1
|
Wei J, Wu BJ. Targeting monoamine oxidases in cancer: advances and opportunities. Trends Mol Med 2024:S1471-4914(24)00267-3. [PMID: 39438199 DOI: 10.1016/j.molmed.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
Monoamine oxidases (MAOs) are a crucial pair of isoenzymes responsible for degrading monoamine neurotransmitters and dietary amines. In addition to extensive studies of their roles in the context of brain functions and disorders over decades, emerging evidence indicates that MAOs are also often dysregulated and associated with clinical outcomes in diverse cancers, with the ability to differentially regulate cancer growth, invasion, metastasis, progression, and therapy response depending on the cancer type. In this review, we summarize recent advances in understanding the clinical relevance, functional importance, and mechanisms of MAOs in a broad range of cancers, and discuss the application and therapeutic benefit of MAO inhibitors (MAOIs) for cancer treatment, highlighting the roles of MAOs as novel regulators, prognostic biomarkers, and therapeutic targets in cancer.
Collapse
Affiliation(s)
- Jing Wei
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99223, USA
| | - Boyang Jason Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99223, USA.
| |
Collapse
|
2
|
Li B, Ayala-Orozco C, Si T, Zhou L, Wang Z, Martí AA, Tour JM. Divergent Syntheses of Near-Infrared Light-Activated Molecular Jackhammers for Cancer Cell Eradication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2405965. [PMID: 39400530 DOI: 10.1002/advs.202405965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/28/2024] [Indexed: 10/15/2024]
Abstract
Aminocyanines incorporating Cy7 and Cy7.5 moieties function as molecular jackhammers (MJH) through vibronic-driven action (VDA). This mechanism, which couples molecular vibrational and electronic modes, results in picosecond-scale concerted stretching of the entire molecule. When cell-associated and activated by near-infrared light, MJH mechanically disrupts cell membranes, causing rapid necrotic cell death. Unlike photodynamic and photothermal therapies, the ultrafast vibrational action of MJH is unhindered by high concentrations of reactive oxygen species scavengers and induces only a minimal temperature increase. Here, the efficient synthesis of a library of MJH is described using a practical approach to access a key intermediate and facilitating the preparation of various Cy7 and Cy7.5 MJH with diverse side chains in moderate to high yields. Photophysical characterization reveals that structural modifications significantly affect molar extinction coefficients and quantum yields while maintaining desirable absorption and emission wavelengths. The most promising compounds, featuring dimethylaminoethyl and dimethylcarbamoyl substitutions, demonstrate up to sevenfold improvement in phototherapeutic index compared to Cy7.5 amine across multiple cancer cell lines. This synthetic strategy provides a valuable platform for developing potent, light-activated therapeutic agents for cancer treatment, with potentially broad applicability across various cancer types.
Collapse
Affiliation(s)
- Bowen Li
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | | | - Tengda Si
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Lixin Zhou
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Zicheng Wang
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Angel A Martí
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, 77005, USA
| | - James M Tour
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, 77005, USA
- Smalley-Curl Institute, Rice University, Houston, TX, 77005, USA
- NanoCarbon Center and the Rice Advanced Materials Institute, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
3
|
Zuo WF, Pang Q, Zhu X, Yang QQ, Zhao Q, He G, Han B, Huang W. Heat shock proteins as hallmarks of cancer: insights from molecular mechanisms to therapeutic strategies. J Hematol Oncol 2024; 17:81. [PMID: 39232809 PMCID: PMC11375894 DOI: 10.1186/s13045-024-01601-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
Heat shock proteins are essential molecular chaperones that play crucial roles in stabilizing protein structures, facilitating the repair or degradation of damaged proteins, and maintaining proteostasis and cellular functions. Extensive research has demonstrated that heat shock proteins are highly expressed in cancers and closely associated with tumorigenesis and progression. The "Hallmarks of Cancer" are the core features of cancer biology that collectively define a series of functional characteristics acquired by cells as they transition from a normal state to a state of tumor growth, including sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, enabled replicative immortality, the induction of angiogenesis, and the activation of invasion and metastasis. The pivotal roles of heat shock proteins in modulating the hallmarks of cancer through the activation or inhibition of various signaling pathways has been well documented. Therefore, this review provides an overview of the roles of heat shock proteins in vital biological processes from the perspective of the hallmarks of cancer and summarizes the small-molecule inhibitors that target heat shock proteins to regulate various cancer hallmarks. Moreover, we further discuss combination therapy strategies involving heat shock proteins and promising dual-target inhibitors to highlight the potential of targeting heat shock proteins for cancer treatment. In summary, this review highlights how targeting heat shock proteins could regulate the hallmarks of cancer, which will provide valuable information to better elucidate and understand the roles of heat shock proteins in oncology and the mechanisms of cancer occurrence and development and aid in the development of more efficacious and less toxic novel anticancer agents.
