1
|
Das A, Ghosh S, George SJ. Amplification and Attenuation of Asymmetry via Kinetically Controlled Seed-Induced Supramolecular Polymerization. Angew Chem Int Ed Engl 2025; 64:e202413747. [PMID: 39172958 DOI: 10.1002/anie.202413747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
The amplification of asymmetry in supramolecular polymers has recently garnered significant attention. While asymmetry amplification has predominantly been explored under thermodynamic conditions, the kinetic aspect of this process unveils intriguing observations, yet is scarcely reported in the literature. Herein, drawing inspiration from macromolecular systems, we propose a novel strategy for enhancing asymmetry in supramolecular polymers through a seed-induced supramolecular polymerization approach under kinetic conditions, employing a naphthalene diimide-derived monomer (ANSG) for template-induced supramolecular polymerization, utilizing adenosine triphosphate (ATP) and pyrophosphate (PPi) as templates. A chiral seed comprising [ANSG-ATP]S effectively amplifies the overall supramolecular asymmetry when exposed to a mixture of achiral templates (PPi) and monomers (ANSG), owing to its efficient seeding characteristics under kinetic conditions. As a result of efficient co-operativity, conversely, employing an achiral seed [ANSG-PPi]S in a mixture of chiral templates (ATP) and monomers (ANSG) results in the attenuation of asymmetry, highlighting the effective modulation achievable through the seeding approach, an unprecedented observation in the field. Exploiting the efficient aggregation-induced emission enhancement (AIEE) of the resultant supramolecular polymers further extends the amplification and attenuation of circularly polarized luminescence (CPL) as a potential function.
Collapse
Affiliation(s)
- Angshuman Das
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Saikat Ghosh
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| |
Collapse
|
2
|
Kim HJ, Lee C, Schuck PJ, Kaufman LJ. Aggregation pathway complexity in a simple perylene diimide. Sci Rep 2024; 14:31989. [PMID: 39738440 DOI: 10.1038/s41598-024-83525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
This study characterizes the influence of self-assembly conditions on the aggregation pathway and resulting photophysical properties of one-dimensional aggregates of the simple imide-substituted perylene diimide, N, N'-didodecyl-3,4,9,10-perylenedicarboximide (ddPDI). We show that ddPDI, which has symmetric alkyl chains at the imide positions, assembles into fibers with distinct morphology, emission spectra, and temperature-dependent behavior as a function of preparation conditions. In all conditions explored, aggregates are one-dimensional; however, assembly conditions can bias formation to either J-like or H-like aggregates. Specifically, a solvent phase interfacial (SPI) method yields two types of aggregates with distinct morphology and photophysical properties while a surface and solvent vapor assisted method (SSVA) generates more uniform aggregates with H-dominant behavior. A combined SPI and SSVA approach facilitates the simultaneous generation and in situ characterization of distinct ddPDI assemblies, some of which assemble via seeded growth. Microscopic and spectroscopic imaging unveil the heterogeneity among ddPDI aggregates, each with unique photophysical properties including H-dominant aggregates with a very high degree of molecular alignment and uniformity in intermolecular organization. Overall, this study highlights the pathway complexity in self-assembly of even the simplest PDI molecules, paving the way for utilization of simple PDI aggregates in applications that demand diverse photophysical behavior.
Collapse
Affiliation(s)
- Hyung Jun Kim
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02139, USA
| | - Changhwan Lee
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 34141 Daejeon, Republic of Korea
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Laura J Kaufman
- Department of Chemistry, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
3
|
Bujosa S, Rubert L, Rotger C, Soberats B. Modulating self-assembly and polymorph transitions in bisdendronized squaramides. Commun Chem 2024; 7:296. [PMID: 39695275 DOI: 10.1038/s42004-024-01391-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024] Open
Abstract
Supramolecular self-assembly is an advanced approach for constructing ordered nanoscale architectures with broad applications. While the principles of supramolecular polymerization have been thoroughly explored in artificial small molecules, polymer transformations remain barely explored, likely due to the lack of suitable reference models presenting well-defined and reversible transitions between aggregates. In this study, we introduce a series of bisdendronized squaramides (SQs) 1-3, showcasing complex self-assembly behaviours involving four distinct aggregates, three different interaction patterns, and various thermodynamically controlled polymorph transformations. Notably, SQ 3, with ethyl spacers between the SQ cores and the dendrons, exhibits a concentration and temperature-dependent equilibrium among three polymorphs: the particle-like Agg-A and fibrillar Agg-C, formed by slipped hydrogen bonds, and the fibrillar Agg-B, formed by head-to-tail hydrogen bonds. Additional solid-state experiments revealed that these SQs also form columnar liquid crystals, assembled by π-π interactions in SQ 1 and hydrogen bonding in SQ 2 and SQ 3. This work positions SQ units as valuable models for understanding polymorph equilibrium in solution and solid-state, which is crucial for developing stimuli-responsive supramolecular polymers.
Collapse
Affiliation(s)
- Sergi Bujosa
- Department of Chemistry, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Llorenç Rubert
- Department of Chemistry, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Carmen Rotger
- Department of Chemistry, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Bartolome Soberats
- Department of Chemistry, Universitat de les Illes Balears, Palma de Mallorca, Spain.
| |
Collapse
|
4
|
Rey-Tarrío F, Sánchez L. On the Stability of Metastable Monomers to Bias the Supramolecular Polymerization of Naphthalendiimides. Angew Chem Int Ed Engl 2024:e202418301. [PMID: 39648962 DOI: 10.1002/anie.202418301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/10/2024]
Abstract
Herein, we report the synthesis of the naphthalendiimides (NDIs) 1-3 endowed with peripheral 3,4,5-trialkoxybenzamide units and a variable number of 1,2,3-triazole rings. Both the benzamide units and the triazole rings are able to form six- or seven-membered intramolecularly H-bonded pseudocycles that behave as metastable monomeric units. Whilst freshly prepared solutions of 1-3 afford H-type aggregates, the presence or lack of the 1,2,3-triazole rings strongly conditions the kinetics and stability of the resulting aggregated species. These structural features result in highly stable metastable monomeric species M* for the symmetric 2 that can be trapped for long periods of time when the sample is subject to a heating/cooling cycle. Contrary to NDI 2, the M* species formed by 1 and 3 evolve to the final supramolecular polymers in shorter times. A detailed experimental and theoretical study display the different non-covalent supramolecular forces operating in the stabilization of such M* species. In all cases, but especially in those NDIs endowed with the triazoles rings (NDIs 2 and 3), a number of conformers for the metastable monomeric units can be modelled. The high stability of such monomeric species justifies the delay in the formation of the H-type aggregates.
Collapse
Affiliation(s)
- Francisco Rey-Tarrío
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, s/n, 28040-, Madrid, Spain
| | - Luis Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, s/n, 28040-, Madrid, Spain
| |
Collapse
|
5
|
Kim M, Choi H, Kim M, Kim S, Yun S, Lee E, Cho J, Jung SH, Jung JH. Pathway control in metallosupramolecular polymerization of a monoalkynylplatinum(ii) terpyridine complex through competitive complex formation. Chem Sci 2024; 15:19729-19738. [PMID: 39568936 PMCID: PMC11575569 DOI: 10.1039/d4sc06083k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Understanding the pathway complexity of supramolecular polymerization in biomimetic systems has been a challenging issue due to its importance in the development of rationally controlled materials and insight into self-assembly in nature. We herein report a kinetic trapping strategy as a new methodology on how to control the pathway of metallosupramolecular polymerization by employing secondary metal ions and/or ligands which form competitive complex species. For this, we proposed monoalkynylplatinum(ii) metalloligand (Pt-L1) derived from a bis(amideterpyridine) receptor with one unoccupied terpyridyl terminal as a coordination site for the secondary metal ion (Ag+ or Fe2+). The inherent pathway complexity intrinsic to the Pt-L1-anchored supramolecular polymerization has been modulated through the incorporation of Ag+ or Fe2+. During the supramolecular polymerization of Pt-L1 in the presence of Ag+ and Fe2+, the added secondary ligand bpy (4,4'-dimethyl-2,2'-bipyridine) or DA18C6 (1,14-diaza-18-crown-6) form complexes as kinetic species, thereby inhibiting spontaneous polymerizations. The supramolecular polymer (SP-I), with a spherical structure composed of Pt-L1 in the absence of metal ions as a kinetic product, did not transform into the thermodynamic product, namely supramolecular polymer (SP-III) with a left-handed fiber structure, due to a high energy barrier. However, the supramolecular polymer (SP-II) with a left-handed fiber structure, which was formed by Pt-L1 in the presence of AgNO3, converted to SP-III upon the addition of NaCl. Additionally, SP-II transformed into supramolecular polymer (SP-IV) upon the addition of Fe(BF4)2, through an on-pathway process. Both the morphological and emissive characteristics of the resulting supramolecular polymers can be fine-tuned via the Pt⋯Pt or Ag⋯Ag interactions as well as through the changes of the coordination geometry depending on the existing Ag+ or Fe2+ ions. The present results have important implications in expanding the scope of pathway complexity to produce a variety of products via kinetically controlled processes involving secondary metal ions and ligands.
Collapse
Affiliation(s)
- Minhye Kim
- Department of Chemistry, Gyeongsang National University Jinju 52828 Korea
| | - Heekyoung Choi
- Department of Chemistry, Gyeongsang National University Jinju 52828 Korea
| | - Minjoo Kim
- Department of Chemistry, Gyeongsang National University Jinju 52828 Korea
| | - Seonghan Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology Ulsan 44919 Korea
| | - Seohyeon Yun
- Department of Chemistry and Advanced Materials, Gangneung-Wonju National University Gangneung 25457 Korea
| | - Eunji Lee
- Department of Chemistry and Advanced Materials, Gangneung-Wonju National University Gangneung 25457 Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology Ulsan 44919 Korea
| | - Sung Ho Jung
- Department of Chemistry, Gyeongsang National University Jinju 52828 Korea
- Research Institute of Advanced Materials Chemistry, Gyeongsang National University Jinju 52828 Korea
| | - Jong Hwa Jung
- Department of Chemistry, Gyeongsang National University Jinju 52828 Korea
- Research Institute of Advanced Materials Chemistry, Gyeongsang National University Jinju 52828 Korea
| |
Collapse
|
6
|
Han J, Fujikawa S, Kimizuka N. Living Hybrid Exciton Materials: Enhanced Fluorescence and Chiroptical Properties in Living Supramolecular Polymers with Strong Frenkel/Charge-Transfer Exciton Coupling. Angew Chem Int Ed Engl 2024; 63:e202410431. [PMID: 38987230 DOI: 10.1002/anie.202410431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
A family of chiral perylene diimides (PDIs) was newly developed as excellent circularly polarized luminescence (CPL) materials. They are asymmetrically derivatized with a double-alkyl-chained L- or D-glutamate unit and a linear or branched alkyl chain. When water is added to the tetrahydrofuran (THF) solution of glutamate-PDI-linear-alkyl chain compounds, kinetically formed H-aggregates are formed in globular nanoparticles (NPs). These NPs undergo spontaneous transformation into thermodynamically stable nanotubes via helical nanostructures, which showed structured broad spectra originating from the strong coupling of delocalized Frenkel excitations (FE) and charge transfer excitations (CTE). Significant enhancement of circular dichroism (CD), fluorescence quantum yield, and circularly polarized luminescence (CPL) with luminescence dissymmetry factor (glum) are observed during the transformation of NPs to the FE/CTE-coupled helical and tubular structures. This transformation process is significantly accelerated by applying physical stimuli, i.e., ultrasonication or adding helical aggregates as seed crystals, a feature unique to living supramolecular polymerization. Meanwhile, the branched chain-containing PDIs only form H-aggregates and did not show FE/CTE hybrid exciton states with living supramolecular polymerization properties. This study unveils that suitably designed chiral PDI derivatives show FE/CTE coupling accompanied by high fluorescence quantum yields, enhanced chiroptical properties, and supramolecular living polymerization characteristics.
