. An in-depth study of the effect of Se on the electrocatalytic process was conducted. Notably, the incorporation of Se moderately adjusted electronic structure of Ru and Co, enhancing all three types of catalytic performance (HER, η10 = 31 mV; OER, η10 = 248 mV; ORR, E1/2 = 0.834 V) under alkaline condition with accelerated kinetics and improved stability. Density functional theory (DFT) calculation reveals that the (210) crystal facet of RuSe2 is the dominant HER active site as it exhibited the lowest ΔGH* value. The in situ Raman spectra unravel the evolution process of the local electronic environment of Co-Se and Ru-Se bonds, which synergistically promotes the formation of CoOOH as the active intermediate during the OER. The superior catalytic efficiency and remarkable durability of RuSe2CoSe2/NC as an electrode for water splitting and zinc-air battery devices demonstrate its great potential for energy storage and conversion devices.
Collapse
Affiliation(s)
- Lubing Li
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jingkuo Qu
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Zhang
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Liting Wei
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jinzhan Su
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Liejin Guo
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
11
|
Liu S, Huang WH, Meng S, Jiang K, Han J, Zhang Q, Hu Z, Pao CW, Geng H, Huang X, Zhan C, Yun Q, Xu Y, Huang X. 3D Noble-Metal Nanostructures Approaching Atomic Efficiency and Atomic Density Limits. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312140. [PMID: 38241656 DOI: 10.1002/adma.202312140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/10/2023] [Indexed: 01/21/2024]
Abstract
Noble metals have been widely used in catalysis, however, the scarcity and high cost of noble metal motivate researchers to balance the atomic efficiency and atomic density, which is formidably challenging. This article proposes a robust strategy for fabricating 3D amorphous noble metal-based oxides with simultaneous enhancement on atomic efficiency and density with the assistance of atomic channels, where the atomic utilization increases from 18.2% to 59.4%. The unique properties of amorphous bimetallic oxides and formation of atomic channels have been evidenced by detailed experimental characterizations and theoretical simulations. Moreover, the universality of the current strategy is validated by other binary oxides. When Cu2IrOx with atomic channels (Cu2IrOx-AE) is used as catalyst for oxygen evolution reaction (OER), the mass activity and turnover frequency value of Cu2IrOx-AE are 1-2 orders of magnitude higher than CuO/IrO2 and Cu2IrOx without atomic channels, largely outperforming the reported OER catalysts. Theoretical calculations reveal that the formation of atomic channels leads to various Ir sites, on which the proton of adsorbed *OH can transfer to adjacent O atoms of [IrO6]. This work may attract immediate interest of researchers in material science, chemistry, catalysis, and beyond.
Collapse
Affiliation(s)
- Shangheng Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, 215123, China
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Shuang Meng
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Kezhu Jiang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jiajia Han
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Qiaobao Zhang
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, 01187, Dresden, Germany
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Hongbo Geng
- School of Materials Engineering Changshu Institute of Technology Changshu, Changshu, 215500, China
| | - Xuan Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Changhong Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qinbai Yun
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, Kowloon, 999077, China
| | - Yong Xu
- Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, 215123, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| |
Collapse
|
12
|
Zhu S, Yang R, Li HJW, Huang S, Wang H, Liu Y, Li H, Zhai T. Reconstructing Hydrogen-Bond Network for Efficient Acidic Oxygen Evolution. Angew Chem Int Ed Engl 2024; 63:e202319462. [PMID: 38286750 DOI: 10.1002/anie.202319462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 01/31/2024]
Abstract
Developing highly active oxygen evolution reaction (OER) catalysts in acidic conditions is a pressing demand for proton-exchange membrane water electrolysis. Manipulating proton character at the electrified interface, as the crux of all proton-coupled electrochemical reactions, is highly desirable but elusive. Herein we present a promising protocol, which reconstructs a connected hydrogen-bond network between the catalyst-electrolyte interface by coupling hydrophilic units to boost acidic OER activity. Modelling on N-doped-carbon-layer clothed Mn-doped-Co3O4 (Mn-Co3O4@CN), we unravel that the hydrogen-bond interaction between CN units and H2O molecule not only drags the free water to enrich the surface of Mn-Co3O4 but also serves as a channel to promote the dehydrogenation process. Meanwhile, the modulated local charge of the Co sites from CN units/Mn dopant lowers the OER barrier. Therefore, Mn-Co3O4@CN surpasses RuO2 at high current density (100 mA cm-2 @ ~538 mV).
Collapse
Affiliation(s)
- Shicheng Zhu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Ruoou Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Huang Jing Wei Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Sirui Huang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Haozhi Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, and School of Materials Science and Engineering, Hainan University, Haikou, Hainan, 570228, P. R. China
| | - Youwen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| |
Collapse
|
13
|
Fan C, Yang R, Yang Y, Yang Y, Huang Y, Yan Y, Zhong L, Xu Y. Cubic CoSe 2@carbon as polysulfides adsorption-catalytic mediator for fast redox kinetics and advanced stability lithium-sulfur batteries. J Colloid Interface Sci 2024; 660:246-256. [PMID: 38244493 DOI: 10.1016/j.jcis.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024]
Abstract
Although lithium-sulfur batteries (LSBs) are an attractive next-generation rechargeable battery with high theoretical energy density (2600 Wh kg-1) and specific capacity (1675 mA h g-1), the shuttle of soluble lithium polysulfides (LiPSs) is still the protruding obstacle to accelerate the redox reaction of LSBs. Here, cubic cobalt diselenide@carbon (CoSe2@C) derived from zeolite imidazole framework-67 (ZIF-67) was employed as the functional coating of polypropylene (PP) separator to efficiently adsorb and catalyze polysulfides, inhibit "shuttle effect" and improve the electrochemical reaction kinetics of LSBs. The CoSe2@C offers larger mesopore proportion of 77.19 % and abundant active sites to ensure space as a secondary reaction region, and infiltration of electrolyte and rapid transport of Li+. The involved adsorption and catalysis effect are discussed by static adsorption experiment, XPS, and Li2S nucleation kinetics analysis. The results show that CoSe2@C exhibits strong adsorption effect and catalytic activity on LiPSs, and CoSe2@C/PP cells display fast Li+ diffusion and improved redox kinetics (high Li2S nucleation peak current of 0.27 mA and deposition capacity of 148.46 mA h g-1). Ascribe to these advantages, the CoSe2@C/PP cell provides an initial discharge specific capacity of 1335.01 mA h g-1 at 0.1 C and a fine reversible capacity at 5.0 C, and achieves stable and durable lifespan with an average capacity decay rate of 0.12 % over 400 cycles at 0.5 C. This work could promote the practical application of metal selenides in the key components and devices for LSBs.
Collapse
Affiliation(s)
- Chaojiang Fan
- International Research Center for Composite and Intelligent Manufacturing Technology, Institute of Chemical Power Sources, Xi'an University of Technology, Xi'an 710048, China; School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Rong Yang
- International Research Center for Composite and Intelligent Manufacturing Technology, Institute of Chemical Power Sources, Xi'an University of Technology, Xi'an 710048, China; School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China.
| | - Yun Yang
- International Research Center for Composite and Intelligent Manufacturing Technology, Institute of Chemical Power Sources, Xi'an University of Technology, Xi'an 710048, China
| | - Yuanyuan Yang
- International Research Center for Composite and Intelligent Manufacturing Technology, Institute of Chemical Power Sources, Xi'an University of Technology, Xi'an 710048, China
| | - Yong Huang
- International Research Center for Composite and Intelligent Manufacturing Technology, Institute of Chemical Power Sources, Xi'an University of Technology, Xi'an 710048, China
| | - Yinglin Yan
- International Research Center for Composite and Intelligent Manufacturing Technology, Institute of Chemical Power Sources, Xi'an University of Technology, Xi'an 710048, China
| | - Lisheng Zhong
- International Research Center for Composite and Intelligent Manufacturing Technology, Institute of Chemical Power Sources, Xi'an University of Technology, Xi'an 710048, China; School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Yunhua Xu
- International Research Center for Composite and Intelligent Manufacturing Technology, Institute of Chemical Power Sources, Xi'an University of Technology, Xi'an 710048, China; School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China; Yulin University, Yulin 719000, China
| |
Collapse
|
14
|
Wang ZJ, Xie H, Jun SC, Li J, Wei LC, Fang YC, Liu S, Ma M, Xing Z. Heterostructured grafting of NiFe-layered double hydroxide@TiO 2 for boosting photoelectrochemical cathodic protection. MATERIALS HORIZONS 2024; 11:1808-1816. [PMID: 38323653 DOI: 10.1039/d3mh02134c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Accelerating the oxidation process at photoanode-electrolyte interfaces can prolong the lifetime of photoexcited electrons and improve the efficiency of photoelectrochemical cathodic protection (PECCP) systems without relying on hole scavengers. However, the systematic design of precisely structured heterostructures for efficient photoanodes remains challenging. Here we meticulously engineered a type-II heterostructure featuring precise spatial organization, wherein NiFe-layered double hydroxide nanosheets (NiFe-LDH NSs) were assembled onto annealed TiO2 nanorod arrays (ATNAs), demonstrating their effectiveness in achieving efficient PECCP. The interfacial electronic coupling and appropriate energy alignment between the NiFe-LDH NSs and ATNAs allowed rapid hole extraction from the ATNAs to the NiFe-LDH NSs. Furthermore, the uniform distribution of the NiFe-LDH NSs on top of ATNAs drastically reduced the overpotential of oxygen evolution reactions (OER) from 370 to 200 mV and Tafel slope from 162 to 56 mV dec-1, leading to significantly improved cathodic protection of 304 stainless steel (SS) under extended illumination and interesting post-illumination protection. In addition, with the increase of testing cycles, the as-prepared NiFe-LDH NSs@ATNAs demonstrated a progressively enhanced cathodic protection potential from 0.15 to 0.13 V vs. RHE over 50 cycles. These findings provide important guidelines for the design of future high-efficiency green metal protection through rational photoanode design.