Collapse
Affiliation(s)
- Wei-Fang Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiwen Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xinyu Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian-Qian Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian Zhao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gu He
- Department of Dermatology and Venereology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
4
|
Du Z, Huang X, Wu Z, Gao M, Li R, Luo S. A Mitochondria-Targeted Heptamethine Indocyanine Small Molecular Chelator for Attenuating Uranium Nephrotoxicity. Pharmaceuticals (Basel) 2024; 17:995. [PMID: 39204100 PMCID: PMC11357497 DOI: 10.3390/ph17080995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Radionuclide uranium has both a chemical and radioactive toxicity, leading to severe nephrotoxicity as it predominantly deposits itself in the kidneys after entering into human bodies. It crosses renal cell membranes, accumulates in mitochondria and causes mitochondrial oxidative damage and dysfunction. In this study, a mitochondria-targeted heptamethine indocyanine small molecule chelator modified with gallic acid (IR-82) is synthesized for uranium detoxication. Both gallic acid and sulfonic acid, as two hydrophilic endings, make IR-82, being excreted feasibly through kidneys. Gallic acid with polyphenol groups has a steady metal chelation effect and potent antioxidant ability, which may facilitate IR-82-alleviated uranium nephrotoxicity simultaneously by enhancing uranium decorporation from the kidneys and reducing mitochondrial oxidative damage. Cell viability assays demonstrate that IR-82 can significantly improve the cell viability of uranium-exposed human renal (HK-2) cells. It is also demonstrated to accumulate in mitochondria and reduce mitochondrial ROS and total intracellular ROS, as well as intracellular uranium content. In vivo imaging experiments in mice show that IR-82 could be excreted out through kidneys. ICP-MS tests further reveal that IR-82 can efficiently decrease the uranium deposition in mouse kidneys. IR-82 treatment improves the animal survival rate and renal function of experimental mice after high-dose uranium exposure. Collectively, our study may evidence that the development of uranium decorporation agents with kidney-mitochondrion dual targeting abilities is a promising strategy for attenuating uranium-induced nephrotoxicity.
Collapse
Affiliation(s)
| | | | | | | | | | - Shenglin Luo
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China; (Z.D.); (R.L.)
| |
Collapse
|
5
|
Yim J, Park J, Kim G, Lee HH, Chung JS, Jo A, Koh M, Park J. Conditional PROTAC: Recent Strategies for Modulating Targeted Protein Degradation. ChemMedChem 2024:e202400326. [PMID: 38993102 DOI: 10.1002/cmdc.202400326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) have emerged as a promising technology for inducing targeted protein degradation by leveraging the intrinsic ubiquitin-proteasome system (UPS). While the potential druggability of PROTACs toward undruggable proteins has accelerated their rapid development and the wide-range of applications across diverse disease contexts, off-tissue effects and side-effects of PROTACs have recently received attentions to improve their efficacy. To address these issues, spatial or temporal target protein degradation by PROTACs has been spotlighted. In this review, we explore chemical strategies for modulating protein degradation in a cell type-specific (spatio-) and time-specific (temporal-) manner, thereby offering insights for expanding PROTAC applications to overcome the current limitations of target protein degradation strategy.
Collapse
Affiliation(s)
- Junhyeong Yim
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Junyoung Park
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Gabin Kim
- Department of Chemistry and Chemistry, Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyung Ho Lee
- Department of Urology, Urological Cancer Center, Research Institute and Hospital of National Cancer Center, Goyang, 10408, Republic of Korea
| | - Jin Soo Chung
- Department of Urology, Urological Cancer Center, Research Institute and Hospital of National Cancer Center, Goyang, 10408, Republic of Korea
| | - Ala Jo
- Center for Nanomedicine, Institute for Basic Science, Seoul, 03722, Republic of Korea
| | - Minseob Koh
- Department of Chemistry and Chemistry, Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Jongmin Park
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
6
|
Wang X, Ding Q, Groleau RR, Wu L, Mao Y, Che F, Kotova O, Scanlan EM, Lewis SE, Li P, Tang B, James TD, Gunnlaugsson T. Fluorescent Probes for Disease Diagnosis. Chem Rev 2024; 124:7106-7164. [PMID: 38760012 PMCID: PMC11177268 DOI: 10.1021/acs.chemrev.3c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
The identification and detection of disease-related biomarkers is essential for early clinical diagnosis, evaluating disease progression, and for the development of therapeutics. Possessing the advantages of high sensitivity and selectivity, fluorescent probes have become effective tools for monitoring disease-related active molecules at the cellular level and in vivo. In this review, we describe current fluorescent probes designed for the detection and quantification of key bioactive molecules associated with common diseases, such as organ damage, inflammation, cancers, cardiovascular diseases, and brain disorders. We emphasize the strategies behind the design of fluorescent probes capable of disease biomarker detection and diagnosis and cover some aspects of combined diagnostic/therapeutic strategies based on regulating disease-related molecules. This review concludes with a discussion of the challenges and outlook for fluorescent probes, highlighting future avenues of research that should enable these probes to achieve accurate detection and identification of disease-related biomarkers for biomedical research and clinical applications.
