1
|
Muhammad Naeem Ullah H, Mushtaq N, Ur Rehman S, Tariq Z, Ali SS, Tahir M, Li C, Zhang X, Li J. Manganese doped tailored cobalt sulfide as an accelerated catalyst for oxygen evolution reaction. J Colloid Interface Sci 2025; 678:1087-1095. [PMID: 39341140 DOI: 10.1016/j.jcis.2024.09.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
Developing an efficient, robust, and noble metal-free electrocatalyst that can catalyse oxygen evolution reactions (OER) remains a significant challenge. CoS2, a representative of pyrite form transition metal dichalcogenides, has recently been identified as an economical catalyst. Here, an incredibly quick and scalable technique for novel catalysts synthesized with the use of the microwave method was introduced. Manganese-doped cobalt sulphide (Mn-CoS2) showed outstanding OER with a very low overpotential of 227 mV at 10 mA cm-2. Exposure of surface atoms resulted in high electrochemical activity, where the defects facilitated charge and mass transfer along the nanostructure, allowing surface dependent electrochemical reactions to be performed more efficiently. The electronic properties of pristine and transition-metal-doped CoS2 structures were also investigated using density functional theory (DFT). To better understand transition metal's dependent impact on crystal structure, orbital electronic participation, charge density, and charge transformation in both pristine and Mn-dopedCoS2 frameworks were calculated and analysized. Our synthesis approach is primarily commercial and extensible, overcoming synthesis challenge of transition metal sulphide nanostructures with prime quality and implying a potential for commercial uses.
Collapse
Affiliation(s)
- Hafiz Muhammad Naeem Ullah
- School of Science, Minzu University of China, Beijing 100081, China; Optoelectronics Research Centre, Minzu University of China, Beijing 100081, China
| | - Nouraiz Mushtaq
- Institute of Functional Porous Materials, School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Sajid Ur Rehman
- School of Science, Minzu University of China, Beijing 100081, China; Optoelectronics Research Centre, Minzu University of China, Beijing 100081, China
| | - Zeeshan Tariq
- School of Science, Minzu University of China, Beijing 100081, China; Optoelectronics Research Centre, Minzu University of China, Beijing 100081, China
| | - S S Ali
- School of Physical Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Tahir
- School of Chemical Engineering, University of Birmingham, UK
| | - Chuanbo Li
- School of Science, Minzu University of China, Beijing 100081, China; Optoelectronics Research Centre, Minzu University of China, Beijing 100081, China
| | - Xiaoming Zhang
- School of Science, Minzu University of China, Beijing 100081, China; Optoelectronics Research Centre, Minzu University of China, Beijing 100081, China.
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
2
|
Dilebo WB, Tsai MC, Chang CY, Edao HG, Nikodimos Y, Moges EA, Lakshmanan K, Angerasa FT, Guta CB, Ibrahim KB, Awoke YA, Alamirew T, Liao WS, Desta GB, Chen JL, Su WN, Hwang BJ. Synergistic interfacial electronic modulation of topotactically developed bimetallic CoNiP on NiS nanorods for enhanced alkaline hydrogen evolution reaction. NANOSCALE 2024; 16:20701-20713. [PMID: 39434624 DOI: 10.1039/d4nr02788d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Designing hybrid transition metal phosphosulfide electrocatalysts is critical for the hydrogen evolution reaction (HER). We propose a novel approach by designing a hierarchical structure of cobalt phosphide (CoP) and nickel phosphide (Ni8P3) nanoparticles topotactically developed on nickel sulfide (Ni3S2) nanorods (CoNiP/NiS) via a sulfuration-phosphorization strategy using conductive 3D nickel foam. Hierarchical heterostructured nanorods were achieved without the need for template removal steps or the assistance of surfactants. This not only simplifies the process but also improves the exposure of active sites for catalytic purposes. Furthermore, the theoretical calculation results revealed that the high H* adsorption-free energy for CoP and Ni8P3 phases significantly decreases upon coupling with Ni3S2, which indicates that the interfacial electronic interaction synergistically modulates both CoP and Ni8P3 (CoNiP) at the coupled interfaces and facilitates the adsorption and desorption of H* intermediates during the HER process. The resulting electrode exhibits excellent performance in the HER catalytic process and shows great performance for further exploration in the urea oxidation reaction (UOR). Our work provides a stepping stone toward rational topotactic transformation of active materials on porous substrates, using electronic structure regulation and heterointerfaces to produce promising electrocatalysts for sustainable, large-scale hydrogen production from water electrolysis.
Collapse
Affiliation(s)
- Woldesenbet Bafe Dilebo
- Nano-electrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106, Taiwan.
| | - Meng-Che Tsai
- Department of Greenergy, National University of Tainan, Tainan City 70005, Taiwan.
| | - Chia-Yu Chang
- Nano-electrochemistry Laboratory, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei City 106, Taiwan.
| | - Habib Gemechu Edao
- Nano-electrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106, Taiwan.
| | - Yosef Nikodimos
- Nano-electrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106, Taiwan.
- Sustainable Electrochemical Energy Development Center, National Taiwan University of Science and Technology, Taipei City 106, Taiwan
| | - Endalkachew Asefa Moges
- Nano-electrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106, Taiwan.
| | - Keseven Lakshmanan
- Nano-electrochemistry Laboratory, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei City 106, Taiwan.
| | - Fikiru Temesgen Angerasa
- Nano-electrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106, Taiwan.
| | - Chemeda Barasa Guta
- Nano-electrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106, Taiwan.
| | - Kassa Belay Ibrahim
- Ca' Foscari University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy
| | - Yohannes Ayele Awoke
- Nano-electrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106, Taiwan.
| | - Tesfaye Alamirew
- Nano-electrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106, Taiwan.
| | - Wei-Sheng Liao
- Nano-electrochemistry Laboratory, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei City 106, Taiwan.
| | - Gidey Bahre Desta
- Nano-electrochemistry Laboratory, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei City 106, Taiwan.
| | - Jeng-Lung Chen
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan
| | - Wei-Nien Su
- Nano-electrochemistry Laboratory, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei City 106, Taiwan.
- Sustainable Electrochemical Energy Development Center, National Taiwan University of Science and Technology, Taipei City 106, Taiwan
| | - Bing Joe Hwang
- Nano-electrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106, Taiwan.
- Sustainable Electrochemical Energy Development Center, National Taiwan University of Science and Technology, Taipei City 106, Taiwan
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan
| |
Collapse
|
3
|
Wu Q, Wang J, Wang X, Wei J, Wang J, Zhang C, Xu R, Yang L. Synergistic Effect of P and Co Dual Doping Endows CuNi with High-Performance Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402615. [PMID: 38830338 DOI: 10.1002/smll.202402615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/21/2024] [Indexed: 06/05/2024]
Abstract
The rational design of highly active and durable non-noble electrocatalysts for hydrogen evolution reaction (HER) is significantly important but technically challenging. Herein, a phosphor and cobalt dual doped copper-nickel alloy (P, Co-CuNi) electrocatalyst with high-efficient HER performance is prepared by one-step electrodeposition method and reported for the first time. As a result, P, Co-CuNi only requires an ultralow overpotential of 56 mV to drive the current density of 10 mA cm-2, with remarkable stability for over 360 h, surpassing most previously reported transition metal-based materials. It is discovered that the P doping can simultaneously increase the electrical conductivity and enhance the corrosion resistance, while the introduction of Co can precisely modulate the sub-nanosheets morphology to expose more accessible active sites. Moreover, XPS, UPS, and DFT calculations reveal that the synergistic effect of different dopants can achieve the most optimal electronic structure around Cu and Ni, causing a down-shifted d-band center, which reduces the hydrogen desorption free energy of the rate-determining step (H2O + e- + H* → H2 + OH-) and consequently enhances the intrinsic activity. This work provides a new cognition toward the development of excellent activity and stability HER electrocatalysts and spurs future study for other NiCu-based alloy materials.
Collapse
Affiliation(s)
- Quanshuo Wu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Junli Wang
- Researcher center for analysis and measurement, Kunming University of Science and Technology, Kunming, 650093, China
| | - Xuanbing Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jinlong Wei
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jing Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Can Zhang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Ruidong Xu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Linjing Yang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| |
Collapse
|
4
|
Lyu LM, Li HJ, Tsai RS, Chen CF, Chang YC, Chuang YC, Li CS, Chen JL, Chiu TW, Kuo CH. In Operando X-ray Spectroscopic and DFT Studies Revealing Improved H 2 Evolution by the Synergistic Ni-Co Electron Effect in the Alkaline Condition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27329-27338. [PMID: 38764171 PMCID: PMC11145584 DOI: 10.1021/acsami.4c02613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
The different electrolyte conditions, e.g., pH value, for driving efficient HER and OER are one of the major issues hindering the aim for electrocatalytic water splitting in a high efficiency. In this regard, seeking durable and active HER electrocatalysts to align the alkaline conditions of the OER is a promising solution. However, the success in this strategy will depend on a fundamental understanding about the HER mechanism at the atomic scale. In this work, we have provided thorough understanding for the electrochemical HER mechanisms in KOH over Ni- and Co-based hollow pyrite microspheres by in operando X-ray spectroscopies and DFT calculations, including NiS2, CoS2, and Ni0.5Co0.5S2. We discovered that the Ni sites in hollow NiS2 microspheres were very stable and inert, while the Co sites in hollow CoS2 microspheres underwent reduction and generated Co metallic crystal domains under HER. The generation of Co metallic sites would further deactivate H2 evolution due to the large hydrogen desorption free energy (-1.73 eV). In contrast, the neighboring Ni and Co sites in hollow Ni0.5Co0.5S2 microspheres exhibited the electronic interaction to elevate the reactivity of Ni and facilitate the stability of Co without structure or surface degradation. The energy barrier in H2O adsorption/dissociation was only 0.73 eV, followed by 0.06 eV for hydrogen desorption over the Ni0.5Co0.5S2 surface, revealing Ni0.5Co0.5S2 as a HER electrocatalyst with higher durability and activity than NiS2 and CoS2 in the alkaline medium due to the synergy of neighboring Ni and Co sites. We believe that the findings in our work offer a guidance toward future catalyst design.