Collapse
Affiliation(s)
- Jianlei Han
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, 819-0395, Japan
| | - Shigenori Fujikawa
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, 819-0395, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
- Research Center for Negative Emission Technologies, Kyushu University, Fukuoka, 819-0395, Japan
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
- Research Center for Negative Emission Technologies, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
7
|
Tuo DH, Fa S, Tanaka S, Shimada T, Yamashita M, Togari Y, Ohtani S, Kato K, Urayama K, Zhang Q, Yasuhara K, Ogoshi T. Helical-Sense Matching Facilitates Supramolecular Copolymerization of Helical-Chiral Pillar[5]arenes. J Am Chem Soc 2024; 146:31816-31824. [PMID: 39527493 DOI: 10.1021/jacs.4c10765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Supramolecular polymerization using two-dimensional π-conjugated chiral monomers has been mainly demonstrated because the supramolecular polymerization can be controlled by stereocommunication through π-π stacking between the two-dimensional chiral monomers. We herein report supramolecular copolymerization utilizing three-dimensional pentahedrons with twisted helical chirality through different combinations of helical-chiral acidic and basic pillar[5]arenes as comonomers. In this case, helical-sense matching is key to facilitating the supramolecular copolymerization. Based on the unique helical chirality of the three-dimensional pillared structure of the pillar[5]arenes and alternate ion-pairing interactions between acidic and basic groups on their bilateral rims, the homochiral helical-sense matching system forms kinetically stable nanowire-shaped supramolecular copolymers, generating the supramolecular gel in high concentrations. At elevated temperatures, the nanowire structure undergoes a transformation into thermodynamically stable nanoparticles, resulting in a gel-to-sol transition. This process can be hindered by introducing linear guest molecules, which prohibit the unit swing of pillar[5]arenes and stabilize the nanowires and supramolecular gel. By tailoring the enantiomeric ratio (e.r.) values of the chiral combinations, the helical-sense-dependent gel-to-sol transition was realized, specifically by decreasing the e.r. values. Because of helical-sense mismatching, the heterochiral system generates short, branched nanowires and presents as a turbid solution. These distinct differences reveal that the helical-sense matching between three-dimensional chiral pillar[5]arene comonomers is important for supramolecular copolymerization.
Collapse
Affiliation(s)
- De-Hui Tuo
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shixin Fa
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Seigo Tanaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takuma Shimada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masataka Yamashita
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yuki Togari
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenji Urayama
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Kazuma Yasuhara
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Tomoki Ogoshi
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
8
|
Fu K, Zhao Y, Liu G. Pathway-directed recyclable chirality inversion of coordinated supramolecular polymers. Nat Commun 2024; 15:9571. [PMID: 39500893 PMCID: PMC11538330 DOI: 10.1038/s41467-024-53928-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
It remains challenging to elucidate the fundamental mechanisms behind the dynamic chirality inversion of supramolecular assemblies with pathway complexity. Herein, metal coordination driven assembly systems based on pyridyl-conjugated cholesterol (PVPCC) and metal ions (Ag+ or Al3+) are established to demonstrate pathway-directed, recyclable chirality inversion and assembly polymorphism. In the Ag(I)/PVPCC system, a competitive pathway leads Ag-Complex to form either kinetically controlled supramolecular polymer (Ag-SP I) or thermodynamically favored Ag-SP II, accompanied by reversible chiroptical inversion. Conversely, the Al(III)/PVPCC system displays a solvent-assisted consecutive pathway: the Al-Complex initially forms ethanol-containing Al-SP II, and subsequently converts into ethanol-free Al-SP I with opposite chiroptical performance upon thermal treatment. Moreover, stable chirality inversion in the solid state enables potential dynamic circularly polarized luminescence encryption when Ag(I)/PVPCC is co-assembled with thioflavin T. These findings provide the guidance for the dynamic modulation of chirality functionality in supramolecular materials for applications in information processing, data encryption, and chiral spintronics.
Collapse
Affiliation(s)
- Kuo Fu
- School of Chemical Science and Engineering, Advanced Research Institute, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| | - Guofeng Liu
- School of Chemical Science and Engineering, Advanced Research Institute, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China.
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
9
|
Matsumoto K, Bäumer N, Ogi S, Yamaguchi S. Kinetic Control over Social and Narcissistic Self-Sorting from Multicomponent Mixtures in Seed-Initiated Supramolecular Polymerization by Fine-Tuning of Steric Effects. Angew Chem Int Ed Engl 2024:e202416361. [PMID: 39434621 DOI: 10.1002/anie.202416361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Supramolecular polymers offer an intriguing possibility to transfer molecular properties from the nano- to the mesoscale. Towards this achievement, seed-initiated supramolecular polymerization has emerged as a powerful tool, as it prevents unlimited growth and enables size control of the assembly outcome. However, the potential application of the seeding method in the context of complex supramolecular systems is hitherto unclear. Herein we demonstrate that minute differences in molecular design in direct proximity to intermolecular recognition sites govern the molecular packing and in turn dictate the efficacy of seeded polymerization processes. We introduce a stepwise increase in steric demand in the central amino acid residue of a diamide system, which gradually increases the rotational displacement within the aggregated state. This fine-tuning of the molecular packing directly affects the propensity of the different aggregates to act as seeds for the other supramolecular synthons. In turn this allows us to selectively target specific trapped monomer states in binary mixtures for social or narcissistic seeded polymerization.
Collapse
Affiliation(s)
- Kentaro Matsumoto
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Nils Bäumer
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya, 464-8601, Japan
| | - Soichiro Ogi
- Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya, 464-8601, Japan
- Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University Furo, Chikusa, Nagoya, 464-8602, Japan
| |
Collapse
|
10
|
Ramesh A, Das TN, Maji TK, Ghosh G. Unravelling denaturation, temperature and cosolvent-driven chiroptical switching in peptide self-assembly with switchable piezoelectric responses. Chem Sci 2024:d4sc05016a. [PMID: 39309077 PMCID: PMC11409859 DOI: 10.1039/d4sc05016a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024] Open
Abstract
Herein, we explore the intricate pathway complexity, focusing on the dynamic interplay between kinetic and thermodynamic states, during the supramolecular self-assembly of peptides. We uncover a multiresponsive chiroptical switching phenomenon influenced by temperature, denaturation and content of cosolvent in peptide self-assembly through pathway complexity (kinetic vs. thermodynamic state). Particularly noteworthy is the observation of chiroptical switching during the denaturation process, marking an unprecedented phenomenon in the literature. Furthermore, the variation in cosolvent contents produces notable chiroptical switching effects, emphasizing their infrequent incidence. Such chiroptical switching yields switchable piezoresponsive peptide-based nanomaterials, demonstrating the potential for dynamic control over material properties. In essence, our work pioneers the ability to control piezoresponsive behavior by transforming nanostructures from kinetic to thermodynamic states through pathway complexity. This approach provides new insights and opportunities for tailoring material properties in self-assembled systems.
Collapse
Affiliation(s)
- Aparna Ramesh
- Centre for Nano and Soft Matter Sciences (CeNS) Shivanapura, Dasanapura Hobli Bangalore 562162 India
- Academy of Scientific and Innovation Research (AcSIR) Ghaziabad 201002 India
| | - Tarak Nath Das
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Tapas Kumar Maji
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
- Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Goutam Ghosh
- Centre for Nano and Soft Matter Sciences (CeNS) Shivanapura, Dasanapura Hobli Bangalore 562162 India
- Academy of Scientific and Innovation Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
11
|
López-Gandul L, Lavarda G, van den Bersselaar BWL, Vantomme G, Meijer EW, Sánchez L. Supramolecular polymerization and bulk properties relationship in ester-functionalized N-annulated perylenediimides. Chem Sci 2024:d4sc03797a. [PMID: 39144454 PMCID: PMC11318647 DOI: 10.1039/d4sc03797a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024] Open
Abstract
The synthesis of a series of N-annulated perylenediimides (NPDIs) 1-4 with an ester group and an alkyl spacer of different length in the peripheral chains was carried out, and the influence of the side chain architecture on the self-assembly, both in solution and in the solid state, was investigated. Solution studies evidenced that the carbonyl group plays a key role in the supramolecular organization of these derivatives, changing from an H-type isodesmic polymerization (4) to a J-type cooperative process as the spacer length decreases (1-3). On the other hand, bulk assays revealed an odd-even effect that correlates with the length of the alkyl spacer. Whereas the odd-spaced derivatives (2 and 4) organize in a disordered columnar hexagonal fashion, the even-spaced ones (1 and 3) show the formation of multiple crystalline (and liquid crystalline) structures. The results presented herein highlight the importance of side chain functionalization in the design of building blocks for in-solution and bulk purposes.