Collapse
Affiliation(s)
- Xin Wang
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Qi Ding
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | | | - Luling Wu
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - Yuantao Mao
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Feida Che
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Oxana Kotova
- School
of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2 D02 R590, Ireland
- Advanced
Materials and BioEngineering Research (AMBER) Centre, Trinity College
Dublin, The University of Dublin, Dublin 2 D02 W9K7, Ireland
| | - Eoin M. Scanlan
- School
of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2 D02 R590, Ireland
- Synthesis
and Solid-State Pharmaceutical Centre (SSPC), School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2 , Ireland
| | - Simon E. Lewis
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - Ping Li
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Bo Tang
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
- Laoshan
Laboratory, 168 Wenhai
Middle Road, Aoshanwei Jimo, Qingdao 266237, Shandong, People’s Republic of China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, People’s
Republic of China
| | - Thorfinnur Gunnlaugsson
- School
of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2 D02 R590, Ireland
- Advanced
Materials and BioEngineering Research (AMBER) Centre, Trinity College
Dublin, The University of Dublin, Dublin 2 D02 W9K7, Ireland
- Synthesis
and Solid-State Pharmaceutical Centre (SSPC), School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2 , Ireland
| |
Collapse
|
7
|
Sblano S, Boccarelli A, Mesiti F, Purgatorio R, de Candia M, Catto M, Altomare CD. A second life for MAO inhibitors? From CNS diseases to anticancer therapy. Eur J Med Chem 2024; 267:116180. [PMID: 38290352 DOI: 10.1016/j.ejmech.2024.116180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
Monoamine oxidases A and B (MAO A, B) are ubiquitous enzymes responsible for oxidative deamination of amine neurotransmitters and xenobiotics. Despite decades of studies, MAO inhibitors (MAOIs) find today limited therapeutic space as second-line drugs for the treatment of depression and Parkinson's disease. In recent years, a renewed interest in MAOIs has been raised up by several studies investigating the role of MAOs, particularly MAO A, in tumor insurgence and progression, and the efficacy of MAOIs as coadjutants in the therapy of chemoresistant tumors. In this survey, we highlight the implication of MAOs in the biochemical pathways of tumorigenesis and review the state-of-the-art of preclinical and clinical studies of MAOIs as anticancer agents used in monotherapy or in combination with antitumor chemotherapeutics.
Collapse
Affiliation(s)
- Sabina Sblano
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Angelina Boccarelli
- Department of Precision and Regenerative Medicine and Ionian Area, School of Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124, Bari, Italy.
| | - Francesco Mesiti
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Rosa Purgatorio
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Modesto de Candia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy.
| | - Cosimo D Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| |
Collapse
|
8
|
Bi T, Liang P, Zhou Y, Wang H, Huang R, Sun Q, Shen H, Yang S, Ren W, Liu Z. Rational Design of Bioorthogonally Activatable PROTAC for Tumor-Targeted Protein Degradation. J Med Chem 2023; 66:14843-14852. [PMID: 37871321 DOI: 10.1021/acs.jmedchem.3c01423] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Protein degradation mediated by the proteolysis-targeting chimera (PROTAC) has emerged as an efficient strategy to accurately control intracellular protein levels. However, the development of PROTACs is limited by their systemic toxicity. Herein, we report a bioorthogonally activatable prodrug (BT-PROTAC) strategy to accurately control the activity of PROTACs. As a proof of concept, we introduced the highly reactive trans-cyclooctene into PROTAC molecule MZ1, the structure-acitivity relationships of which were well characterized previously, to construct the bioorthogonally activatable prodrug BT-PROTAC. Compared with MZ1, BT-PROTAC is incapable of degradation of BRD4 protein. However, BT-PROTAC can be activated by highly active tetrazine compound BODIPY-TZ in vitro. Furthermore, we could selectively degrade BRD4 protein in tumor tissue enabled by tumor-targeted tetrazine compound IR808-TZ. This strategy may represent an alternative to existing strategies and may be widely applied in the design of BT-PROTAC targeting other proteins.
