1
|
Sun S, Yang D, Li Z, Cheng W, Yang Y, Li L, Luo X, Qian Y. Detection of biogenic amines using a ylidenemalononitrile enamine-based fluorescence probe: Applications in food quality control. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 331:125808. [PMID: 39879955 DOI: 10.1016/j.saa.2025.125808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/25/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Biogenic amines (BAs) are a class of nitrogen-containing natural organic compounds. Elevated levels of BAs are a reliable indicator of food spoilage and pose a significant risk to human health. Thus, the development of real-time sensors for BAs monitoring is crucial. In this study, we present a novel fluorescence probe, TP-A, based on ylidenemalononitrile enamine, which can detect various BAs including putrescine, cadaverine, and spermine. TP-A exhibits a significant fluorescence intensity increase at 600 nm in the presence of these BAs in an aqueous system, which can effectively monitor BAs in representative vegetable onion tissues. Notably, TP-A-loaded filter paper has been developed into test strips for real-time monitoring of BAs released from shrimp under different temperatures. This work offers a precise method for probing the release of BAs in real food samples, which is promising for application in food quality control.
Collapse
Affiliation(s)
- Shan Sun
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046 China
| | - Dan Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046 China
| | - Zheng Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046 China
| | - Wei Cheng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046 China
| | - Yanli Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046 China
| | - Ling Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046 China
| | - Xiangjie Luo
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046 China.
| | - Yong Qian
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046 China.
| |
Collapse
|
2
|
Tantipanjaporn A, Deng JR, Chan KHA, Kung KYK, Wong MK. Ethynylbenzaldehydes as novel reaction-based “turn-on” fluorescent probes for primary amine detection in solution, vapor, food, proteins, and live cells. SENSORS AND ACTUATORS B: CHEMICAL 2025; 422:136673. [DOI: 10.1016/j.snb.2024.136673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Zahara AJ, Haines BE, Wilkerson-Hill SM. Programmed Heterocycle Synthesis Using Halomucononitriles as Pyridinimine Precursors. Org Lett 2024; 26:2976-2981. [PMID: 38557087 DOI: 10.1021/acs.orglett.4c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Herein we report a method to convert primary amines, ubiquitous motifs found in pharmaceutical libraries, to either imidazo[1,2-a]pyridines or 7-alkyl azaindoles in two steps from known compounds. Using halomucononitrile reagents, we can directly access 5-bromo-6-imino-1-alkyl-1,6-dihydropyridine-2-carbonitriles (pyridinimines) in a single step from primary amines (25-93% yield) through the cyclization of transient aminomucononitrile intermediates. We then demonstrate that these compounds can be readily converted to 7-alkylazaindoles using Sonogashira cross-coupling conditions (13 examples, up to 91% yield). Under oxidative conditions, the pyridinimines serve as directing groups for C-H functionalization reactions to afford imidazo[1,2-a]pyridines. We also studied the mechanism of the cyclization event using DFT calculations and propose that this takes place via sequential base-mediated E/Z isomerization and cyclization steps.
Collapse
Affiliation(s)
- Adam J Zahara
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Brandon E Haines
- Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | - Sidney M Wilkerson-Hill
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
4
|
Chakraborty M, Sivasakthi P, Samanta PK, Chakravarty M. Concentration-tuned diverse response to selective biogenic amines using a reusable fluorophore: monitoring protein-rich food spoilage. J Mater Chem B 2024; 12:2746-2760. [PMID: 38379378 DOI: 10.1039/d3tb02569a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Maintaining the freshness of food is essential for a healthy and quality life. Nevertheless, it remains a global challenge. Hence, an easy detection and monitoring protocol would be highly desirable. A cyanoacrylic acid (CAA)-based fluorophore is manifested as a reusable platform that responds diversely against different concentrations of selective aliphatic biogenic amines (BAs) in both solution and vapor phases. Slow spoilage of the protein-rich food is progressively monitored through emission shifts visible to the naked eye. This fluorophore provides easy and naked-eye detection of the BA vapor through a change in emission, i.e., red → orange → orange-yellow → cyan → green and quantum yield enhancement, which occur in stepwise increments of vapor concentrations. The probe design includes π-conjugated functionalized fluorescent molecules linked to multiple twisting sites, resulting in both solid and solution-state emission. The attached carboxylic acid responds quickly with selective BAs, mainly putrescine (PUT), cadaverine (CAD), and spermidine (SPM), where the concentration-based emission variation has appeared to be distinct and prominent against PUT [sensitivity (μM): 2 (solution); 3.3 (vapour)]. The selectivity towards diamine can be clarified by the formation of carboxylic acid salts and the consequent proton exchanges between free and protonated amines. In addition, -CN···H interaction is likely to develop within this ammonium carboxylate system, providing extra stability. Such ammonium carboxylate salt formation and gradual change in the molecular arrangement, resulting in symmetry development, are validated by FT-IR and wide-angle X-ray diffraction studies. Besides, this fact is supported by DFT studies that validate intramolecular H-atom exchange between free amine and ammonium salt units. A fluorophore-coated coverslip, filter paper, or silica gel-coated Al-plate is fruitfully utilized to detect the freshness of fish and chicken, which reveals the potential of this probe to prevent food waste and control food safety.
Collapse
Affiliation(s)
- Madhuparna Chakraborty
- Department of Chemistry, Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad-500078, India.
| | - Pandiyan Sivasakthi
- Department of Chemistry, Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad-500078, India.
| | - Pralok K Samanta
- Department of Chemistry, Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad-500078, India.
| | - Manab Chakravarty
- Department of Chemistry, Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad-500078, India.
| |
Collapse
|
5
|
Wang D, Ding X, Xie J, Wang J, Li G, Zhou X. A three-in-one versatile sensor for concise detecting biogenic amines and beef freshness. Anal Chim Acta 2024; 1285:342025. [PMID: 38057062 DOI: 10.1016/j.aca.2023.342025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
Biogenic amines (BAs), as important indicators for evaluating food spoilage caused by fermentation processes or microbial activities, present significant risks of food safety. Consequently, the development of a simple, sensitive, and selective detection method for amines is of great importance. In this study, we proposed a three-in-one sensor 3,6-bis(dimethylamino)-9-(ethylthio)xanthylium (PSE) for high sensitivity and selectivity detecting BAs with multimodal responses, including olfactory, colorimetric, and fluorescent signals, thus facilitating convenient real-time detection of BAs. Mechanism study indicated that the nucleophilic substitution of PSE with BAs induced such rapid multi-responses with a low detection limit (LOD = 0.03 μM). We further fabricated PSE loaded paper for portable detection of BAs vapors. And the accurate determination of BAs levels is achieved through analyzing the RGB color mode. Finally, we successfully applied these test strips for non-destructive assessing meat beef freshness with the assistance of a smartphone in on-site scenarios.
Collapse
Affiliation(s)
- Dongjuan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, China
| | - Xiuqian Ding
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, China
| | - Jinling Xie
- Food Research Center, Agricultural College of Yanbian University, Park Road 977, Yanji, 133000, China; Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Park Road 977, Yanji, 133000, China
| | - Juan Wang
- Food Research Center, Agricultural College of Yanbian University, Park Road 977, Yanji, 133000, China; Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Park Road 977, Yanji, 133000, China.
| | - Guanhao Li
- Food Research Center, Agricultural College of Yanbian University, Park Road 977, Yanji, 133000, China; Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Park Road 977, Yanji, 133000, China.
| | - Xin Zhou
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, China.
| |
Collapse
|
6
|
Mishra S, Kumar Singh A. Benzothiazole-based novel fluorescence probe sensing 1, 3-diaminopropane. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122799. [PMID: 37187148 DOI: 10.1016/j.saa.2023.122799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/11/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023]
Abstract
Amines are extensively present in biological systems and are abundantly used in research, industries and agriculture. Systematic detection and quantification of certain amines can help us in food quality control and diagnosis of many diseases. A Schiff base probe HL was designed and successfully synthesized. It was proposed as a sensor for the exclusive detection of 1, 3- diaminopropane through turn-on fluorescence response in a variety of solvents including water. Micromolar limits of detection was achieved in all these solvents. Mechanism of detection was proposed by investigating mass spectrometric and NMR results. These were corroborated with DFT/TD-DFT calculations. Spiking experiments performed in various real water samples revealed the potential of the sensor to be used in day-to-day applications. Paper strip experiments demonstrated the suitability of the probe for real-life applications.