Collapse
Affiliation(s)
- Zhi-Jun Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| | - Hui Xie
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, Seoul 120-749, South Korea
| | - Jiang Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Li Cheng Wei
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| | - Yu Chen Fang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| | - Shude Liu
- College of Textiles, Donghua University, Shanghai 201620, P.R. China.
| | - Ming Ma
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Zheng Xing
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| |
Collapse
|
15
|
Wang H, Deng X, Bari A, Gu M, Lin M, Gao A, Huang X, Zhang X. The electronic structure of the active center of Co 3Se 4 electrocatalyst was adjusted by Te doping for efficient oxygen evolution. J Colloid Interface Sci 2024; 659:767-775. [PMID: 38211493 DOI: 10.1016/j.jcis.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
In order to enhance the energy efficiency of water electrolysis, it is imperative to devise electrocatalysts for oxygen evolution reaction that are both non-precious metal-based and highly efficient. Efficient catalyst design is generally based on electronic structural engineering. Considering the electronegativity disparity between selenium (Se) and tellurium (Te), the tunable bandgaps, and the conductive metallic nature of Te. We designed a material wherein Te atoms are uniformly doped onto the surface of Cobalt tetra selenide (Co3Se4) nanorods, leading to the synthesis of a defect-rich material. Experimental results demonstrate that Te doping in Co3Se4 increases active sites and optimizes the electronic structure of Co cations, enhancing the design of multi-defect structures. This promotes the generation of the Co(oxy) hydroxide (CoOOH) active phase, enhancing catalytic activity by maximizing the binding strength between Co sites and oxygenated intermediates. Te-Co3Se4 nanorods exhibit good catalytic activity for oxygen evolution reactions, with an overpotential of 269 mV at a driving current density of 50 mA cm-2 and excellent stability in alkaline media (over 100 h). This discovery indicates the feasibility of strategically combining various imperfect structures, thereby unlocking the latent potential of diverse catalysts in electrocatalytic reactions.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, Anhui Provincial Engineering Laboratory of New-Energy Vehicle Battery Energy-Storage Materials, Anhui Engineering Research Center of Carbon Neutrality, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Xueya Deng
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, Anhui Provincial Engineering Laboratory of New-Energy Vehicle Battery Energy-Storage Materials, Anhui Engineering Research Center of Carbon Neutrality, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Alina Bari
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, Anhui Provincial Engineering Laboratory of New-Energy Vehicle Battery Energy-Storage Materials, Anhui Engineering Research Center of Carbon Neutrality, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Mingzheng Gu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, Anhui Provincial Engineering Laboratory of New-Energy Vehicle Battery Energy-Storage Materials, Anhui Engineering Research Center of Carbon Neutrality, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Man Lin
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, Anhui Provincial Engineering Laboratory of New-Energy Vehicle Battery Energy-Storage Materials, Anhui Engineering Research Center of Carbon Neutrality, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - An Gao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, Anhui Provincial Engineering Laboratory of New-Energy Vehicle Battery Energy-Storage Materials, Anhui Engineering Research Center of Carbon Neutrality, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Xiaomin Huang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, Anhui Provincial Engineering Laboratory of New-Energy Vehicle Battery Energy-Storage Materials, Anhui Engineering Research Center of Carbon Neutrality, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Xiaojun Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, Anhui Provincial Engineering Laboratory of New-Energy Vehicle Battery Energy-Storage Materials, Anhui Engineering Research Center of Carbon Neutrality, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China.
| |
Collapse
|
16
|
Liu S, Qi W, Yang X, Guo X, Liu J, Zhu Y, Yang MQ, Yang M. Surface Reconstruction on Metal Nitride during Photo-oxidation. Angew Chem Int Ed Engl 2024; 63:e202315034. [PMID: 38352980 DOI: 10.1002/anie.202315034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Indexed: 02/29/2024]
Abstract
The efficient conversion and storage of solar energy for chemical fuel production presents a challenge in sustainable energy technologies. Metal nitrides (MNs) possess unique structures that make them multi-functional catalysts for water splitting. However, the thermodynamic instability of MNs often results in the formation of surface oxide layers and ambiguous reaction mechanisms. Herein, we present on the photo-induced reconstruction of a Mo-rich@Co-rich bi-layer on ternary cobalt-molybdenum nitride (Co3 Mo3 N) surfaces, resulting in improved effectiveness for solar water splitting. During a photo-oxidation process, the uniform initial surface oxide layer is reconstructed into an amorphous Co-rich oxide surface layer and a subsurface Mo-N layer. The Co-rich outer layer provides active sites for photocatalytic oxygen evolution reaction (POER), while the Mo-rich sublayer promotes charge transfer and enhances the oxidation resistance of Co3 Mo3 N. Additionally, the surface reconstruction yields a shortened Co-Mo bond length, weakening the adsorption of hydrogen and resulting in improved performance for both photocatalytic hydrogen evolution reaction (PHER) and POER. This work provides insight into the surface structure-to-activity relationships of MNs in solar energy conversion, and is expected to have significant implications for the design of metal nitride-based catalysts in sustainable energy technologies.
Collapse
Affiliation(s)
- Siqi Liu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, P. R. China
| | - Weiliang Qi
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, P. R. China
| | - Xuhui Yang
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, Fujian, P. R. China
| | - Xuyun Guo
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Jue Liu
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, United States
| | - Ye Zhu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Min-Quan Yang
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, Fujian, P. R. China
| | - Minghui Yang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, P. R. China
| |
Collapse
|
17
|
Chen W, Wu J, Li Z, Chen Y, Ao H, Zheng X, Zhang Y, Rong J, Qiu F. High-Density CoSe 2 Sites Embedded within 2D Porous N-Doped Carbon for High-Performance Oxygen Reduction Reaction Electrocatalysis. Inorg Chem 2024; 63:4429-4437. [PMID: 38377564 DOI: 10.1021/acs.inorgchem.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Designing and fabricating efficient and stable nonprecious metal-based oxygen reduction reaction (ORR) electrocatalysts is a pressing and challenging task for the pursuit of sustainable new energy devices. Herein, porous P-CoSe2@NC electrocatalysts with high-density carbon-coated CoSe2 sites were successfully fabricated based on a pyridyl-porphyrinic metal-organic framework (Co-TPyP MOF) via a molten salt-assisted synthesis method. The hierarchical pore and N-doping carbon substrate of P-CoSe2@NC promotes mass transfer and electron-transfer efficiency, which is beneficial to maximize CoSe2 site utilization. Well-designed P-CoSe2@NC exhibits efficient ORR catalytic activity with a high half-wave potential of 0.863 V and excellent catalytic stability. Meanwhile, rechargeable aqueous primary/quasi-solid-state ZABs based on a P-CoSe2@NC air cathode show a high peak power density and exceptional operating stability, catering to the demands of practical applications. The qualified performance and structure stability of the electrocatalytic system may be mainly attributed to the protection of the CoSe2 nanoparticle by the coated carbon layer. Given the rational design of the structure and the component of the electrocatalyst with enhanced ORR activity, we believe that this work has provided a reliable pathway to the development of high-performance transition-metal chalcogenides for energy-storage and -conversion devices.