Collapse
Affiliation(s)
- Tao Bi
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Chunhui Road, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine Southwest Medical University, Chunhui Road, Luzhou 646000, China
| | - Pan Liang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Chunhui Road, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine Southwest Medical University, Chunhui Road, Luzhou 646000, China
| | - Yanan Zhou
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Chunhui Road, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine Southwest Medical University, Chunhui Road, Luzhou 646000, China
| | - Hong Wang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Chunhui Road, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine Southwest Medical University, Chunhui Road, Luzhou 646000, China
| | - Rui Huang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Chunhui Road, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine Southwest Medical University, Chunhui Road, Luzhou 646000, China
| | - Qin Sun
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Chunhui Road, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine Southwest Medical University, Chunhui Road, Luzhou 646000, China
| | - Hongping Shen
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Chunhui Road, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine Southwest Medical University, Chunhui Road, Luzhou 646000, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Chunhui Road, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine Southwest Medical University, Chunhui Road, Luzhou 646000, China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Chunhui Road, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine Southwest Medical University, Chunhui Road, Luzhou 646000, China
| | - Zengjin Liu
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Chunhui Road, Luzhou 646000, China
- Institute of Integrated Chinese and Western Medicine Southwest Medical University, Chunhui Road, Luzhou 646000, China
| |
Collapse
|
9
|
Gan H, Huang X, Luo X, Li J, Mo B, Cheng L, Shu Q, Du Z, Tang H, Sun W, Wang L, Luo S, Yu S. A Mitochondria-Targeted Ferroptosis Inducer Activated by Glutathione-Responsive Imaging and Depletion for Triple Negative Breast Cancer Theranostics. Adv Healthc Mater 2023; 12:e2300220. [PMID: 37204240 DOI: 10.1002/adhm.202300220] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/19/2023] [Indexed: 05/20/2023]
Abstract
Ferroptosis is a new type of iron-dependent programmed cell death characterized by glutathione (GSH) depletion, selenoprotein glutathione peroxidase 4 (GPX4) inactivation, and lipid peroxides accumulation. Mitochondria, as the main source of intracellular energy supply and reactive oxygen species (ROS) generation, play a central role in oxidative phosphorylation and redox homeostasis. Therefore, targeting cancer-cell mitochondria and attacking redox homeostasis is expected to induce robust ferroptosis-mediated anticancer effects. In this work, a theranostic ferroptosis inducer (IR780-SPhF), which can simultaneously achieve the imaging and therapy of triple-negative breast cancer (TNBC) by targeting mitochondria is presented. It is developed from a mitochondria-targeting small molecule (IR780) with cancer-preferential accumulation, enabling it to react with GSH by nucleophilic substitution, resulting in mitochondrial GSH depletion and redox imbalance. More interestingly, IR780-SPhF exhibits GSH-responsive near-infrared fluorescence emission and photoacoustic imaging characteristics, further facilitating diagnosis and treatment with real-time monitoring of TNBC with a highly elevated GSH level. Both in vitro and in vivo results demonstrate that IR780-SPhF exhibits potent anticancer effect, which is significantly stronger than cyclophosphamide, a classic drug commonly recommended for TNBC patients in clinic. Hence, the reported mitochondria-targeted ferroptosis inducer may represent a promising candidate and a prospective strategy for efficient cancer treatment.
Collapse
Affiliation(s)
- Hongbo Gan
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Chongqing, 400038, China
| | - Xie Huang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xi Luo
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Chongqing, 400038, China
| | - Jinlin Li
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Chongqing, 400038, China
| | - Banghui Mo
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Chongqing, 400038, China
| | - Lizhi Cheng
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Chongqing, 400038, China
| | - Qiuxia Shu
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Chongqing, 400038, China
| | - Zaizhi Du
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hong Tang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Wei Sun
- Biomedical Analysis Center, Chongqing Key Laboratory of Cytomics, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Chongqing, 400038, China
| | - Liting Wang
- Biomedical Analysis Center, Chongqing Key Laboratory of Cytomics, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Chongqing, 400038, China
| | - Shenglin Luo
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Songtao Yu
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Chongqing, 400038, China
| |
Collapse
|
10
|
Tian B, Xu H, Wang H, Li K, Zheng S, Hu S, Wang Y, Lv Q. GSH-Responsive Prodrug Nanoassembly as a Carrier-Free Nanoplatform for Tumor-Targeting Delivery and Chemo-Photothermal Therapy. Mol Pharm 2023; 20:4210-4218. [PMID: 37463505 DOI: 10.1021/acs.molpharmaceut.3c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Photothermal therapy, combined with chemotherapy, holds promising prospects for the therapeutic outcome of malignant tumors. However, the synergistic therapeutic effect suffers from low coloading capacity and inefficient synchronous tumor-targeting delivery of chemodrug and photothermal photosensitizers. Herein, we designed a versatile carrier-free nanoplatform to seek improvement for chemo-photothermal therapy. An NIR photosensitizer IR-808 was used for noninvasive cancer imaging, diagnosis, and imaging-guided photothermal therapy. A reduction-sensitive paclitaxel prodrug (PTX-SS-PEG2k) was rationally synthesized by covalently linking paclitaxel with polyethylene glycol 2000 via a disulfide bond. Then, the carrier-free nanoassemblies were constructed with an inner core of IR-808 and an amphiphilic paclitaxel prodrug shell. PTX-SS-PEG2k served as a stabilizer and chemodrug and could facilitate the self-assembly of IR-808 nanoparticles with high coloading efficiency and reduction-sensitive drug release. The versatile nanoplatform exhibited multiple advantages, including high drug payload, reduction-sensitive drug release, tumor-targeting drug delivery, and potent synergistic antitumor effect. We provide a versatile theranostic nanoplatform, which improves the effectiveness of synergetic chemo-photothermal therapy and reduces the off-target toxicity.
