1
|
Kubyshkin V, Rubini M. Proline Analogues. Chem Rev 2024; 124:8130-8232. [PMID: 38941181 DOI: 10.1021/acs.chemrev.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Within the canonical repertoire of the amino acid involved in protein biogenesis, proline plays a unique role as an amino acid presenting a modified backbone rather than a side-chain. Chemical structures that mimic proline but introduce changes into its specific molecular features are defined as proline analogues. This review article summarizes the existing chemical, physicochemical, and biochemical knowledge about this peculiar family of structures. We group proline analogues from the following compounds: substituted prolines, unsaturated and fused structures, ring size homologues, heterocyclic, e.g., pseudoproline, and bridged proline-resembling structures. We overview (1) the occurrence of proline analogues in nature and their chemical synthesis, (2) physicochemical properties including ring conformation and cis/trans amide isomerization, (3) use in commercial drugs such as nirmatrelvir recently approved against COVID-19, (4) peptide and protein synthesis involving proline analogues, (5) specific opportunities created in peptide engineering, and (6) cases of protein engineering with the analogues. The review aims to provide a summary to anyone interested in using proline analogues in systems ranging from specific biochemical setups to complex biological systems.
Collapse
Affiliation(s)
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
2
|
Breunig SL, Chapman AM, LeBon J, Quijano JC, Ranasinghe M, Rawson J, Demeler B, Ku HT, Tirrell DA. 4S-fluorination of ProB29 in insulin lispro slows fibril formation. J Biol Chem 2024; 300:107332. [PMID: 38703998 PMCID: PMC11154709 DOI: 10.1016/j.jbc.2024.107332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 05/06/2024] Open
Abstract
Recombinant insulin is a life-saving therapeutic for millions of patients affected by diabetes mellitus. Standard mutagenesis has led to insulin variants with improved control of blood glucose; for instance, the fast-acting insulin lispro contains two point mutations that suppress dimer formation and expedite absorption. However, insulins undergo irreversible denaturation, a process accelerated for the insulin monomer. Here we replace ProB29 of insulin lispro with 4R-fluoroproline, 4S-fluoroproline, and 4,4-difluoroproline. All three fluorinated lispro variants reduce blood glucose in diabetic mice, exhibit similar secondary structure as measured by CD, and rapidly dissociate from the zinc- and resorcinol-bound hexamer upon dilution. Notably, however, we find that 4S-fluorination of ProB29 delays the formation of undesired insulin fibrils that can accumulate at the injection site in vivo and can complicate insulin production and storage. These results demonstrate how subtle molecular changes achieved through non-canonical amino acid mutagenesis can improve the stability of protein therapeutics.
Collapse
Affiliation(s)
- Stephanie L Breunig
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Alex M Chapman
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Jeanne LeBon
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute City of Hope, Duarte, California, USA
| | - Janine C Quijano
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute City of Hope, Duarte, California, USA
| | - Maduni Ranasinghe
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Jeffrey Rawson
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute City of Hope, Duarte, California, USA
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada; Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana, USA
| | - Hsun Teresa Ku
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute City of Hope, Duarte, California, USA; Irell & Manella Graduate School of Biological Science, City of Hope, Duarte, California, USA
| | - David A Tirrell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA.
| |
Collapse
|
3
|
Breunig S, Quijano JC, Donohue C, Henrickson A, Demeler B, Ku HT, Tirrell DA. Incorporation of Aliphatic Proline Residues into Recombinantly Produced Insulin. ACS Chem Biol 2023; 18:2574-2581. [PMID: 37960878 PMCID: PMC10728891 DOI: 10.1021/acschembio.3c00561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
Analogs of proline can be used to expand the chemical space about the residue while maintaining its uniquely restricted conformational space. Here, we demonstrate the incorporation of 4R-methylproline, 4S-methylproline, and 4-methyleneproline into recombinant insulin expressed in Escherichia coli. These modified proline residues, introduced at position B28, change the biophysical properties of insulin: Incorporation of 4-methyleneproline at B28 accelerates fibril formation, while 4-methylation speeds dissociation from the pharmaceutically formulated hexamer. This work expands the scope of proline analogs amenable to incorporation into recombinant proteins and demonstrates how noncanonical amino acid mutagenesis can be used to engineer the therapeutically relevant properties of protein drugs.