Collapse
Affiliation(s)
- Sagarika Mishra
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar 752050, India
| | - Akhilesh Kumar Singh
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar 752050, India.
| |
Collapse
|
7
|
Prusti B, Tripathi S, Jain A, Chakravarty M. Concentration-Guided Visual Detection of Multiphase Aliphatic Biogenic Amines through Amine-Phenol Recognition Using a Dual-State Emitter. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16492-16504. [PMID: 36944182 DOI: 10.1021/acsami.3c00791] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Intermolecular amine-phenol interactions are largely recognized as unique models with diverse supramolecular interactions. However, fluorescence (FL) variations originating from such interactions are rare. Herein, FL changes are well realized from amine-phenol interactions to identify an important biomarker, biogenic amines (BAs). A simple, inexpensive, and thermally stable anthracenylphosphonate is linked with 2,2'-biphenol to design a functional dual-state emitter. Among the various amines tested, this emitter displays superior sensitivity with the lowest possible limit of detection as 5.8-9.7 ppb with aliphatic polyamines such as 1,3-, 1,4-, 1,5-, and 1,6- diamines and spermidine in the solution phase. Fast, on-spot detection of the BA vapors was visually conducted through a notable high-contrast change from blue to yellow emission in the solid state. FT-IR, 1H/31P NMR, and mass spectroscopic studies identify the ground-state amine-phenol interactions. The failure in BA detection with the 2,2'-dimethoxy-biphenyl-linked analog verifies the role of amine-phenol interactions. Mechanistic studies determine amine-phenol interactions in the ground and excited states. The molecular structure and packing of the doubly twisted probe are documented with a substantial void space facilitating close contact of the BAs with the strong amine-phenol interactions desired for efficient detection. Finally, this probe governs the freshness of a piece of Catla catla fish and prawn. Further, a remarkable concentration-controlled diverse emission with a red shift difference of 141 nm is detected with 1,3-diaminopropane (1,3-DAP) vapor (from 29 to 319 mg/L) for the first time. Thus, a cost-effective device is developed to detect 1,3-DAP at a precise concentration, visible through the naked eye.
Collapse
Affiliation(s)
- Banchhanidhi Prusti
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Shivani Tripathi
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Akshita Jain
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Manab Chakravarty
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
8
|
Hecko S, Schiefer A, Badenhorst CPS, Fink MJ, Mihovilovic MD, Bornscheuer UT, Rudroff F. Enlightening the Path to Protein Engineering: Chemoselective Turn-On Probes for High-Throughput Screening of Enzymatic Activity. Chem Rev 2023; 123:2832-2901. [PMID: 36853077 PMCID: PMC10037340 DOI: 10.1021/acs.chemrev.2c00304] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Many successful stories in enzyme engineering are based on the creation of randomized diversity in large mutant libraries, containing millions to billions of enzyme variants. Methods that enabled their evaluation with high throughput are dominated by spectroscopic techniques due to their high speed and sensitivity. A large proportion of studies relies on fluorogenic substrates that mimic the chemical properties of the target or coupled enzymatic assays with an optical read-out that assesses the desired catalytic efficiency indirectly. The most reliable hits, however, are achieved by screening for conversions of the starting material to the desired product. For this purpose, functional group assays offer a general approach to achieve a fast, optical read-out. They use the chemoselectivity, differences in electronic and steric properties of various functional groups, to reduce the number of false-positive results and the analytical noise stemming from enzymatic background activities. This review summarizes the developments and use of functional group probes for chemoselective derivatizations, with a clear focus on screening for enzymatic activity in protein engineering.
Collapse
Affiliation(s)
- Sebastian Hecko
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Astrid Schiefer
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Christoffel P S Badenhorst
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Michael J Fink
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, Massachusetts 02138, United States
| | - Marko D Mihovilovic
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
9
|
Ding G, Wang X, Ling-hu C, Fan Y, Zhou L, Luo D, Meng S, Meng J, Chen W, Liu Y, Gao G, Peng D. AIE-active light up probe for sensitive detection of amine vapors and its practical application in food spoilage monitoring. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
10
|
Teknikel E, Unaleroglu C. Recent Advances in Chemodosimeters Designed for Amines. Curr Org Synth 2023; 20:4-19. [PMID: 35430996 DOI: 10.2174/1570179419666220414095143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/04/2022] [Accepted: 01/14/2022] [Indexed: 12/16/2022]
Abstract
The analysis of amines has long been a very important task in science, industry, and healthcare. To date, this task has been accomplished by using expensive and time-consuming methods. Colorimetric and fluorescent chemodosimeters enable the fast, accurate, and sensitive analysis of various species with inexpensive instruments or the naked eye. Accordingly, the studies on these probes have gained great momentum in the last 20 years. In this review, amine chemodosimeters developed in the last 10 years were investigated. The investigated chemodosimeters are metal-free structures based on small organic compounds. The strategies for the detection, differentiation, and quantification of amines were discussed by considering the reaction types.
Collapse
Affiliation(s)
- Efdal Teknikel
- Chemistry Department, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Canan Unaleroglu
- Chemistry Department, Faculty of Science, Hacettepe University, Ankara, Turkey
| |
Collapse
|
11
|
Lin CJ, Lin YH, Chiang TC, Yu CY. Synthesis of the polymers containing norbornene and tetraphenylethene by ring-opening metathesis polymerization and their structural characterization, aggregation-induced emission and aniline detection. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Zhang G, Liang Q, Yang W, Jiang S, Wang Z, Zhang C, Zhang G. One Pot Synthesis of 1,2‐Disubstituted Ethanones by Base‐Mediated Reductive Homocoupling of Aldehydes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guohui Zhang
- Qingdao University of Science and Technology CHINA
| | | | - Wei Yang
- Institute of Coal Chemistry CAS CHINA
| | | | - Zhiping Wang
- Qingdao University of Science and Technology CHINA
| | | | | |
Collapse
|
13
|
Dual-response fluorescence sensor for detecting Cu2+ and Pd2+ based on bis-tetraphenylimidazole Schiff-base. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Yang Z, Yuan Y, Xu X, Guo H, Yang F. An effective long-wavelength fluorescent sensor for Cu 2+ based on dibenzylidenehydrazine-bridged biphenylacrylonitrile. Anal Bioanal Chem 2022; 414:4707-4716. [PMID: 35562571 DOI: 10.1007/s00216-022-04093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 11/01/2022]
Abstract
Although numerous fluorescence sensors for Cu2+ have been presented, a long-wavelength sensor in aqueous media has rarely been reported as expected due to practical application requirements. In this work, a novel AIE molecule (DHBB) containing two biphenylacrylonitrile units bridged by dibenzylidenehydrazine was prepared. It possessed the merits of long-wavelength emission, good emission in aqueous media, and multiple functional groups for binding Cu2+. It exhibited good sensing selectivity for Cu2+ among all kinds of tested metal ions. The detection limit was as low as 1.08 × 10-7 M. The sensing mechanism was clarified as 1:1 stoichiometric ratio based on the binding cooperation of O and N functional groups of DHBB. The selective sensing ability for Cu2+ remained stable at pH = 5-9 and was influenced little by other metal ions. The Cu2+ sensing ability of DHBB was applied in real samples with 96% recovery rate. The bio-imaging experiment of living cells suggested that DHBB possessed not only good bio-imaging performance but also sensing ability for Cu2+ in living environments. This work suggested the good application prospect of DHBB to sense Cu2+ in real samples and living environment.