Collapse
Affiliation(s)
- Lucía López-Gandul
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology 5600 MB Eindhoven The Netherlands
| | - Giulia Lavarda
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology 5600 MB Eindhoven The Netherlands
| | - Bart W L van den Bersselaar
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology 5600 MB Eindhoven The Netherlands
| | - Ghislaine Vantomme
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology 5600 MB Eindhoven The Netherlands
| | - E W Meijer
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology 5600 MB Eindhoven The Netherlands
| | - Luis Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| |
Collapse
|
12
|
Lim S, Cho Y, Kang JH, Hwang M, Park Y, Kwak SK, Jung SH, Jung JH. Metallosupramolecular Multiblock Copolymers of Lanthanide Complexes by Seeded Living Polymerization. J Am Chem Soc 2024; 146:18484-18497. [PMID: 38888168 DOI: 10.1021/jacs.4c03983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Supramolecular block copolymers, derived via seeded living polymerization, are increasingly recognized for their rich structural and functional diversity, marking them as cutting-edge materials. The use of metal complexes in supramolecular block copolymerization not only offers a broad range of block copolymers through the structural similarity in the coordination geometry of the central metal ion but also controls spectroscopic properties, such as emission wavelength, emission strength, and fluorescence lifetime. However, the exploration of metallosupramolecular multiblock copolymerization based on metal complexes remains quite limited. In this work, we present a pioneering synthesis of metallosupramolecular multiblock copolymers utilizing Eu3+ and Tb3+ complexes as building blocks. This is achieved through the strategic manipulation of nonequilibrium self-assemblies via a living supramolecular polymerization approach. Our comprehensive exploration of both thermodynamically and kinetically regulated metallosupramolecular polymerizations, centered around Eu3+ and Tb3+ complexes with bisterpyridine-modified ligands containing R-alanine units and a long alkyl group, has highlighted intriguing behaviors. The monomeric [R-L1Eu(NO3)3] complex generates a spherical structure as the kinetic product. In contrast, the monomeric [R-L1Eu2(NO3)6] complex generates fiber aggregates as a thermodynamic product through intermolecular interactions such as π-π stacking, hydrophobic interaction, and H-bonds. Utilizing the Eu3+ complex, we successfully conducted seed-induced living polymerization of the monomeric building unit under kinetically regulated conditions. This yielded a metallosupramolecular polymer of precisely controlled length with minimal polydispersity. Moreover, by copolymerizing the kinetically confined Tb3+ complex state ("A" species) with a seed derived from the Eu3+ complex ("B" species), we were able to fabricate metallosupramolecular tri- and pentablock copolymers with A-B-A, and B-A-B-A-B types, respectively, through a seed-end chain-growth mechanism.
Collapse
Affiliation(s)
- Seola Lim
- Department of Chemistry, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yumi Cho
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ju Hwan Kang
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Minkyeong Hwang
- Department of Chemistry, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yumi Park
- Department of Chemistry, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sang Kyu Kwak
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sung Ho Jung
- Department of Chemistry, Gyeongsang National University, Jinju 52828, Republic of Korea
- Research Institute of Advanced Chemistry, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong Hwa Jung
- Department of Chemistry, Gyeongsang National University, Jinju 52828, Republic of Korea
- Research Institute of Advanced Chemistry, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
13
|
Atienza CM, Sánchez L. Increasing Dimensionality in Self-Assembly: Toward Two-Dimensional Supramolecular Polymers. Chemistry 2024; 30:e202400379. [PMID: 38525912 DOI: 10.1002/chem.202400379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 03/26/2024]
Abstract
Different approaches to achieve 2D supramolecular polymers, as an alternative to the covalent bottom-up approaches reported for the preparation of 2D materials, are reviewed. The significance of the operation of weak non-covalent forces to induce a lateral growth of a number of self-assembling units is collected. The examples of both thermodynamically and kinetically controlled formation of 2D supramolecular polymers showed in this review demonstrate the utility of this strategy to achieve new 2D materials with biased morphologies (nanosheets, scrolls, porous surfaces) and showing elegant applications like chiral recognition, enantioselective uptake or asymmetric organic transformations. Furthermore, elaborated techniques like seeded or living supramolecular polymerizations have been demonstrated to give rise to complex 2D nanostructures.
Collapse
Affiliation(s)
- Carmen M Atienza
- Departmento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, -Madrid, Spain
| | - Luis Sánchez
- Departmento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, -Madrid, Spain
| |
Collapse
|
14
|
Das A, Ghosh S, Mishra A, Som A, Banakar VB, Agasti SS, George SJ. Enzymatic Reaction-Coupled, Cooperative Supramolecular Polymerization. J Am Chem Soc 2024; 146:14844-14855. [PMID: 38747446 DOI: 10.1021/jacs.4c03588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Nature employs sophisticated mechanisms to precisely regulate self-assembly and functions within biological systems, exemplified by the formation of cytoskeletal filaments. Various enzymatic reactions and auxiliary proteins couple with the self-assembly process, meticulously regulating the length and functions of resulting macromolecular structures. In this context, we present a bioinspired, reaction-coupled approach for the controlled supramolecular polymerization in synthetic systems. To achieve this, we employ an enzymatic reaction that interfaces with the adenosine triphosphate (ATP)-templated supramolecular polymerization of naphthalene diimide monomers (NSG). Notably, the enzymatic production of ATP (template) plays a pivotal role in facilitating reaction-controlled, cooperative growth of the NSG monomers. This growth process, in turn, provides positive feedback to the enzymatic production of ATP, creating an ideal reaction-coupled assembly process. The success of this approach is further evident in the living-growth characteristic observed during seeding experiments, marking this method as the pioneering instance where reaction-coupled self-assembly precisely controls the growth kinetics and structural aspects of supramolecular polymers in a predictive manner, akin to biological systems.
Collapse
Affiliation(s)
- Angshuman Das
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Saikat Ghosh
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Ananya Mishra
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Arka Som
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Vijay Basavaraj Banakar
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Sarit S Agasti
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| |
Collapse
|
15
|
Schwalb AJ, García F, Sánchez L. Electronically and geometrically complementary perylenediimides for kinetically controlled supramolecular copolymers. Chem Sci 2024; 15:8137-8144. [PMID: 38817561 PMCID: PMC11134332 DOI: 10.1039/d4sc01322k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
The synthesis of 3,4,9,10-benzo[d,e]isoquinolino[1,8-g,h]quinoline-tetracarboxylic diimide (BQQDI) 1 endowed with peripheral trialkoxybenzamide fragments is reported and its self-assembling features investigated. The peripheral benzamide moieties generate metastable monomeric species that afford a kinetically controlled supramolecular polymerization. The electron-withdrawing character of 1 in comparison with previously reported PDIs 2, together with the similar geometry, makes this dye an optimal candidate to perform seeded supramolecular copolymerization yielding four different supramolecular block copolymers. Whilst heteropolymers poly-1-co-2a, poly-2a-co-1 and poly-1-co-2b present an H-type arrangement of the monomeric units, heteropolymer poly-2b-co-1, prepared by seeding the chiral, metastable monomers of 2b with achiral seeds of 1, produces chiral, J-type aggregates. Interestingly, the monosignated CD signal of pristine poly-2b changes to a bisignated CD signal most probably due to the formation of columnar domains around the seeds of 1 which implies the blocky nature of the supramolecular copolymers formed.
Collapse
Affiliation(s)
- Alfonso J Schwalb
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| | - Fátima García
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| | - Luis Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| |
Collapse
|
16
|
Patra S, Chandrabhas S, Dhiman S, George SJ. Controlled Supramolecular Polymerization via Bioinspired, Liquid-Liquid Phase Separation of Monomers. J Am Chem Soc 2024; 146:12577-12586. [PMID: 38683934 DOI: 10.1021/jacs.4c01377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Dynamic supramolecular assemblies, driven by noncovalent interactions, pervade the biological realm. In the synthetic domain, their counterparts, supramolecular polymers, endowed with remarkable self-repair and adaptive traits, are often realized through bioinspired designs. Recently, controlled supramolecular polymerization strategies have emerged, drawing inspiration from protein self-assembly. A burgeoning area of research involves mimicking the liquid-liquid phase separation (LLPS) observed in proteins to create coacervate droplets and recognizing their significance in cellular organization and diverse functions. Herein, we introduce a novel perspective on synthetic coacervates, extending beyond their established role in synthetic biology as dynamic, membraneless phases to enable structural control in synthetic supramolecular polymers. Drawing parallels with the cooperative growth of amyloid fibrils through LLPS, we present metastable coacervate droplets as dormant monomer phases for controlled supramolecular polymerization. This is achieved via a π-conjugated monomer design that combines structural characteristics for both coacervation through its terminal ionic groups and one-dimensional growth via a π-conjugated core. This design leads to a unique temporal LLPS, resulting in a metastable coacervate phase, which subsequently undergoes one-dimensional growth via nucleation within the droplets. In-depth spectroscopic and microscopic characterization provides insights into the temporal evolution of disordered and ordered phases. Furthermore, to modulate the kinetics of liquid-to-solid transformation and to achieve precise control over the structural characteristics of the resulting supramolecular polymers, we invoke seeding in the droplets, showcasing living growth characteristics. Our work thus opens up new avenues in the exciting field of supramolecular polymerization, offering general design principles and controlled synthesis of precision self-assembled structures in confined environments.
Collapse
Affiliation(s)
- Satyajit Patra
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Sushmitha Chandrabhas
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Shikha Dhiman
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| |
Collapse
|
17
|
Chen Y, Liu C. Strategies for Synthesizing Supramolecular Block Copolymers. Chempluschem 2024; 89:e202300623. [PMID: 38095487 DOI: 10.1002/cplu.202300623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/03/2023] [Indexed: 05/16/2024]
Abstract
Over the past decade, controlled supramolecular polymerization has been extensively studied and gradually shifted to supramolecular block copolymerization. Supramolecular block copolymers (BCPs) are considered the holy grail for developing supramolecular materials with new functionalities due to their fascinating structures and ability to introduce diverse functions. From a thermodynamic view to kinetic aspects, great progress has been made in the synthetic strategies of BCPs in the past few years. This Concept summarizes various strategies to realize supramolecular block copolymerization. The focus is on providing researchers with a methodological basis for achieving heterogeneous nucleation-elongation.
Collapse
Affiliation(s)
- Yan Chen
- School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Chun Liu
- School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| |
Collapse
|
18
|
Kotha S, Sahu R, Yadav AC, Sharma P, Kumar BVVSP, Reddy SK, Rao KV. Noncovalent synthesis of homo and hetero-architectures of supramolecular polymers via secondary nucleation. Nat Commun 2024; 15:3672. [PMID: 38693145 PMCID: PMC11063220 DOI: 10.1038/s41467-024-47874-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
The synthesis of supramolecular polymers with controlled architecture is a grand challenge in supramolecular chemistry. Although living supramolecular polymerization via primary nucleation has been extensively studied for controlling the supramolecular polymerization of small molecules, the resulting supramolecular polymers have typically exhibited one-dimensional morphology. In this report, we present the synthesis of intriguing supramolecular polymer architectures through a secondary nucleation event, a mechanism well-established in protein aggregation and the crystallization of small molecules. To achieve this, we choose perylene diimide with 2-ethylhexyl chains at the imide position as they are capable of forming dormant monomers in solution. Activating these dormant monomers via mechanical stimuli and hetero-seeding using propoxyethyl perylene diimide seeds, secondary nucleation event takes over, leading to the formation of three-dimensional spherical spherulites and scarf-like supramolecular polymer heterostructures, respectively. Therefore, the results presented in this study propose a simple molecular design for synthesizing well-defined supramolecular polymer architectures via secondary nucleation.