Collapse
Affiliation(s)
- Stephanie
L. Breunig
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Janine C. Quijano
- Department
of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Institute City
of Hope, Duarte, California 91010, United States
| | - Cecile Donohue
- Department
of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Institute City
of Hope, Duarte, California 91010, United States
| | - Amy Henrickson
- Department
of Chemistry and Biochemistry, University
of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Borries Demeler
- Department
of Chemistry and Biochemistry, University
of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
- Department
of Chemistry and Biochemistry, University
of Montana, Missoula, Montana 59801, United States
| | - Hsun Teresa Ku
- Department
of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Institute City
of Hope, Duarte, California 91010, United States
- Irell &
Manella Graduate School of Biological Science, City of Hope, Duarte, California 91010, United
States
| | - David A. Tirrell
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
4
|
Schnitzer T, Rackl JW, Wennemers H. Stereoselective Peptide Catalysis in Complex Environments – From River Water to Cell Lysates. Chem Sci 2022; 13:8963-8967. [PMID: 36091207 PMCID: PMC9365096 DOI: 10.1039/d2sc02044k] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/27/2022] [Indexed: 11/21/2022] Open
Abstract
Many stereoselective peptide catalysts have been established. They consist, like nature's catalysts, of amino acids but have significantly lower molecular weights than enzymes. Whereas enzymes operate with exquisite chemoselectivity in complex biological environments, peptide catalysts are used in pure organic solvents and at higher concentrations. Can a peptide catalyst exhibit chemoselectivity reminiscent of enzymes? Here, we investigated the properties of tripeptide catalysts in complex mixtures in hydrophobic and aqueous solvents. We challenged the catalysts with biomolecules bearing functional groups that could interfere by coordination or reaction with the peptide, the substrates, or intermediates. H-dPro-αMePro-Glu-NHC12H15 emerged through tailoring of the trans/cis ratio of the tertiary amide as a conformationally well-defined tripeptide that catalyzes C–C bond formations with high reactivity and stereoselectivity – regardless of the solvent and compound composition. The chemoselectivity of the tripeptide is so high that it even catalyzes reactions in cell lysates. The findings provoke the question of the potential role of peptide catalysis in nature and during the evolution of enzymes. The reactivity, stereo-, and chemoselectivity of a tripeptide are so high that it catalyzes conjugate addition reactions with high stereoselectivity in complex compound mixtures—even in cell lysates.![]()
Collapse
Affiliation(s)
- Tobias Schnitzer
- Laboratory of Organic Chemistry, ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Jonas W Rackl
- Laboratory of Organic Chemistry, ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Helma Wennemers
- Laboratory of Organic Chemistry, ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
5
|
Sinnaeve D, Ben Bouzayene A, Ottoy E, Hofman GJ, Erdmann E, Linclau B, Kuprov I, Martins J, Torbeev V, Kieffer B. Fluorine NMR study of proline-rich sequences using fluoroprolines. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:795-813. [PMID: 37905223 PMCID: PMC10539733 DOI: 10.5194/mr-2-795-2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/28/2021] [Indexed: 11/01/2023]
Abstract
Proline homopolymer motifs are found in many proteins; their peculiar conformational and dynamic properties are often directly involved in those proteins' functions. However, the dynamics of proline homopolymers is hard to study by NMR due to a lack of amide protons and small chemical shift dispersion. Exploiting the spectroscopic properties of fluorinated prolines opens interesting perspectives to address these issues. Fluorinated prolines are already widely used in protein structure engineering - they introduce conformational and dynamical biases - but their use as 19 F NMR reporters of proline conformation has not yet been explored. In this work, we look at model peptides where Cγ -fluorinated prolines with opposite configurations of the chiral Cγ centre have been introduced at two positions in distinct polyproline segments. By looking at the effects of swapping these (4R )-fluoroproline and (4S )-fluoroproline within the polyproline segments, we were able to separate the intrinsic conformational properties of the polyproline sequence from the conformational alterations instilled by fluorination. We assess the fluoroproline 19 F relaxation properties, and we exploit the latter in elucidating binding kinetics to the SH3 (Src homology 3) domain.