Collapse
Affiliation(s)
- Zengwei Yang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, People's Republic of China.,Fujian Key Laboratory of Polymer Materials, Fuzhou, 350007, People's Republic of China
| | - Yufei Yuan
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, People's Republic of China.,Fujian Provincial Key Laboratory of Advanced, Materials Oriented Chemical Engineering, Fuzhou, 350007, People's Republic of China
| | - Xiangfei Xu
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, People's Republic of China
| | - Hongyu Guo
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, People's Republic of China.,Fujian Key Laboratory of Polymer Materials, Fuzhou, 350007, People's Republic of China
| | - Fafu Yang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, People's Republic of China. .,Fujian Key Laboratory of Polymer Materials, Fuzhou, 350007, People's Republic of China. .,Fujian Provincial Key Laboratory of Advanced, Materials Oriented Chemical Engineering, Fuzhou, 350007, People's Republic of China.
| |
Collapse
|
15
|
Li L, Ma Y, Yang H, Niu J, Yang H, Wang F, Hu C, Zhang Y, Guan X, Peng H, Ma G. An olefin‐based, Fluorescent Covalent Organic Framework for Selective Sensing of Aromatic Amines. Chem Asian J 2022; 17:e202200279. [DOI: 10.1002/asia.202200279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/20/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Lihua Li
- Northwest Normal University College of Chemistry and Chemical Engineering 967 Anning East Rd., Gansu, Lanzhou 730070,P. R. China 730000 Lan Zhou CHINA
| | - Yinghu Ma
- Northwest Normal University College of Chemistry and Chemical Engineering CHINA
| | - Haohao Yang
- Northwest Normal University College of Chemistry and Chemical Engineering CHINA
| | - Jing Niu
- Northwest Normal University College of Chemistry and Chemical Engineering CHINA
| | - Haoran Yang
- Northwest Normal University College of Chemistry and Chemical Engineering CHINA
| | - Faqiang Wang
- Northwest Normal University College of Chemistry and Chemical Engineering CHINA
| | - Chengxian Hu
- Northwest Normal University College of Chemistry and Chemical Engineering CHINA
| | - Yubao Zhang
- Northwest Normal University College of Chemistry and Chemical Engineering CHINA
| | - Xiaolin Guan
- Northwest Normal University College of Chemistry and Chemical Engineering CHINA
| | - Hui Peng
- Northwest Normal University College of Chemistry and Chemical Engineering CHINA
| | - Guofu Ma
- Northwest Normal University College of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
16
|
Zha B, Fang S, Chen H, Guo H, Yang F. An effective dual sensor for Cu 2+ and Zn 2+ with long-wavelength fluorescence in aqueous media based on biphenylacrylonitrile Schiff-base. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 269:120765. [PMID: 34959034 DOI: 10.1016/j.saa.2021.120765] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/04/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Although some sensors for Cu2+ and Zn2+ had been reported, the sensor with long-wavelength emission in aqueous media for in-situ detecting Cu2+ and Zn2+ was always expected. Herein, a biphenylacrylonitrile Schiff-base (OPBS) with large aromatic conjugated system was designed and synthesized in yield of 82%. OPBS possessed excellent long-wavelength fluorescence at 550-750 nm in aqueous media, which selectively response to sense Cu2+ with quenched fluorescence and Zn2+ with chromotropic fluorescence from red to yellow. The detection of Cu2+ and Zn2+ were realized without mutual interference in their coexistence system by means of the assistance of ATP. The detection limits were 2.3 × 10-7 M for Cu2+ and 1.8 × 10-6 M for Zn2+, respectively. The sensing mechanism was elucidated by binding MS spectra, fluorescence Job's plot and 1H NMR spectra. Moreover, OPBS exhibited good bioimaging performance and the in-situ sensing abilities for Cu2+ and Zn2+ in living cells, suggesting the application potential for detecting Cu2+ and Zn2+ in both vitro assay and vivo environment.
Collapse
Affiliation(s)
- Bowen Zha
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China
| | - Shuting Fang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China
| | - Huiling Chen
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China
| | - Hongyu Guo
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China; Fujian Key Laboratory of Polymer Materials, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou 350007, PR China
| | - Fafu Yang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China; Fujian Key Laboratory of Polymer Materials, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou 350007, PR China.
| |
Collapse
|
17
|
Ponlakhet K, Phooplub K, Phongsanam N, Phongsraphang T, Phetduang S, Surawanitkun C, Buranachai C, Loilome W, Ngeontae W. Smartphone-based portable fluorescence sensor with gold nanoparticle mediation for selective detection of nitrite ions. Food Chem 2022; 384:132478. [PMID: 35219228 DOI: 10.1016/j.foodchem.2022.132478] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/20/2022] [Accepted: 02/13/2022] [Indexed: 11/28/2022]
Abstract
A simple, portable device for the detection of NO2- via a fluorescence method was developed. The proposed device consisted of a dark box containing a blue LED as a low-power excitation light source and a smartphone with a mobile application for RGB analysis as a light detector. Detection was mediated by using synthesized cetyltrimethylammonium bromide-stabilized gold nanoparticles (CTAB-AuNPs). The CTAB-AuNPs were etched with NO2- to yield Au3+, which catalyzes the oxidation of o-phenylenediamine (OPD) in the presence of H2O2 to generate 2,3-diaminophenazine (DAP). Triton X-100 (TX-100) micelles were introduced to improve the DAP fluorescence emission. The fluorescence intensity of DAP was recorded by the smartphone in terms of RGB intensity, which was correlated with the NO2- concentration. This method provided a wide linear working concentration range (0.5-100 μM), a limit of detection of 0.17 μM and excellent selectivity for NO2- over other anions.
Collapse
Affiliation(s)
- Kitayanan Ponlakhet
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kittirat Phooplub
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
| | - Nopphakon Phongsanam
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thirakan Phongsraphang
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Samuch Phetduang
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chayada Surawanitkun
- Faculty of Interdisciplinary Studies, Khon Kaen University, Nong Khai Campus, Nong Khai 43000, Thailand
| | - Chittanon Buranachai
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wittaya Ngeontae
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
18
|
Meng Y, Yuan C, Du C, Jia K, Liu C, Wang KP, Chen S, Hu ZQ. A coumarin-based portable fluorescent probe for rapid turn-on detection of amine vapors. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120152. [PMID: 34256238 DOI: 10.1016/j.saa.2021.120152] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/26/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Amines are widely used in many fields including agriculture, dyes, medicine and food processing. However, volatile amine vapors could initiate acute and serious damage to human bodies. Thus, highly efficient detection of volatile amine vapors has great importance for academic research as well as practical application. In this work, a turn-on type fluorescent sensor BZCO has been developed, which could be used to detect volatile amine vapors. The portable BZCO sensor can be easily prepared through immersing filter paper into its CH2Cl2 solution and then evaporating it to dryness. This paper-based amine vapor sensor exhibits high sensitivity with a relatively low detection limit at 3.82 ppm. It also has good selectivity for discriminating amine vapors from volatile organic solvents. The detection mechanism has been confirmed by UV-vis spectral analysis. The practical applications of this paper-based BZCO sensor, such as detection of food spoilage and fluorescent security ink, have been investigated. This work has developed a new fluorescent sensor BZCO, which has broad applications in various fields, including amine gas detection, security and anti-counterfeiting materials.
Collapse
Affiliation(s)
- Yuanyuan Meng
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Chunming Yuan
- College of Chemistry and Enviromental Science, YiLi Normal University, Yining 835000, PR China
| | - Chunhui Du
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Ke Jia
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Chunfang Liu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Kun-Peng Wang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shaojin Chen
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Zhi-Qiang Hu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
19
|
Wang L, Xin S, Zhang C, Ran X, Tang H, Cao D. Development of a novel chromophore reaction-based fluorescent probe for biogenic amines detection. J Mater Chem B 2021; 9:9383-9394. [PMID: 34729573 DOI: 10.1039/d1tb01791h] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biogenic amines (BAs) are important biomarkers to monitor meat spoilage. However, the design of efficient BA fluorescent probes with distinct colorimetric and ratiometric fluorescent dual-channels is still a critical challenge because of similar chemical properties and basicity between BAs and other amines. Herein, pyrrolopyrrole cyanine (PPCy-1) is reported to display distinctly high reactivity toward BAs through an ultrasensitive irreversible chromophore reaction for the first time. The reaction mechanism is ascribed to synergistic aza-Michael addition and B-N detachment, followed by hydrolysis to produce low-conjugated diketopyrrolopyrrole and heteroaromatic acetonitrile compounds. As a result, colorimetric and ratiometric fluorescent dual-channel (Δλab = 188 nm and Δλem = 151 nm) signals and a limit of detection up to 62.1 nM level for BA solution are acquired. In addition, the colorimetric detection of volatile amine vapor using the PPCy-1-loaded filter paper, showing a color change from green to yellow, is feasible. A simple and cost-effective fluorescence "turn on" method using the filter paper or the CAD-40 resin loaded with PPCy-1 to detect TVB (total volatile bases) originating from shrimp spoilage is further demonstrated.