Collapse
Affiliation(s)
- Srinu Kotha
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India
| | - Rahul Sahu
- Centre for Computational and Data Science, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Aditya Chandrakant Yadav
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India
| | - Preeti Sharma
- Department of Chemistry, Indian Institute of Technology, Roorkee, 247667, Uttarakhand, India
| | - B V V S Pavan Kumar
- Department of Chemistry, Indian Institute of Technology, Roorkee, 247667, Uttarakhand, India
| | - Sandeep K Reddy
- Centre for Computational and Data Science, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Kotagiri Venkata Rao
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.
| |
Collapse
|
19
|
Pal T, Samanta S, Chaudhuri D. Noncovalent Catalyst-cum-Inhibitor Directed Supramolecular Pathway Selection and Asymmetry Amplification by Aggregate Cross-Nucleation. ACS NANO 2024; 18:11349-11359. [PMID: 38623861 DOI: 10.1021/acsnano.4c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The key to any controlled supramolecular polymerization (CSP) process lies in controlling the nucleation step, which is typically achieved by sequestering monomers in a kinetically trapped state. However, kinetic traps that are shallow cannot prevent spontaneous nucleation, thus limiting the applicability of the CSP in such systems. We use a molecular additive to overcome this limitation by modifying the energy landscape of a competitive self-assembly process and increasing the kinetic stability of an otherwise short-lived trap state. The additive achieves this by simultaneously catalyzing OFF-pathway nucleation and inhibiting ON-pathway aggregation. In the process, it guides the molecular assembly exclusively toward the OFF-pathway aggregate analogue. The mechanisms of OFF-pathway catalysis and ON-pathway inhibition are elucidated. By specifically targeting the nucleation step, it was possible to achieve pathway selection at an extremely low additive-to-monomer ratio of 1:100. The generality of our approach is also demonstrated for other related molecular systems. Finally, removing the additive triggers the cross-nucleation of the ON-pathway aggregate on the surface of a less stable, OFF-pathway aggregate analogue. The resultant supramolecular polymer not only exhibits a more uniform morphology but more importantly, a marked improvement in the structural order that leads to an amplification of chiral asymmetry and a high absorption dissymmetry factor (gAbs) of ∼0.05.
Collapse
Affiliation(s)
- Triza Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Samaresh Samanta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Debangshu Chaudhuri
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| |
Collapse
|
20
|
Mo X, Song J, Liu X, Guo RC, Hu B, Yu Z. Redox-Regulated In Situ Seed-Induced Assembly of Peptides. Biomacromolecules 2024; 25:2497-2508. [PMID: 38478850 DOI: 10.1021/acs.biomac.3c01453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Morphology-transformational self-assembly of peptides allows for manipulation of the performance of nanostructures and thereby advancing the development of biomaterials. Acceleration of the morphological transformation process under a biological microenvironment is important to efficiently implement the tailored functions in living systems. Herein, we report redox-regulated in situ seed-induced assembly of peptides via design of two co-assembled bola-amphiphiles serving as a redox-resistant seed and a redox-responsive assembly monomer, respectively. Both of the peptides are able to independently assemble into nanoribbons, while the seed monomer exhibits stronger assembling propensity. The redox-responsive monomer undergoes morphological transformation from well-defined nanoribbons to nanoparticles. Kinetics studies validate the role of the assembled inert monomer as the seeds in accelerating the assembly of the redox-responsive monomer. Alternative addition of oxidants and reductants into the co-assembled monomers promotes the redox-regulated assembly of the peptides facilitated by the in situ-formed seeds. The reduction-induced assembly of the peptide could also be accelerated by in situ-formed seeds in cancer cells with a high level of reductants. Our findings demonstrate that through precisely manipulating the assembling propensity of co-assembled monomers, the in situ seed-induced assembly of peptides could be achieved. Combining the rapid assembly kinetics of the seed-induced assembly with the common presence of redox agents in a biological microenvironment, this strategy potentially offers a new method for developing biomedical materials in living systems.
Collapse
Affiliation(s)
- Xiaowei Mo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jinyan Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xin Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Ruo-Chen Guo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Binbin Hu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
- Haihe Laboratory of Synthetic Biology, 21 West 15th Avenue, Tianjin 300308, China
| |
Collapse
|
21
|
Khanra P, Rajdev P, Das A. Seed-Induced Living Two-Dimensional (2D) Supramolecular Polymerization in Water: Implications on Protein Adsorption and Enzyme Inhibition. Angew Chem Int Ed Engl 2024; 63:e202400486. [PMID: 38265331 DOI: 10.1002/anie.202400486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 01/25/2024]
Abstract
In biological systems, programmable supramolecular frameworks characterized by coordinated directional non-covalent interactions are widespread. However, only a small number of reports involve pure water-based dynamic supramolecular assembly of artificial π-amphiphiles, primarily due to the formidable challenge of counteracting the strong hydrophobic dominance of the π-surface in water, leading to undesired kinetic traps. This study reveals the pathway complexity in hydrogen-bonding-mediated supramolecular polymerization of an amide-functionalized naphthalene monoimide (NMI) building block with a hydrophilic oligo-oxyethylene (OE) wedge. O-NMI-2 initially produced entropically driven, collapsed spherical particles in water (Agg-1); however, over a span of 72 h, these metastable Agg-1 gradually transformed into two-dimensional (2D) nanosheets (Agg-2), favoured by both entropy and enthalpy contributions. The intricate self-assembly pathways in O-NMI-2 enable us to explore seed-induced living supramolecular polymerization (LSP) in water for controlled synthesis of monolayered 2D assemblies. Furthermore, we demonstrated the nonspecific surface adsorption of a model enzyme, serine protease α-Chymotrypsin (α-ChT), and consequently the enzyme activity, which could be regulated by controlling the morphological transformation of O-NMI-2 from Agg-1 to Agg-2. We delve into the thermodynamic aspects of such shape-dependent protein-surface interactions and unravel the impact of seed-induced LSP on temporally controlling the catalytic activity of α-ChT.
Collapse
Affiliation(s)
- Payel Khanra
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Priya Rajdev
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
22
|
Pan H, Hou B, Jiang Y, Liu M, Ren XK, Chen Z. Control of Kinetic Pathways toward Supramolecular Chiral Polymorphs for Tunable Circularly Polarized Luminescence. Chemistry 2024:e202400899. [PMID: 38576216 DOI: 10.1002/chem.202400899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
An amphiphilic aza-BODIPY dye (S)-1 bearing two chiral hydrophilic side chains with S-stereogenic centers was synthesized. This dye exhibited kinetic-controlled self-assembly pathways and supramolecular chiral polymorphism properties in MeOH/H2O (9/1, v/v) mixed solvent. The (S)-1 monomers first aggregated into a kinetic controlled, off-pathway species Agg. A, which was spontaneously transformed into an on-pathway metastable aggregate (Agg. B) and subsequently into the thermodynamic Agg. C. The three aggregate polymorphs of dye (S)-1 displayed distinct optical properties and nanomorphologies. In particular, chiral J-aggregation characteristics were observed for both Agg. B and Agg. C, such as Davydov-split absorption bands (Agg. B), extremely sharp and intense J-band with large bathochromic shift (Agg. C), non-diminished fluorescence upon aggregation, as well as strong bisignated Cotton effects. Moreover, the AFM and TEM studies revealed that Agg. A had the morphology of nanoparticle while fibril or rod-like helical nanostructures with left-handedness were observed respectively for Agg. B and Agg. C. By controlling the kinetic transformation process from Agg. B to Agg. C, thin films consisting of Agg. B and Agg. C with different ratios were prepared, which displayed tunable CPL with emission maxima at 788-805 nm and g-factors between -4.2×10-2 and -5.1×10-2.
Collapse
Affiliation(s)
- Hongfei Pan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Baokai Hou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yuanyuan Jiang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Mengqi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiang-Kui Ren
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhijian Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
23
|
Jones C, Kershaw Cook LJ, Slater AG, Yufit DS, Steed JW. Scrolling in Supramolecular Gels: A Designer's Guide. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:2799-2809. [PMID: 38558920 PMCID: PMC10976645 DOI: 10.1021/acs.chemmater.3c03013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
Gelation by small molecules is a topic of enormous importance in catalysis, nanomaterials, drug delivery, and pharmaceutical crystallization. The mechanism by which gelators self-organize into a fibrous gel network is poorly understood. Herein, we describe the crystal structures and gelation properties of a library of bis(urea) compounds and show, via molecular dynamics simulations, how gelator aggregation progresses from a continuous pattern of supramolecular motifs to a homogeneous fiber network. Our model suggests that lamellae with asymmetric surfaces scroll into uniform unbranched fibrils, while sheets with symmetric surfaces undergo stacking to form crystals. The self-assembly of asymmetric lamellae is associated with specific molecular features, such as the presence of narrow and flexible end groups with high packing densities, and likely represents a general mechanism for the formation of small-molecule gels.
Collapse
Affiliation(s)
| | - Laurence J. Kershaw Cook
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Anna G. Slater
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Dmitry S. Yufit
- Department
of Chemistry, Durham University, Durham DH1 3LE, U.K.
| | | |
Collapse
|
24
|
Rey-Tarrío F, Simón-Fuente S, Cuerva JM, Miguel D, Ribagorda M, Quiñoá E, Freire F. Metallo-Supramolecular Helical Fibres from Chiral Phenylacetylene Monomers: Cation Induced Self-Assembly. Angew Chem Int Ed Engl 2024; 63:e202318454. [PMID: 38185794 DOI: 10.1002/anie.202318454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Chiral metallo-supramolecular fibres can be easily obtained by mixing a chloroform solution of a phenylacetylene monomer (PA) that bears a chiral sulfoxide group as pendant, with different equivalents of a methanolic solution of AgClO4 . Thus, while the PA is found molecularly dissolved in chloroform, the addition of Ag+ ions induce its aggregation through the formation of an axially chiral metallo-supramolecular aggregate with high thermal stable properties. In this case, the ability of the metal ion to coordinate the PA triple bond, combined with the argentophilicity of the metal ion and the planarity of the phenylacetylene drives to the formation of a helical coordination polymer, whose P or M axial chirality is determined by the chirality of the sulfoxide used as substituent of the PA. Depending on the PA/Ag+ (mol/mol) ratio, it is possible to tune the morphology of the metallo-supramolecular aggregate from chiral fibers to chiral gel.