Collapse
Affiliation(s)
- Wangyi Chen
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213614, China
| | - Jing Wu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213614, China
| | - Zhongyu Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213614, China
- School of Petrochemical Engineering, Changzhou University, Changzhou 213614, China
| | - Yu Chen
- School of Petrochemical Engineering, Changzhou University, Changzhou 213614, China
| | - Huaisheng Ao
- School of Petrochemical Engineering, Changzhou University, Changzhou 213614, China
| | - Xudong Zheng
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213614, China
| | - Yuzhe Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213614, China
| | - Jian Rong
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213614, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
18
|
Xu J, Ruan J, Jian Y, Lao J, Li Z, Xie F, Jin Y, Yu X, Lee MH, Wang Z, Wang N, Meng H. Cobalt-Doping Induced Formation of Five-Coordinated Nickel Selenide for Enhanced Ethanol Assisted Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305905. [PMID: 37926774 DOI: 10.1002/smll.202305905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/12/2023] [Indexed: 11/07/2023]
Abstract
To overcome the low efficiency of overall water splitting, highly effective and stable catalysts are in urgent need, especially for the anode oxygen evolution reaction (OER). In this case, nickel selenides appear as good candidates to catalyze OER and other substitutable anodic reactions due to their high electronic conductivity and easily tunable electronic structure to meet the optimized adsorption ability. Herein, an interesting phase transition from the hexagonal phase of NiSe (H-NiSe) to the rhombohedral phase of NiSe (R-NiSe) induced by the doping of cobalt atoms is reported. The five-coordinated R-NiSe is found to grow adjacent to the six-coordinated H-NiSe, resulting in the formation of the H-NiSe/R-NiSe heterostructure. Further characterizations and calculations prove the reduced splitting energy for R-NiSe and thus the less occupancy in the t2g orbits, which can facilitate the electron transfer process. As a result, the Co2 -NiSe/NF shows a satisfying catalytic performance toward OER, hydrogen evolution reaction, and (hybrid) overall water splitting. This work proves that trace amounts of Co doping can induce the phase transition from H-NiSe to R-NiSe. The formation of less-coordinated species can reduce the t2g occupancy and thus enhance the catalytic performance, which might guide rational material design.
Collapse
Affiliation(s)
- Jinchang Xu
- Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou, 510700, China
| | - Jiaxi Ruan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yongqi Jian
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Jiayu Lao
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zilong Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Fangyan Xie
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Yanshuo Jin
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xiang Yu
- Instrumental Analysis & Research Center, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Ming-Hsien Lee
- Department of Physics, Tamkang University, New Taipei, 25137, Taiwan
| | - Zhenyou Wang
- Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou, 510700, China
| | - Nan Wang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Hui Meng
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| |
Collapse
|
19
|
Rezaei M, Nezamzadeh-Ejhieh A, Massah AR. A Comprehensive Review on the Boosted Effects of Anion Vacancy in the Heterogeneous Photocatalytic Degradation, Part II: Focus on Oxygen Vacancy. ACS OMEGA 2024; 9:6093-6127. [PMID: 38371849 PMCID: PMC10870278 DOI: 10.1021/acsomega.3c07560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/20/2024]
Abstract
Environmental problems, including the increasingly polluted water and the energy crisis, have led to a need to propose novel strategies/methodologies to contribute to sustainable progress and enhance human well-being. For these goals, heterogeneous semiconducting-based photocatalysis is introduced as a green, eco-friendly, cost-effective, and effective strategy. The introduction of anion vacancies in semiconductors has been well-known as an effective strategy for considerably enhancing the photocatalytic activity of such photocatalytic systems, giving them the advantages of promoting light harvesting, facilitating photogenerated electron-hole pair separation, optimizing the electronic structure, and enhancing the yield of reactive radicals. This Review will introduce the effects of anion vacancy-dominated photodegradation systems. Then, their mechanism will illustrate how an anion vacancy changes the photodegradation pathway to enhance the degradation efficiency toward pollutants and the overall photocatalytic performance. Specifically, the vacancy defect types and the methods of tailoring vacancies will be briefly illustrated, and this part of the Review will focus on the oxygen vacancy (OV) and its recent advances. The challenges and development issues for engineered vacancy defects in photocatalysts will also be discussed for practical applications and to provide a promising research direction. Finally, some prospects for this emerging field will be proposed and suggested. All permission numbers for adopted figures from the literature are summarized in a separate file for the Editor.
Collapse
Affiliation(s)
- Mahdieh Rezaei
- Department
of Chemistry, Shahreza Branch, Islamic Azad
University, P.O. Box 311-86145, Shahreza, Isfahan 86139-74183, Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department
of Chemistry, Shahreza Branch, Islamic Azad
University, P.O. Box 311-86145, Shahreza, Isfahan 86139-74183, Iran
- Department
of Chemistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Isfahan 81551-39998, Iran
| | - Ahmad Reza Massah
- Department
of Chemistry, Shahreza Branch, Islamic Azad
University, P.O. Box 311-86145, Shahreza, Isfahan 86139-74183, Iran
- Department
of Chemistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Isfahan 81551-39998, Iran
| |
Collapse
|
20
|
Zhang H, Sun N, Si X, Zhang Y, Ding F, Kong X, Sun Y. Regulating the Electronic Structure of Metal-Organic Frameworks by Introducing Mn for Enhanced Oxygen Evolution Activity. Inorg Chem 2024; 63:2997-3004. [PMID: 38291727 DOI: 10.1021/acs.inorgchem.3c03769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The construction of low-cost and highly efficient oxygen evolution electrocatalysts is paramount for clean and sustainable hydrogen energy. In recent years, metal-organic framework (MOF) OER electrocatalysts have attracted tremendous research attention. Herein, we report a simple and facile strategy to construct bimetallic MOFs (named CoMn0.01) for enhancing OER catalytic performance. Significantly, CoMn0.01 exhibited remarkable OER activity (255 mV at 10 mA cm-2) and a low Tafel slope of 66 mV dec-1, superior to those of commercial benchmark electrocatalysts (RuO2, 352 mV, 178 mV dec-1). Besides, the catalyst demonstrated outstanding longevity for 144 h at a current density of 100 mA cm -2. Mn doping can regulate the electronic structure of Co MOFs, which optimizes charge transfer capability and improves conductivity.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Na Sun
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China
- School of Materials Science and Engineering National Institute for Advanced Materials TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| | - Xiuwen Si
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yuehong Zhang
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Fu Ding
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Xiangru Kong
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yaguang Sun
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China
| |
Collapse
|
21
|
Xu X, Wang X, Huo S, Liu X, Ma X, Liu M, Zou J. Modulation of Phase Transition in Cobalt Selenide with Simultaneous Construction of Heterojunctions for Highly-Efficient Oxygen Electrocatalysis in Zinc-Air Battery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306844. [PMID: 37813107 DOI: 10.1002/adma.202306844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/31/2023] [Indexed: 10/11/2023]
Abstract
Phase transformation of cobalt selenide (CoSe2 ) can effectively modulate its intrinsic electrocatalytic activity. However, enhancing electroconductivity and catalytic activity/stability of CoSe2 still remains challenging. Heterostructure engineering may be feasible to optimize interfacial properties to promote the kinetics of oxygen electrocatalysis on a CoSe2 -based catalyst. Herein, a heterostructure consisting of CoSe2 and cobalt nitride (CoN) embedded in a hollow carbon cage is designed via a simultaneous phase/interface engineering strategy. Notably, the phase transition of orthorhombic-CoSe2 to cubic-CoSe2 (c-CoSe2 ) accompanied by in situ CoN formation is realized to build the c-CoSe2 /CoN heterointerface, which exhibits excellent/highly stable activities for oxygen reduction/evolution reactions (ORR/OER). Notably, heterostructure can modulate the local coordination environment and increase Co-Se/N bond lengths. Theoretical calculations show that Co-site (c-CoSe2 ) with an electronic state near Fermi energy level is the main active site for ORR/OER.Energetical tailoring of the d-orbital electronic structure of the Co atom of c-CoSe2 in heterostructure by in situ CoN incorporation lowers thermodynamic barriers for ORR/OER. Attractively, a zinc-air battery with a c-CoSe2 -CoN cathode displays excellent cycling stability (250 h) and charge/discharge voltage loss (0.953/0.96 V). It highlights that heterointerface engineering provides an option for modulating the bifunctional activity of metal selenides with controlled phase transformation.
Collapse
Affiliation(s)
- Xiaoqin Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Xinyu Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Sichen Huo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Xiaofeng Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Xuena Ma
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Mingyang Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Jinlong Zou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| |
Collapse
|
22
|
Liu Z, Zhang X, Mi X, Yang Z, Huang H. Iron-doping-induced formation of Ni-Co-O nanotubes as efficient bifunctional electrodes. Dalton Trans 2024; 53:2018-2028. [PMID: 38179788 DOI: 10.1039/d3dt03291d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The rational design of earth-abundant and efficient electrocatalysts to replace precious metal-based materials is highly anticipated for overall water splitting. Herein, NiCo2O4 electrocatalysts with different Fe doping amounts (Fex-NCO, x = 1, 2, 3) were synthesized by a low-temperature chemical method. It was interesting to find that the doping of Fe induced the formation of NiCo2O4 nanotube arrays by modulating the Fe content. The Fe3-NCO electrode with a nanotube structure and rich oxygen vacancies exhibited exceptional electrocatalytic activities for the hydrogen evolution reaction (97 mV, 10 mA cm-2) and oxygen evolution reaction (188.4 mV, 10 mA cm-2). DFT calculations revealed that Fe promoted the modulation of the electronic structure, which played a crucial role in optimizing the reaction intermediates and altered the energy level of the d band center, and as a result, enhanced the water dissociation ability. Additionally, a low cell voltage of 1.56 V (10 mA cm-2) was realized for water splitting based on an as-fabricated Fe-doped NiCo2O4 nanotube array bifunctional electrode.