Collapse
Affiliation(s)
- Lingyun Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| | - Shuqi Xin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| | - Chufeng Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| | - Xueguang Ran
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510641, China.
| | - Hao Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| | - Derong Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| |
Collapse
|
20
|
Zhu J, Liu Z, Chen H, Liu H, Bao X, Li C, Chen L, Yu L. Designing and developing biodegradable intelligent package used for monitoring spoilage seafood using aggregation-induced emission indicator. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Yalçın E. Synthesis of novel fused acenaphtopyrimidine hybrid, its photophysical properties and HSA interaction. Supramol Chem 2021. [DOI: 10.1080/10610278.2021.1975710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ergin Yalçın
- Iskenderun Technical University(ISTE), Department of Engineering Basic Sciences, Turkey
- ISTE Centre for Science and Technology Studies and Research (ISTE-CSTSR), Iskenderun, Turkey
| |
Collapse
|
22
|
Wolfbeis OS. Fluorescent chameleon labels for bioconjugation and imaging of proteins, nucleic acids, biogenic amines and surface amino groups. a review. Methods Appl Fluoresc 2021; 9. [PMID: 34340216 DOI: 10.1088/2050-6120/ac1a0a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/02/2021] [Indexed: 12/14/2022]
Abstract
Chameleon labels (ChLs) possess the unique property of changing (visible) color and fluorescence on binding to amino groups of biomolecules. MostChLs react with primary aliphatic amino groups such as those in lysine or with amino groups artificially introduced into polynucleic acids or saccharides, but someothers also react with secondary amino groups. Under controlled circumstances, the reactions are fairly specific. The review is subdivided into the following sections: (1) An introduction and classification of fluorescent labels; (2) pyrylium labels that undergo shortwave color changes upon labelling, typically from blue to red; (3) polymethine type of labels (that also undergo shortwave color changes, typically from green to blue; (4) various other (less common) chromogenic and fluorogenic systems; (5) hemicyanine labels that undergolongwavecolor changes, typically from yellow to purple; (6) the application of ChLs to labeling of proteins and oligonucleotides; (7) applications to fluorometric assays and sensing; (8) applications to fluorescence imaging of biomolecules; (9) applications in studies on affinity interactions (receptor-ligand binding); (10) applications in surface and interface chemistry; and (11) applications in chromatography, electrophoresis and isotachophoresis of biomolecules.
Collapse
Affiliation(s)
- Otto S Wolfbeis
- University of Regensburg, Institute of Analytical Chemistry, Chemo- and Biosensors, 94040 Regensburg, Germany
| |
Collapse
|
23
|
Guo H, Lin J, Zheng L, Yang F. An effective fluorescent sensor for ClO - in aqueous media based on thiophene-cyanostilbene Schiff-base. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 256:119744. [PMID: 33819762 DOI: 10.1016/j.saa.2021.119744] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Although some reports on sensing ClO- had been presented, the ClO- sensor with high selectivity and sensitivity in aqueous media was still expected. Herein, an effective fluorescent sensor for ClO- in aqueous media was designed and synthesized by simple procedure based on cyanostilbene derivative (TCS). TCS exhibited strong fluorescence in aqueous media, which could be selectively quenched by ClO- among various species. The detection limit was as low as 3.2 × 10-8 M. The sensing mechanism of the oxidation of sulfur in thiophene unit was confirmed by the FT-IR spectrum, fluorescence Job's plot, 1H NMR spectrum and MS spectrum. This sensor was successfully applied on detecting ClO- in real sample and living-cell imaging, suggesting its potential application for sensing ClO- in both vitro assay and vivo environment.
Collapse
Affiliation(s)
- Hongyu Guo
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China; Fujian Key Laboratory of Polymer Materials, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou 350007, PR China
| | - Jianrong Lin
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China
| | - Linlu Zheng
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, Ningde 352106, PR China
| | - Fafu Yang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou 350007, PR China.
| |
Collapse
|
24
|
de Souza JM, Abdiaj I, Chen J, Hanson K, de Oliveira KT, McQuade DT. Synthesis of multi-substituted pyridines from ylidenemalononitriles and their emission properties. Org Biomol Chem 2021; 19:1991-1999. [PMID: 33575693 PMCID: PMC7986046 DOI: 10.1039/d0ob02591g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Numerous methodologies to obtain pyridines from ylidenemalononitriles are described in the literature. Nevertheless, they are limited to the use of microwave or conventional heat and few lead to 2,3,4 or 2,3,4,5-substituted pyridines as multi-proposal molecular scaffolds or even universal pyridines. Herein, we present a mild and facile solvent-free methodology to obtain a scope of multi-substituted pyridines at room temperature. We also report an example where one of the resulting amino-nicotinonitriles exhibits a preliminary evidence of aggregation-induced emission (AIE).
Collapse
Affiliation(s)
- Juliana M de Souza
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284-3068, USA. and Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil.
| | - Irini Abdiaj
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284-3068, USA.
| | - Jiaqi Chen
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
| | - Kenneth Hanson
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
| | - Kleber T de Oliveira
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil.
| | - D Tyler McQuade
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284-3068, USA.
| |
Collapse
|
25
|
Chen S, Jiang S, Guo H, Yang F. "Turn-on" fluorescent sensor for Th 4+ in aqueous media based on a combination of PET-AIE effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119191. [PMID: 33239250 DOI: 10.1016/j.saa.2020.119191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/17/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Previously reported fluorescent sensors for Th4+ experienced emission quenching or generated false positive signal upon aggregate formation in aqueous media. Herein, a simple and novel thorium sensor (CDB-BA) based on cyanodistyrene structure was designed and synthesized, which integrated the highly emitting characteristic of AIE effect and off-on response of PET modulation for the first time to construct the "turn-on" fluorescent probe for Th4+. Besides excellent selectivity, CDB-BA exhibited remarkable fluorescent enhancement which was linearly related to the concentration of Th4+ in the range of 0.25-8 μM. The detection limit was attained 0.074 μM, which was lower than that of most previously reported sensors. The mechanism of tris-chelate complex of CDB-BA with Th4+ was confirmed by mass spectra, IR spectra and DFT calculation. The excellent Th4+ sensing ability of CDB-BA was successfully applied to detecting Th4+ on TLC plates, in real water samples and living-cell imaging. This work suggested that the combination of AIE and PET photophysical mechanism could offer the merits of minimized background and enhanced signal fidelity to develop novel "turn-on" fluorescent probe in complicated aqueous environment and biological research.