Collapse
Affiliation(s)
- Baocheng Tian
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Hong Xu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Haiyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Keke Li
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Shuna Zheng
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Senhao Hu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yongjun Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qingzhi Lv
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
11
|
Tseng HJ, Banerjee S, Qian B, Lai MJ, Wu TY, Hsu TI, Lin TE, Hsu KC, Chuang KH, Liou JP, Shih JC. Design, synthesis, and biological activity of dual monoamine oxidase A and heat shock protein 90 inhibitors, N-Methylpropargylamine-conjugated 4-isopropylresorcinol for glioblastoma. Eur J Med Chem 2023; 256:115459. [PMID: 37172473 PMCID: PMC10247544 DOI: 10.1016/j.ejmech.2023.115459] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Monoamine oxidase A (MAO A) and heat shock protein 90 (HSP90) inhibitors have been shown to decrease the progression of glioblastoma (GBM) and other cancers. In this study, a series of MAO A/HSP90 dual inhibitors were designed and synthesized in the hope to develop more effective treatment of GBM. Compounds 4-b and 4-c are conjugates of isopropylresorcinol (pharmacophore of HSP90 inhibitor) with the phenyl group of clorgyline (MAO A inhibitor) by a tertiary amide bond substituted with methyl (4-b) or ethyl (4-c) group, respectively. They inhibited MAO A activity, HSP90 binding, and the growth of both TMZ-sensitive and -resistant GBM cells. Western blots showed that they increased HSP70 expression indicating reduced function of HSP90, reduced HER2 and phospho-Akt expression similar to MAO A or HSP90 inhibitor itself. Both compounds decreased IFN-γ induced PD-L1 expression in GL26 cells, suggesting they can act as immune checkpoint inhibitor. Further, they reduced tumor growth in GL26 mouse model. NCI-60 analysis showed they also inhibited the growth of colon cancer, leukemia, non-small cell lung and other cancers. Taken together, this study demonstrates MAO A/HSP90 dual inhibitors 4-b and 4-c reduced the growth of GBM and other cancers, and they have potential to inhibit tumor immune escape.
Collapse
Affiliation(s)
- Hui-Ju Tseng
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, United States; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Suddhasatwa Banerjee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Bin Qian
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, United States
| | - Mei-Jung Lai
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 110031, Taiwan
| | - Tung-Yun Wu
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Tsung-I Hsu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 11031, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan; Ph.D. Program in Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan; Ph.D. Program in Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Kuo-Hsiang Chuang
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 110031, Taiwan; Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Jean C Shih
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, United States; Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States; USC-Taiwan Center for Translational Research, Los Angeles, CA, 90089, United States.
| |
Collapse
|
12
|
Chen L, Xiong W, Qi L, He W. High monoamine oxidase a expression predicts poor prognosis for prostate cancer patients. BMC Urol 2023; 23:112. [PMID: 37403079 DOI: 10.1186/s12894-023-01285-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/28/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Monoamine oxidase A (MAOA) is a mitochondrial enzyme that is involved in prostate tumorigenesis and cancer metastasis. The predictive power of the preoperative clinical and pathological indicators for prostate cancer(PC) remains to be improved. To enrich evidence regarding the value of MAOA as a prognostic biomarker in clinical practice, this study explored the significance of MAOA expression as a prognostic marker for patients with PC after radical prostatectomy-pelvic lymph node dissection (RP-PLND). METHODS MAOA expression was analyzed in 50 benign prostate tissues and 115 low-intermediate risk and 163 high-risk PC tissues using tissue immunohistochemistry (IHC). Propensity score matching, survival analysis and COX regression analysis were conducted to investigate the correlation between high MAOA expression and progression free survival (PFS) in PC patients. RESULTS MAOA expression was increased in PC patients, especially in those with high risk PC and pathological lymph node (pLN) metastasis. High MAOA expression was significantly associated with PSA recurrence for both low-intermediate risk PC patients (log-rank test: P = 0.02) and high risk PC patients (log-rank test: P = 0.03). Cox regression analysis revealed that high MAOA expression was an adverse prognostic factor for both low-intermediate risk PC patients (hazard ratio [HR] 2.74, 95% confidence interval [CI] 1.26-5.92; P = 0.011) and high risk PC patients (HR 1.73, 95% CI 1.11-2.71; P = 0.016). High MAOA expression was also significantly associated with PSA recurrence in high risk PC patients developed into castration-resistant prostate cancer (CRPC) and were receiving abiraterone therapy (log-rank: P = 0.01). CONCLUSIONS MAOA expression correlates with the malignant progression of PC. High MAOA expression may be a poor prognostic marker for patients with PC after RP-PLND. More careful follow up or potential of adjuvant hormonal therapy may be addressed for patients with high MAOA expression.