Collapse
Affiliation(s)
- Lian-Ming Lyu
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300093, Taiwan
| | - Han-Jung Li
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300093, Taiwan
| | - Ren-Shiang Tsai
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300093, Taiwan
| | - Ching-Feng Chen
- Department
of Materials and Mineral Resources Engineering, Institute of Materials
Science and Engineering, National Taipei
University of Technology, Taipei 106344, Taiwan
| | - Yu-Chung Chang
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300093, Taiwan
| | - Yu-Chun Chuang
- National
Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Cheng-Shiuan Li
- Green
Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 310401, Taiwan
| | - Jeng-Lung Chen
- National
Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Te-Wei Chiu
- Department
of Materials and Mineral Resources Engineering, Institute of Materials
Science and Engineering, National Taipei
University of Technology, Taipei 106344, Taiwan
| | - Chun-Hong Kuo
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300093, Taiwan
- Center
for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- National
Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| |
Collapse
|
5
|
Hu H, Zhang Z, Liu L, Che X, Wang J, Zhu Y, Attfield JP, Yang M. Efficient and durable seawater electrolysis with a V 2O 3-protected catalyst. SCIENCE ADVANCES 2024; 10:eadn7012. [PMID: 38758788 PMCID: PMC11100561 DOI: 10.1126/sciadv.adn7012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
The ocean, a vast hydrogen reservoir, holds potential for sustainable energy and water development. Developing high-performance electrocatalysts for hydrogen production under harsh seawater conditions is challenging. Here, we propose incorporating a protective V2O3 layer to modulate the microcatalytic environment and create in situ dual-active sites consisting of low-loaded Pt and Ni3N. This catalyst demonstrates an ultralow overpotential of 80 mV at 500 mA cm-2, a mass activity 30.86 times higher than Pt-C and maintains at least 500 hours in seawater. Moreover, the assembled anion exchange membrane water electrolyzers (AEMWE) demonstrate superior activity and durability even under demanding industrial conditions. In situ localized pH analysis elucidates the microcatalytic environmental regulation mechanism of the V2O3 layer. Its role as a Lewis acid layer enables the sequestration of excess OH- ions, mitigate Cl- corrosion, and alkaline earth salt precipitation. Our catalyst protection strategy by using V2O3 presents a promising and cost-effective approach for large-scale sustainable green hydrogen production.
Collapse
Affiliation(s)
- Huashuai Hu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhaorui Zhang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Lijia Liu
- Department of Chemistry, Western University, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Xiangli Che
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jiacheng Wang
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Institute of Electrochemistry, School of Materials Science and Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Ye Zhu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - J. Paul Attfield
- Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh, UK
| | - Minghui Yang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
6
|
Ma C, Liu Y, Wang J, Evrard Deric NT, Li Y, Fan X, Peng W. Facile synthesis of pyrite FeS 2 on carbon spheres for high-efficiency Fenton-like reaction. CHEMOSPHERE 2024; 355:141799. [PMID: 38554876 DOI: 10.1016/j.chemosphere.2024.141799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/23/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Designing iron-based catalysts for Fenton-like reactions with peroxymonosulfate (PMS) as oxidants have attracted growing attentions. Herein, pyrite FeS2 supported on carbon spheres (FeS2@C) is synthesized by a facile low-temperature method. The FeS2@C/PMS system can degrade carbamazepine (CBZ) effectively in a wide pH range. Sulfate radicals (SO4·-), hydroxyl radicals (·OH), superoxide radical (O2·-), and singlet oxygen (1O2) are the responsible reactive oxygen species (ROSs) for CBZ degradation. Moreover, in the simulated fixed-bed reactor, the FeS2@C/PMS system can maintain a high CBZ removal ratio of >95% for than 8 h, exhibiting its excellent stability. The outstanding performance of FeS2@C/PMS system is attributed to the presence of carbon spheres and lattice S2-, which together promote the Fe(III)/Fe(II) redox cycle. The FeS2@C is a promising catalyst due to its facile synthesis, low cost, high efficiency, and excellent stability to activate PMS for organics degradation.
Collapse
Affiliation(s)
- Chengbo Ma
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300050, China
| | - Yuexu Liu
- Peric Special Gases Co., Ltd., Handan, 057550, China
| | - Jun Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300050, China
| | | | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300050, China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300050, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300050, China.
| |
Collapse
|
7
|
Wang Q, Fei Z, Shen D, Cheng C, Dyson PJ. Ginkgo Leaf-Derived Carbon Supports for the Immobilization of Iron/Iron Phosphide Nanospheres for Electrocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309830. [PMID: 38174610 DOI: 10.1002/smll.202309830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Iron/iron phosphide nanospheres supported on ginkgo leaf-derived carbon (Fe&FeP@gl-C) are prepared using a post-phosphidation approach, with varying amounts of iron (Fe). The activity of the catalysts in the hydrogen evolution reaction (HER) outperforms iron/iron carbide nanospheres supported on ginkgo leaf-derived carbon (Fe&FexC@gl-C), due to enhanced work function, electron transfer, and Volmer processes. The d-band centers of Fe&FeP@gl-C-15 move away from the Fermi level, lowering the H2 desorption energy and accelerating the Heyrovsky reaction. Density functional theory (DFT) calculations reveal that the hydrogen-binding free energy |ΔGH*| value is close to zero for the Fe&FeP@gl-C-15 catalyst, showing a good balance between Volmer and Heyrovsky processes. The Fe&FeP@gl-C-15 catalyst shows excellent hydrogen evolution performance in 0.5 m H2SO4, driving a current density of 10 mA cm-2 at an overpotential of 92 mV. Notably, the Fe&FeP@gl-C-15 catalyst outperforms a 20 wt% Pt/C catalyst, with a smaller overpotential required to drive a higher current density above 375 mA cm-2.
Collapse
Affiliation(s)
- Qichang Wang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, P. R. China
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Zhaofu Fei
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Dekui Shen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, P. R. China
| | - Chongbo Cheng
- Engineering Laboratory of Energy System Process Conversion and Emission Reduction Technology of Jiangsu Province, School of Energy & Mechanical Engineering, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Paul J Dyson
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| |
Collapse
|
8
|
Liang S, Dong C, Zhou C, Wang R, Huang F. Ion-Sieve-Confined Synthesis of Size-Tunable Ru for Electrochemical Hydrogen Evolution. NANO LETTERS 2024; 24:757-763. [PMID: 38166149 DOI: 10.1021/acs.nanolett.3c04419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The controllable and low-cost synthesis of nanometal particles is highly desired in scientific and industrial research. Herein, size-tunable Ru nanoparticles were synthesized by using a novel ion-sieve-confined reduction method. The H2TiO3 ion-sieve was used to adsorb Ru3+ into the hydroxyl-enriched porous [TiO3]2- layers. The confined environment of the interlayer space facilitates Ru-Ru collision and bonding during annealing, achieving a precise reduction from Ru3+ to Ru0 without additional reductants. Owing to the confinement effect, Ru0 nanoparticles are uniformly embedded in the pores on the surface of the postannealed TiO2 matrix (Ru@TiO2). Ru@TiO2 exhibited a lower overpotential than Pt/C (57 vs 87 mV at 10 mA cm-2) for the HER in 0.1 M KOH solution. The confinement-induced reduction of metal ions was also preliminarily proved in ion-exchanged zeolites, which provides facile and abundant approaches for the size-controllable synthesis of nanometal catalysts with high catalytic activity.
Collapse
Affiliation(s)
- Song Liang
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chenlong Dong
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Ce Zhou
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Ruiqi Wang
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
| | - Fuqiang Huang
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
9
|
Ye J, Niu S, Zhang L, Wang G, Zhu J. Nitrogen-doped Fe 7S 8 as highly efficient electrocatalysts for the hydrogen evolution reaction. Chem Commun (Camb) 2023; 59:14013-14016. [PMID: 37942830 DOI: 10.1039/d3cc03376g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The high unoccupied d band energy of FeS2 basically results in weak orbital coupling with water molecules, consequently leading to sluggish water dissociation kinetics. Herein, we demonstrate that the N-induced doping effect and phase transition engineering (FeS2 to N-Fe7S8) can downshift the unoccupied d orbitals and strengthen the interfacial orbital coupling to boost the water dissociation kinetics. The fabricated N-Fe7S8/carbon cloth (CC) displays superb hydrogen evolution reaction performance with a low overpotential (89 mV at 10 mA cm-2) and small Tafel slope (105 mV dec-1) under alkaline conditions. It is revealed that the electronic structure of Fe is modulated by N doping and phase transition. The downshifted d band energy can strengthen water adsorption and reduce the energy barrier of water dissociation. Our work provides a new strategy to modify metal sulfide electrocatalysts for electrochemical energy conversion.