Collapse
Affiliation(s)
- Davy Sinnaeve
- Univ. Lille, Inserm, Institut Pasteur de Lille, CHU Lille, U1167 – Risk Factors and Molecular Determinants of
Aging-Related Diseases (RID-AGE), 59000 Lille, France
- CNRS, ERL9002 – Integrative Structural Biology, 59000 Lille, France
| | - Abir Ben Bouzayene
- Department of Integrative Structural Biology, IGBMC, University of Strasbourg, Inserm U1258, CNRS UMR 7104, 1 rue Laurent Fries, 67404
Illkirch, France
| | - Emile Ottoy
- Department of Organic and Macromolecular Chemistry, Ghent University,
Campus Sterre, S4, Krijgslaan 281, 9000 Ghent, Belgium
| | - Gert-Jan Hofman
- Department of Organic and Macromolecular Chemistry, Ghent University,
Campus Sterre, S4, Krijgslaan 281, 9000 Ghent, Belgium
- School of Chemistry, University of Southampton, Southampton SO17 1BJ,
United Kingdom
| | - Eva Erdmann
- Department of Integrative Structural Biology, IGBMC, University of Strasbourg, Inserm U1258, CNRS UMR 7104, 1 rue Laurent Fries, 67404
Illkirch, France
| | - Bruno Linclau
- School of Chemistry, University of Southampton, Southampton SO17 1BJ,
United Kingdom
| | - Ilya Kuprov
- School of Chemistry, University of Southampton, Southampton SO17 1BJ,
United Kingdom
| | - José C. Martins
- Department of Organic and Macromolecular Chemistry, Ghent University,
Campus Sterre, S4, Krijgslaan 281, 9000 Ghent, Belgium
| | - Vladimir Torbeev
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS),
International Center for Frontier Research in Chemistry (icFRC), University of Strasbourg,
CNRS UMR 7006, 67000 Strasbourg, France
| | - Bruno Kieffer
- Department of Integrative Structural Biology, IGBMC, University of Strasbourg, Inserm U1258, CNRS UMR 7104, 1 rue Laurent Fries, 67404
Illkirch, France
| |
Collapse
|
6
|
Loureiro RJS, Faísca PFN. The Early Phase of β2-Microglobulin Aggregation: Perspectives From Molecular Simulations. Front Mol Biosci 2020; 7:578433. [PMID: 33134317 PMCID: PMC7550760 DOI: 10.3389/fmolb.2020.578433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/08/2020] [Indexed: 11/24/2022] Open
Abstract
Protein β2-microglobulin is the causing agent of two amyloidosis, dialysis related amyloidosis (DRA), affecting the bones and cartilages of individuals with chronic renal failure undergoing long-term hemodialysis, and a systemic amyloidosis, found in one French family, which impairs visceral organs. The protein’s small size and its biomedical significance attracted the attention of theoretical scientists, and there are now several studies addressing its aggregation mechanism in the context of molecular simulations. Here, we review the early phase of β2-microglobulin aggregation, by focusing on the identification and structural characterization of monomers with the ability to trigger aggregation, and initial small oligomers (dimers, tetramers, hexamers etc.) formed in the so-called nucleation phase. We focus our analysis on results from molecular simulations and integrate our views with those coming from in vitro experiments to provide a broader perspective of this interesting field of research. We also outline directions for future computer simulation studies.
Collapse
Affiliation(s)
- Rui J S Loureiro
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal
| | - Patrícia F N Faísca
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal.,Department of Physics, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| |
Collapse
|
7
|
Smith HI, Guthertz N, Cawood EE, Maya-Martinez R, Breeze AL, Radford SE. The role of the I T-state in D76N β 2-microglobulin amyloid assembly: A crucial intermediate or an innocuous bystander? J Biol Chem 2020; 295:12474-12484. [PMID: 32661194 PMCID: PMC7458819 DOI: 10.1074/jbc.ra120.014901] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/06/2020] [Indexed: 02/05/2023] Open
Abstract
The D76N variant of human β2-microglobulin (β2m) is the causative agent of a hereditary amyloid disease. Interestingly, D76N-associated amyloidosis has a distinctive pathology compared with aggregation of WT-β2m, which occurs in dialysis-related amyloidosis. A folding intermediate of WT-β2m, known as the IT-state, which contains a nonnative trans Pro-32, has been shown to be a key precursor of WT-β2m aggregation in vitro. However, how a single amino acid substitution enhances the rate of aggregation of D76N-β2m and gives rise to a different amyloid disease remained unclear. Using real-time refolding experiments monitored by CD and NMR, we show that the folding mechanisms of WT- and D76N-β2m are conserved in that both proteins fold slowly via an IT-state that has similar structural properties. Surprisingly, however, direct measurement of the equilibrium population of IT using NMR showed no evidence for an increased population of the IT-state for D76N-β2m, ruling out previous models suggesting that this could explain its enhanced aggregation propensity. Producing a kinetically trapped analog of IT by deleting the N-terminal six amino acids increases the aggregation rate of WT-β2m but slows aggregation of D76N-β2m, supporting the view that although the folding mechanisms of the two proteins are conserved, their aggregation mechanisms differ. The results exclude the IT-state as the origin of the rapid aggregation of D76N-β2m, suggesting that other nonnative states must cause its high aggregation rate. The results highlight how a single substitution at a solvent-exposed site can affect the mechanism of aggregation and the resulting disease.