Collapse
Affiliation(s)
- Francisco Rey-Tarrío
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Silvia Simón-Fuente
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Juan M Cuerva
- Departamento de Química Orgánica. Facultad de Ciencias, Universidad de Granada (UGR), Unidad de Excelencia de Química Aplicada a la Biomedicina y Medioambiente (UEQ), 18071, Granada, Spain
| | - Delia Miguel
- Departamento de Fisicoquímica. Facultad de Farmacia, Universidad de Granada (UGR, UEQ), 18071, Granada, Spain
| | - Maria Ribagorda
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Emilio Quiñoá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Félix Freire
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
25
|
Umesh, Ralhan J, Kumar V, Bhatt H, Nath D, Mavlankar NA, Ghosh HN, Pal A. Thermo-Chemical Cues-Mediated Strategy to Control Peptide Self-Assembly and Charge Transfer Complexation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2754-2763. [PMID: 38275136 DOI: 10.1021/acs.langmuir.3c03426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Peptide amphiphiles (PAs) are known for their remarkable ability to undergo molecular self-assembly, a process that is highly responsive to the local microenvironment. Herein, we design a pyrene tethered peptide amphiphile Py-VFFAKK, 1 that exhibits pathway-driven self-assembly from metastable nanoparticles to kinetically controlled nanofibers and thermodynamically stable twisted bundles upon modulations in pH, temperature, and chemical cues. The presence of the pyrene moiety ensures donation of the electron to an electron acceptor, namely, 7,7,8,8-tetracyanoquinodimethane (TCNQ), to form a supramolecular charge transfer complex in aqueous solution that was studied in detail with microscopic and spectroscopic techniques. Excitation of the donor species in its excimer state facilitates electron donation to the acceptor moiety, paving away a long-lived charge-separated state that persists for over a nanosecond, as ascertained through transient absorption spectroscopy. Finally, the self-assembled charge transfer complex is explored toward antimicrobial properties with Escherichia coli while maintaining biocompatibility toward L929 mice fibroblast cells.
Collapse
Affiliation(s)
- Umesh
- Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Jahanvi Ralhan
- Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Vikas Kumar
- Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Himanshu Bhatt
- Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Debasish Nath
- Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Nimisha A Mavlankar
- Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Hirendra N Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, Odisha 752050, India
| | - Asish Pal
- Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali 140306, Punjab, India
| |
Collapse
|
26
|
Du S, Jiang Y, Jiang H, Zhang L, Liu M. Pathway-Dependent Self-Assembly for Control over Helical Nanostructures and Topochemical Photopolymerization. Angew Chem Int Ed Engl 2024; 63:e202316863. [PMID: 38116831 DOI: 10.1002/anie.202316863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Pathway-dependent self-assembly, in which a single building block forms two or more types of self-assembled nanostructures, is an important topic due to its mimic to the complexity in biology and manipulation of diverse supramolecular materials. Here, we report a pathway-dependent self-assembly using chiral glutamide derivatives (L or D-PAG), which form chiral nanotwist and nanotube through a cooperative slow cooling and an isodesmic fast cooling process, respectively. Furthermore, pathway-dependent self-assembly can be harnessed to control over the supramolecular co-assembly of PAG with a luminophore β-DCS or a photopolymerizable PCDA. Fast cooling leads to the co-assembled PAG/β-DCS nanotube exhibiting green circularly polarized luminescence (CPL), while slow cooling to nanofiber with blue CPL. Additionally, fast cooling process promotes the photopolymerization of PCDA into a red chiral polymer, whereas slow cooling inhibits the polymerization. This work not only demonstrates the pathway-dependent control over structural characteristics but also highlights the diverse functions emerged from the different assemblies.
Collapse
Affiliation(s)
- Sifan Du
- National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yuqian Jiang
- Key laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Hejin Jiang
- National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, China
| | - Li Zhang
- National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, China
| | - Minghua Liu
- National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
27
|
Greciano EE, Schwalb AJ, Sánchez L. Effect of chirality in the supramolecular polymerization of N-annulated perylenediimides: Cancelling pathway complexity. Chirality 2024; 36:e23639. [PMID: 38384148 DOI: 10.1002/chir.23639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 02/23/2024]
Abstract
Herein, the synthesis of two chiral NPBIs, (S)-1 and (R)-1, is reported and their self-assembling features investigated. The reported NPBIs form chiral supramolecular polymers with a rich dichroic pattern by the π-stacking of the aromatic backbones and the formation of an array of H-bonds between the amide functional groups. Furthermore, the peripheral 3,4,5-trialkoxy benzamide groups can form seven-membered pseudocycles by the intramolecular H-bonding interaction between the NH of the peripheral amides and one of the carbonyls of the imide units thus yielding a kinetically controlled self-assembly process. Unlike achiral NPBI 1, that has been reported to form up to four supramolecular polymorphs, the reported chiral NPBIs form only a J-type aggregated species. The results presented herein reveal how subtle changes exert an enormous influence on the supramolecular polymerization outcome.
Collapse
Affiliation(s)
- Elisa E Greciano
- Department of Organic Chemistry, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Alfonso J Schwalb
- Department of Organic Chemistry, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis Sánchez
- Department of Organic Chemistry, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
28
|
Kleine-Kleffmann L, Schulz A, Stepanenko V, Würthner F. Growth of Merocyanine Dye J-Aggregate Nanosheets by Living Supramolecular Polymerization. Angew Chem Int Ed Engl 2023; 62:e202314667. [PMID: 37962230 DOI: 10.1002/anie.202314667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/15/2023]
Abstract
J-aggregates are highly desired dye aggregates but so far there has been no general concept how to accomplish the required slip-stacked packing arrangement for dipolar merocyanine (MC) dyes whose aggregation commonly affords one-dimensional aggregates composed of antiparallel, co-facially stacked MCs with H-type coupling. Herein we describe a strategy for MC J-aggregates based on our results for an amphiphilic MC dye bearing alkyl and oligo(ethylene glycol) side chains. In an aqueous solvent mixture, we observe the formation of two supramolecular polymorphs for this MC dye, a metastable off-pathway nanoparticle showing H-type coupling and a thermodynamically favored nanosheet showing J-type coupling. Detailed studies concerning the self-assembly mechanism by UV-Vis spectroscopy and the packing structure by atomic force microscopy and wide-angle X-ray scattering show how the packing arrangement of such amphiphilic MC dyes can afford slip-stacked two-dimensional nanosheets whose macrodipole is compensated by the formation of a bilayer structure. As an additional feature we demonstrate how the size of the nanosheets can be controlled by seeded living supramolecular polymerization.
Collapse
Affiliation(s)
- Lara Kleine-Kleffmann
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Alexander Schulz
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Vladimir Stepanenko
- Center for Nanosystems Chemistry (CNC) & Bavarian Polymer Institute (BPI), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Center for Nanosystems Chemistry (CNC) & Bavarian Polymer Institute (BPI), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| |
Collapse
|
29
|
Chen Y, Wan Q, Shi Y, Tang B, Che CM, Liu C. Three-Component Multiblock 1D Supramolecular Copolymers of Ir(III) Complexes with Controllable Sequences. Angew Chem Int Ed Engl 2023; 62:e202312844. [PMID: 37905561 DOI: 10.1002/anie.202312844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/15/2023] [Accepted: 10/30/2023] [Indexed: 11/02/2023]
Abstract
Multicomponent supramolecular block copolymers (BCPs) have attracted much attention due to their potential functionalities, but examples of three-component supramolecular BCPs are rare. Herein, we report the synthesis of three-component multiblock 1D supramolecular copolymers of Ir(III) complexes 1-3 by a sequential seeded supramolecular polymerization approach. Precise control over the kinetically trapped species via the pathway complexity of the monomers is the key to the successful synthesis of BCPs with up to 9 blocks. Furthermore, 5-block BCPs with different sequences could be synthesized by changing the addition order of the kinetic species during a sequentially seeded process. The corresponding heterogeneous nucleation-elongation process has been confirmed by the UV/Vis absorption spectra, and each segment of the multiblock copolymers could be characterized by both TEM and SEM. Interestingly, the energy transfer leads to weakened emission of 1-terminated and enhanced emission of 3-terminated BCPs. This study will be an important step in advancing the synthesis and properties of three-component BCPs.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Qingyun Wan
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yusheng Shi
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Bingtao Tang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Chi-Ming Che
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chun Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| |
Collapse
|
30
|
Gallonde WT, Poidevin C, Houard F, Caytan E, Dorcet V, Fihey A, Bernot K, Rigaut S, Galangau O. Kinetic Delay in Cooperative Supramolecular Polymerization by Redefining the Trade-Off Relationship between H-Bonds and Van der Waals/π-π Stacking Interactions. Angew Chem Int Ed Engl 2023; 62:e202313696. [PMID: 37871290 DOI: 10.1002/anie.202313696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/06/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
We here present how rebalancing the interplay between H-bonds and dispersive forces (Van der Waals/π-π stacking) may induce or not the generation of kinetic metastable states. In particular, we show that extending the aromatic content and favouring the interchain VdW interactions causes a delay into the cooperative supramolecular polymerization of a new family of toluene bis-amide derivatives by trapping the metastable inactive state.
Collapse
Affiliation(s)
- William T Gallonde
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000, Rennes, France
| | - Corentin Poidevin
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000, Rennes, France
| | - Felix Houard
- Univ. Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000, Rennes, France
| | - Elsa Caytan
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000, Rennes, France
| | - Vincent Dorcet
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000, Rennes, France
| | - Arnaud Fihey
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000, Rennes, France
| | - Kevin Bernot
- Univ. Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000, Rennes, France
| | - Stéphane Rigaut
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000, Rennes, France
| | - Olivier Galangau
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000, Rennes, France
| |
Collapse
|
31
|
Lee H, Lee M, Hwang JH, Kim I, Lee E, Jang WD. Recognition of atomic-level difference in porphyrin dyads for self-sorted supramolecular polymer growth. NANOSCALE 2023; 15:18224-18232. [PMID: 37942951 DOI: 10.1039/d3nr04851a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Porphyrin dyads (PDMs, where M = Zn and Cu) composed of diphenylporphyrin and tetraphenylporphyrin units, designated as DPDMs and TPDMs, respectively, exhibited remarkable differences in the molecular assemblies depending on the coordination metal ion. Furthermore, TPDMs showed self-sorting behavior during the formation of supramolecular assemblies through the recognition of atomic-level difference.
Collapse
Affiliation(s)
- Hosoowi Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Minhyeong Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Jun Ho Hwang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Inhye Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Eunji Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Woo-Dong Jang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
32
|
Jin Z, Sasaki N, Kishida N, Takeuchi M, Wakayama Y, Sugiyasu K. Two-Dimensional Living Supramolecular Polymerization: Improvement in Edge Roughness of Supramolecular Nanosheets by Using a Dummy Monomer. Chemistry 2023; 29:e202302181. [PMID: 37658627 DOI: 10.1002/chem.202302181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Supramolecular polymers are formed through nucleation (i. e., initiation) and polymerization processes, and kinetic control over the nucleation process has recently led to the realization of living supramolecular polymerization. Changing the viewpoint, herein we focus on controlling the polymerization process, which we expect to pave the way to further developments in controlled supramolecular polymerization. In our previous study, two-dimensional living supramolecular polymerization was used to produce supramolecular nanosheets with a controlled area; however, these had rough edges. In this study, the growth of the nanosheets was controlled by using a 'dummy' monomer to produce supramolecular nanosheets with smoothed edges.