Collapse
Affiliation(s)
- Jian Ye
- National Synchrotron Radiation Laboratory, University of Science & Technology of China, Hefei 230029, P. R. China.
- School of Engineering, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Shuwen Niu
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Leijie Zhang
- National Synchrotron Radiation Laboratory, University of Science & Technology of China, Hefei 230029, P. R. China.
- Specreation Instruments Co., Ltd, Hefei, 230026, P. R. China
| | - Gongming Wang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science & Technology of China, Hefei 230029, P. R. China.
| |
Collapse
|
10
|
Zou Y, Jin M, Zhu D, Tang YJ. Surface Adsorption of Amorphous Phosphate on RuNi-Doped Molybdate for the Hydrogen Evolution Reaction. Inorg Chem 2023; 62:15757-15765. [PMID: 37709672 DOI: 10.1021/acs.inorgchem.3c02683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Developing highly active and cost-effective electrocatalysts is critical for enhancing the intrinsic performance of electrocatalytic water splitting. Oxoanion-based compounds, such as phosphates and molybdates, have emerged as promising electrocatalysts owing to their advantageous properties of nontoxicity, low price, and strong water adsorption ability. However, their relatively inferior activity has impeded extensive investigation into electrochemical applications. Herein, an amorphous phosphate-adsorbed and RuNi-doped molybdate (RuNiMo-P) composite is synthesized on nickel foam (NF) support by using a simple two-step method. Significantly, an acidic solution of phosphomolybdic acid (PMo12), containing a low concentration of Ru, can etch the NF, contributing to the in situ growth of the RuNi-doped molybdate precursor. Subsequent phosphating ensures the surface formation of the amorphous phosphate layer due to abundant oxygen in the precursor. The strong structural interaction between RuNi-doped molybdate and amorphous phosphate in RuNiMo-P prompts an enhanced hydrogen evolution reaction (HER) performance, delivering an overpotential of 38 mV at a current density of -10 mA cm-2, a Tafel slope of 53 mV dec-1, and good stability in an alkaline medium. Characterizations after HER reveal that RuNi doping, partial dissolution of phosphate and molybdate species, and newly formed NiOOH nanosheets can expose active sites, facilitate charge transfer, and modify electronic structures, thereby improving the HER performance effectively.
Collapse
Affiliation(s)
- Yan Zou
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, P.R. China
| | - Man Jin
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, P.R. China
| | - Dongdong Zhu
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, P.R. China
| | - Yu-Jia Tang
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, P.R. China
| |
Collapse
|
11
|
Perović K, Morović S, Jukić A, Košutić K. Alternative to Conventional Solutions in the Development of Membranes and Hydrogen Evolution Electrocatalysts for Application in Proton Exchange Membrane Water Electrolysis: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6319. [PMID: 37763596 PMCID: PMC10534479 DOI: 10.3390/ma16186319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Proton exchange membrane water electrolysis (PEMWE) represents promising technology for the generation of high-purity hydrogen using electricity generated from renewable energy sources (solar and wind). Currently, benchmark catalysts for hydrogen evolution reactions in PEMWE are highly dispersed carbon-supported Pt-based materials. In order for this technology to be used on a large scale and be market competitive, it is highly desirable to better understand its performance and reduce the production costs associated with the use of expensive noble metal cathodes. The development of non-noble metal cathodes poses a major challenge for scientists, as their electrocatalytic activity still does not exceed the performance of the benchmark carbon-supported Pt. Therefore, many published works deal with the use of platinum group materials, but in reduced quantities (below 0.5 mg cm-2). These Pd-, Ru-, and Rh-based electrodes are highly efficient in hydrogen production and have the potential for large-scale application. Nevertheless, great progress is needed in the field of water electrolysis to improve the activity and stability of the developed catalysts, especially in the context of industrial applications. Therefore, the aim of this review is to present all the process features related to the hydrogen evolution mechanism in water electrolysis, with a focus on PEMWE, and to provide an outlook on recently developed novel electrocatalysts that could be used as cathode materials in PEMWE in the future. Non-noble metal options consisting of transition metal sulfides, phosphides, and carbides, as well as alternatives with reduced noble metals content, will be presented in detail. In addition, the paper provides a brief overview of the application of PEMWE systems at the European level and related initiatives that promote green hydrogen production.
Collapse
Affiliation(s)
- Klara Perović
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia; (S.M.); (A.J.)
| | | | | | - Krešimir Košutić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia; (S.M.); (A.J.)
| |
Collapse
|
12
|
Sowmya S, Vijaikanth V. g-C 3N 4/Chlorocobaloxime Nanocomposites as Multifunctional Electrocatalysts for Water Splitting and Energy Storage. ACS OMEGA 2023; 8:32940-32954. [PMID: 37720742 PMCID: PMC10500676 DOI: 10.1021/acsomega.3c04347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023]
Abstract
Due to environmental contamination and the depletion of energy supplies, it is very important to develop low-cost, high-performance, multifunctional electrocatalysts for energy conversion and storage systems. Herein, we report the development of cost-effective modified electrodes containing g-C3N4/chlorocobaloxime composites (C1-C4) and their electrocatalytic behavior toward the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), followed by their energy-storage applications. A series of chlorocobaloximes {ClCo(dpgH)2B} with diphenylglyoxime (dpgH) and neutral bases (B) containing a carboxylic acid moiety (isonicotinic acid, pyridine-3,5-dicarboxylic acid, indole-2-carboxylic acid, and p-aminobenzoic acid) have been synthesized and characterized by spectroscopic techniques. The nanocomposites of g-C3N4/chlorocobaloximes are prepared and characterized by Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy (UV-DRS), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), particle size distribution analysis (PSA), Brunauer-Emmett-Teller (BET), and energy dispersive X-ray analysis (EDAX) techniques. The composite coatings exhibit enhanced HER performance at lower overpotential and with a lower Tafel slope. When the water-splitting reactions are studied using 0.5 M H2SO4 and 0.5 M KOH as electrolytic solutions, the composite g-C3N4/C2 containing pyridine-3,5-dicarboxylic acid as a neutral base shows excellent HER activity with a lower overpotential of 173 mV at -10 mA cm-2 and OER activity with a lower overpotential of 303 mV. The HER reaction takes place through the Volmer-Heyrovský mechanism, where the desorption step is the rate-determining step. Among the synthesized nanocomposites, the nanocomposite g-C3N4/C2 shows higher efficiency toward both HER and OER reactions, with a lower Tafel slope of 55 mV dec-1 for HER and 114 mV dec-1 for OER than the other nanocomposites. The overall water-splitting studies of the composite g-C3N4/C2 in 0.5 M KOH indicate that the evolution of hydrogen and oxygen occurs constantly up to 120 h. The supercapacitance applications studied using cyclic voltammetry and charge-discharge studies indicate that the nanocomposite g-C3N4/C1 shows a good specific capacitance of 236 F g-1 at 0.5 A g-1 compared to others. The increased electrochemical performance of the synthesized nanocomposites is due to the incorporation of electron-withdrawing carboxylic-acid-functionalized neutral bases present in cobaloximes, which increases electron mobility. The incorporation of a cobaloxime complex into a g-C3N4 nanosheet enhances the electrocatalytic behavior of the nanosheet, and its performance can further be fine-tuned by systematic variation in the structure of cobaloxime by changing the halide ion, dioxime, the neutral base ligand, or the substituent.
Collapse
Affiliation(s)
- Subramanian Sowmya
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamilnadu, India
| | - Vijendran Vijaikanth
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamilnadu, India
| |
Collapse
|
13
|
Pei Z, Qin T, Tian R, Ou Y, Guo X. Construction of an Amethyst-like MoS 2@Ni 9S 8/Co 3S 4 Rod Electrocatalyst for Overall Water Splitting. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2302. [PMID: 37630887 PMCID: PMC10459789 DOI: 10.3390/nano13162302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
Transition metal sulphide electrocatalytic materials possess the bright overall water-splitting performance of practical electrocatalytic technologies. In this study, an amethyst-like MoS2@Ni9S8/Co3S4 rod electrocatalyst was constructed via a one-step hydrothermal method with in-situ-grown ZIF-67 nanoparticles on nickel foam (NF) as a precursor. The rational design and synthesis of MoS2@Ni9S8/Co3S4 endow the catalyst with neat nanorods morphology and high conductivity. The MoS2@Ni9S8/Co3S4/NF with the amethyst-like rod structure exposes abundant active sites and displays fast electron-transfer capability. The resultant MoS2@Ni9S8/Co3S4/NF exhibits outstanding hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalytic activities, with low overpotentials of 81.24 mV (HER) at 10 mA cm-2 and 159.67 mV (OER) at 50 mA cm-2 in 1.0 M KOH solution. The full-cell voltage of overall water splitting only achieves 1.45 V at 10 mA cm-2. The successful preparation of the amethyst-like MoS2@Ni9S8/Co3S4 rod electrocatalyst provides a reliable reference for obtaining efficient electrocatalysts for overall water splitting.