Collapse
Affiliation(s)
- Hugh I Smith
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nicolas Guthertz
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Emma E Cawood
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.,School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Roberto Maya-Martinez
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Alexander L Breeze
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
8
|
Ganguly HK, Basu G. Conformational landscape of substituted prolines. Biophys Rev 2020; 12:25-39. [PMID: 31953795 PMCID: PMC7040156 DOI: 10.1007/s12551-020-00621-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/09/2020] [Indexed: 12/16/2022] Open
Abstract
The cyclic side chain of the amino acid proline confers unique conformational restraints on its backbone and side chain dihedral angles. This affects two equilibria-one at the backbone (cis/trans) and the other at the side chain (endo/exo). Substitutions on the proline ring impose additional steric and stereoelectronic effects that can further modulate both these equilibria, which in turn can also affect the backbone dihedral angle (ϕ, ψ) preferences. In this review, we have explored the conformational landscape of several termini capped mono-(2-, 3-, 4-, and 5-) substituted proline derivatives in the Cambridge Structural Database, correlating observed conformations with the nature of substituents and deciphering the underlying interactions for the observed structural biases. The impact of incorporating these derivatives within model peptides and proteins are also discussed for selected cases. Several of these substituents have been used to introduce bioorthogonal functionality and modulate structure-specific ligand recognition or used as spectroscopic probes. The incorporation of these diversely applicable functional groups, coupled with their ability to define an amino acid conformation via stereoelectronic effects, have a broad appeal among chemical biologists, molecular biophysicists, and medicinal chemists.
Collapse
Affiliation(s)
- Himal Kanti Ganguly
- Department of Biophysics, Bose Institute, P-1/12 CIT scheme VII M, Kolkata, 700054, India.
| | - Gautam Basu
- Department of Biophysics, Bose Institute, P-1/12 CIT scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
9
|
Kolaczkowski L, Barkalow J, Barnes DM, Haight A, Pritts W, Schellinger A. Synthesis of (R)-Boc-2-methylproline via a Memory of Chirality Cyclization. Application to the Synthesis of Veliparib, a Poly(ADP-ribose) Polymerase Inhibitor. J Org Chem 2019; 84:4837-4845. [DOI: 10.1021/acs.joc.8b02866] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lawrence Kolaczkowski
- Process Research & Development, AbbVie, Inc., North Chicago, Illinois 60064, United States
| | - Jufang Barkalow
- Process Research & Development, AbbVie, Inc., North Chicago, Illinois 60064, United States
| | - David M. Barnes
- Process Research & Development, AbbVie, Inc., North Chicago, Illinois 60064, United States
| | - Anthony Haight
- Process Research & Development, AbbVie, Inc., North Chicago, Illinois 60064, United States
| | - Wayne Pritts
- Process Analytical Chemistry, AbbVie, Inc., North Chicago, Illinois 60064, United States
| | - Adam Schellinger
- Process Analytical Chemistry, AbbVie, Inc., North Chicago, Illinois 60064, United States
| |
Collapse
|
10
|
Kubyshkin V, Pridma S, Budisa N. Comparative effects of trifluoromethyl- and methyl-group substitutions in proline. NEW J CHEM 2018. [DOI: 10.1039/c8nj02631a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
What is the outcome of trifluoromethyl-/methyl-substitution in each position of the proline ring? Look inside to find out.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Biocatalysis Group
- Institute of Chemistry
- Technical University of Berlin
- Berlin 10623
- Germany
| | | | - Nediljko Budisa
- Biocatalysis Group
- Institute of Chemistry
- Technical University of Berlin
- Berlin 10623
- Germany
| |
Collapse
|
11
|
Mykhailiuk PK, Kubyshkin V, Bach T, Budisa N. Peptidyl-Prolyl Model Study: How Does the Electronic Effect Influence the Amide Bond Conformation? J Org Chem 2017; 82:8831-8841. [DOI: 10.1021/acs.joc.7b00803] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pavel K. Mykhailiuk
- Taras Shevchenko National University of Kyiv, Chemistry Department, Volodymyrska 64, 01601 Kyiv, Ukraine
- Enamine Limited, Chervonotkatska 78, 01103 Kyiv, Ukraine
| | - Vladimir Kubyshkin
- Institute