Collapse
Affiliation(s)
- Zhaohui Liu
- School of Material Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Xinjiang Zhang
- School of Material Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Xiaona Mi
- School of Material Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Zirun Yang
- School of Material Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Haihua Huang
- School of Material Science and Engineering, Liaocheng University, Shandong 252059, China.
| |
Collapse
|
23
|
Liu C, Ye C, Zhang T, Tang J, Mao K, Chen L, Xue L, Sun J, Zhang W, Wang X, Xiong P, Wang G, Zhu J. Bio-inspired Double Angstrom-Scale Confinement in Ti-deficient Ti 0.87 O 2 Nanosheet Membranes for Ultrahigh-performance Osmotic Power Generation. Angew Chem Int Ed Engl 2024; 63:e202315947. [PMID: 38059770 DOI: 10.1002/anie.202315947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Osmotic power, a clean energy source, can be harvested from the salinity difference between seawater and river water. However, the output power densities are hampered by the trade-off between ion selectivity and ion permeability. Here we propose an effective strategy of double angstrom-scale confinement (DAC) to design ion-permselective channels with enhanced ion selectivity and permeability simultaneously. The fabricated DAC-Ti0.87 O2 membranes possess both Ti atomic vacancies and an interlayer free spacing of ≈2.2 Å, which not only generates a profitable confinement effect for Na+ ions to enable high ion selectivity but also induces a strong interaction with Na+ ions to benefit high ion permeability. Consequently, when applied to osmotic power generation, the DAC-Ti0.87 O2 membranes achieved an ultrahigh power density of 17.8 W m-2 by mixing 0.5/0.01 M NaCl solution and up to 114.2 W m-2 with a 500-fold salinity gradient, far exceeding all the reported macroscopic-scale membranes. This work highlights the potential of the construction of DAC ion-permselective channels for two-dimensional materials in high-performance nanofluidic energy systems.
Collapse
Affiliation(s)
- Chao Liu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Caichao Ye
- Academy for Advanced Interdisciplinary Studies & Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tianning Zhang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jiheng Tang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Kunpeng Mao
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Long Chen
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Liang Xue
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jingwen Sun
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenqing Zhang
- Academy for Advanced Interdisciplinary Studies & Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin Wang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Pan Xiong
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Junwu Zhu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
24
|
Li L, Zhang X, Humayun M, Xu X, Shang Z, Li Z, Yuen MF, Hong C, Chen Z, Zeng J, Bououdina M, Temst K, Wang X, Wang C. Manipulation of Electron Spins with Oxygen Vacancy on Amorphous/Crystalline Composite-Type Catalyst. ACS NANO 2024; 18:1214-1225. [PMID: 38150422 DOI: 10.1021/acsnano.3c12133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
By substituting the oxygen evolution reaction (OER) with the anodic urea oxidation reaction (UOR), it not only reduces energy consumption for green hydrogen generation but also allows purification of urea-rich wastewater. Spin engineering of the d orbital and oxygen-containing adsorbates has been recognized as an effective pathway for enhancing the performance of electrocatalysts. In this work, we report the fabrication of a bifunctional electrocatalyst composed of amorphous RuO2-coated NiO ultrathin nanosheets (a-RuO2/NiO) with abundant amorphous/crystalline interfaces for hydrogen evolution reaction (HER) and UOR. Impressively, only 1.372 V of voltage is required to attain a current density of 10 mA cm-2 over a urea electrolyzer. The increased oxygen vacancies in a-RuO2/NiO by incorporation of amorphous RuO2 enhance the total magnetization and entail numerous spin-polarized electrons during the reaction, which speeds up the UOR reaction kinetics. The density functional theory study reveals that the amorphous/crystalline interfaces promote charge-carrier transfer, and the tailored d-band center endows the optimized adsorption of oxygen-generated intermediates. This kind of oxygen vacancy induced spin-polarized electrons toward boosting HER and UOR kinetics and provides a reliable reference for exploration of advanced electrocatalysts.
Collapse
Affiliation(s)
- Linfeng Li
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Xia Zhang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Muhammad Humayun
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Xuefei Xu
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Zixuan Shang
- Department of Physics and Optoelectronic Engineering, Faculty of Science, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Zhishan Li
- Faculty of Metallurgical and Energy Engineering, State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, People's Republic of China
| | - Muk Fung Yuen
- The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, People's Republic of China
| | - Chunxia Hong
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
| | - Zhenhua Chen
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| | - Mohamed Bououdina
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Kristiaan Temst
- Quantum Solid State Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D Box 2418, B 3001 Leuven, Belgium
- Imec, Kapeldreef 75, B-3001 Leuven, Belgium
| | - Xiaolei Wang
- Department of Physics and Optoelectronic Engineering, Faculty of Science, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Chundong Wang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| |
Collapse
|
25
|
Manzoor S, Alsaiari NS, Katubi KM, Nisa MU, Abid AG, Chughtai AH, Abdullah M, Aman S, Al-Buriahi MS, Ashiq MN. Facile fabrication of SnSe nanorods embedded in GO nanosheet for robust oxygen evolution reaction. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2023. [DOI: 10.1080/16583655.2022.2151298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Sumaira Manzoor
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan-, Pakistan
| | - Norah Salem Alsaiari
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | - Mehar Un Nisa
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan-, Pakistan
| | - Abdul Ghafoor Abid
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan-, Pakistan
| | | | | | - Salma Aman
- Institute of Physics, KhwajaFareed University of Engineering and Information Technology, Rahim Yar Khan-, Pakistan
| | | | - Muhammad Naeem Ashiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan-, Pakistan
| |
Collapse
|
26
|
Tian S, Wang W, Zhao M, Han Y, Tian Y, Ji S, Yao L, Liu L, Ling F, Jia Z, Zhang F. Room-temperature ferromagnetic CoSe 2nanoplates synthesized by chemical vapor deposition. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 36:135802. [PMID: 38064749 DOI: 10.1088/1361-648x/ad13d5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Among novel two-dimensional materials, transition metal dichalcogenides (TMDs) with 3dmagnetic elements have been extensively researched owing to their unique magnetic, electric, and photoelectric properties. As an important member of TMDs, CoSe2is an interesting material with controversial magnetic properties, hitherto there are few reports related to the magnetism of CoSe2materials. Here, we report the synthesis of CoSe2nanoplates on Al2O3substrates by chemical vapor deposition (CVD). The CVD-grown CoSe2nanoplates exhibit three typical morphologies (regular hexagonal, hexagonal, and pentagonal shapes) and their lateral sizes and thickness of CoSe2nanoplates can reach up to hundreds of microns and several hundred nanometers, respectively. The electric-transport measurement shows a metallic feature of CoSe2nanoplates. Furthermore, the slanted hysteresis loop and nonzero remnant magnetization of the CoSe2nanoplates confirm the ferromagnetism in the temperature range of 5-400 K. This work provides a novel platform for designing CoSe2-based spintronic devices and studying related magnetic mechanisms.
Collapse
Affiliation(s)
- Sen Tian
- Institute of Quantum Materials and Devices, Tiangong University, Tianjin 300387, People's Republic of China
| | - Wenjie Wang
- College of Science, China Agricultural University, Beijing 100083, People's Republic of China
| | - Mengfan Zhao
- Institute of Quantum Materials and Devices, Tiangong University, Tianjin 300387, People's Republic of China
| | - Yilin Han
- Institute of Quantum Materials and Devices, Tiangong University, Tianjin 300387, People's Republic of China
| | - Yuxin Tian
- Institute of Quantum Materials and Devices, Tiangong University, Tianjin 300387, People's Republic of China
| | - Shengxiang Ji
- Institute of Quantum Materials and Devices, Tiangong University, Tianjin 300387, People's Republic of China
| | - Liang Yao
- Institute of Quantum Materials and Devices, Tiangong University, Tianjin 300387, People's Republic of China
| | - Lixuan Liu
- Institute of Quantum Materials and Devices, Tiangong University, Tianjin 300387, People's Republic of China
| | - Feifei Ling
- Hebei Technology Innovation Center of Phase Change Thermal Management of Data Center, Hebei University of Water Resources and Electric Engineering, Cangzhou 061001, People's Republic of China
| | - Zhiyan Jia
- Institute of Quantum Materials and Devices, Tiangong University, Tianjin 300387, People's Republic of China
| | - Fang Zhang
- Institute of Quantum Materials and Devices, Tiangong University, Tianjin 300387, People's Republic of China
| |
Collapse
|
27
|
Kawashima K, Márquez RA, Smith LA, Vaidyula RR, Carrasco-Jaim OA, Wang Z, Son YJ, Cao CL, Mullins CB. A Review of Transition Metal Boride, Carbide, Pnictide, and Chalcogenide Water Oxidation Electrocatalysts. Chem Rev 2023. [PMID: 37967475 DOI: 10.1021/acs.chemrev.3c00005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Transition metal borides, carbides, pnictides, and chalcogenides (X-ides) have emerged as a class of materials for the oxygen evolution reaction (OER). Because of their high earth abundance, electrical conductivity, and OER performance, these electrocatalysts have the potential to enable the practical application of green energy conversion and storage. Under OER potentials, X-ide electrocatalysts demonstrate various degrees of oxidation resistance due to their differences in chemical composition, crystal structure, and morphology. Depending on their resistance to oxidation, these catalysts will fall into one of three post-OER electrocatalyst categories: fully oxidized oxide/(oxy)hydroxide material, partially oxidized core@shell structure, and unoxidized material. In the past ten years (from 2013 to 2022), over 890 peer-reviewed research papers have focused on X-ide OER electrocatalysts. Previous review papers have provided limited conclusions and have omitted the significance of "catalytically active sites/species/phases" in X-ide OER electrocatalysts. In this review, a comprehensive summary of (i) experimental parameters (e.g., substrates, electrocatalyst loading amounts, geometric overpotentials, Tafel slopes, etc.) and (ii) electrochemical stability tests and post-analyses in X-ide OER electrocatalyst publications from 2013 to 2022 is provided. Both mono and polyanion X-ides are discussed and classified with respect to their material transformation during the OER. Special analytical techniques employed to study X-ide reconstruction are also evaluated. Additionally, future challenges and questions yet to be answered are provided in each section. This review aims to provide researchers with a toolkit to approach X-ide OER electrocatalyst research and to showcase necessary avenues for future investigation.