Collapse
Affiliation(s)
- Lingxiao Chen
- Department of Urology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan Province, 410008, People's Republic of China
| | - Wei Xiong
- Department of Urology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan Province, 410008, People's Republic of China
| | - Lin Qi
- Department of Urology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan Province, 410008, People's Republic of China
| | - Wei He
- Department of Urology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan Province, 410008, People's Republic of China.
| |
Collapse
|
13
|
Zhang R, Hao L, Chen P, Zhang G, Liu N. Multifunctional small-molecule theranostic agents for tumor-specific imaging and targeted chemotherapy. Bioorg Chem 2023; 137:106576. [PMID: 37182421 DOI: 10.1016/j.bioorg.2023.106576] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
Cancer is one of the leading causes of death worldwide. Although great progress has been achieved in cancer diagnosis and treatment, novel therapies are still urgently needed to increase the efficacy and reduce the side effects of conventional therapies. Personalized medicine involves administering patients drugs that are specific to the characteristics of their tumors, and has significantly reduced side effects and increased overall survival rates. Multifunctional theranostic drugs are designed to combine diagnostic and therapeutic functions into a single molecule, which reduces the number of drugs administered to patients and increases patient compliance, and have shown great potential in propelling personalized medicine. This review focuses on multifunctional small-molecule theranostic agents for tumor-specific imaging and targeted chemotherapy, with a particular emphasis placed on highlighting design strategies and application in vitro or in vivo. The challenges and future perspectives of multifunctional small molecules are also discussed.
Collapse
Affiliation(s)
- Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Li Hao
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 528051, China
| | - Pengwei Chen
- Hainan Key Laboratory for ReseCarch and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Gang Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Ning Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
14
|
Han H, Li H, Ma Y, Zhao Z, An Q, Zhao J, Shi C. Monoamine oxidase A (MAOA): A promising target for prostate cancer therapy. Cancer Lett 2023; 563:216188. [PMID: 37076041 DOI: 10.1016/j.canlet.2023.216188] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Monoamine oxidase A (MAOA) is a mitochondrial enzyme that catalyzes the oxidative deamination of monoamine neurotransmitters and dietary amines. Previous studies have shown that MAOA is clinically associated with prostate cancer (PCa) progression and plays a key role in almost each stage of PCa, including castrate-resistant prostate cancer, neuroendocrine prostate cancer, metastasis, drug resistance, stemness, and perineural invasion. Moreover, MAOA expression is upregulated not only in cancer cells but also in stromal cells, intratumoral T cells, and tumor-associated macrophages; thus, targeting MAOA can be a multi-pronged approach to disrupt tumor promoting interactions between PCa cells and tumor microenvironment. Furthermore, targeting MAOA can disrupt the crosstalk between MAOA and the androgen receptor (AR) to restore enzalutamide sensitivity, blocks glucocorticoid receptor (GR)- and AR-dependent PCa cell growth, and is a potential strategy for immune checkpoint inhibition, thereby alleviating immune suppression and enhancing T cell immunity-based cancer immunotherapy. MAOA is a promising target for PCa therapy, which deserves further exploration in preclinical and clinical settings.
Collapse
Affiliation(s)
- Hao Han
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; School of Basic Medical Sciences, Medical College of Yan'an University, 580 Bao-Ta Street, Yan'an, Shaanxi, 716000, China
| | - Hui Li
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; School of Basic Medical Sciences, Medical College of Yan'an University, 580 Bao-Ta Street, Yan'an, Shaanxi, 716000, China
| | - Yifan Ma
- Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, 730030, China
| | - Zhite Zhao
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Qingling An
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jumei Zhao
- School of Basic Medical Sciences, Medical College of Yan'an University, 580 Bao-Ta Street, Yan'an, Shaanxi, 716000, China.
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
15
|
Jin C, Li J, Yang X, Zhou S, Li C, Yu J, Wang Z, Wang D, He Z, Jiang Y, Wang Y. Doxorubicin-isoniazid conjugate regulates immune response and tumor microenvironment to enhance cancer therapy. Int J Pharm 2023; 631:122509. [PMID: 36549403 DOI: 10.1016/j.ijpharm.2022.122509] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Immune checkpoint inhibitors (ICIs) represent a new class of immunotherapy drugs, and are used to relieve immune suppression or enhance the immune response through the blockade of checkpoint ligands or receptors. ICIs have achieved great success in clinical cancer treatment. Monoamine oxidase A (MAOA) is a potent immune checkpoint of immunotherapy. Recently, it has been reported that MAOA inhibitors could enhance CD8+ T cell activity by upregulating 5-HT autocrine pathway in T cells. In this study, we synthesized doxorubicin (DOX) and isoniazid (INH, a MAOA inhibitor) conjugates through a pH sensitive hydrazone bond. Results of the in vivo studies showed that DOX-INH could effectively enhance the activity of CD8+ T cells and perform a synergistic anti-tumor effect with PD-L1 small molecular inhibitor (BMS202). In addition, in an orthotopic 4T1 breast cancer model, it was demonstrated that DOX-INH could inhibit the epithelial-mesenchymal transition process by blocking Shh, IL-6, and TGF-β signaling pathways, thereby inhibiting the growth and metastasis of breast cancer. Thus, a simple and effective small molecule conjugate produced by the combination of a chemotherapy drug and a MAOA inhibitor shows broad prospect in cancer therapy.