Collapse
Affiliation(s)
- Shibing Chen
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China
| | - Shengjie Jiang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China
| | - Hongyu Guo
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China; Fujian Key Laboratory of Polymer Materials, Fuzhou 350007, PR China
| | - Fafu Yang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China; Fujian Key Laboratory of Polymer Materials, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou 350007, PR China.
| |
Collapse
|
26
|
Guan QL, Sun Y, Huo R, Xin Y, Bai FY, Xing YH, Sun LX. Cu-MOF Material Constructed with a Triazine Polycarboxylate Skeleton: Multifunctional Identify and Microdetecting of the Aromatic Diamine Family ( o, m, p-Phenylenediamine) Based on the Luminescent Response. Inorg Chem 2021; 60:2829-2838. [PMID: 33501829 DOI: 10.1021/acs.inorgchem.0c03753] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Organic aromatic amines are widely used in various fields such as pharmaceuticals, pesticides, dyes, and tobacco smoke. The pollution of organic amines has become a problem that cannot be ignored, due to the extensive harmful effects on the environment and public health, which has become one of the most concerned frontier fields in the world. Identifying and microdetecting o-phenylenediamine (OPD), m-phenylenediamine (MPD), and p-phenylenediamine (PPD) using MOFs have rarely been reported. On the basis of the blue emission properties of Cu-TBDA constructed with 5,5'-((6-chloro-1,3,5-triazine-2,4-diyl)bis(azanediyl))diisophthalic acid (H4TBDA) ligand, Cu-TBDA was studied primarily to identify and detect aromatic diamine family as a multifunctional chemical sensor. Interestingly, Cu-TBDA has a very high selectivity and sensitivity to OPD and MPD with a low limit of detection (5.00 μM for OPD and 1.77 μM for MPD). Especially for OPD, Cu-TBDA has a unique switching function for it. When the concentration of OPD is less than 9.1 × 10-4 M, the fluorescence response of Cu-TBDA suspension exhibit enhanced. However, when the concentration of OPD is more than 9.1 × 10-4 M, the emission intensity displays quenching phenomenon. Therefore, Cu-TBDA as a chemical sensor not only has recognition and detection functions for organic aromatic amines but also first exhibits turn-on and -off sensing behavior toward OPD.
Collapse
Affiliation(s)
- Qing Lin Guan
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, PR China
| | - Ying Sun
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, PR China
| | - Rong Huo
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, PR China
| | - Yu Xin
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, PR China
| | - Feng Ying Bai
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, PR China
| | - Yong Heng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, PR China
| | - Li Xian Sun
- Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, PR China
| |
Collapse
|
27
|
Zhu B, Jiang L, Chen T, Bao GM, Zeng L, Hu X, Yuan HQ. A colorimetric and fluorescence lighting-up probe for the determination of biogenic primary diamine during the spoilage of fish. DYES AND PIGMENTS 2021; 186:108963. [DOI: 10.1016/j.dyepig.2020.108963] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
28
|
Sawminathan S, Munusamy S, Jothi D, Iyer SK. Phenanthridine‐Based Donor/Acceptor Fluorescent Dyes: Synthesis, Photophysical Properties and Fluorometric Sensing of Biogenic Primary Amines. ChemistrySelect 2021. [DOI: 10.1002/slct.202004040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Sathish Sawminathan
- Chemistry department School of Advanced Sciences Vellore Institute of Technology Vellore 632014 Tamilnadu India
| | - Sathishkumar Munusamy
- Institute of chemical biology and nanomedicine State key laboratory of chemo/Bio-sensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P.R.China
| | - Dhanapal Jothi
- Chemistry department School of Advanced Sciences Vellore Institute of Technology Vellore 632014 Tamilnadu India
| | | |
Collapse
|
29
|
Chen J, Zhou B, Li Y, Zheng L, Guo H, Yang F. A “turn-on” fluorescent sensor for cytosine in aqueous media based on diamino-bridged biphenyl acrylonitrile. NEW J CHEM 2021. [DOI: 10.1039/d0nj05098a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A “turn-on” fluorescent sensor for cytosine in aqueous media was prepared.
Collapse
Affiliation(s)
- Jiaojiao Chen
- College of Chemistry and Materials
- Fujian Normal University
- Fuzhou 350007
- P. R. China
- Fujian Key Laboratory of Polymer Materials
| | - Bangyi Zhou
- College of Chemistry and Materials
- Fujian Normal University
- Fuzhou 350007
- P. R. China
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering
| | - Yongsheng Li
- College of Chemistry and Materials
- Fujian Normal University
- Fuzhou 350007
- P. R. China
| | - Linlu Zheng
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials
- Ningde Normal University
- Ningde 352106
- P. R. China
| | - Hongyu Guo
- College of Chemistry and Materials
- Fujian Normal University
- Fuzhou 350007
- P. R. China
- Fujian Key Laboratory of Polymer Materials
| | - Fafu Yang
- College of Chemistry and Materials
- Fujian Normal University
- Fuzhou 350007
- P. R. China
- Fujian Key Laboratory of Polymer Materials
| |
Collapse
|
30
|
de Souza JM, Abdiaj I, Chen J, Hanson K, de Oliveira KT, McQuade DT. Increasing Scope of Clickable Fluorophores: Electrophilic Substitution of Ylidenemalononitriles. J Org Chem 2020; 85:11822-11834. [PMID: 32815730 DOI: 10.1021/acs.joc.0c01551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recently, we demonstrated that ylidenemalononitriles (YMs) react with amines to form cyclic amidines and that the starting linear YMs are nonemissive in solution and the cyclic amidines are fluorescent. These turn-on systems were of interest to us because of their potential as biosensors and synthons for accessing functionalized pyridines. While our original method was promising, several limitations persisted, including access to more functionalized and polar-solvent-soluble structures as well as increased control over the rate of cyclization. Herein, we report a new approach that allows the electrophilic substitution of YMs. These substituted YMs exhibit faster turn-on rates, color tunability, access to polar-solvent-soluble species, and increased control over cyclization rate. This allowed us to significantly expand the fluorophore's chemical space.
Collapse
Affiliation(s)
- Juliana M de Souza
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23284-3068, United States.,Departamento de Quı́mica, Universidade Federal de São Carlos, São Carlos, SP 13565-905, Brazil
| | - Irini Abdiaj
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23284-3068, United States
| | - Jiaqi Chen
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Kenneth Hanson
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Kleber T de Oliveira
- Departamento de Quı́mica, Universidade Federal de São Carlos, São Carlos, SP 13565-905, Brazil
| | - D Tyler McQuade
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23284-3068, United States
| |
Collapse
|
31
|
Jeon S, Kim TI, Jin H, Lee U, Bae J, Bouffard J, Kim Y. Amine-Reactive Activated Esters of meso-CarboxyBODIPY: Fluorogenic Assays and Labeling of Amines, Amino Acids, and Proteins. J Am Chem Soc 2020; 142:9231-9239. [PMID: 32302126 DOI: 10.1021/jacs.9b13982] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sungjin Jeon
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Tae-Il Kim
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Hanyong Jin
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
| | - Uisung Lee
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Jeehyeon Bae
- School of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
| | - Jean Bouffard
- Department of Chemistry and Nanoscience (BK 21 Plus), Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Youngmi Kim
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
32
|
Liu CY, Chen XR, Chen HX, Niu Z, Hirao H, Braunstein P, Lang JP. Ultrafast Luminescent Light-Up Guest Detection Based on the Lock of the Host Molecular Vibration. J Am Chem Soc 2020; 142:6690-6697. [DOI: 10.1021/jacs.0c00368] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chun-Yu Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, No. 199 Ren’ai Road, Suzhou 215123, Jiangsu, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xu-Ran Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, No. 199 Ren’ai Road, Suzhou 215123, Jiangsu, China
| | - Hui-Xian Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, No. 199 Ren’ai Road, Suzhou 215123, Jiangsu, China
| | - Zheng Niu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, No. 199 Ren’ai Road, Suzhou 215123, Jiangsu, China
| | - Hajime Hirao
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Pierre Braunstein
- Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg, 4 rue Blaise Pascal - CS 90032, 67081 Strasbourg, France
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, No. 199 Ren’ai Road, Suzhou 215123, Jiangsu, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
33
|
Jiang S, Qiu J, Lin B, Guo H, Yang F. First fluorescent sensor for curcumin in aqueous media based on acylhydrazone-bridged bis-tetraphenylethylene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117916. [PMID: 31839575 DOI: 10.1016/j.saa.2019.117916] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
This work designed and synthesized the first organic fluorescent sensor for curcumin in aqueous media based on red-to-green fluorescence change of acylhydrazone-bridged bis-tetraphenylethylene (Bis-TPE). Bis-TPE was prepared by condensation of formyltetraphenylethylene with dihydrazide oxalate in 86% yield. It has the large conjugated electron effect with strong red AIE fluorescence in aqueous solution. It displayed high selective sensing ability for curcumin with red-to-green fluorescence change in THF-H2O (5:95). The detection limit was as low as 1.15 × 10-7 M. The sensing mechanism was confirmed as 1:1 stoichiometric ratio based on quadruple hydrogen bonds. Bis-TPE was successfully applied for analyzing curcumin of ginger and living cell imaging, supplying a new detecting strategy for curcumin in real sample and living environment.