Collapse
Grants
- JP19K05592 Ministry of Education, Culture, Sports, Science and Technology
- JP22H02134 Ministry of Education, Culture, Sports, Science and Technology
- 20H04682 Ministry of Education, Culture, Sports, Science and Technology
- JP20H05868 Ministry of Education, Culture, Sports, Science and Technology
- JPMXP1122714694 Ministry of Education, Culture, Sports, Science and Technology
- Izumi Science and Technology Foundation
- Iketani Science and Technology Foundation
- Murata Science Foundation
- Sekisui Chemical
- Mitsubishi Foundation
Collapse
Affiliation(s)
- Zhehui Jin
- Department of Chemistry and Biochemistry Graduate School of Engineering, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan
- National Institute for Materials Science, Tsukuba, Ibaraki, 305-0047, Japan
| | - Norihiko Sasaki
- National Institute for Materials Science, Tsukuba, Ibaraki, 305-0047, Japan
| | - Natsuki Kishida
- Laboratory for Chemistry and Life Science Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Masayuki Takeuchi
- National Institute for Materials Science, Tsukuba, Ibaraki, 305-0047, Japan
| | - Yutaka Wakayama
- Department of Chemistry and Biochemistry Graduate School of Engineering, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan
- National Institute for Materials Science, Tsukuba, Ibaraki, 305-0047, Japan
| | - Kazunori Sugiyasu
- Department of Polymer Chemistry, Kyoto University Kyotodaigaku-katsura, Kyoto, 615-8510, Japan
| |
Collapse
|
33
|
Umesh, Bera S, Bhattacharya S. Dual Circularly Polarized Luminescence (CPL) and Piezoelectric Responses in Self-Assembled Chiral Nanostructures Derived from a Dipeptide Based Piezorganogel. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2308104. [PMID: 37955918 DOI: 10.1002/smll.202308104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/17/2023] [Indexed: 11/14/2023]
Abstract
Next-generation medical and consumer electrical devices require soft, flexible materials. Piezoelectric materials, capable of converting mechanical stress into electrical energy, are of interest across various fields. Chiral nanostructures, with inherent chirality, have emerged as potential piezoelectric materials. Peptide-based materials, known for self-assembly and stimuli responsiveness, hold promise for the utilization of chiral nanostructures. When combined with luminescent chromophores, peptides can generate aggregation-induced chiroptical effects like Circularly Polarized Luminescence (CPL) and Circular Dichroism (CD). In this study, a chiral organogel, L,L-1 is synthesized, and its self-assembly, mechanical properties, and chiroptical features are examined. The organogel exhibits thermo-reversible and thixotropic behavior, forming fibrillar networks and 2D-sheets upon cooling. CD spectroscopy reveals aggregation-induced chirality on pyrene chromophore, resulting in CPL with glum values of 3.0 (± 0.2) × 10-3 and 3.1 (± 0.2) × 10-3 for L,L-1 and D,D-1, respectively. Notably, the 2D-sheets exhibit an enhanced piezoelectric response (d33 ≈76.0 pm V-1 ) compared to the fibrillar network (d33 ≈64.1 pm V-1 ). Introducing an electron-deficient molecule into the solution forms a Charge-transfer (CT) complex, modulating the piezoelectric response to d33 ≈52.44 pm V-1 . This study offers a promising approach to optoelectronics design, presenting a chiral system with both CPL and piezoelectric responses, opening new possibilities for innovative applications.
Collapse
Affiliation(s)
- Umesh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Sayan Bera
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Santanu Bhattacharya
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
- Technical Research Centre, Indian Association for the Cultivation of Science, Kolkata, 700032, India
- Department of Chemistry, Indian Institute of Science Education and Research, Tirupati, 517619, India
| |
Collapse
|
34
|
Kompella SVK, Balasubramanian S. Supramolecular Polymerization of a Pyrene-Substituted Diamide and Its Ensemble of Kinetically Trapped Configurations. Angew Chem Int Ed Engl 2023; 62:e202310727. [PMID: 37725396 DOI: 10.1002/anie.202310727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
The prevalence of kinetically accessible states in supramolecular polymerization pathways has been exploited to control the growth of the polymer and thereby to obtain niche morphologies. Yet, these pathways themselves are not easily amenable for experimental delineation but could potentially be understood through molecular dynamics (MD) simulations. Herein, we report an extensive investigation of the self-assembly of pyrene-substituted diamide (PDA) monomers in solution, conducted using atomistic MD simulations and advanced sampling methods. We characterize such kinetic and thermodynamic states as well as the transition pathways and free energy barriers between them. PDA forms a dimeric segment with the N- to C-termini vectors of the diamide moieties arranged either in parallel or anti-parallel fashion. This characteristic, combined with the molecule's torsional flexibility and pyrene-solvent interactions, presents an ensemble of molecular configurations contributing to the kinetic state in the polymerization pathway. While this ensemble primarily comprises short oligomers containing a mix of anti-parallel and parallel dimeric segments, the thermodynamic state of the assembly is a right-handed polymer featuring parallel ones only. Our work thus offers an approach by which the landscape of any specific supramolecular polymerization can be deconstructed.
Collapse
Affiliation(s)
- Srinath V K Kompella
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| |
Collapse
|
35
|
Abstract
As an active branch within the field of supramolecular polymers, chiral supramolecular polymers (SPs) are an excellent benchmark to generate helical structures that can clarify the origin of homochirality in Nature or help determine new exciting functionalities of organic materials. Herein, we highlight the most utilized strategies to build up chiral SPs by using chiral monomeric units or external stimuli. Selected examples of transfer of asymmetry, in which the point or axial chirality contained by the monomeric units is efficiently transferred to the supramolecular scaffold yielding enantioenriched helical structures, will be presented. The importance of the thermodynamics and kinetics associated with those processes is stressed, especially the influence that parameters such as the helix reversal and mismatch penalties exert on the achievement of amplification of asymmetry in co-assembled systems will also be considered. Remarkable examples of breaking symmetry, in which chiral supramolecular polymers can be attained from achiral self-assembling units by applying external stimuli like stirring, solvent or light, are highlighted. Finally, the specific and promising applications of chiral supramolecular polymers are presented with recent relevant examples.
Collapse
Affiliation(s)
- Fátima García
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain.
| | - Rafael Gómez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain.
| | - Luis Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain.
| |
Collapse
|
36
|
Contreras-Montoya R, Smith JP, Boothroyd SC, Aguilar JA, Mirzamani M, Screen MA, Yufit DS, Robertson M, He L, Qian S, Kumari H, Steed JW. Pathway complexity in fibre assembly: from liquid crystals to hyper-helical gelmorphs. Chem Sci 2023; 14:11389-11401. [PMID: 37886106 PMCID: PMC10599479 DOI: 10.1039/d3sc03841f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Pathway complexity results in unique materials from the same components according to the assembly conditions. Here a chiral acyl-semicarbazide gelator forms three different gels of contrasting fibre morphology (termed 'gelmorphs') as well as lyotropic liquid crystalline droplets depending on the assembly pathway. The gels have morphologies that are either hyperhelical (HH-Gel), tape-fibre (TF-Gel) or thin fibril derived from the liquid crystalline phase (LC-Gels) and exhibit very different rheological properties. The gelator exists as three slowly interconverting conformers in solution. All three gels are comprised of an unsymmetrical, intramolecular hydrogen bonded conformer. The kinetics show that formation of the remarkable HH-Gel is cooperative and is postulated to involve association of the growing fibril with a non-gelling conformer. This single molecule dynamic conformational library shows how very different materials with different morphology and hence very contrasting materials properties can arise from pathway complexity as a result of emergent interactions during the assembly process.
Collapse
Affiliation(s)
| | - James P Smith
- Department of Chemistry, Durham University Durham DH1 3LE UK
| | | | - Juan A Aguilar
- Department of Chemistry, Durham University Durham DH1 3LE UK
| | - Marzieh Mirzamani
- James L. Winkle College of Pharmacy, University of Cincinnati 231 Albert Sabin Way, Medical Science Building 3109C Cincinnati OH 45267-0514 USA
| | - Martin A Screen
- Department of Chemistry, Durham University Durham DH1 3LE UK
| | - Dmitry S Yufit
- Department of Chemistry, Durham University Durham DH1 3LE UK
| | - Mark Robertson
- School of Polymer Science and Engineering, University of Southern Mississippi 118 College Dr. Hattiesburg MS 39406 USA
| | - Lilin He
- Neutron Scattering Division, Oak Ridge National Laboratory 1 Bethel Valley Rd. Oak Ridge TN 37831 USA
| | - Shuo Qian
- Neutron Scattering Division, Oak Ridge National Laboratory 1 Bethel Valley Rd. Oak Ridge TN 37831 USA
| | - Harshita Kumari
- James L. Winkle College of Pharmacy, University of Cincinnati 231 Albert Sabin Way, Medical Science Building 3109C Cincinnati OH 45267-0514 USA
| | | |
Collapse
|
37
|
Sarkar S, Laishram R, Deb D, George SJ. Controlled Noncovalent Synthesis of Secondary Supramolecular Polymers. J Am Chem Soc 2023; 145:22009-22018. [PMID: 37754784 DOI: 10.1021/jacs.3c06844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Dynamic supramolecular polymers, with their functional similarities to classical covalent polymers and their adaptive and self-repairing nature reminiscent of biological assemblies, have emerged as highly promising systems for the design of smart soft materials. Recent advancements in mechanistic investigations and novel synthetic strategies, such as living supramolecular polymerization, have significantly enhanced our ability to control the primary structure of these supramolecular polymers. However, realizing their full functional potential requires expanding their topological diversity in a manner akin to classical polymers as well as achieving precise molecular organization at higher hierarchical levels of self-assembly. In this paper, we present a remarkable advancement in this field, introducing an unprecedented and controlled synthesis of secondary supramolecular polymers. Our innovative strategy combines chirality-controlled surface-catalyzed secondary nucleation and a bioinspired peptide design, effectively stabilizing higher-order assembly. Furthermore, by harnessing this stereoselective nucleation process, we demonstrate the successful synthesis of racemic supramolecular polymers featuring parallelly stacked conglomerate microstructures─a previously unreported topology in synthetic self-assembled systems. Additionally, we elucidate that the extent of secondary supramolecular polymers can be regulated by modulating the enantiomeric excess of the chiral monomers. Consequently, our study unveils new topologies that exhibit enhanced higher-order structural complexity in the realm of supramolecular polymers.