Collapse
Affiliation(s)
- Kenta Kawashima
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Raúl A Márquez
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lettie A Smith
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rinish Reddy Vaidyula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Omar A Carrasco-Jaim
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ziqing Wang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yoon Jun Son
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chi L Cao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - C Buddie Mullins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- H2@UT, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
28
|
Huang Y, Zhang L, Jiang LW, Liu XL, Tan T, Liu H, Wang JJ. Electronic Structure Regulation and Surface Reconstruction of Iron Diselenide for Enhanced Oxygen Evolution Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302970. [PMID: 37594726 DOI: 10.1002/smll.202302970] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/20/2023] [Indexed: 08/19/2023]
Abstract
Regulating the electronic structure of active sites and monitoring the evolution of the active component is essential to improve the intrinsic activity of catalysts for electrochemical reactions. Herein, a highly efficient pre-electrocatalyst of iron diselenide with rich Se vacancies achieved by phosphorus doping (denoted as P-FeSe2 ) for oxygen evolution reaction (OER) is reported. Systematically experimental and theoretical results show that the formed Se vacancies with phosphorus doping can synergistically modulate the electronic structure of FeSe2 and facilitate OER kinetics with the resulting enhanced electrical conductivity and electrochemical surface area. Importantly, the in situ formed FeOOH species on the surface of the P-FeSe2 nanorods (denoted as P-FeOOH(Se)) during the OER process acts as an active component to efficiently catalyze OER and exhibits a low overpotential of 217 mV to reach 10 mA cm-2 with good durability. Promisingly, an alkaline electrolyzer assembled with P-FeOOH(Se) and Pt/C electrodes requires an ultra-low cell voltage of 1.50 V at 10 mA cm-2 for overall water splitting, which is superior to the RuO2 || Pt/C counterpart and most of the state-of-the-art electrolyzers, demonstrating the high potential of the fabricated electrocatalyst by P doping strategy to explore more highly efficient selenide-based catalysts for various reactions.
Collapse
Affiliation(s)
- Yuan Huang
- State Key Laboratory of Crystal Materials, School of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, 518057, China
| | - Li Zhang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Science, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Wen Jiang
- State Key Laboratory of Crystal Materials, School of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, 518057, China
| | - Xiao-Long Liu
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Science, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Tan
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Science, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, School of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, Shandong, 250022, China
| | - Jian-Jun Wang
- State Key Laboratory of Crystal Materials, School of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, 518057, China
| |
Collapse
|
29
|
Wu K, Wang C, Lang X, Cheng J, Wu H, Lyu C, Lau WM, Liang Z, Zhu X, Zheng J. Insight into selenium vacancies enhanced CoSe 2/MoSe 2 heterojunction nanosheets for hydrazine-assisted electrocatalytic water splitting. J Colloid Interface Sci 2023; 654:1040-1053. [PMID: 39491062 DOI: 10.1016/j.jcis.2023.10.106] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/02/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
The integration of interface engineering and vacancy engineering was a feasible way to develop highly efficient electrocatalysts toward water electrolysis. Herein, we designed CoSe2/MoSe2 heterojunction nanosheets with abundant Se vacancies (VSe-CoSe2/MoSe2) for electrocatalytic water splitting. In the VSe-CoSe2/MoSe2 electrocatalyst, the electrons more easily transferred from CoSe2 to MoSe2, and interface engineering not only modulated the electronic structure, but also supplied more heterointerfaces and catalytic sites. After chemical etching, partial Se atoms were eliminated, which further activated the inert plane of the VSe-CoSe2/MoSe2 electrocatalyst and induced electron redistribution. The removal of surface Se atoms was also beneficial to expose inner reactive sites, which promoted adsorption toward reaction intermediates. Density functional theory calculations revealed that interface engineering and vacancy engineering collaboratively optimized the adsorption energy of the VSe-CoSe2/MoSe2 electrocatalyst toward the intermediate H* during the hydrogen evolution reaction process, leading to better electrocatalytic activity. The density of state diagram manifested the refined electronic structure of the VSe-CoSe2/MoSe2 electrocatalyst, and it exhibited a higher electronic state near the Fermi level, which indicated superior electronic conductivity, facilitating electron transport during the catalytic process. In alkaline media, the VSe-CoSe2/MoSe2 electrocatalyst delivered low overpotentials of merely 74 and 242 mV to obtain 10 mA cm-2 toward hydrogen evolution reaction and oxygen evolution reaction. This work illustrated the feasibility of combining two or more strategies to develop high-performance catalysts for water electrolysis.
Collapse
Affiliation(s)
- Kaili Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
| | - Chenjing Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiufeng Lang
- Department of Physics, Hebei Normal University of Science & Technology, Qinghuangdao 066004, China.
| | - Jiarun Cheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongjing Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chaojie Lyu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
| | - Woon-Ming Lau
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
| | - Zhengwenda Liang
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xixi Zhu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Jinlong Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China.
| |
Collapse
|
30
|
Mi J, Chen L, Ma J, Yang K, Hou T, Liu M, Lv W, He YB. Defect Strategy in Solid-State Lithium Batteries. SMALL METHODS 2023:e2301162. [PMID: 37821415 DOI: 10.1002/smtd.202301162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/26/2023] [Indexed: 10/13/2023]
Abstract
Solid-state lithium batteries (SSLBs) have great development prospects in high-security new energy fields, but face major challenges such as poor charge transfer kinetics, high interface impedance, and unsatisfactory cycle stability. Defect engineering is an effective method to regulate the composition and structure of electrodes and electrolytes, which plays a crucial role in dominating physical and electrochemical performance. It is necessary to summarize the recent advances regarding defect engineering in SSLBs and analyze the mechanism, thus inspiring future work. This review systematically summarizes the role of defects in providing storage sites/active sites, promoting ion diffusion and charge transport of electrodes, and improving structural stability and ionic conductivity of solid-state electrolytes. The defects greatly affect the electronic structure, chemical bond strength and charge transport process of the electrodes and solid-state electrolytes to determine their electrochemical performance and stability. Then, this review presents common defect fabrication methods and the specific role mechanism of defects in electrodes and solid-state electrolytes. At last, challenges and perspectives of defect strategies in high-performance SSLBs are proposed to guide future research.
Collapse
Affiliation(s)
- Jinshuo Mi
- Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Likun Chen
- Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jiabin Ma
- Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Ke Yang
- Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Tingzheng Hou
- Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Ming Liu
- Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Wei Lv
- Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yan-Bing He
- Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
31
|
Zhao K, Tao Y, Fu L, Li C, Xu B. Bifunctional Near-Neutral Electrolyte Enhances Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2023; 62:e202308335. [PMID: 37604792 DOI: 10.1002/anie.202308335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023]
Abstract
Performance of electrocatalytic reactions depends on not only the composition and structure of the active sites, but also their local environment, including the surrounding electrolyte. In this work, we demonstrate that BF2 (OH)2 - anion is the key fluoroborate species formed in the mixed KBi/KF (KBi=potassium borate) electrolyte to enhance the rate of the oxygen evolution reaction (OER) at near-neutral pH. Through a combination of electrokinetic and in situ spectroscopic studies, we show that the mixed KBi/KF electrolyte promotes the OER via two pathways: 1) stabilizing the interfacial pH during the proton-producing reaction with its high buffering capacity; and 2) activating the interfacial water via strong hydrogen bonds with F-containing species. With the KBi/KF electrolyte, electrodeposited Co(OH)2 is able to achieve 100 mA/cm2 at 1.74 V, which is among the highest reported activities with earth-abundant electrocatalysts at near neutral conditions. These findings highlight the potential of leveraging electrolyte-engineering for improving the electrochemical performance of the OER.