Collapse
Affiliation(s)
- Shengjie Jiang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China1
| | - Jiabin Qiu
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China1
| | - Bingni Lin
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China1
| | - Hongyu Guo
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China1; Fujian Key Laboratory of Polymer Materials, Fuzhou 350007, PR China
| | - Fafu Yang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China1; Fujian provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou 350007, PR China.
| |
Collapse
|
34
|
Li G, Zhao M, Xie J, Yao Y, Mou L, Zhang X, Guo X, Sun W, Wang Z, Xu J, Xue J, Hu T, Zhang M, Li M, Hong L. Efficient synthesis of cyclic amidine-based fluorophores via 6π-electrocyclic ring closure. Chem Sci 2020; 11:3586-3591. [PMID: 34094046 PMCID: PMC8152618 DOI: 10.1039/d0sc00798f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Novel 10π-electron cyclic amidines with excellent fluorescence properties were synthesized by a general and efficient 6π-electrocyclic ring closure of ketenimine and imine starting from N-sulfonyl triazoles and arylamines. The photophysical properties of cyclic amidine fluorophores have been studied in detail and have shown good properties of a large Stokes shift, pH insensitivity, low cytotoxicity and higher photostability, which have great potential for biological imaging. Furthermore, this novel fluorophore was successfully applied to the localization of the NK-1 receptor in living systems. Novel 10π-electron cyclic amidines with excellent fluorescence properties were synthesized by a general and efficient 6π-electrocyclic ring closure of ketenimine and imine starting from N-sulfonyl triazoles and arylamines.![]()
Collapse
Affiliation(s)
- Guofeng Li
- Guangdong Key Laboratory of Chiral Molecular and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 China
| | - Man Zhao
- Guangdong Key Laboratory of Chiral Molecular and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University Lanzhou 730000 China
| | - Ying Yao
- Guangdong Key Laboratory of Chiral Molecular and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 China
| | - Lingyun Mou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University Lanzhou 730000 China
| | - Xiaowei Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University Lanzhou 730000 China
| | - Xiaomin Guo
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University Lanzhou 730000 China
| | - Wangsheng Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University Lanzhou 730000 China
| | - Zheng Wang
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Jiecheng Xu
- Guangdong Key Laboratory of Chiral Molecular and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 China
| | - Jianzhong Xue
- Guangdong Key Laboratory of Chiral Molecular and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 China
| | - Tao Hu
- Guangdong Key Laboratory of Chiral Molecular and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 China
| | - Ming Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University Lanzhou 730000 China
| | - Min Li
- Guangdong Key Laboratory of Chiral Molecular and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 China
| | - Liang Hong
- Guangdong Key Laboratory of Chiral Molecular and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 China
| |
Collapse
|
35
|
Nguyen VT, Pandith A, Seo YJ. Propargylamine-selective dual fluorescence turn-on method for post-synthetic labeling of DNA. Chem Commun (Camb) 2020; 56:3199-3202. [PMID: 32068200 DOI: 10.1039/d0cc00255k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have developed a propargylamine-selective dual fluorescence turn-on system, using ylidenemalononitrile enamines, for post-synthetic DNA labeling, allowing the direct monitoring of DNA using dual emission in living cells.
Collapse
Affiliation(s)
- Van Thang Nguyen
- Department of Bioactive Material Sciences, Jeonbuk National University, South Korea
| | - Anup Pandith
- Department of Chemistry, Jeonbuk National University, South Korea.
| | - Young Jun Seo
- Department of Bioactive Material Sciences, Jeonbuk National University, South Korea and Department of Chemistry, Jeonbuk National University, South Korea.
| |
Collapse
|
36
|
Ni J, Li MY, Liu Z, Zhao H, Zhang JJ, Liu SQ, Chen J, Duan CY, Chen LY, Song XD. Discrimination of Various Amine Vapors by a Triemissive Metal-Organic Framework Composite via the Combination of a Three-Dimensional Ratiometric Approach and a Confinement-Induced Enhancement Effect. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12043-12053. [PMID: 32069396 DOI: 10.1021/acsami.9b22130] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Multiemissive sensors are being actively pursued, because of their ratiometric luminescent detection capabilities, which demonstrates better sensitivity and selectivity than conventional single-emission sensors. Herein, we present a trichromatic white-light-emitting metal-organic framework (MOF) composite (Z3) by simultaneously incorporating red/green-emitting Pt/Ru complex cations into porous blue-emitting bio-MOF-1 through post-synthetic modification. With the help of a three-dimensional (3-D) dual-ratiometric luminescence recognition method, and unique turn-on responses of the red emission toward amine compounds (ACs), including NH3 and aliphatic amines, via confinement-induced luminescence enhancement effect, Z3 can work as a dual-ratiometric luminescent sensor for discrimination of 7 out of 11 AC vapors. This work not only provides a new AC sensing mechanism (confinement effect) that can induce a "turn-on" response but also proves that the accuracy and selectivity of composite sensor can be greatly improved through the combination of 3-D recognition method and the confinement effect. Thus, it open up fresh opportunities to develop composite sensors with excellent sensing and differentiating ability.
Collapse
Affiliation(s)
- Jun Ni
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Mei-Yu Li
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhen Liu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - He Zhao
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jian-Jun Zhang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Shu-Qin Liu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jun Chen
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Chun-Ying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Li-Yong Chen
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xue-Dan Song
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
37
|
Jiang S, Qiu J, Chen S, Guo H, Yang F. Double-detecting fluorescent sensor for ATP based on Cu 2+ and Zn 2+ response of hydrazono-bis-tetraphenylethylene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117568. [PMID: 31654844 DOI: 10.1016/j.saa.2019.117568] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/12/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Although all kinds of sensors with unique detecting ability for one guest were reported, the fluorescence sensor with multiple detecting abilities was seldom presented. This work designed and synthesized a novel AIE fluorescence probe bearing double detecting for ATP based on Cu2+ and Zn2+ response of hydrazono-bis-tetraphenylethylene (Bis-TPE). Bis-TPE was prepared in 82% yield with simple procedure. It exhibited strong red AIE fluorescence based on the large conjugated electron effect in aqueous media. It showed outstanding selective sensing abilities for Cu2+ by strong fluorescence quenching and for Zn2+ by red-orange fluorescence change. The sensing mechanism of 1:1 stoichiometric ratios was confirmed by 1H NMR and MS study. The strong red fluorescence of Bis-TPE + Cu2+ system could be recovered by adding ATP. The orange fluorescence of Bis-TPE + Zn2+ system could be quenched by adding Cu2+ and then was recovered by adding ATP. These double detecting abilities for ATP with the "off-on" red fluorescence in Bis-TPE + Cu2+ system and "allochroic-off-on" orange fluorescence in Bis-TPE + Zn2++Cu2+ system were successfully applied to test Cu2+, Zn2+ and ATP in test paper and living cell imaging, displaying the good application prospects for sensing Cu2+, Zn2+ and double detecting ATP in the complicated environment.