Collapse
Affiliation(s)
- Chan Jin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, China
| | - Jinbo Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, China
| | - Xiaoguang Yang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuang Zhou
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, China
| | - Chang Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, China
| | - Jiang Yu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, China
| | - Zhaomeng Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, China
| | - Dun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, China
| | - Yiguo Jiang
- Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou 215153, China.
| | - Yongjun Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
16
|
Wu BJ, Shih JC. In Vitro and In Vivo Assays Characterizing MAO A Function in Cancers. Methods Mol Biol 2023; 2558:171-182. [PMID: 36169863 PMCID: PMC9651040 DOI: 10.1007/978-1-0716-2643-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Emerging studies, including ours, have revealed the novel essential roles of monoamine oxidase A (MAO A) in mediating the growth and progression of several types of cancers. Recently, we presented the first evidence of MAO A's ability to promote cancer cell perineural invasion, the neoplastic invasion of nerves widely recognized as a significant route for cancer metastasis. Here, we describe a perineural invasion in vitro assay using a 3D coculture with a cancer cell line and an immortalized dorsal root ganglion neuronal cell line for rapid examination of MAO A's roles in cancer-nerve cell crosstalk and evaluating the efficacy of MAO A inhibitors for disrupting perineural invasion. We also summarized the fundamental methods for determining MAO A's effects on cancer cell proliferation in vitro and tumorigenesis in vivo.
Collapse
Affiliation(s)
- Boyang Jason Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA,Corresponding authors: Jean C. Shih: , Boyang Jason Wu:
| | - Jean C. Shih
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA,Corresponding authors: Jean C. Shih: , Boyang Jason Wu:
| |
Collapse
|
17
|
Chen CH, Wu BJ. Monoamine oxidase A: An emerging therapeutic target in prostate cancer. Front Oncol 2023; 13:1137050. [PMID: 36860320 PMCID: PMC9968829 DOI: 10.3389/fonc.2023.1137050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Monoamine oxidase A (MAOA), a mitochondrial enzyme degrading biogenic and dietary amines, has been studied in the contexts of neuropsychiatry and neurological disorders for decades, but its importance in oncology, as best exemplified in prostate cancer (PC) to date, was only realized recently. PC is the most commonly diagnosed non-skin cancer and the second deadliest malignancy for men in the United States. In PC, the increased expression level of MAOA is correlated with dedifferentiated tissue microarchitecture and a worse prognosis. A wealth of literature has demonstrated that MAOA promotes growth, metastasis, stemness and therapy resistance in PC, mainly by increasing oxidative stress, augmenting hypoxia, inducing epithelial-to-mesenchymal transition, and activating the downstream principal transcription factor Twist1-dictated multiple context-dependent signaling cascades. Cancer-cell-derived MAOA also enables cancer-stromal cell interaction involving bone stromal cells and nerve cells by secretion of Hedgehog and class 3 semaphorin molecules respectively to modulate the tumor microenvironment in favor of invasion and metastasis. Further, MAOA in prostate stromal cells promotes PC tumorigenesis and stemness. Current studies suggest that MAOA functions in PC in both cell autonomous and non-autonomous manners. Importantly, clinically available monoamine oxidase inhibitors have shown promising results against PC in preclinical models and clinical trials, providing a great opportunity to repurpose them as a PC therapy. Here, we summarize recent advances in our understanding of MAOA roles and mechanisms in PC, present several MAOA-targeted strategies that have been nominated for treating PC, and discuss the unknowns of MAOA function and targeting in PC for future exploration.
Collapse
Affiliation(s)
- Chia-Hui Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, United States
| | - Boyang Jason Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, United States
| |
Collapse
|
18
|
Juvekar V, Lee HW, Lee DJ, Kim HM. Two-photon fluorescent probes for quantitative bio-imaging analysis in live tissues. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Lapierre JA, Geary LA, Jang JK, Epstein AL, Hong F, Shih JC. Deletion of monoamine oxidase A in a prostate cancer model enhances anti-tumor immunity through reduced immune suppression. Biochem Biophys Res Commun 2022; 634:100-107. [DOI: 10.1016/j.bbrc.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/02/2022]
|
20
|
Yi X, Wang Z, Hu X, Yu A. Affinity probes based on small-molecule inhibitors for tumor imaging. Front Oncol 2022; 12:1028493. [PMID: 36387103 PMCID: PMC9647038 DOI: 10.3389/fonc.2022.1028493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2022] Open
Abstract
Methods for molecular imaging of target areas, including optical imaging, radionuclide imaging, magnetic resonance imaging and other imaging technologies, are helpful for the early diagnosis and precise treatment of cancers. In addition to cancer management, small-molecule inhibitors are also used for developing cancer target probes since they act as the tight-binding ligands of overexpressed proteins in cancer cells. This review aims to summarize the structural designs of affinity probes based on small-molecule inhibitors from the aspects of the inhibitor, linker, dye and radionuclide, and discusses the influence of the modification of these structures on affinity and pharmacokinetics. We also present examples of inhibitor affinity probes in clinical applications, and these summaries will provide insights for future research and clinical translations.