Collapse
Affiliation(s)
- Zhen Pei
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China; (Z.P.); (T.Q.); (R.T.); (Y.O.)
| | - Tengteng Qin
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China; (Z.P.); (T.Q.); (R.T.); (Y.O.)
| | - Rui Tian
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China; (Z.P.); (T.Q.); (R.T.); (Y.O.)
| | - Yangxin Ou
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China; (Z.P.); (T.Q.); (R.T.); (Y.O.)
| | - Xingzhong Guo
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China; (Z.P.); (T.Q.); (R.T.); (Y.O.)
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| |
Collapse
|
14
|
Ahmed M, Kour G, Sun Z, Du A, Mao X. Activating Hydrogen Evolution Reaction on Carbon Nanotube via Aryl Functionalisation: The Role of Hybrid sp 2-sp 3 Interface and Curvature. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2122. [PMID: 37513133 PMCID: PMC10385873 DOI: 10.3390/nano13142122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
The hydrogen evolution reaction (HER) is a remarkable mechanism which yields the production of hydrogen through a process of water electrolysis. However, the evolution of hydrogen requires highly conductive and stable catalysts, such as the noble metal platinum (Pt). However, the problem lies in the limitations that this catalyst and others of its kind present. Due to limited availability, as well as the costs involved in acquiring such catalysts, researchers are challenged to manufacture catalysts that do not present these limitations. Carbon nanotubes (CNTs), which are nanomaterials, are known to have a wide range of applications. However, specifically, the pristine carbon nanotube is not suitable for the HER due to the binding free energy of its positive H-atoms. Hence, for the first time, we demonstrated the use of the proposed aryl-functionalised catalysts, i.e., Aryl-L@SWCNT (L = Br, CCH, Cl, CO2CH3, F, I, NO2, or t-butyl), along with the effect of the sp2-sp3 hybridised interface through the density functional theory (DFT). We performed calculations of single-walled carbon nanotubes with multiple aryl functional groups. By employing the DFT calculations, we proved that the curvature of the nanotubes along with the proposed aryl-functionalised catalysts had a noteworthy effect on the performance of the HER. Our study opens the door to investigating a promising group of catalysts for sustainable hydrogen production.
Collapse
Affiliation(s)
- Muhammad Ahmed
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
- QUT Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
| | - Gurpreet Kour
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
- QUT Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
| | - Ziqi Sun
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
- QUT Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
| | - Aijun Du
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
- QUT Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
| | - Xin Mao
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
- QUT Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
| |
Collapse
|
15
|
Zhang XL, Yu PC, Su XZ, Hu SJ, Shi L, Wang YH, Yang PP, Gao FY, Wu ZZ, Chi LP, Zheng YR, Gao MR. Efficient acidic hydrogen evolution in proton exchange membrane electrolyzers over a sulfur-doped marcasite-type electrocatalyst. SCIENCE ADVANCES 2023; 9:eadh2885. [PMID: 37406120 DOI: 10.1126/sciadv.adh2885] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/02/2023] [Indexed: 07/07/2023]
Abstract
Large-scale deployment of proton exchange membrane (PEM) water electrolyzers has to overcome a cost barrier resulting from the exclusive adoption of platinum group metal (PGM) catalysts. Ideally, carbon-supported platinum used at cathode should be replaced with PGM-free catalysts, but they often undergo insufficient activity and stability subjecting to corrosive acidic conditions. Inspired by marcasite existed under acidic environments in nature, we report a sulfur doping-driven structural transformation from pyrite-type cobalt diselenide to pure marcasite counterpart. The resultant catalyst drives hydrogen evolution reaction with low overpotential of 67 millivolts at 10 milliamperes per square centimeter and exhibits no degradation after 1000 hours of testing in acid. Moreover, a PEM electrolyzer with this catalyst as cathode runs stably over 410 hours at 1 ampere per square centimeter and 60°C. The marked properties arise from sulfur doping that not only triggers formation of acid-resistant marcasite structure but also tailors electronic states (e.g., work function) for improved hydrogen diffusion and electrocatalysis.
Collapse
Affiliation(s)
- Xiao-Long Zhang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Peng-Cheng Yu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-Zhi Su
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, CAS, Shanghai 201210, China
| | - Shao-Jin Hu
- Division of Theoretical and Computational Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Shi
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Ye-Hua Wang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Peng-Peng Yang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Fei-Yue Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Zhi-Zheng Wu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Li-Ping Chi
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Ya-Rong Zheng
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology, Hefei, Anhui 230009, China
| | - Min-Rui Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
16
|
Jawhari AH, Hasan N. Nanocomposite Electrocatalysts for Hydrogen Evolution Reactions (HERs) for Sustainable and Efficient Hydrogen Energy-Future Prospects. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3760. [PMID: 37241385 PMCID: PMC10220912 DOI: 10.3390/ma16103760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Hydrogen is considered a good clean and renewable energy substitute for fossil fuels. The major obstacle facing hydrogen energy is its efficacy in meeting its commercial-scale demand. One of the most promising pathways for efficient hydrogen production is through water-splitting electrolysis. This requires the development of active, stable, and low-cost catalysts or electrocatalysts to achieve optimized electrocatalytic hydrogen production from water splitting. The objective of this review is to survey the activity, stability, and efficiency of various electrocatalysts involved in water splitting. The status quo of noble-metal- and non-noble-metal-based nano-electrocatalysts has been specifically discussed. Various composites and nanocomposite electrocatalysts that have significantly impacted electrocatalytic HERs have been discussed. New strategies and insights in exploring nanocomposite-based electrocatalysts and utilizing other new age nanomaterial options that will profoundly enhance the electrocatalytic activity and stability of HERs have been highlighted. Recommendations on future directions and deliberations for extrapolating information have been projected.
Collapse
Affiliation(s)
| | - Nazim Hasan
- Department of Chemistry, Faculty of Science, Jazan University, Jazan 45142, Saudi Arabia;
| |
Collapse
|
17
|
Zhang Z, Pang C, Xu W, Liang Y, Jiang H, Li Z, Wu S, Zhu S, Wang H, Cui Z. Synthesis and water splitting performance of FeCoNbS bifunctional electrocatalyst. J Colloid Interface Sci 2023; 638:893-900. [PMID: 36690570 DOI: 10.1016/j.jcis.2023.01.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/27/2022] [Accepted: 01/14/2023] [Indexed: 01/20/2023]
Abstract
Transition metal (TM) sulfides are promising catalysts for water splitting in alkaline media due to their high intrinsic activities and similar TM-S electronic structure with hydrogenase. In this work, the nanoporous FeCoNbS electrocatalyst with nanosheet morphology is synthesized through dealloying AlFeCoNb alloy followed by the steam sulphurization. The introduction of S element improves the electronic structure, further increases the active sites, regulates the mass transfer and enhances the intrinsic activity. The Nb introduction improves the electron transfer ability of the catalyst. The synergistic effect of Fe, Co and Nb improves the intrinsic activity of the active site. The FeCoNbS catalyst exhibits good catalytic performance for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline solution. The overpotentials at 10 mA cm-2 of HER and OER are 83 and 241 mV, respectively. The Tafel slopes of HER and OER are 101.2 and 35.5 mV dec-1, respectively. The FeCoNbS can serve as overall water splitting electrode with the decomposition voltage of 1.61 V at 10 mA cm-2.
Collapse
Affiliation(s)
- Zhao Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Chongxing Pang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Wence Xu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China; Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300350, China
| | - Yanqin Liang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China; Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300350, China
| | - Hui Jiang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China; Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300350, China
| | - Zhaoyang Li
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China; Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300350, China
| | - Shuilin Wu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China; Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300350, China
| | - Shengli Zhu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China; Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300350, China.
| | - Hao Wang
- Institute for Material Research, Tohoku University, Sendai 9808577, Japan.
| | - Zhenduo Cui
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
18
|
Chung WT, Mekhemer IM, Mohamed MG, Elewa AM, EL-Mahdy AF, Chou HH, Kuo SW, Wu KCW. Recent advances in metal/covalent organic frameworks based materials: Their synthesis, structure design and potential applications for hydrogen production. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
19
|
Wu R, Xu J, Zhao CL, Su XZ, Zhang XL, Zheng YR, Yang FY, Zheng XS, Zhu JF, Luo J, Li WX, Gao MR, Yu SH. Dopant triggered atomic configuration activates water splitting to hydrogen. Nat Commun 2023; 14:2306. [PMID: 37085504 PMCID: PMC10121564 DOI: 10.1038/s41467-023-37641-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/22/2023] [Indexed: 04/23/2023] Open
Abstract
Finding highly efficient hydrogen evolution reaction (HER) catalysts is pertinent to the ultimate goal of transformation into a net-zero carbon emission society. The design principles for such HER catalysts lie in the well-known structure-property relationship, which guides the synthesis procedure that creates catalyst with target properties such as catalytic activity. Here we report a general strategy to synthesize 10 kinds of single-atom-doped CoSe2-DETA (DETA = diethylenetriamine) nanobelts. By systematically analyzing these products, we demonstrate a volcano-shape correlation between HER activity and Co atomic configuration (ratio of Co-N bonds to Co-Se bonds). Specifically, Pb-CoSe2-DETA catalyst reaches current density of 10 mA cm-2 at 74 mV in acidic electrolyte (0.5 M H2SO4, pH ~0.35). This striking catalytic performance can be attributed to its optimized Co atomic configuration induced by single-atom doping.