Collapse
Affiliation(s)
- Kaiyue Zhao
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yu Tao
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Linke Fu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Chen Li
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
32
|
He Z, Ajmal M, Zhang M, Liu X, Huang Z, Shi C, Gao R, Pan L, Zhang X, Zou J. Progress in Manipulating Dynamic Surface Reconstruction via Anion Modulation for Electrocatalytic Water Oxidation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304071. [PMID: 37551998 PMCID: PMC10582449 DOI: 10.1002/advs.202304071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2023] [Indexed: 08/09/2023]
Abstract
The development of efficient and economical electrocatalysts for oxygen evolution reaction (OER) is of paramount importance for the sustainable production of renewable fuels and energy storage systems; however, the sluggish OER kinetics involving multistep four proton-coupled electron transfer hampers progress in these systems. Fortunately, surface reconstruction offers promising potential to improve OER catalyst design. Anion modulation plays a crucial role in controlling the extent of surface reconstruction and positively persuading the reconstructed species' performances. This review starts by providing a general explanation of how various types of anions can trigger dynamic surface reconstruction and create different combinations with pre-catalysts. Next, the influences of anion modulation on manipulating the surface dynamic reconstruction process are discussed based on the in situ advanced characterization techniques. Furthermore, various effects of survived anionic groups in reconstructed species on water oxidation activity are further discussed. Finally, the challenges and prospects for the future development directions of anion modulation for redirecting dynamic surface reconstruction to construct highly efficient and practical catalysts for water oxidation are proposed.
Collapse
Affiliation(s)
- Zexing He
- Key Laboratory for Green Chemical Technology of the Ministry of Education, Institute of Molecular Plus, School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and EngineeringTianjin UniversityTianjin300072China
- Zhejiang Institute of Tianjin UniversityTianjin UniversityNingboZhejiang315201China
| | - Muhammad Ajmal
- Key Laboratory for Green Chemical Technology of the Ministry of Education, Institute of Molecular Plus, School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and EngineeringTianjin UniversityTianjin300072China
- Zhejiang Institute of Tianjin UniversityTianjin UniversityNingboZhejiang315201China
| | - Minghui Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, Institute of Molecular Plus, School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and EngineeringTianjin UniversityTianjin300072China
- Zhejiang Institute of Tianjin UniversityTianjin UniversityNingboZhejiang315201China
| | - Xiaokang Liu
- Key Laboratory for Green Chemical Technology of the Ministry of Education, Institute of Molecular Plus, School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and EngineeringTianjin UniversityTianjin300072China
- Zhejiang Institute of Tianjin UniversityTianjin UniversityNingboZhejiang315201China
| | - Zhen‐Feng Huang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, Institute of Molecular Plus, School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and EngineeringTianjin UniversityTianjin300072China
- Zhejiang Institute of Tianjin UniversityTianjin UniversityNingboZhejiang315201China
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of the Ministry of Education, Institute of Molecular Plus, School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and EngineeringTianjin UniversityTianjin300072China
- Zhejiang Institute of Tianjin UniversityTianjin UniversityNingboZhejiang315201China
| | - Ruijie Gao
- Key Laboratory for Green Chemical Technology of the Ministry of Education, Institute of Molecular Plus, School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and EngineeringTianjin UniversityTianjin300072China
- Zhejiang Institute of Tianjin UniversityTianjin UniversityNingboZhejiang315201China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of the Ministry of Education, Institute of Molecular Plus, School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and EngineeringTianjin UniversityTianjin300072China
- Zhejiang Institute of Tianjin UniversityTianjin UniversityNingboZhejiang315201China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, Institute of Molecular Plus, School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and EngineeringTianjin UniversityTianjin300072China
- Zhejiang Institute of Tianjin UniversityTianjin UniversityNingboZhejiang315201China
| | - Ji‐Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of Education, Institute of Molecular Plus, School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and EngineeringTianjin UniversityTianjin300072China
- Zhejiang Institute of Tianjin UniversityTianjin UniversityNingboZhejiang315201China
| |
Collapse
|
33
|
Tang Y, Li J, Lu Z, Wang Y, Tao K, Lin Y. MOF-Derived CoSe 2@NiFeOOH Arrays for Efficient Oxygen Evolution Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2621. [PMID: 37836262 PMCID: PMC10574313 DOI: 10.3390/nano13192621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
Water electrolysis is a compelling method for the production of environmentally friendly hydrogen, minimizing carbon emissions. The electrolysis of water heavily relies on an effective and steady oxygen evolution reaction (OER) taking place at the anode. Herein, we introduce a highly promising catalyst for OER called CoSe2@NiFeOOH arrays, which are supported on nickel foam. This catalyst, referred to as CoSe2@NiFeOOH/NF, is fabricated through a two-step process involving the selenidation of a Co-based porous metal organic framework and subsequent electrochemical deposition on nickel foam. The CoSe2@NiFeOOH/NF catalyst demonstrates outstanding activity for the OER in an alkaline electrolyte. It exhibits a low overpotential (η) of 254 mV at 100 mA cm-2, a small Tafel slope of 73 mV dec-1, and excellent high stability. The good performance of CoSe2@NiFeOOH/NF can be attributed to the combination of the high conductivity of the inner layer and the synergistic effect between CoSe2 and NiFeOOH. This study offers an effective method for the fabrication of highly efficient catalysts for an OER.
Collapse
Grants
- (No. 2022C01029), (No. 52271232), (2022C01158), (No. LY21E020008), (No. 2020300),(2022Z205), (202301A09). R&D Program of Zhejiang, National Natural Science Foundation of China, Bellwethers Project of Zhejiang Research and Development Plan, Natural Science Foundation of Zhejiang Province, Youth Innovation Promotion As-sociation, CAS, Ningbo S&T Innovation 2025
Collapse
Affiliation(s)
- Yulong Tang
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo 315211, China; (Y.T.); (J.L.)
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
| | - Jiangning Li
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo 315211, China; (Y.T.); (J.L.)
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
| | - Zhiyi Lu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunan Wang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Tao
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo 315211, China; (Y.T.); (J.L.)
| | - Yichao Lin
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
34
|
Zhou R, Chang M, Shen M, Cong Y, Chen Y, Wang Y. Sonocatalytic Optimization of Titanium-Based Therapeutic Nanomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301764. [PMID: 37395421 PMCID: PMC10477905 DOI: 10.1002/advs.202301764] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/28/2023] [Indexed: 07/04/2023]
Abstract
Recent considerable technological advances in ultrasound-based treatment modality provides a magnificent prospect for scientific communities to conquer the related diseases, which is featured with remarkable tissue penetration, non-invasive and non-thermal characteristics. As one of the critical elements that influences treatment outcomes, titanium (Ti)-based sonosensitizers with distinct physicochemical properties and exceptional sonodynamic efficiency have been applied extensively in the field of nanomedical applications. To date, a myriad of methodologies has been designed to manipulate the sonodynamic performance of titanium-involved nanomedicine and further enhance the productivity of reactive oxygen species for disease treatments. In this comprehensive review, the sonocatalytic optimization of diversified Ti-based nanoplatforms, including defect engineering, plasmon resonance modulation, heterojunction, modulating tumor microenvironment, as well as the development of synergistic therapeutic modalities is mainly focused. The state-of-the-art Ti-based nanoplatforms ranging from preparation process to the extensive medical applications are summarized and highlighted, with the goal of elaborating on future research prospects and providing a perspective on the bench-to-beside translation of these sonocatalytic optimization tactics. Furthermore, to spur further technological advancements in nanomedicine, the difficulties currently faced and the direction of sonocatalytic optimization of Ti-based therapeutic nanomedicine are proposed and outlooked.
Collapse
Affiliation(s)
- Ruirui Zhou
- Department of UltrasoundShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| | - Meiqi Chang
- Laboratory CenterShanghai Municipal Hospital of Traditional Chinese MedicineShanghai University of Traditional Chinese MedicineShanghai200071P. R. China
| | - Mengjun Shen
- Department of UltrasoundShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| | - Yang Cong
- Department of UltrasoundShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Yin Wang
- Department of UltrasoundShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| |
Collapse
|
35
|
Hou Z, Cui C, Li Y, Gao Y, Zhu D, Gu Y, Pan G, Zhu Y, Zhang T. Lattice-Strain Engineering for Heterogenous Electrocatalytic Oxygen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209876. [PMID: 36639855 DOI: 10.1002/adma.202209876] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The energy efficiency of metal-air batteries and water-splitting techniques is severely constrained by multiple electronic transfers in the heterogenous oxygen evolution reaction (OER), and the high overpotential induced by the sluggish kinetics has become an uppermost scientific challenge. Numerous attempts are devoted to enabling high activity, selectivity, and stability via tailoring the surface physicochemical properties of nanocatalysts. Lattice-strain engineering as a cutting-edge method for tuning the electronic and geometric configuration of metal sites plays a pivotal role in regulating the interaction of catalytic surfaces with adsorbate molecules. By defining the d-band center as a descriptor of the structure-activity relationship, the individual contribution of strain effects within state-of-the-art electrocatalysts can be systematically elucidated in the OER optimization mechanism. In this review, the fundamentals of the OER and the advancements of strain-catalysts are showcased and the innovative trigger strategies are enumerated, with particular emphasis on the feedback mechanism between the precise regulation of lattice-strain and optimal activity. Subsequently, the modulation of electrocatalysts with various attributes is categorized and the impediments encountered in the practicalization of strained effect are discussed, ending with an outlook on future research directions for this burgeoning field.