Collapse
Affiliation(s)
- Shengjie Jiang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, PR China
| | - Jiabin Qiu
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, PR China
| | - Shibing Chen
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, PR China
| | - Hongyu Guo
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, PR China
| | - Fafu Yang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, PR China; Fujian Key Laboratory of Polymer Materials, Fuzhou, 350007, PR China; Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou, PR China.
| |
Collapse
|
38
|
Nakayama A, Otani A, Inokuma T, Tsuji D, Mukaiyama H, Nakayama A, Itoh K, Otaka A, Tanino K, Namba K. Development of a 1,3a,6a-triazapentalene derivative as a compact and thiol-specific fluorescent labeling reagent. Commun Chem 2020; 3:6. [PMID: 36703318 PMCID: PMC9812263 DOI: 10.1038/s42004-019-0250-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/11/2019] [Indexed: 01/29/2023] Open
Abstract
For the fluorescence imaging of biologically active small compounds, the development of compact fluorophores that do not perturb bioactivity is required. Here we report a compact derivative of fluorescent 1,3a,6a-triazapentalenes, 2-isobutenylcarbonyl-1,3a,6a-triazapentalene (TAP-VK1), as a fluorescent labeling reagent. The reaction of TAP-VK1 with various aliphatic thiols proceeds smoothly to afford the corresponding 1,4-adducts in high yields, and nucleophiles other than thiols do not react. After the addition of thiol groups in dichloromethane, the emission maximum of TAP-VK1 shifts to a shorter wavelength and the fluorescence intensity is substantially increased. The utility of TAP-VK1 as a compact fluorescent labeling reagent is clearly demonstrated by the labeling of Captopril, which is a small molecular drug for hypertension. The successful imaging of Captopril, one of the most compact drugs, in this study demonstrates the usefulness of compact fluorophores for mechanistic studies.
Collapse
Affiliation(s)
- Atsushi Nakayama
- grid.267335.60000 0001 1092 3579Department of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505 Japan ,grid.267335.60000 0001 1092 3579Research Cluster on “Innovative Chemical Sensing”, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505 Japan
| | - Akira Otani
- grid.267335.60000 0001 1092 3579Department of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505 Japan
| | - Tsubasa Inokuma
- grid.267335.60000 0001 1092 3579Department of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505 Japan ,grid.267335.60000 0001 1092 3579Research Cluster on “Innovative Chemical Sensing”, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505 Japan
| | - Daisuke Tsuji
- grid.267335.60000 0001 1092 3579Department of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505 Japan
| | - Haruka Mukaiyama
- grid.267335.60000 0001 1092 3579Department of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505 Japan
| | - Akira Nakayama
- grid.26999.3d0000 0001 2151 536XDepartment of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku Tokyo, 113-8656 Japan
| | - Kohji Itoh
- grid.267335.60000 0001 1092 3579Department of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505 Japan
| | - Akira Otaka
- grid.267335.60000 0001 1092 3579Department of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505 Japan
| | - Keiji Tanino
- grid.39158.360000 0001 2173 7691Department of Chemistry, Faculty of Science, Hokkaido University, Kita-ku Sapporo, 060-0810 Japan
| | - Kosuke Namba
- grid.267335.60000 0001 1092 3579Department of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505 Japan ,grid.267335.60000 0001 1092 3579Research Cluster on “Innovative Chemical Sensing”, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505 Japan
| |
Collapse
|
39
|
Affiliation(s)
- Ankush Gupta
- Department of ChemistryDAV University, Jalandhar, Punjab India
| |
Collapse
|
40
|
Balijapalli U, Manickam S, Thirumoorthy K, Natesan Sundaramurthy K, Sathiyanarayanan KI. (Tetrahydrodibenzo[ a, i]phenanthridin-5-yl)phenol as a Fluorescent Probe for the Detection of Aniline. J Org Chem 2019; 84:11513-11523. [PMID: 31431008 DOI: 10.1021/acs.joc.9b00709] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Two (tetrahydrodibenzo[a,i]phenanthridin-5-yl)phenols that differ in their substituents at the para position (P1, R = H and P2, R = NEt2) were designed and synthesized. The presence of a -NEt2 group in probe P2 facilitates the twisted intramolecular charge transfer (TICT) process, making P2 emissive, which distinctly coordinated with boron trifluoride in the presence of different amines with different electronic properties. A substantial increase in emission intensity with increasing viscosity of the surrounding environment and smooth formation of a planar complex with boron and Zn2+ ions concluded the presence of a TICT process. The selective reactivity of P2 toward a tetracoordinated boron complex has been explored as a potential tool for colorimetric and fluorescent discrimination of aromatic primary amines, i.e., anilines. Selective detection of aniline with probe P2 can be viewed through the naked eye, and the corresponding fluorescence turn-on detection limit was found to be 12.65 nM. In addition, the detection of aniline on precoated aluminum-backed thin-layer chromatography plates and Whatman filter paper strips was found to be in good agreement with the color change of P2 in solution and in vapor phase.
Collapse
Affiliation(s)
- Umamahesh Balijapalli
- Department of Chemistry, School of Advanced Sciences , Vellore Institute of Technology University , Vellore 632014 , Tamil Nadu , India
| | - Saravanakumar Manickam
- Department of Chemistry, School of Advanced Sciences , Vellore Institute of Technology University , Vellore 632014 , Tamil Nadu , India
| | - Krishnan Thirumoorthy
- Department of Chemistry, School of Advanced Sciences , Vellore Institute of Technology University , Vellore 632014 , Tamil Nadu , India
| | | | - Kulathu Iyer Sathiyanarayanan
- Department of Chemistry, School of Advanced Sciences , Vellore Institute of Technology University , Vellore 632014 , Tamil Nadu , India
| |
Collapse
|
41
|
Qiu J, Chen Y, Jiang S, Guo H, Yang F. A fluorescent sensor based on aggregation-induced emission: highly sensitive detection of hydrazine and its application in living cell imaging. Analyst 2019; 143:4298-4305. [PMID: 30095834 DOI: 10.1039/c8an00863a] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aggregation-induced emission (AIE) molecules eliminate the aggregation-caused quenching (ACQ) phenomenon effectively and exhibit excellent properties of a fluorescent sensor in the aggregated state. In this paper, an allochroic fluorescent sensor based on AIE molecules with a diphenylacrylonitrile structure was prepared in high yield by a simple procedure. This molecule possessed good AIE properties and exhibited a sensitive sensor ability for aliphatic amines with an obvious color change from orange to blue-green. The detailed investigation on the detection of hydrazine suggested that the detection limit for hydrazine was 3.67 × 10-6 M, and the highly sensitive sensor for hydrazine was not influenced by other species. The sensor mechanism was confirmed by using 1H NMR and MS spectra. The sensor for hydrazine was successfully applied in a test paper, exhibiting good practical application potential for detecting hydrazine. The experiment of living cell imaging suggested that this sensor showed superior bioimaging performance and presented sensitive detection for hydrazine with an obvious color change from orange to blue-green.
Collapse
Affiliation(s)
- Jiabin Qiu
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, P. R. China.
| | | | | | | | | |
Collapse
|
42
|
Ershov OV, Chunikhin SS, Ievlev MY, Belikov MY, Tafeenko VA. Crystallographic characterization of ethylammonium salts of tetracyanopyridine (TCPy) and fluorescence determination of the degree of substitution of the amino nitrogen atom thereof. CrystEngComm 2019. [DOI: 10.1039/c9ce01089k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Luminescence determination of the substitution degree of the amino nitrogen atom using ethylamine, diethylamine, triethylamine and tetraethylammonium has been shown.
Collapse
|
43
|
Li L, Li W, Ran X, Wang L, Tang H, Cao D. A highly efficient, colorimetric and fluorescent probe for recognition of aliphatic primary amines based on a unique cascade chromophore reaction. Chem Commun (Camb) 2019; 55:9789-9792. [PMID: 31360961 DOI: 10.1039/c9cc04961d] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pyrrolopyrrole aza-BODIPY based nanoaggregates were reported as a highly selective and sensitive probe for recognition of aliphatic primary amines with a novel cascade chromophore reaction. Due to its distinct reaction characteristics, this probe loaded test strip can conveniently detect n-hexylamine vapor and monitor the freshness of shrimp.