Collapse
Affiliation(s)
- Rui Wu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Jie Xu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123, Suzhou, P. R. China
| | - Chuan-Lin Zhao
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Xiao-Zhi Su
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, CAS, 201210, Shanghai, P. R. China
| | - Xiao-Long Zhang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Ya-Rong Zheng
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Feng-Yi Yang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Xu-Sheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, P. R. China
| | - Jun-Fa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, P. R. China
| | - Jun Luo
- School of Materials Science and Engineering, Tianjin University of Technology, 300384, Tianjin, P. R. China
| | - Wei-Xue Li
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Min-Rui Gao
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China.
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China.
| |
Collapse
|
20
|
Zhang H, Wei T, Qiu Y, Zhang S, Liu Q, Hu G, Luo J, Liu X. Recent Progress in Metal Phosphorous Chalcogenides: Potential High-Performance Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207249. [PMID: 36605005 DOI: 10.1002/smll.202207249] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Since the discovery of graphene, research on the family of 2D materials has been a thriving field. Metal phosphorous chalcogenides (MPX3 ) have attracted renewed attention due to their distinctive physical and chemical properties. The advantages of MPX3 , such as tunable layered structures, unique electronic properties, thermodynamically appropriate band alignments and abundant catalytic active sites on the surface, make MPX3 material great potential in electrocatalysis. In this review, the applications of MPX3 electrocatalysts in recent years, including hydrogen evolution reaction, oxygen evolution reaction, and oxygen reduction reaction, are summarized. Structural regulation, chemical doping and multi-material composite that are often effective and practical research methods to further optimize the catalytic properties of these materials, are introduced. Finally, the challenges and opportunities for electrocatalytic applications of MPX3 materials are discussed. This report aims to advance future efforts to develop MPX3 and related materials for electrocatalysis.
Collapse
Affiliation(s)
- Hao Zhang
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Tianran Wei
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Guangxi University, Nanning, 530004, China
| | - Yuan Qiu
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Guangzhi Hu
- School of Chemical Science and Technology, School of Energy, Yunnan University, Kunming, 650091, China
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen, 518110, China
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Guangxi University, Nanning, 530004, China
| |
Collapse
|
21
|
Tian Z, Wang W, Dong C, Deng X, Wang GH. A General and Scalable Approach to Sulfur-Doped Mono-/Bi-/Trimetallic Nanoparticles Confined in Mesoporous Carbon. ACS NANO 2023; 17:3889-3900. [PMID: 36790029 DOI: 10.1021/acsnano.2c12168] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Metal nanoparticles confined in porous carbon materials have been widely used in various heterogeneous catalytic processes due to their enhanced activity and stability. However, fabrication of such catalysts in a facile and scalable way remains challenging. Herein, we report a general and scalable thiol-assisted strategy to synthesize sulfur-doped mono-/bi-/trimetallic nanoparticles confined in mesoporous carbon (S-M@MC, M = Pt, Pd, Rh, Co, Zn, etc.), involving only two synthetic steps, i.e., a hydrothermal process and pyrolysis. The strategy is based on coordination chemistry and hydro-phobic interaction that the metal precursors coordinated with the hydrophobic thiol ligands are located at the hydrophobic core of micelles, in situ confined in the hydrothermally prepared mesostructured polymer, and then converted into sulfur-doped metal nanoparticles confined in MC after pyrolysis. It is demonstrated that the S-PtCo@MC exhibits enhanced catalytic activity and improved durability toward acidic hydrogen evolution reaction due to the confinement effect and S-doping.
Collapse
Affiliation(s)
- Zhengbin Tian
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Wenquan Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Dong
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Xiaohui Deng
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Guang-Hui Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Su H, Jiang J, Song S, An B, Li N, Gao Y, Ge L. Recent progress on design and applications of transition metal chalcogenide-associated electrocatalysts for the overall water splitting. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
23
|
Yuan W, Xiao K, Wu X, Wang J, Ma T, Song H, Huang C. Carbon nanotube sponges filled sandwich panels with superior high-power continuous wave laser resistance. Sci Rep 2022; 12:21435. [PMID: 36509854 PMCID: PMC9744888 DOI: 10.1038/s41598-022-25829-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Effect of highly-porous and lightweight carbon nanotube sponges on the high-power continuous wave laser ablation resistance of the sandwich panel was investigated experimentally. As a comparison, thermal responses of monolithic plate, carbon nanotube film filled sandwich panel, unfilled sandwich panel and carbon nanotube sponge filled sandwich panel subjected to continuous wave laser irradiation were analyzed. Experimental results showed that the laser resistance of the carbon nanotube filled sandwich panel is obviously higher than the unfilled structure. The added failure time of the sandwich panel by filling the cores with the carbon nanotube sponge of unit mass was about 18 times and 33 times longer than that by filling with the conventional ablative and insulated material. It could be understood by the high thermal diffusion coefficient and latent heat of sublimation of the carbon nanotube sponge. During ablation by the continuous wave, the carbon nanotube sponge not only fast consumed the absorbed laser energy through phase change of a large-area material due to its high latent heat of sublimation, but also quickly dispersed the heat energy introduced by the continuous wave laser due to its high thermal diffusion coefficient, leading to the extraordinary laser ablation resistance.
Collapse
Affiliation(s)
- Wu Yuan
- grid.9227.e0000000119573309Key Laboratory for Mechanics in Fluid-Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190 China ,grid.410726.60000 0004 1797 8419School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Kailu Xiao
- grid.9227.e0000000119573309Key Laboratory for Mechanics in Fluid-Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190 China ,grid.410726.60000 0004 1797 8419School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xianqian Wu
- grid.9227.e0000000119573309Key Laboratory for Mechanics in Fluid-Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190 China ,grid.410726.60000 0004 1797 8419School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.20861.3d0000000107068890Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125 USA
| | - Jiangtao Wang
- grid.9227.e0000000119573309Key Laboratory for Mechanics in Fluid-Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190 China ,grid.410726.60000 0004 1797 8419School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Te Ma
- grid.9227.e0000000119573309Key Laboratory for Mechanics in Fluid-Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190 China ,grid.410726.60000 0004 1797 8419School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Hongwei Song
- grid.9227.e0000000119573309Key Laboratory for Mechanics in Fluid-Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190 China ,grid.410726.60000 0004 1797 8419School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Chenguang Huang
- grid.9227.e0000000119573309Key Laboratory for Mechanics in Fluid-Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190 China ,grid.410726.60000 0004 1797 8419School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
24
|
Sahoo DP, Das KK, Mansingh S, Sultana S, Parida K. Recent progress in first row transition metal Layered double hydroxide (LDH) based electrocatalysts towards water splitting: A review with insights on synthesis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214666] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Shin JC, Yang HK, Lee JS, Lee JH, Kang MG, Kwon E. Fabrication and Development of Binder-Free Mn-Fe-S Mixed Metal Sulfide Loaded Ni-Foam as Electrode for the Asymmetric Coin Cell Supercapacitor Device. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3193. [PMID: 36144979 PMCID: PMC9500630 DOI: 10.3390/nano12183193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Currently, the fast growth and advancement in technologies demands promising supercapacitors, which urgently require a distinctive electrode material with unique structures and excellent electrochemical properties. Herein, binder-free manganese iron sulfide (Mn-Fe-S) nanostructures were deposited directly onto Ni-foam through a facile one-step electrodeposition route in potentiodynamic mode. The deposition cycles were varied to investigate the effect of surface morphologies on Mn-Fe-S. The optimized deposition cycles result in a fragmented porous nanofibrous structure, which was confirmed using Field Emission Scanning Electron Microscopy (FE-SEM). X-ray photoelectron spectroscopy (XPS) confirmed the presence of Mn, Fe, and S elements. The energy dispersive X-ray spectroscopy and elemental mapping revealed a good distribution of Mn, Fe, and S elements across the Ni-foam. The electrochemical performance confirms a high areal capacitance of 795.7 mF cm-2 with a 24 μWh cm-2 energy density calculated at a 2 mA cm-2 current density for porous fragmented nanofiber Mn-Fe-S electrodes. The enhancement in capacitance is due to diffusive-controlled behavior dominating the capacitator, as shown by the charge-storage kinetics. Moreover, the assembled asymmetric coin cell device exhibited superior electrochemical performance with an acceptable cyclic performance of 78.7% for up to 95,000 consecutive cycles.
Collapse
Affiliation(s)
- Jae Cheol Shin
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Korea
| | | | | | | | | | | |
Collapse
|
26
|
Han Q, Luo Y, Liu G, Wang Y, Li J, Chen Z. Comparative study on the distinct activity for NiFe-based phosphide and sulfide pre-electrocatalysts towards hydrogen evolution reaction. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Samal R, Debbarma C, Rout CS. Transition metal tellurides/2D Ti3C2Tx MXene: Investigation towards active alkaline hydrogen evolution reaction. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Zhou B, Gao R, Zou JJ, Yang H. Surface Design Strategy of Catalysts for Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202336. [PMID: 35665595 DOI: 10.1002/smll.202202336] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen, a new energy carrier that can replace traditional fossil fuels, is seen as one of the most promising clean energy sources. The use of renewable electricity to drive hydrogen production has very broad prospects for addressing energy and environmental problems. Therefore, many researchers favor electrolytic water due to its green and low-cost advantages. The electrolytic water reaction comprises the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). Understanding the OER and HER mechanisms in acidic and alkaline processes contributes to further studying the design of surface regulation of electrolytic water catalysts. The OER and HER catalysts are mainly reviewed for defects, doping, alloying, surface reconstruction, crystal surface structure, and heterostructures. Besides, recent catalysts for overall water splitting are also reviewed. Finally, this review paves the way to the rational design and synthesis of new materials for highly efficient electrocatalysis.