Collapse
Affiliation(s)
- Zhiqian Hou
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chenghao Cui
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanni Li
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yingjie Gao
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Deming Zhu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuanfan Gu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guoyu Pan
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yaqiong Zhu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tao Zhang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
36
|
Song Y, You Q, Chen X. Transition Metal-Based Therapies for Inflammatory Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212102. [PMID: 36863722 DOI: 10.1002/adma.202212102] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/15/2023] [Indexed: 08/04/2023]
Abstract
Inflammatory disease (ID) is a general term that covers all diseases in which chronic inflammation performs as the major manifestation of pathogenesis. Traditional therapies based on the anti-inflammatory and immunosuppressive drugs are palliative with the short-term remission. The emergence of nanodrugs has been reported to solve the potential causes and prevent recurrences, thus holding great potential for the treatment of IDs. Among various nanomaterial systems, transition metal-based smart nanosystems (TMSNs) with unique electronic structures possess therapeutic advantages owing to their large surface area to volume ratio, high photothermal conversion efficiency, X-ray absorption capacity, and multiple catalytic enzyme activities. In this review, the rationale, design principle, and therapeutic mechanisms of TMSNs for treatments of various IDs are summarized. Specifically, TMSNs can not only be designed to scavenge danger signals, such as reactive oxygen and nitrogen species and cell-free DNA, but also can be engineered to block the mechanism of initiating inflammatory responses. In addition, TMSNs can be further applied as nanocarriers to deliver anti-inflammatory drugs. Finally, the opportunities and challenges of TMSNs are discussed, and the future directions of TMSN-based ID treatment for clinical applications are emphasized.
Collapse
Affiliation(s)
- Yilin Song
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Qing You
- Departments of Diagnostic, Radiology Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program NUS center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic, Radiology Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program NUS center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
37
|
Rong C, Dastafkan K, Wang Y, Zhao C. Breaking the Activity and Stability Bottlenecks of Electrocatalysts for Oxygen Evolution Reactions in Acids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211884. [PMID: 37549889 DOI: 10.1002/adma.202211884] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/28/2023] [Indexed: 08/09/2023]
Abstract
Oxygen evolution reaction (OER) is a cornerstone reaction for a variety of electrochemical energy conversion and storage systems such as water splitting, CO2 /N2 reduction, reversible fuel cells, and metal-air batteries. However, OER catalysis in acids suffers from extra sluggish kinetics due to the additional step of water dissociation along with its multiple electron transfer processes. Furthermore, OER catalysts often suffer from poor stability in harsh acidic electrolytes due to the severe dissolution/corrosion processes. The development of active and stable OER catalysts in acids is highly demanded. Here, the recent advances in OER electrocatalysis in acids are reviewed and the key strategies are summarized to overcome the bottlenecks of activity and stability for both noble-metal-based and noble metal-free catalysts, including i) morphology engineering, ii) composition engineering, and iii) defect engineering. Recent achievements in operando characterization and theoretical calculations are summarized which provide an unprecedented understanding of the OER mechanisms regarding active site identification, surface reconstruction, and degradation/dissolution pathways. Finally, views are offered on the current challenges and opportunities to break the activity-stability relationships for acidic OER in mechanism understanding, catalyst design, as well as standardized stability and activity evaluation for industrial applications such as proton exchange membrane water electrolyzers and beyond.
Collapse
Affiliation(s)
- Chengli Rong
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Kamran Dastafkan
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Yuan Wang
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
38
|
Latif S, Akram B, Saraj CS, Khan BA, Ali M, Akhtar J. A single step wet chemical approach to bifunctional ultrathin (ZnO) 62(Fe 2O 3) 38 dendritic nanosheets. RSC Adv 2023; 13:23038-23042. [PMID: 37529361 PMCID: PMC10388154 DOI: 10.1039/d3ra04795d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023] Open
Abstract
At the ultrathin scale, nanomaterials exhibit interesting chemical and physical properties, like flexibility, and polymer-like rheology. However, to limit the dimensions of composite nanomaterials at the ultrathin level is still a challenging task. Herein, by adopting a new low temperature single step and single pot wet chemical approach, we have successfully fabricated two dimensional (2D) mixed oxide ZnO-Fe2O3 dendritic nanosheets (FZDNSs). Various control experimental outcomes demonstrate that precursor salts of both the metals are crucial for the formation of stable 2D FZDNSs. The obtained FZDNSs not only exhibit the best photoreduction performance but also much enhanced electrocatalytic performance. This work will provide a promising avenue for the synthesis of cost effective transition metal mixed oxide based 2D nanosheets having wide ranging applications.
Collapse
Affiliation(s)
- Saba Latif
- Department of Chemistry, University of Azad Jammu & Kashmir Muzaffarabad AJ&K Pakistan
| | - Bilal Akram
- Department of Chemistry, Women University of Azad Jammu & Kashmir Bagh AJ&K Pakistan
| | - Chaudry Sajed Saraj
- GPL, State Key Lab. of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun 130033 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Bilal Ahmad Khan
- Department of Chemistry, University of Azad Jammu & Kashmir Muzaffarabad AJ&K Pakistan
| | - Mudussar Ali
- Department of Chemistry, Tsinghua University Beijing China
| | - Javeed Akhtar
- Materials Lab, Department of Chemistry, Mirpur University of Science and Technology Mirpur AJ&K Pakistan
| |
Collapse
|
39
|
Liu S, Shi Y, Xu L, Zhan W, Chen M, Pan X, Yao Y, Cai J, Zhang M, Ma X. Special NaBH 4 hydrolysis achieving multiple-surface-modifications promotes the high-throughput water oxidation of CoN nanowire arrays. Dalton Trans 2023. [PMID: 37387285 DOI: 10.1039/d3dt01339a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Designing an excellent OER catalyst in an alkaline environment is severe yet essential for industrial H2 application under the electrochemical technique. This study has achieved multiple modifications on CoN nanowires, the classic OER catalyst, via a facile room-temperature NaBH4 spontaneous hydrolysis. This facile process simultaneously generates oxygen vacancies and robust BN species. It wraps hydrophilic BOx motifs on the OER response CoN nanowires, producing OER active Co-N-B species, increasing active numbers and guaranteeing structural stability. It suggests that a low NaBH4 concentration (0.1 mol L-1) treatment endows CoNNWAs/CC with excellent OER performance and robust structure, which can drive a current density of 50 mA cm-2 with only 325 mV overpotentials with more than 24 hours' durability. Even, the catalyst can drive 1000 mA cm-2 around 480 mV overpotential. This study allows a novel strategy for designing high-performance OER catalysts.
Collapse
Affiliation(s)
- Sirui Liu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, P. R. China.
| | - Yuxin Shi
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, P. R. China.
| | - Lingling Xu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, P. R. China.
| | - Weican Zhan
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, P. R. China.
| | - Meixi Chen
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, P. R. China.
| | - Xiaoyue Pan
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, P. R. China.
| | - Yuqing Yao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, P. R. China.
| | - Jiajie Cai
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, P. R. China.
| | - Mingyi Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, P. R. China.
| | - Xinzhi Ma
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, P. R. China.
| |
Collapse
|
40
|
Zheng X, Peng Y, Xu S, Huang L, Liu Y, Li D, Zhu J, Jiang D. NiCoP-nanocubes-decorated CoSe 2 nanowire arrays as high-performance electrocatalysts toward oxygen evolution reaction. J Colloid Interface Sci 2023; 648:141-148. [PMID: 37295366 DOI: 10.1016/j.jcis.2023.05.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Designing effective, robust, and low-cost catalysts for oxygen evolution reaction (OER) is an urgent requirement yet challenging task in water electrolysis. In this study, a NiCoP-nanocubes-decorated CoSe2 nanowires arrays three-dimensional/two-dimensional (3D/2D) electrocatalyst (NiCoP-CoSe2-2) was developed for catalyzing OER via a combined selenylation, co-precipitation, and phosphorization method. The as-obtained NiCoP-CoSe2-2 3D/2D electrocatalyst exhibits a low overpotential of 202 mV at 10 mA cm-2 with a small Tafel slope of 55.6 mV dec-1, which is superior to most of reported CoSe2 and NiCoP-based heterogeneous electrocatalysts. Experimental analyses and density functional theory (DFT) calculations proof that the interfacial coupling and synergy between CoSe2 nanowires and NiCoP nanocubes are not only beneficial to strengthen the charge transfer ability and accelerate reaction kinetics, but also facilitate the optimization of interfacial electronic structure, thereby enhancing the OER property of NiCoP-CoSe2-2. This study offers insights for the investigation and construction of transition metal phosphide/selenide heterogeneous electrocatalyst toward OER in alkaline media and broadens the prospect of industrial applications in energy storage and conversion fields.