Collapse
Affiliation(s)
- Souvik Sarkar
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore 560064, India
| | - Raju Laishram
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore 560064, India
| | - Darshana Deb
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore 560064, India
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore 560064, India
| |
Collapse
|
38
|
López-Gandul L, Morón-Blanco A, García F, Sánchez LL. Supramolecular Block Copolymers from Tricarboxamides. Biasing Co-assembly by the Incorporation of Pyridine Rings. Angew Chem Int Ed Engl 2023; 62:e202308749. [PMID: 37483088 DOI: 10.1002/anie.202308749] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/25/2023]
Abstract
The synthesis of a series of triangular-shaped tricarboxamides endowed with three picoline or nicotine units (compounds 2 and 3, respectively) or just one nicotine unit (compound 4) is reported, and their self-assembling features investigated. The pyridine rings make compounds 2-4 electronically complementary with our previously reported oligo(phenylene ethynylene)tricarboxamides (OPE-TA) 1 to form supramolecular copolymers. C3 -symmetric tricarboxamide 2 forms highly stable intramolecular five-membered pseudocycles that impede its supramolecular polymerization into poly-2 and the co-assembly with 1 to yield copolymer poly-1-co-2. On the other hand, C3 -symmetric tricarboxamide 3 readily forms poly-3 with great stability but unable to form helical supramolecular polymers despite the presence of the peripheral chiral side chains. The copolymer poly-1-co-3 can only be obtained by a previous complete disassembly of the constitutive homopolymers in CHCl3 . Helical poly-1-co-3 arises in a process involving the transfer of the helicity from racemic poly-1 to poly-3, and the amplification of asymmetry from chiral poly-3 to poly-1. Importantly, C2v -symmetric 4, endowed with only one nicotinamide moiety and three chiral side chains, self-assembles into a P-type helical supramolecular polymer (poly-4) in a thermodynamically controlled cooperative process. The combination of poly-1 and poly-4 generates chiral supramolecular copolymer poly-1-co-4, whose blocky microstructure has been investigated by applying the previously reported supramolecular copolymerization model.
Collapse
Affiliation(s)
- Lucía López-Gandul
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid Ciudad Universitaria, s/n, 28040-, Madrid, Spain
| | - Adrián Morón-Blanco
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid Ciudad Universitaria, s/n, 28040-, Madrid, Spain
| | - Fátima García
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid Ciudad Universitaria, s/n, 28040-, Madrid, Spain
| | - L Luis Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid Ciudad Universitaria, s/n, 28040-, Madrid, Spain
| |
Collapse
|
39
|
Moharana P, Santosh G. Amphiphilic perylene diimide-based fluorescent hemispherical aggregates as probes for metal ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122696. [PMID: 37043834 DOI: 10.1016/j.saa.2023.122696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 05/14/2023]
Abstract
The self-assembly behaviour of a newly synthesized amphiphilic core-positioned thioester appended with carboxylic acid functionalized perylene diimide derivative is studied in different organic solvents. Fluorescent J-type hemispherical aggregates are formed in THF solution. The effect of added metal ions on these fluorescent aggregates is evaluated using spectroscopic techniques, where we found these probes bind selectively to Fe3+ and Ba2+ ions. Two equivalents of Fe3+ ions bind cooperatively to one equivalent of perylene diimide derivative in the hemispherical aggregates with a binding constant of 1.4×107 M-1 and the limit of detection (LOD) was calculated to be 8.66×10-6 M. The positive cooperative binding effect of Fe3+ ions towards hemispherical aggregates equipped with perylene diimide derivatives leads to supramolecular polymerization. Ba2+ ions showed selectivity and sensitivity towards the fluorescent aggregates in THF by quenching the fluorescence intensity completely. The linear Stern-Volmer plot with a Stern-Volmer constant value of 502.6 M-1 signifies the heavy atom effect of Ba2+ ions, leading to fluorescence quenching. The morphological transformation of the fluorescent J-type hemispherical aggregates in the presence of Fe3+ and Ba2+ was studied in detail using electron microscopy.
Collapse
Affiliation(s)
- Prajna Moharana
- Division of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai 600127, India
| | - G Santosh
- Division of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai 600127, India.
| |
Collapse
|
40
|
Wang F, Liao R, Wang F. Pathway Control of π-Conjugated Supramolecular Polymers by Incorporating Donor-Acceptor Functionality. Angew Chem Int Ed Engl 2023; 62:e202305827. [PMID: 37431813 DOI: 10.1002/anie.202305827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
Controlling the nanoscale orientation of π-conjugated systems remains challenging due to the complexity of multiple energy landscapes involved in the supramolecular assembly process. In this study, we have developed an effective strategy for programming the pathways of π-conjugated supramolecular polymers, by incorporating both electron-rich methoxy- or methanthiol-benzene as donor unit and electron-poor cyano-vinylenes as acceptor units on the monomeric structure. It leads to the formation of parallel-stacked supramolecular polymers as the metastable species through homomeric donor/acceptor packing, which convert to slip-stacked supramolecular polymers as the thermodynamically stable species facilitated by heteromeric donor-acceptor packing. By further investigating the external seed-induced kinetic-to-thermodynamic transformation behaviors, our findings suggest that the donor-acceptor functionality on the seed structure is crucial for accelerating pathway conversion. This is achieved by eliminating the initial lag phase in the supramolecular polymerization process. Overall, this study provides valuable insights into designing molecular structures that control aggregation pathways of π-conjugated nanostructures.
Collapse
Affiliation(s)
- Fan Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Rui Liao
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Feng Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
41
|
Ogi S, Takamatsu A, Matsumoto K, Hasegawa S, Yamaguchi S. Biomimetic Design of a Robustly Stabilized Folded State Enabling Seed-Initiated Supramolecular Polymerization under Microfluidic Mixing. Angew Chem Int Ed Engl 2023; 62:e202306428. [PMID: 37332181 DOI: 10.1002/anie.202306428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/20/2023]
Abstract
We have investigated the folding and assembly behavior of a cystine-based dimeric diamide bearing pyrene units and solubilizing alkyl chains. In low-polarity solvents, it forms a 14-membered ring through double intramolecular hydrogen bonds between two diamide units. The spectroscopic studies revealed that the folded state is thermodynamically unstable and eventually transforms into more energetically stable helical supramolecular polymers that show an enhanced chiral excitonic coupling between the transition dipoles of the pyrene units. Importantly, compared to an alanine-based monomeric diamide, the dimeric diamide exhibits a superior kinetic stability in the metastable folded state, as well as an increased thermodynamic stability in the aggregated state. Accordingly, the initiation of supramolecular polymerization can be regulated using a seeding method even under microfluidic mixing conditions. Furthermore, taking advantage of a self-sorting behavior observed in a mixture of l-cysteine- and d-cysteine-based dimeric diamides, a two-step supramolecular polymerization was achieved by stepwise addition of the corresponding seeds.
Collapse
Affiliation(s)
- Soichiro Ogi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
- Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Aiko Takamatsu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Kentaro Matsumoto
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Shintaro Hasegawa
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
- Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| |
Collapse
|
42
|
Sasaki N, Kikkawa J, Ishii Y, Uchihashi T, Imamura H, Takeuchi M, Sugiyasu K. Multistep, site-selective noncovalent synthesis of two-dimensional block supramolecular polymers. Nat Chem 2023; 15:922-929. [PMID: 37264101 DOI: 10.1038/s41557-023-01216-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/24/2023] [Indexed: 06/03/2023]
Abstract
Although the principles of noncovalent bonding are well understood and form the basis for the syntheses of many intricate supramolecular structures, supramolecular noncovalent synthesis cannot yet achieve the levels of precision and complexity that are attainable in organic and/or macromolecular covalent synthesis. Here we show the stepwise synthesis of block supramolecular polymers from metal-porphyrin derivatives (in which the metal centre is Zn, Cu or Ni) functionalized with fluorinated alkyl chains. These monomers first undergo a one-dimensional supramolecular polymerization and cyclization process to form a toroidal structure. Subsequently, successive secondary nucleation, elongation and cyclization steps result in two-dimensional assemblies with concentric toroidal morphologies. The site selectivity endowed by the fluorinated chains, reminiscent of regioselectivity in covalent synthesis, enables the precise control of the compositions and sequences of the supramolecular structures, as demonstrated by the synthesis of several triblock supramolecular terpolymers.
Collapse
Grants
- JP22H02134 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20H04682 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP19K05592 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20H04669 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20H05868 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Norihiko Sasaki
- Molecular Design and Function Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Jun Kikkawa
- Electron Microscopy Group, Center for Basic Research on Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Yoshiki Ishii
- Department of Physics, Nagoya University, Nagoya, Japan
| | | | - Hitomi Imamura
- Molecular Design and Function Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
- Department of Materials Science and Engineering, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masayuki Takeuchi
- Molecular Design and Function Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
- Department of Materials Science and Engineering, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazunori Sugiyasu
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
| |
Collapse
|
43
|
Gupta D, Gupta V, Nath D, Miglani C, Mandal D, Pal A. Stimuli-Responsive Self-Assembly Disassembly in Peptide Amphiphiles to Endow Block- co-Fibers and Tunable Piezoelectric Response. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25110-25121. [PMID: 35767722 DOI: 10.1021/acsami.2c05469] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Supramolecular assemblies with well-defined structural attenuation toward varied functional implications are an emerging area in mimicking natural biomaterials. In that regard, the redox stimuli-responsive ferrocene moiety can reversibly change between a nonpolar ferrocenyl and polar ferrocenium cation that endows interesting modular features to the building blocks with respect to self-assembly/disassembly. We design a series of ferrocene anchored peptide fragment NVFFAKKC using hydrophobic alkyl spacers of different chain lengths. Increasing the spacer length between the redox-responsive and self-assembling motifs increases the propensity to form robust nanofibers, which can be physically cross-linked to form hydrogels. The controlled redox response of the ferrocene moiety tandem with pH control provides access to structural control over the peptide nanostructures and tunable mechanical strengths. Further, such redox-sequestered dormant states hinder the spontaneous nucleation process that we exploit toward seeded supramolecular polymerization to form block cofibers composed of redox-responsive periphery and nonresponsive cores. Finally, such redox sequestration of peptide self-assembly renders an on-off piezoelectric response for potential utilization in peptide bioelectronics.
Collapse
Affiliation(s)
- Deepika Gupta
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Varun Gupta
- Quantum Materials and Devices, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Debasish Nath
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Chirag Miglani
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Dipankar Mandal
- Quantum Materials and Devices, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Asish Pal
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| |
Collapse
|
44
|
Itabashi H, Tashiro K, Koshikawa S, Datta S, Yagai S. Distinct seed topologies enable comparison of elongation and secondary nucleation pathways in seeded supramolecular polymerization. Chem Commun (Camb) 2023. [PMID: 37161759 DOI: 10.1039/d3cc01587d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The influence of seed topologies on seeded supramolecular polymerization was examined using helicoidal and toroidal supramolecular polymer seeds. The addition of these seeds to a supersaturated solution of monomers led to distinct nucleation-growth kinetics, which were attributed to the significant difference between the elongation from helicoid termini and secondary nucleation catalyzed by the toroid surface.