Collapse
Affiliation(s)
- Binghui Zhou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Ruijie Gao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 200237, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 200237, China
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Hunan Key Lab of Mineral Materials and Application, Central South University, Changsha, 410083, China
- State Key Lab of Powder Metallurgy, Central South University, Changsha, 410083, China
| |
Collapse
|
29
|
Zhang X, Hua S, Lai L, Wang Z, Liao T, He L, Tang H, Wan X. Strategies to improve electrocatalytic performance of MoS 2-based catalysts for hydrogen evolution reactions. RSC Adv 2022; 12:17959-17983. [PMID: 35765324 PMCID: PMC9204562 DOI: 10.1039/d2ra03066g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
Electrocatalytic hydrogen evolution reactions (HERs) are a key process for hydrogen production for clean energy applications. HERs have unique advantages in terms of energy efficiency and product separation compared to other methods. Molybdenum disulfide (MoS2) has attracted extensive attention as a potential HER catalyst because of its high electrocatalytic activity. However, the HER performance of MoS2 needs to be improved to make it competitive with conventional Pt-based catalysts. Herein, we summarize three typical strategies for promoting the HER performance, i.e., defect engineering, heterostructure formation, and heteroatom doping. We also summarize the computational density functional theory (DFT) methods used to obtain insight that can guide the construction of MoS2-based materials. Additionally, the challenges and prospects of MoS2-based catalysts for the HER have also been discussed.
Collapse
Affiliation(s)
- Xinglong Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| | - Shiying Hua
- Wuhan Institute of Marine Electric Propulsion Wuhan 430064 P. R. China
| | - Long Lai
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| | - Zihao Wang
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| | - Tiaohao Liao
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| | - Liang He
- School of Mechanical Engineering, Sichuan University Chengdu 610065 P. R. China
| | - Hui Tang
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| | - Xinming Wan
- China Automotive Engineering Research Institute Co., Ltd. Chongqing 401122 P. R. China
| |
Collapse
|
30
|
Ologunagba D, Kattel S. Pt- and Pd-modified transition metal nitride catalysts for the hydrogen evolution reaction. Phys Chem Chem Phys 2022; 24:12149-12157. [PMID: 35437533 DOI: 10.1039/d2cp00792d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hydrogen production via electrochemical splitting of water using renewable electricity represents a promising strategy. Currently, platinum group metals (PGMs) are the best performing hydrogen evolution reaction (HER) catalysts. Thus, the design of non-PGM catalysts or low-loading PGM catalysts is essential for the commercial development of hydrogen generation technologies via electrochemical splitting of water. Here, we employed density functional theory (DFT) calculations to explore Pt and Pd modified transition metal nitrides (TMNs) as low-cost HER catalysts. Our calculations show that Pt/Pd binds strongly with TMs on TMN(111) surfaces, leading to the formation of stable Pt and Pd-monolayer (ML)-TMN(111) structures. Furthermore, our calculated hydrogen binding energy (HBE) demonstrates that Pt/MnN, Pt/TiN, Pt/FeN, Pt/VN, Pt/HfN, Pd/FeN, Pd/TaN, Pd/NbN, Pd/TiN, Pd/HfN, Pd/MnN, Pd/ScN, Pd/VN, and Pd/ZrN are promising candidates for the HER with a low value of limiting potential (UL) similar to that calculated on Pt(111).
Collapse
Affiliation(s)
| | - Shyam Kattel
- Department of Physics, Florida A&M University Tallahassee, FL 32307, USA.
| |
Collapse
|
31
|
Yang Y, Liu J, Xiong B. Vacancy-mediated transition metals as efficient electrocatalysts for water splitting. NANOSCALE 2022; 14:7181-7188. [PMID: 35504047 DOI: 10.1039/d2nr01259f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Water splitting using renewable electricity provides a promising way for large-scale hydrogen production due to its zero-carbon emission properties. However, the development of highly efficient, low-cost and durable electrocatalysts remains an ongoing challenge in industrial applications. Herein, a strategy integrating vacancy engineering and metal doping was proposed to design and screen M@CuS catalysts with excellent catalytic activity via density functional theory (DFT) calculations. TM single atoms anchored by the vacancy of the CuS surface show high stability, and serve as the active centers for water splitting. Ti@CuS and Co@CuS exhibit exceptional performance towards the hydrogen evolution reaction (HER). Ti@CuS and Co@CuS can achieve hydrogen adsorption free energies (ΔGH*) of 0.01 eV and -0.03 eV, respectively. The HER process of Ti@CuS is controlled by the Heyrovsky mechanism. Co@CuS also shows superior catalytic activity towards the oxygen evolution reaction (OER), and presents a relatively lower OER overpotential of 0.41 V. Co@CuS serves as a promising candidate of bifunctional HER/OER electrocatalysts. This work not only provides highly efficient electrocatalysts for water splitting, but also inspires a novel concept to guide the extending design of catalysts in other catalysis fields.
Collapse
Affiliation(s)
- Yingju Yang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jing Liu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Bo Xiong
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
32
|
Jiang S, Xue D, Zhang J. Optimizing Atomically Dispersed Metal Electrocatalysts for Hydrogen Evolution: Chemical Coordination Effect and Electronic Metal Support Interaction. Chem Asian J 2022; 17:e202200319. [DOI: 10.1002/asia.202200319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Su Jiang
- Zhengzhou University college of material science and engineering CHINA
| | - Dongping Xue
- Zhengzhou University college of material science and engineering CHINA
| | - Jianan Zhang
- Zhengzhou University College of Materials Science and Engineering 100 Kexue Road 450001 Zhengzhou CHINA
| |
Collapse
|
33
|
Li G, Gao R, Qiu Z, Liu W, Song Y. Highly dispersed ruthenium nanoparticles on nitrogen doped carbon toward efficient hydrogen evolution in both alkaline and acidic electrolytes. RSC Adv 2022; 12:13932-13937. [PMID: 35558850 PMCID: PMC9088967 DOI: 10.1039/d2ra02671f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 11/21/2022] Open
Abstract
Efficient and inexpensive electrocatalysts toward the hydrogen evolution reaction (HER) play an important role in electrochemical water splitting. Herein, we report the synthesis of highly dispersed ruthenium nanoparticles (2.2 ± 0.4 nm) on nitrogen doped carbon (Ru/N-C) by chemical reduction of RuCl3 on carbon in the presence of polyvinylpyrrolidone in combination with subsequent pyrolysis. Ru/N-C exhibits an excellent overpotential of 13.5 and 18.5 mV at 10 mA cm−2 in 1.0 M KOH and 0.5 M H2SO4 aqueous solution, respectively, much better than and comparable to those of commercial Pt/C (38.0 and 10.0 mV). The exceptional HER activity arises from high surface area of ultrafine Ru nanoparticles and appropriate Ru electronic state tuned by nitrogen dopant. Furthermore, Ru/N-C demonstrates excellent durability in both alkaline and acidic condition relative to commercial Pt/C. We speculate that the nitrogen dopant might have coordinated with Ru and tightly anchored Ru nanoparticles, preventing them from agglomerating. Ultrafine ruthenium nanoparticles on nitrogen doped carbon show exceptional activity toward the hydrogen evolution reaction in alkaline and acidic electrolytes.![]()
Collapse
Affiliation(s)
- Gen Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Rui Gao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Zhongyu Qiu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Wei Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Yujiang Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| |
Collapse
|
34
|
Li Y, Ma W, Zeng Y, Chen X, Wang J, Zhong Q. A monolith electrode featuring FeS2 embedded in porous carbon nanofibers for efficient hydrogen evolution. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Rahman MM, Ahmed J, Asiri AM. Ultra-sensitive, selective, and rapid carcinogenic 1,2-diaminobenzene chemical determination using sol–gel coating low-dimensional facile CuS modified-CNT nanocomposites by electrochemical approach. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107230] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Liu C, Tseng CY, Wang YC, Cheng IC, Chen JZ. Low-Pressure Plasma-Processed Ruthenium/Nickel Foam Electrocatalysts for Hydrogen Evolution Reaction. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2603. [PMID: 35407938 PMCID: PMC9000553 DOI: 10.3390/ma15072603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022]
Abstract
In this paper, low-pressure 95%Ar-5%H2, pure Ar, and 95%Ar-5%O2 plasmas were used for post-treatment of ruthenium (Ru) deposited on nickel foam (NF) (Ru/NF). Ru/NF was then tested as a catalyst for a hydrogen evolution reaction. Significant improvement in electrocatalytic activity with the lowest overpotential and Tafel slope was observed in an alkaline electrolyte (1 M KOH) with 95%Ar-5%O2 plasma processing on Ru/NF. Linear scanning electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV) also indicate the lowest interfacial impedance and largest electrical double layer capacitance. Experimental results with 0.1 M phosphate buffered saline (PBS) and 0.5 M H2SO4 electrolytes were also demonstrated and compared.