Collapse
Affiliation(s)
- Xinyu Zheng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ying Peng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shengjie Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Longhui Huang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yu Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Di Li
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Jianjun Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Deli Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
41
|
Kumar R, Sahoo S, Joanni E, Pandey R, Shim JJ. Vacancy designed 2D materials for electrodes in energy storage devices. Chem Commun (Camb) 2023; 59:6109-6127. [PMID: 37128726 DOI: 10.1039/d3cc00815k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Vacancies are ubiquitous in nature, usually playing an important role in determining how a material behaves, both physically and chemically. As a consequence, researchers have introduced oxygen, sulphur and other vacancies into bi-dimensional (2D) materials, with the aim of achieving high performance electrodes for electrochemical energy storage. In this article, we focused on the recent advances in vacancy engineering of 2D materials for energy storage applications (supercapacitors and secondary batteries). Vacancy defects can effectively modify the electronic characteristics of 2D materials, enhancing the charge-transfer processes/reactions. These atomic-scale defects can also serve as extra host sites for inserted protons or small cations, allowing easier ion diffusion during their operation as electrodes in supercapacitors and secondary batteries. From the viewpoint of materials science, this article summarises recent developments in the exploitation of vacancies (which are surface defects, for these materials), including various defect creation approaches and cutting-edge techniques for detection of vacancies. The crucial role of defects for improvement in the energy storage performance of 2D electrode materials in electrochemical devices has also been highlighted.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Mechanical Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India.
| | - Sumanta Sahoo
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Ednan Joanni
- Center for Information Technology Renato Archer (CTI), Campinas 13069-901, Brazil
| | - Raghvendra Pandey
- Department of Physics, ARSD College, University of Delhi, New Delhi, 110021, India
| | - Jae-Jin Shim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
42
|
Roy Chowdhury P, Medhi H, Bhattacharyya KG, Mustansar Hussain C. Recent progress in the design and functionalization strategies of transition metal-based layered double hydroxides for enhanced oxygen evolution reaction: A critical review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
43
|
Guo B, Ding Y, Huo H, Wen X, Ren X, Xu P, Li S. Recent Advances of Transition Metal Basic Salts for Electrocatalytic Oxygen Evolution Reaction and Overall Water Electrolysis. NANO-MICRO LETTERS 2023; 15:57. [PMID: 36862225 PMCID: PMC9981861 DOI: 10.1007/s40820-023-01038-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/12/2023] [Indexed: 05/19/2023]
Abstract
Electrocatalytic oxygen evolution reaction (OER) has been recognized as the bottleneck of overall water splitting, which is a promising approach for sustainable production of H2. Transition metal (TM) hydroxides are the most conventional and classical non-noble metal-based electrocatalysts for OER, while TM basic salts [M2+(OH)2-x(Am-)x/m, A = CO32-, NO3-, F-, Cl-] consisting of OH- and another anion have drawn extensive research interest due to its higher catalytic activity in the past decade. In this review, we summarize the recent advances of TM basic salts and their application in OER and further overall water splitting. We categorize TM basic salt-based OER pre-catalysts into four types (CO32-, NO3-, F-, Cl-) according to the anion, which is a key factor for their outstanding performance towards OER. We highlight experimental and theoretical methods for understanding the structure evolution during OER and the effect of anion on catalytic performance. To develop bifunctional TM basic salts as catalyst for the practical electrolysis application, we also review the present strategies for enhancing its hydrogen evolution reaction activity and thereby improving its overall water splitting performance. Finally, we conclude this review with a summary and perspective about the remaining challenges and future opportunities of TM basic salts as catalysts for water electrolysis.
Collapse
Affiliation(s)
- Bingrong Guo
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yani Ding
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Institute of Carbon Neutral Energy Technology, School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Haohao Huo
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Xinxin Wen
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Xiaoqian Ren
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| | - Siwei Li
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
44
|
Yi J, Zhou Z, Xia Y, Zhou G, Zhang G, Li L, Wang X, Zhu X, Wang X, Pang H. Unraveling the role of phase engineering in tuning photocatalytic hydrogen evolution activity and stability. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
45
|
Liu W, Li L, Shao W, Wang H, Dong Y, Zuo M, Liu J, Zhang H, Ye B, Zhang X, Xie Y. Vacancy-cluster-mediated surface activation for boosting CO 2 chemical fixation. Chem Sci 2023; 14:1397-1402. [PMID: 36794176 PMCID: PMC9906647 DOI: 10.1039/d2sc05596a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
The cycloaddition of CO2 with epoxides towards cyclic carbonates provides a promising pathway for CO2 utilization. Given the crucial role of epoxide ring opening in determining the reaction rate, designing catalysts with rich active sites for boosting epoxide adsorption and C-O bond cleavage is necessary for gaining efficient cyclic carbonate generation. Herein, by taking two-dimensional FeOCl as a model, we propose the construction of electron-donor and -acceptor units within a confined region via vacancy-cluster engineering to boost epoxide ring opening. By combing theoretical simulations and in situ diffuse reflectance infrared Fourier-transform spectroscopy, we show that the introduction of Fe-Cl vacancy clusters can activate the inert halogen-terminated surface and provide reactive sites containing electron-donor and -acceptor units, leading to strengthened epoxide adsorption and promoted C-O bond cleavage. Benefiting from these, FeOCl nanosheets with Fe-Cl vacancy clusters exhibit enhanced cyclic carbonate generation from CO2 cycloaddition with epoxides.
Collapse
Affiliation(s)
- Wenxiu Liu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Lei Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Wei Shao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Hui Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei Anhui 230026 P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center Hefei Anhui 230031 P. R. China
| | - Yun Dong
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Ming Zuo
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jiandang Liu
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Hongjun Zhang
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Bangjiao Ye
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiaodong Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei Anhui 230026 P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center Hefei Anhui 230031 P. R. China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei Anhui 230026 P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center Hefei Anhui 230031 P. R. China
| |
Collapse
|
46
|
Ghafoor Abid A, Al Huwayz M, Alwadai N, Manzoor S, Munawar T, Iqbal F, Hua R, Aman S, Al-Buriahi MS, Naeem Ashiq M. 3D nanosheet networks like mesoporous structure of NiO/CoSe 2nanohybrid directly grown on nickel foam for oxygen evolution process. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2148841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Abdul Ghafoor Abid
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Maryam Al Huwayz
- Department of Physics, College of science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Norah Alwadai
- Department of Physics, College of science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sumaira Manzoor
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Tauseef Munawar
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Faisal Iqbal
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ruimao Hua
- Department of Chemistry, Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, People’s Republic of China
| | - Salma Aman
- Institute of Physics, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan-, Pakistan
| | | | | |
Collapse
|
47
|
Zhang J, Yang L, Yuan W, Yang S, Zhang W, Cao R. CoO
x
Supported on α‐MoC for Efficient Electrocatalytic Oxygen Evolution Reaction. ChemElectroChem 2022. [DOI: 10.1002/celc.202200963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jiaxin Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Luna Yang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Wenjie Yuan
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Shujiao Yang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
48
|
Abstract
Adsorption energy (AE) of reactive intermediate is currently the most important descriptor for electrochemical reactions (e.g., water electrolysis, hydrogen fuel cell, electrochemical nitrogen fixation, electrochemical carbon dioxide reduction, etc.), which can bridge the gap between catalyst's structure and activity. Tracing the history and evolution of AE can help to understand electrocatalysis and design optimal electrocatalysts. Focusing on oxygen electrocatalysis, this review aims to provide a comprehensive introduction on how AE is selected as the activity descriptor, the intrinsic and empirical relationships related to AE, how AE links the structure and electrocatalytic performance, the approaches to obtain AE, the strategies to improve catalytic activity by modulating AE, the extrinsic influences on AE from the environment, and the methods in circumventing linear scaling relations of AE. An outlook is provided at the end with emphasis on possible future investigation related to the obstacles existing between adsorption energy and electrocatalytic performance.
Collapse
Affiliation(s)
- Junming Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Hong Bin Yang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Daojin Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.,Department of Electrical and Computer Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| |
Collapse
|
49
|
Engineered 2D Metal Oxides for Photocatalysis as Environmental Remediation: A Theoretical Perspective. Catalysts 2022. [DOI: 10.3390/catal12121613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Modern-day society requires advanced technologies based on renewable and sustainable energy resources to meet environmental remediation challenges. Solar-inspired photocatalytic applications such as water splitting, hydrogen evolution reaction (HER), and carbon dioxide reduction reaction (CO2RR) are unique solutions based on green and efficient technologies. Considering the special electronic features and larger surface area, two-dimensional (2D) materials, especially metal oxides (MOs), have been broadly explored for the abovementioned applications in the past few years. However, their photocatalytic potential has not been optimized yet to the level required for practical and commercial applications. Among many strategies available, defect engineering, including cation and anion vacancy creations, can potentially boost the photocatalytic performance of 2D MOs. This mini-review covers recent advancements in 2D engineered materials for various photocatalysis applications such as H2O2 oxidation, HER, and CO2RR for environmental remediation from theoretical perspectives. By thoroughly addressing the fundamental aspects, recent developments, and associated challenges—the author’s recommendations in compliance with future challenges and prospects will pave the way for readers.
Collapse
|
50
|
Zhang L, Chen J, Li H, Han K, Zhang YS, Lu M, Li J, Bao C, Liu X, Lu J. N-doped Ni-Co Bimetallic Derived Hollow Nano-framework Cubes Anchored on 3D Reduced Graphene Aerogel with Enhanced Sodium Ion Batteries Performance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|