Collapse
Affiliation(s)
- Lanqing Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China.
| | | | | | | | | | | |
Collapse
|
44
|
Peez T, Luy JN, Harms K, Tonner R, Koert U. From Acenaphthenes to (+)-Delavatine A: Visible-Light-Induced Ring Closure of Methyl (α-Naphthyl) Acrylates. Chemistry 2018; 24:17686-17690. [DOI: 10.1002/chem.201804735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Theodor Peez
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein Straße 4 35032 Marburg Germany
| | - Jan-Niclas Luy
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein Straße 4 35032 Marburg Germany
| | - Klaus Harms
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein Straße 4 35032 Marburg Germany
| | - Ralf Tonner
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein Straße 4 35032 Marburg Germany
| | - Ulrich Koert
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein Straße 4 35032 Marburg Germany
| |
Collapse
|
45
|
Calvino C, Piechowicz M, Rowan SJ, Schrettl S, Weder C. A Versatile Colorimetric Probe based on Thiosemicarbazide–Amine Proton Transfer. Chemistry 2018; 24:7369-7373. [DOI: 10.1002/chem.201801551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Céline Calvino
- Adolphe Merkle Institute Chemin des Verdier 4 1700 Fribourg Switzerland
| | - Marek Piechowicz
- Department of ChemistryInstitute for Molecular EngineeringThe University of Chicago 5640 S Ellis Ave. Chicago Illinois 60637 USA
| | - Stuart J. Rowan
- Department of ChemistryInstitute for Molecular EngineeringThe University of Chicago 5640 S Ellis Ave. Chicago Illinois 60637 USA
| | - Stephen Schrettl
- Adolphe Merkle Institute Chemin des Verdier 4 1700 Fribourg Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute Chemin des Verdier 4 1700 Fribourg Switzerland
| |
Collapse
|
46
|
Pramanik S, Deol H, Bhalla V, Kumar M. AIEE Active Donor-Acceptor-Donor-Based Hexaphenylbenzene Probe for Recognition of Aliphatic and Aromatic Amines. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12112-12123. [PMID: 29083850 DOI: 10.1021/acsami.7b09791] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In the present investigation, an intramolecular charge transfer (ICT) and aggregation induced emission enhancement (AIEE) active donor-acceptor-donor (D-A-D) system 5 having fumaronitrile as the acceptor and hexaphenylbenzene (HPB) as the donor moieties joined through rotatable phenyl rings has been designed and synthesized that is highly emissive in the solid state and exhibits stimuli-responsive reversible piezochromic behavior upon grinding and heating. Because of its AIEE characteristics, HPB derivative 5 undergoes aggregation to form fluorescent aggregates in mixed aqueous media that exhibit ratiometric fluorescence response toward aliphatic amines (primary/secondary/tertiary) and turn-off response toward aromatic amines and hence differentiates between them. Further, the solution-coated portable paper strips of derivative 5 showed pronounced and sensitive response toward aromatic and aliphatic amines with a detection limit in the range of picogram and nanogram level, respectively.
Collapse
Affiliation(s)
- Subhamay Pramanik
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies-II Guru Nanak Dev University , Amritsar 143005 , Punjab , India
| | - Harnimarta Deol
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies-II Guru Nanak Dev University , Amritsar 143005 , Punjab , India
| | - Vandana Bhalla
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies-II Guru Nanak Dev University , Amritsar 143005 , Punjab , India
| | - Manoj Kumar
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies-II Guru Nanak Dev University , Amritsar 143005 , Punjab , India
| |
Collapse
|
47
|
Solid-supported synergistic twain probes with aggregation-induced emission: A sensing platform for fingerprinting volatile amines. Talanta 2018; 178:522-529. [DOI: 10.1016/j.talanta.2017.09.094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/19/2017] [Accepted: 09/30/2017] [Indexed: 12/19/2022]
|
48
|
Jamsheena V, Mishra RK, Veena KS, Sini S, Jayamurthy P, Lankalapalli RS. New 1,2-Dihydropyridine-Based Fluorophores and Their Applications as Fluorescent Probes. ACS OMEGA 2018; 3:856-862. [PMID: 30023792 PMCID: PMC6045324 DOI: 10.1021/acsomega.7b01835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/08/2018] [Indexed: 06/08/2023]
Abstract
New 1,2-dihydropyridine (1,2-DHP)-based fluorophores 1a-1h were designed and synthesized by a one-pot four-component condensation reaction using dienaminodioate, aldehydes, and an in situ-generated hydrazone mediated by trifluoroacetic acid. The photophysical properties of 1,2-DHPs were studied in detail, and a few of them exhibited selective mitochondrial staining ability in HeLa cell lines (cervical cancer cells). A detailed photophysical investigation led to the design of 1,2-DHP 1h as an optimal fluorophore suitable for its potential application as a small molecule probe in the aqueous medium. Also, 1,2-DHP 1h exhibited sixfold enhanced emission intensity than its phosphorylated analogue 1h' in the long wavelength region (λem ≈ 600 nm), which makes 1,2-DHP 1h' meet the requirement as a bioprobe for protein tyrosine phosphatases, shown in L6 muscle cell lysate.
Collapse
Affiliation(s)
- Vellekkatt Jamsheena
- Chemical Sciences
and Technology Division, Academy of Scientific
and Innovative Research (AcSIR), and Agro-Processing and Technology
Division, Academy of Scientific and Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science
and Technology, Thiruvananthapuram 695019, Kerala, India
| | - Rakesh K. Mishra
- Chemical Sciences
and Technology Division, Academy of Scientific
and Innovative Research (AcSIR), and Agro-Processing and Technology
Division, Academy of Scientific and Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science
and Technology, Thiruvananthapuram 695019, Kerala, India
| | - Kollery S. Veena
- Chemical Sciences
and Technology Division, Academy of Scientific
and Innovative Research (AcSIR), and Agro-Processing and Technology
Division, Academy of Scientific and Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science
and Technology, Thiruvananthapuram 695019, Kerala, India
| | - Suresh Sini
- Chemical Sciences
and Technology Division, Academy of Scientific
and Innovative Research (AcSIR), and Agro-Processing and Technology
Division, Academy of Scientific and Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science
and Technology, Thiruvananthapuram 695019, Kerala, India
| | - Purushothaman Jayamurthy
- Chemical Sciences
and Technology Division, Academy of Scientific
and Innovative Research (AcSIR), and Agro-Processing and Technology
Division, Academy of Scientific and Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science
and Technology, Thiruvananthapuram 695019, Kerala, India
| | - Ravi S. Lankalapalli
- Chemical Sciences
and Technology Division, Academy of Scientific
and Innovative Research (AcSIR), and Agro-Processing and Technology
Division, Academy of Scientific and Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science
and Technology, Thiruvananthapuram 695019, Kerala, India
| |
Collapse
|
49
|
Seenivasagaperumal SB, Shanmugam S. Fluorescent β-ketothiolester boron complex: substitution based “turn-off” or “ratiometric” sensor for diamine. NEW J CHEM 2018. [DOI: 10.1039/c7nj03260a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Boron diketonate 3 provides a choice of turn-off or ratiometric detection of diamine with respect to substitution on the boron-chelating ring. Detection of the diamine involves a substitution reaction by elimination of a methylsulfanyl group, favouring selective detection of diamine.
Collapse
Affiliation(s)
| | - Sivakumar Shanmugam
- Department of Organic Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625021
- India
| |
Collapse
|
50
|
Yang X, Liu Y, Li J, Wang Q, Yang M, Li C. A novel aggregation-induced-emission-active supramolecular organogel for the detection of volatile acid vapors. NEW J CHEM 2018. [DOI: 10.1039/c8nj02616e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel supramolecular organogel with AIE properties was synthesized and applied for sensing volatile acid vapors with excellent performance.
Collapse
Affiliation(s)
- Xiaoli Yang
- College of Material Engineering
- Jinling Institute of Technology
- Nanjing 211169
- P. R. China
| | - Yejing Liu
- College of Material Engineering
- Jinling Institute of Technology
- Nanjing 211169
- P. R. China
| | - Jiaheng Li
- College of Material Engineering
- Jinling Institute of Technology
- Nanjing 211169
- P. R. China
| | - Qi Wang
- College of Material Engineering
- Jinling Institute of Technology
- Nanjing 211169
- P. R. China
| | - Ming Yang
- College of Material Engineering
- Jinling Institute of Technology
- Nanjing 211169
- P. R. China
| | - Cong Li
- College of Material Engineering
- Jinling Institute of Technology
- Nanjing 211169
- P. R. China
| |
Collapse
|