Collapse
Affiliation(s)
- Chen Liu
- Graduate Institute of Applied Mechanics, National Taiwan University, Taipei City 10617, Taiwan; (C.L.); (C.-Y.T.); (Y.-C.W.)
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei City 10617, Taiwan
| | - Chia-Yun Tseng
- Graduate Institute of Applied Mechanics, National Taiwan University, Taipei City 10617, Taiwan; (C.L.); (C.-Y.T.); (Y.-C.W.)
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei City 10617, Taiwan
| | - Ying-Chyi Wang
- Graduate Institute of Applied Mechanics, National Taiwan University, Taipei City 10617, Taiwan; (C.L.); (C.-Y.T.); (Y.-C.W.)
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei City 10617, Taiwan
| | - I-Chun Cheng
- Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei City 10617, Taiwan;
- Innovative Photonics Advanced Research Center (i-PARC), National Taiwan University, Taipei City 10617, Taiwan
| | - Jian-Zhang Chen
- Graduate Institute of Applied Mechanics, National Taiwan University, Taipei City 10617, Taiwan; (C.L.); (C.-Y.T.); (Y.-C.W.)
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei City 10617, Taiwan
- Innovative Photonics Advanced Research Center (i-PARC), National Taiwan University, Taipei City 10617, Taiwan
- Graduate School of Advanced Technology, National Taiwan University, Taipei City 10617, Taiwan
| |
Collapse
|
37
|
Wang Y, Li X, Zhang M, Zhang J, Chen Z, Zheng X, Tian Z, Zhao N, Han X, Zaghib K, Wang Y, Deng Y, Hu W. Highly Active and Durable Single-Atom Tungsten-Doped NiS 0.5 Se 0.5 Nanosheet @ NiS 0.5 Se 0.5 Nanorod Heterostructures for Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107053. [PMID: 35080286 DOI: 10.1002/adma.202107053] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Developing robust and highly active non-precious electrocatalysts for the hydrogen/oxygen evolution reaction (HER/OER) is crucial for the industrialization of hydrogen energy. In this study, a highly active and durable single-atom W-doped NiS0.5 Se0.5 nanosheet @ NiS0.5 Se0.5 nanorod heterostructure (W-NiS0.5 Se0.5 ) electrocatalyst is prepared. W-NiS0.5 Se0.5 exhibits excellent catalytic activity for the HER and OER with ultralow overpotentials (39 and 106 mV for the HER and 171 and 239 mV for the OER at 10 and 100 mA cm-2 , respectively) and excellent long-term durability (500 h), outperforming commercial precious-metal catalysts and many other previously reported transition-metal-based compounds (TMCs). The introduction of single-atom W delocalizes the spin state of Ni, which results in an increase in the Ni d-electron density. This causes the optimization of the adsorption/desorption process of H and a significant reduction in the adsorption free energy of the rate-determining step (O* → OOH*), thus accelerating the thermodynamics and kinetics of the HER and OER. This work provides a rational feasible strategy to design single-atom catalysts for water splitting and to develop advanced TMC electrocatalysts by regulating delocalized spin states.
Collapse
Affiliation(s)
- Yang Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Xiaopeng Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Mengmeng Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
- School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Jinfeng Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Zelin Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Xuerong Zheng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Zhangliu Tian
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Naiqin Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Karim Zaghib
- Center of Excellence in Transportation Electrification and Energy Storage, Hydro Québec, 1800 Boulevard Lionel-Boulet, Varennes, Québec, J3× 1S1, Canada
| | - Yuesheng Wang
- Center of Excellence in Transportation Electrification and Energy Storage, Hydro Québec, 1800 Boulevard Lionel-Boulet, Varennes, Québec, J3× 1S1, Canada
| | - Yida Deng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
38
|
In-situ fabrication of Ni xSe y/MoSe 2 hollow rod array for enhanced catalysts for efficient hydrogen evolution reaction. J Colloid Interface Sci 2022; 617:611-619. [PMID: 35305473 DOI: 10.1016/j.jcis.2022.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 01/21/2023]
Abstract
Alkaline water electrocatalysis is considered as one of the most reliable method to prepare the stable, inexpensive, and sustainable water splitting catalyst in large-scale. Recently, MoSe2 attracted great attention as a promising catalyst because of its high electrochemical activity and earth-abundant nature. In this paper, bionic NixSey/MoSe2 coralline-liked heterogeneous structures were successfully prepared on 3D nickel foam (NF) via a simple solvothermal process complemented by hydrothermal strategy with selenization and alkali treatment. Furthermore, to overcome the less active sites and poor electrical conductivity of MoSe2, we learned from the coral structure for the inspiration, and reported a novel hollow rod-like structure with increased active sites. Also, 1 T-2H MoSe2 improved the electrical conductivity of single phase MoSe2. We first confirmed the multi-phase of catalyst by XPS analysis with Mo 3d5/2 splited into two independent regions with the 2H and 1 T phase transition. The optimal ratio of NixSey/MoSe2/NF-5 exhibited excellent electrocatalytic activity towards HER in 1 M KOH, driving current densities of 10, 100 and 200 mA cm-2 at only 76, 165 and 194 mV with stability over 24 h. The work provides new ideas for the construction of transition metal selenides hollow rod array structures of efficient HER electrocatalysts.
Collapse
|
39
|
Dai J, Zhu Y, Chen Y, Wen X, Long M, Wu X, Hu Z, Guan D, Wang X, Zhou C, Lin Q, Sun Y, Weng SC, Wang H, Zhou W, Shao Z. Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis. Nat Commun 2022; 13:1189. [PMID: 35246542 PMCID: PMC8897394 DOI: 10.1038/s41467-022-28843-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/11/2022] [Indexed: 11/18/2022] Open
Abstract
Improving the catalytic efficiency of platinum for the hydrogen evolution reaction is valuable for water splitting technologies. Hydrogen spillover has emerged as a new strategy in designing binary-component Pt/support electrocatalysts. However, such binary catalysts often suffer from a long reaction pathway, undesirable interfacial barrier, and complicated synthetic processes. Here we report a single-phase complex oxide La2Sr2PtO7+δ as a high-performance hydrogen evolution electrocatalyst in acidic media utilizing an atomic-scale hydrogen spillover effect between multifunctional catalytic sites. With insights from comprehensive experiments and theoretical calculations, the overall hydrogen evolution pathway proceeds along three steps: fast proton adsorption on O site, facile hydrogen migration from O site to Pt site via thermoneutral La-Pt bridge site serving as the mediator, and favorable H2 desorption on Pt site. Benefiting from this catalytic process, the resulting La2Sr2PtO7+δ exhibits a low overpotential of 13 mV at 10 mA cm−2, a small Tafel slope of 22 mV dec−1, an enhanced intrinsic activity, and a greater durability than commercial Pt black catalyst. While renewable H2 production offers a promising route for clean energy production, there is an urgent need to improve catalyst performances. Here, authors design a Pt-containing complex oxide that utilizes atomic-scale hydrogen spillover to promote H2 evolution electrocatalysis in acidic media.
Collapse
Affiliation(s)
- Jie Dai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Yinlong Zhu
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia.
| | - Yu Chen
- Monash Centre for Electron Microscopy, Monash University, Clayton, VIC, 3800, Australia
| | - Xue Wen
- School of Environmental Science and Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingce Long
- School of Environmental Science and Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinhao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, 01187, Dresden, Germany
| | - Daqin Guan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Xixi Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Chuan Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Qian Lin
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Yifei Sun
- College of Energy, Xiamen University, Xiamen, 361102, China
| | - Shih-Chang Weng
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Zongping Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China. .,WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, 6845, Australia.
| |
Collapse
|
40
|
Ding R, Li Z, Xiong Y, Wu W, Yang Q, Hou X. Electrochemical (Bio)Sensors for the Detection of Organophosphorus Pesticides Based on Nanomaterial-Modified Electrodes: A Review. Crit Rev Anal Chem 2022; 53:1766-1791. [PMID: 35235478 DOI: 10.1080/10408347.2022.2041391] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Organophosphorus pesticides were easily remained in fruits and vegetables which would be harm to the environmental safety and human health. In recent years, due to the simple preparation process, fast response and high sensitivity, the electrochemical (bio)sensors have received increasing attention, which were extensively used as the sensing platform for the detection of OPPs. The mechanisms for the determination of OPPs mainly included redox of nitrophenyl OPPs, enzyme hydrolysis and inhibition, immunosensor, aptasensor. Nowadays, the mainly explored electrode material has focused on metal-organic frameworks, metal and metal derivatives, carbon materials (carbon nanotube, graphene, g-C3N4), MXene, etc. These nanomaterials played important roles in the electrochemical (bio)sensors, which included: (a) as an electrocatalyst to promote the redox reaction, (b) as a carrier to load the enzyme or aptamer, (c) as a recognizer to identify the targets. The nanomaterials-based electrochemical (bio)sensor was a rapid, cost-effective methods to detect OPPs with high sensitivity. Besides, this review compared the analytical performance of different nanomaterials-based electrochemical (bio)sensors, and also identified the key challenges in the future. It would provide new ideas and insights to the further development and application of electrochemical (bio)sensors and the detection of pesticides in real samples.