Collapse
Affiliation(s)
- Hiroki Itabashi
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Keigo Tashiro
- Department of Applied Chemistry, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo, 180-8633, Japan
| | - Shumpei Koshikawa
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Sougata Datta
- Institute for Advanced Academic Research (IAAR), Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | - Shiki Yagai
- Institute for Advanced Academic Research (IAAR), Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
45
|
Kleine-Kleffmann L, Stepanenko V, Shoyama K, Wehner M, Würthner F. Controlling the Supramolecular Polymerization of Squaraine Dyes by a Molecular Chaperone Analogue. J Am Chem Soc 2023; 145:9144-9151. [PMID: 37058428 DOI: 10.1021/jacs.3c01002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Molecular chaperones are proteins that assist in the (un)folding and (dis)assembly of other macromolecular structures toward their biologically functional state in a non-covalent manner. Transferring this concept from nature to artificial self-assembly processes, here, we show a new strategy to control supramolecular polymerization via a chaperone-like two-component system. A new kinetic trapping method was developed that enables efficient retardation of the spontaneous self-assembly of a squaraine dye monomer. The suppression of supramolecular polymerization could be regulated with a cofactor, which precisely initiates self-assembly. The presented system was investigated and characterized by ultraviolet-visible, Fourier transform infrared, and nuclear magnetic resonance spectroscopy, atomic force microscopy, isothermal titration calorimetry, and single-crystal X-ray diffraction. With these results, living supramolecular polymerization and block copolymer fabrication could be realized, demonstrating a new possibility for effective control over supramolecular polymerization processes.
Collapse
Affiliation(s)
- Lara Kleine-Kleffmann
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Vladimir Stepanenko
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry & Bavarian Polymer Institute, Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| | - Kazutaka Shoyama
- Center for Nanosystems Chemistry & Bavarian Polymer Institute, Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| | - Marius Wehner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry & Bavarian Polymer Institute, Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| |
Collapse
|
46
|
Gong Y, Fu L, Che Y, Ji H, Zhang Y, Zang L, Zhao J, Che Y. Fabrication of Two-Dimensional Platelets with Heat-Resistant Luminescence and Large Two-Photon Absorption Cross Sections via Cooperative Solution/Solid Self-Assembly. J Am Chem Soc 2023; 145:9771-9776. [PMID: 37079712 DOI: 10.1021/jacs.3c01517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The combination of solution self-assembly, which enables primary morphological control, and solid self-assembly, which enables the creation of novel properties, can lead to the formation of new functional materials that cannot be obtained using either technique alone. Herein, we report a cooperative solution/solid self-assembly strategy to fabricate novel two-dimensional (2D) platelets. Precursor 2D platelets with preorganized packing structure, shape, and size are formed via the living self-assembly of a donor-acceptor fluorophore and volatile coformer (i.e., propanol) in solution phase. After high-temperature annealing, propanol is released from the precursor platelets, and new continuous intermolecular hydrogen bonds are formed. The new 2D platelets formed retain the controllable morphologies originally defined by the solution phase living self-assembly but exhibit remarkable heat-resistant luminescence up to 200 °C and high two-photon absorption cross sections (i.e., >19,000 GM at 760 nm laser excitation).
Collapse
Affiliation(s)
- Yanjun Gong
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyang Fu
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxue Che
- HT-NOVA Co., Ltd., Zhuyuan Road, Shunyi District, Beijing 101312, China
| | - Hongwei Ji
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Zhang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ling Zang
- Nano Institute of Utah, and Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanke Che
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
47
|
Jin H, Wu Z, Lin W, Chen Y, Zhang J, Zheng R, Wei H, Chen Q, Qian Q, Huang J, Zhang J, Yan Y. Formation of Size-Controllable Tetragonal Nanoprisms by Crystallization-Directed Ionic Self-Assembly of Anionic Porphyrin and PEO-Containing Triblock Cationic Copolymer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300688. [PMID: 37029578 DOI: 10.1002/smll.202300688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/05/2023] [Indexed: 06/19/2023]
Abstract
The creation of anisotropic nanostructures with precise size control is desirable for new properties and functions, but it is challenging for ionic self-assembly (ISA) because of the non-directional electrostatic interactions. Herein, the formation of size-controllable tetragonal nanoprisms is reported via crystallization-directed ionic self-assembly (CDISA) through evaporating a micellar solution on solid substrates. First, ISA is designed with a crystalline polyethylene oxide (PEO) containing cationic polymer poly(2-(2-guanidinoethoxy)ethyl methacrylate)-b-poly(ethyleneoxide)-b-poly(2-(2-guanidinoethoxy)-ethylmethacrylate) (PGn -PEO230 -PGn ) and an anionic 5,10,15,20-Tetrakis(4-sulfonatophenyl) porphyrin (TPPS) to form micelles in aqueous solution. The PG segments binds excessive TPPS with amplenet chargeto form hydrophilic corona, while the PEO segments are unprecedentedly dehydrated and tightly packed into cores. Upon naturally drying the micellar solution on a silicon wafer, PEO crystallizationdirects the micelles to aggregate into square nanoplates, which are further connected to nanoprisms. Length and width of the nanoprisms can be facilely tuned by varying the initial concentration. In this hierarchical process, the aqueous self-assembly is prerequisite and the water evaporation rate is crucial for the formation of nanostructures, which provides multiple factors for morphology regulating. Such precise size-control strategy is highly expected to provide a new vision for the design of advanced materials with size controllable anisotropic nanostructures.
Collapse
Affiliation(s)
- Hongjun Jin
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350117, China
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ziyan Wu
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Weilin Lin
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Yinye Chen
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Jingran Zhang
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Ruyi Zheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Haibing Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Qinghua Chen
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Qingrong Qian
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
48
|
Naranjo C, Adalid S, Gómez R, Sánchez L. Modulating the Differentiation of Kinetically Controlled Supramolecular Polymerizations through the Alkyl Bridge Length. Angew Chem Int Ed Engl 2023; 62:e202218572. [PMID: 36735857 DOI: 10.1002/anie.202218572] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/05/2023]
Abstract
The synthesis and self-assembling features of N-annulated perylenebisimides (N-PBIs) 2-4 are reported and compared with the complex self-assembly of N-PBI 1. The studies presented herein demonstrate that increasing the length of the alkyl spacer separating the central aromatic core of the dye and the peripheral side chains cancels the differentiation on the corresponding supramolecular polymerization. Thus, only 2 is able to form two different supramolecular polymorphs. The formation of kinetically trapped monomeric species is observed for all the N-PBIs 2-4. These metastable species, constituted by intramolecularly H-bonded pseudocycles of 7, 8, 9, or 10 members for compounds 1, 2, 3, and 4, respectively, provoke kinetically controlled supramolecular polymerizations that can be accelerated by the addition of seeds. The results presented herein shed light on the intricate process of differentiation in self-assembly.
Collapse
Affiliation(s)
- Cristina Naranjo
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, s/n, 28040, -Madrid, Spain
| | - Sergio Adalid
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, s/n, 28040, -Madrid, Spain
| | - Rafael Gómez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, s/n, 28040, -Madrid, Spain
| | - Luis Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, s/n, 28040, -Madrid, Spain
| |
Collapse
|
49
|
Khanra P, Singh AK, Roy L, Das A. Pathway Complexity in Supramolecular Copolymerization and Blocky Star Copolymers by a Hetero-Seeding Effect. J Am Chem Soc 2023; 145:5270-5284. [PMID: 36797682 DOI: 10.1021/jacs.2c12894] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
This study unravels the intricate kinetic and thermodynamic pathways involved in the supramolecular copolymerization of the two chiral dipolar naphthalene monoimide (NMI) building blocks (O-NMI and S-NMI), differing merely by a single heteroatom (oxygen vs sulfur). O-NMI exhibits distinct supramolecular polymerization features as compared to S-NMI in terms of its pathway complexity, hierarchical organization, and chiroptical properties. Two distinct self-assembly pathways in O-NMI occur due to the interplay between the competing dipolar interactions among the NMI chromophores and amide-amide hydrogen (H)-bonding that engenders distinct nanotapes and helical fibers, from its antiparallel and parallel stacking modes, respectively. In contrast, the propensity of S-NMI to form only a stable spherical assembly is ascribed to its much stronger amide-amide H-bonding, which outperforms other competing interactions. Under the thermodynamic route, an equimolar mixture of the two monomers generates a temporally controlled chiral statistical supramolecular copolymer that autocatalytically evolves from an initially formed metastable spherical heterostructure. In contrast, the sequence-controlled addition of the two monomers leads to the kinetically driven hetero-seeded block copolymerization. The ability to trap O-NMI in a metastable state allows its secondary nucleation from the surface of the thermodynamically stable S-NMI spherical "seed", which leads to the core-multiarmed "star" copolymer with reversibly and temporally controllable length of the growing O-NMI "arms" from the S-NMI "core". Unlike the one-dimensional self-assembly of O-NMI and its random co-assembly with S-NMI, which are both chiral, unprecedentedly, the preferred helical bias of the nucleating O-NMI fibers is completely inhibited by the absence of stereoregularity of the S-NMI "seed" in the "star" topology.
Collapse
Affiliation(s)
- Payel Khanra
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ajeet Kumar Singh
- Institute of Chemical Technology Mumbai-IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai-IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
50
|
Huang Q, Cissé N, Stuart MCA, Lopatina Y, Kudernac T. Molecular Engineering of the Kinetic Barrier in Seeded Supramolecular Polymerization. J Am Chem Soc 2023; 145:5053-5060. [PMID: 36826999 PMCID: PMC9999411 DOI: 10.1021/jacs.2c10482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Seeded supramolecular polymerization (SSP) is a method that enables the controlled synthesis of supramolecular structures. SSP often relies on structures that are capable of self-assembly by interconverting between intramolecular and intermolecular modes of hydrogen bonding, characterized by a given kinetic barrier that is typically low. The control of the polymerization process is thus limited by the propensity of the hydrogen bonds to interconvert between the intramolecular and intermolecular modes of binding. Here, we report on an engineering of the polymerization kinetic barriers by sophisticated molecular design of the building blocks involved in such SSP processes. Our designs include two types of intramolecular hydrogen-bonded rings: on one hand, a central triazine tricarboxamide moiety that prevents self-assembly due to its stable intramolecular hydrogen bonds and on the other hand, three peripheral amide groups that promote self-assembly due to their stable intermolecular hydrogen bonds. We report a series of molecules with increasing bulkiness of the peripheral side chains exhibiting increasing kinetic stability in the monomeric form. Owing to the relative height of the barrier, we were able to observe that the rate constant of seeding is not proportional to the concentration of the seeds used. Based on that, we proposed a new kinetic model in which the rate-determining step is the activation of the monomer, and we provide the detailed energy landscape of the supramolecular polymerization process. Finally, we investigated the hetero-seeding of the building blocks that shows either inhibition or triggering of the polymerization.
Collapse
Affiliation(s)
- Qin Huang
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Nicolas Cissé
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marc C A Stuart
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Yaroslava Lopatina
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Tibor Kudernac
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|