of Chemistry, Technical University of Berlin, Müller-Breslau-Strasse 10, 10623 Berlin, Germany
| | - Thorsten Bach
- Lehrstuhl
für Organische Chemie I, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Nediljko Budisa
- Institute
of Chemistry, Technical University of Berlin, Müller-Breslau-Strasse 10, 10623 Berlin, Germany
| |
Collapse
|
12
|
Lucato CM, Lupton CJ, Halls ML, Ellisdon AM. Amyloidogenicity at a Distance: How Distal Protein Regions Modulate Aggregation in Disease. J Mol Biol 2017; 429:1289-1304. [PMID: 28342736 DOI: 10.1016/j.jmb.2017.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/12/2017] [Accepted: 03/14/2017] [Indexed: 12/14/2022]
Abstract
The misfolding of proteins to form amyloid is a key pathological feature of several progressive, and currently incurable, diseases. A mechanistic understanding of the pathway from soluble, native protein to insoluble amyloid is crucial for therapeutic design, and recent efforts have helped to elucidate the key molecular events that trigger protein misfolding. Generally, either global or local structural perturbations occur early in amyloidogenesis to expose aggregation-prone regions of the protein that can then self-associate to form toxic oligomers. Surprisingly, these initiating structural changes are often caused or influenced by protein regions distal to the classically amyloidogenic sequences. Understanding the importance of these distal regions in the pathogenic process has highlighted many remaining knowledge gaps regarding the precise molecular events that occur in classic aggregation pathways. In this review, we discuss how these distal regions can influence aggregation in disease and the recent technical and conceptual advances that have allowed this insight.
Collapse
Affiliation(s)
- Christina M Lucato
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Christopher J Lupton
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Andrew M Ellisdon
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
13
|
Proline Residues as Switches in Conformational Changes Leading to Amyloid Fibril Formation. Int J Mol Sci 2017; 18:ijms18030549. [PMID: 28272335 PMCID: PMC5372565 DOI: 10.3390/ijms18030549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 12/15/2022] Open
Abstract
Here we discuss studies of the structure, folding, oligomerization and amyloid fibril formation of several proline mutants of human stefin B, which is a protein inhibitor of lysosomal cysteine cathepsins and a member of the cystatin family. The structurally important prolines in stefin B are responsible for the slow folding phases and facilitate domain swapping (Pro 74) and loop swapping (Pro 79). Moreover, our findings are compared to β2-microglobulin, a protein involved in dialysis-related amyloidosis. The assessment of the contribution of proline residues to the process of amyloid fibril formation may shed new light on the critical molecular events involved in conformational disorders.
Collapse
|
14
|
Kubyshkin V, Budisa N. cis-trans-Amide isomerism of the 3,4-dehydroproline residue, the 'unpuckered' proline. Beilstein J Org Chem 2016; 12:589-93. [PMID: 27340450 PMCID: PMC4901939 DOI: 10.3762/bjoc.12.57] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/08/2016] [Indexed: 11/23/2022] Open
Abstract
Proline (Pro) is an outstanding amino acid in various biochemical and physicochemical perspectives, especially when considering the cis-trans isomerism of the peptidyl-Pro amide bond. Elucidation of the roles of Pro in chemical or biological systems and engineering of its features can be addressed with various Pro analogues. Here we report an experimental work investigating the basic physicochemical properties of two Pro analogues which possess a 3,4-double bond: 3,4-dehydroproline and 4-trifluoromethyl-3,4-dehydroproline. Both indicate a flat pyrroline ring in their crystal structures, in agreement with previous theoretical calculations. In solution, the peptide mimics exhibit an almost unchanged equilibrium of the trans/cis ratios compared to that of Pro and 4-trifluoromethylproline derivatives. Finally we demonstrate that the 3,4-double bond in the investigated structures leads to an increase of the amide rotational barriers, presumably due to an interplay with the transition state.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Str., 10, 10623, Berlin, Germany
| | - Nediljko Budisa
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Str., 10, 10623, Berlin, Germany
| |
Collapse
|