Collapse
Affiliation(s)
- Rong Ding
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Zhaojie Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | | | - Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xiudan Hou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
41
|
Lahkar S, Ahmed S, Mohan K, Saikia P, Das JP, Puzari P, Dolui SK. Iron doped titania/multiwalled carbon nanotube nanocomposite: A robust electrocatalyst for hydrogen evolution reaction in aqueous acidic medium. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
42
|
Wang Y, Wang X, Zhang L, Zhang Y, Xu Z, Lu L, Huang J, Yin L, Zhu W, Zhuang Z. Insights into the Effect of Precursors on the FeP-Catalyzed Hydrogen Evolution Reaction. Inorg Chem 2022; 61:2954-2961. [PMID: 35104118 DOI: 10.1021/acs.inorgchem.1c03842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Iron phosphide nanoparticles (NPs) are promising noble metal-free electrocatalysts for the hydrogen evolution reaction (HER), but they usually show inferior activity due to the limited surface area and oxidative passivation. We reported a facile synthetic method to prepare FeP hollow NPs (HNPs) with various precursors. It was proven that the structural parameters (i.e., size, phosphating temperature, phase, and surfactant) of oxide precursors were correlated to the electrochemically active surface area (ECSA), phase purity, surface oxidation, and hollow morphology of FeP HER catalysts, thus affecting the HER activity. Among the three FeP HNPs, the 9 nm FeP HNPs prepared using the Fe3O4 precursor exhibited the highest overall activity with the lowest overpotential of 76 mV to drive a cathodic current density of 10 mA·cm-2 due to the highest ECSA, while 25 nm FeP prepared using the Fe2O3 precursor showed the highest turnover frequency because of the high phase purity and low surface oxidation degree.
Collapse
Affiliation(s)
- Yongsheng Wang
- Institute of Science and Technology, China Three Gorges Corporation, Beijing 100038, China.,State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinyu Wang
- Institute of Science and Technology, China Three Gorges Corporation, Beijing 100038, China.,International Clean Energy Research Office, China Three Gorges Corporation, Beijing 100038, China
| | - Lipeng Zhang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yufeng Zhang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhaoxiang Xu
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lianyue Lu
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junling Huang
- International Clean Energy Research Office, China Three Gorges Corporation, Beijing 100038, China
| | - Likun Yin
- Institute of Science and Technology, China Three Gorges Corporation, Beijing 100038, China
| | - Wei Zhu
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.,Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
43
|
Wang J, Wang Y, Yao Z, Jiang Z. Metal–organic framework-derived Ni doped Co3S4 hierarchical nanosheets as a monolithic electrocatalyst for highly efficient hydrogen evolution reaction in alkaline solution. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Mushtaq N, Muhammad T, Han Z, Zhu Y, Ma X, Cao C, Wang Z, Tabassum H, Younas W. Facile and Simple Microwave-Assisted Synthesis Method for Mesoporous Ultrathin Iron Sulfide Nanosheets as an Efficient Bifunctional Electrocatalyst For Overall Water Splitting. Dalton Trans 2022; 51:6285-6292. [DOI: 10.1039/d2dt00019a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Engineering of inexpensive, high-efficiency and stable electrodes related to both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is highly desired for full water splitting devices to promote the...
Collapse
|
45
|
Zhang J, Wu Y, Hao H, Zhang Y, Chen X, Xing K, Xu J. Construction of amorphous Fe0.95S1.05 nanorods with high electrocatalytic activity for enhanced hydrogen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
Haider SS, Zakar S, Zahir Iqbal M, Dad S. Battery-type electrodeposited ternary metal sulfides electrodes for advanced hybrid energy storage devices. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
47
|
Wang M, Ma Z, Zhang W, Yuan H, Kundu M, Zhang Z, Li J, Wang X. Bimetallic persulfide nanoflakes assembled by dealloying and sulfurization: a versatile electro-catalyst for overall water splitting and Zn–air batteries. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01414e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
(CoFe)(S2)2 nanoflakes with graphene-like edges have been synthesized through dealloying and sulfurization, and exhibit multi-functional electro-catalytic performance toward the ORR, OER, HER.
Collapse
Affiliation(s)
- Mei Wang
- Laboratory of Advanced Materials and Energy Electrochemistry, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- School of Materials Science and Engineering, North University of China, Xueyuan Road 3, Taiyuan 030051, China
| | - Zizai Ma
- Laboratory of Advanced Materials and Energy Electrochemistry, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Wenjuan Zhang
- Department de Química, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Hefeng Yuan
- Laboratory of Advanced Materials and Energy Electrochemistry, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Manab Kundu
- Electrochemical Energy Storage Laboratory, Department of Chemistry, SRM University, Tamil Nadu 603203, India
| | - Zhonghua Zhang
- School of Materials Science and Engineering, Shandong University, Jingshi Road 17923, Jinan 250061, China
| | - Jinping Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan, Shanxi, 030024, China
| | - Xiaoguang Wang
- Laboratory of Advanced Materials and Energy Electrochemistry, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan, Shanxi, 030024, China
| |
Collapse
|
48
|
Wang P, Wang B. Designing Self-Supported Electrocatalysts for Electrochemical Water Splitting: Surface/Interface Engineering toward Enhanced Electrocatalytic Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59593-59617. [PMID: 34878246 DOI: 10.1021/acsami.1c17448] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrochemical water splitting is regarded as the most attractive technique to store renewable electricity in the form of hydrogen fuel. However, the corresponding anodic oxygen evolution reaction (OER) and cathodic hydrogen evolution reaction (HER) remain challenging, which exhibit complex reactions and sluggish kinetic behaviors at the triple-phase interface. Material surface and interface engineering provide a feasible approach to improve catalytic activity. Besides, self-supported electrocatalysts have been proven to be highly efficient toward water splitting, because of the regulated catalyst/substrate interface. In this Review, the state-of-the-art achievements in self-supported electrocatalyst for HER/OER have demonstrated the feasibility of surface and interface engineering strategies to boost performance. The six key effective surface/interface engineering approaches for rational catalysts design are systematically reviewed, including defect engineering, morphology engineering, crystallographic tailoring, heterostructure design, catalyst/substrate interface engineering, and catalyst/electrolyte interface regulation. Finally, the challenges and opportunities on the valuable directions are proposed to inspire future investigation of highly active and durable HER/OER electrocatalysts.
Collapse
Affiliation(s)
- Peican Wang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, No. 30 Shuang-Qing Road, Hai-Dian District, Beijing 100084, People's Republic of China
| | - Baoguo Wang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, No. 30 Shuang-Qing Road, Hai-Dian District, Beijing 100084, People's Republic of China
| |
Collapse
|
49
|
Prats H, Chan K. The determination of the HOR/HER reaction mechanism from experimental kinetic data. Phys Chem Chem Phys 2021; 23:27150-27158. [PMID: 34852033 DOI: 10.1039/d1cp04134g] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen oxidation and evolution are important processes from both a fundamental and applied perspective. In interpreting experimental kinetic data, few studies have explicitly accounted for the impact of H* coverage and mass transport, which lead to discrepancies in the kinetic parameters and the resultant reaction mechanism. Here, we present how to determine the kinetic parameters accounting for both effects. We discuss the use of the kinetic parameters towards mechanistic interpretations for HOR/HER and show that, in general, knowledge of the coverage of H* or activation energies may be required to assign a reaction mechanism. We apply these ideas to activity data of several HOR and HER electrocatalysts, such as Au, Pt, MoS2, and CoP.
Collapse
Affiliation(s)
- Hector Prats
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, 2800 Kogens Lyngby, Denmark. .,Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, UK
| | - Karen Chan
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, 2800 Kogens Lyngby, Denmark.
| |
Collapse
|
50
|
Wu SQ, Hao YC, Chen LW, Li J, Yu ZL, Zhu Z, Liu D, Su X, Hu L, Huang HZ, Yin AX. Modulating the electrocatalytic CO 2 reduction performances of bismuth nanoparticles with carbon substrates with controlled degrees of oxidation. NANOSCALE 2021; 13:20091-20097. [PMID: 34846444 DOI: 10.1039/d1nr05793f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The catalytic performances of metal nanoparticles can be widely tuned and promoted by the metal-support interactions. Here, we report that the morphologies and electrocatalytic CO2 reduction reaction (CO2RR) properties of bismuth nanoparticles (BiNPs) can be rationally modulated by their interactions with carbon black (CB) supports by controlling the degree of surface oxidation. Appropriately oxidized CB supports can provide sufficient oxygen-containing groups for anchoring BiNPs with tunable sizes and surface areas, desirable key intermediate adsorption abilities, appropriate surface wettability, and adequate electron transfer abilities. As a result, the optimized Bi/CB catalysts exhibited a promoted CO2RR performance with a Faradaic efficiency of 94% and a current density of 16.7 mA cm-2 for HCOO- at -0.9 V versus a reversible hydrogen electrode. Our results demonstrate the significance of regulating the interactions between supports and metal nanoparticles for both synthesis of the catalyst and electrolysis applications, which may find broader applicability in more electrocatalyst designs.
Collapse
Affiliation(s)
- Si-Qian Wu
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Yu-Chen Hao
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Li-Wei Chen
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Jiani Li
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Zi-Long Yu
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Zhejiaji Zhu
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Di Liu
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Xin Su
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Linyu Hu
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Hui-Zi Huang
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - An-Xiang Yin
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| |
Collapse
|