Collapse
Affiliation(s)
| | | | - Xiang Hu
- *Correspondence: Aixi Yu, ; Xiang Hu,
| | - Aixi Yu
- *Correspondence: Aixi Yu, ; Xiang Hu,
| |
Collapse
|
21
|
Huang X, Gao M, Xing H, Du Z, Wu Z, Liu J, Li T, Cao J, Yang X, Li R, Wang W, Wang J, Luo S. Rationally Designed Heptamethine Cyanine Photosensitizers that Amplify Tumor-Specific Endoplasmic Reticulum Stress and Boost Antitumor Immunity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202728. [PMID: 35796192 DOI: 10.1002/smll.202202728] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Cancer phototherapy activates immunogenic cell death (ICD) and elicits a systemic antitumor immune response, which is an emerging approach for tumor treatment. Most available photosensitizers require a combination of immune adjuvants or checkpoint inhibitors to trigger antitumor immunity because of the immunosuppressive tumor microenvironment and the limited phototherapeutic effect. A class of tumor-targeting heptamethine cyanine photosensitizers modified with an endoplasmic reticulum (ER)-targeting group (benzenesulfonamide) are synthesized. Phototherapy of tumor cells markedly amplifies ER stress and promotes tumor antigen release, as the ER is required for protein synthesis, secretion, and transport. More importantly, different electron-donating or -withdrawing substitutions are introduced into benzenesulfonamide to modulate the nonradiative decay pathways through intramolecular charge transfer, including singlet-triplet intersystem crossing (photodynamic effect) and internal thermal conversion (photothermal effect). Thus, a heptamethine cyanine photosensitizer containing a binitro-substituted benzenesulfonamide (ER-Cy-poNO2 ) is identified that preferentially accumulates in the ER of tumor cells. It significantly enhances the phototherapeutic effect by inducing excessive ER stress and robust ICD. Consequently, this small molecular photosensitizer triggers a sufficient antitumor immune response and effectively suppresses the growth of both primary and distant metastatic tumors, whereas no apparent toxicity is observed. This heptamethine cyanine photosensitizer has the potential to enhance cancer-targeted immunotherapy.
Collapse
Affiliation(s)
- Xie Huang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Mingquan Gao
- School of Medicine, University of Electronic Science and Technology of China, Department of Radiation Oncology, Sichuan Key Laboratory of Radiation Oncology Sichuan Cancer Hospital, Chengdu, 610041, China
| | - Haiyan Xing
- Department of Pharmacy, Daping Hospital, Third Military Medical University (Army Medical University), Daping, Chongqing, 400042, China
| | - Zaizhi Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zifei Wu
- School of Medicine, University of Electronic Science and Technology of China, Department of Radiation Oncology, Sichuan Key Laboratory of Radiation Oncology Sichuan Cancer Hospital, Chengdu, 610041, China
| | - Jing Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiang Cao
- School of Biomedical Engineering and Medical Imaging, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiaochao Yang
- School of Biomedical Engineering and Medical Imaging, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Rong Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Weidong Wang
- School of Medicine, University of Electronic Science and Technology of China, Department of Radiation Oncology, Sichuan Key Laboratory of Radiation Oncology Sichuan Cancer Hospital, Chengdu, 610041, China
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shenglin Luo
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
22
|
Mei Y, Liu Z, Liu M, Gong J, He X, Zhang QW, Tian Y. Two-photon fluorescence imaging and ratiometric quantification of mitochondrial monoamine oxidase-A in neurons. Chem Commun (Camb) 2022; 58:6657-6660. [PMID: 35593312 DOI: 10.1039/d2cc01909d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we designed and developed a single two-photon ratiometric fluorescence probe (TMF2P) for selective and accurate determination of mitochondrial MAO-A in live neurons. It was discovered that the increases in MAO-A levels under oxidative stress resulted in an elevated influx of Ca2+ flow into mitochondria through the transient receptor potential melastatin 2 (TRPM2) channels.
Collapse
Affiliation(s)
- Yuxiao Mei
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
| | - Zhichao Liu
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
| | - Meijun Liu
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
| | - Jiacheng Gong
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
| | - Xiao He
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
| | - Qi-Wei Zhang
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
| | - Yang Tian
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
| |
Collapse
|
23
|
Fioravanti R, Rodriguez V, Caroli J, Chianese U, Benedetti R, Di Bello E, Noce B, Zwergel C, Corinti D, Viña D, Altucci L, Mattevi A, Valente S, Mai A. Heterocycle-containing tranylcypromine derivatives endowed with high anti-LSD1 activity. J Enzyme Inhib Med Chem 2022; 37:973-985. [PMID: 35317680 PMCID: PMC8942502 DOI: 10.1080/14756366.2022.2052869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
As regioisomers/bioisosteres of 1a, a 4-phenylbenzamide tranylcypromine (TCP) derivative previously disclosed by us, we report here the synthesis and biological evaluation of some (hetero)arylbenzoylamino TCP derivatives 1b-6, in which the 4-phenyl moiety of 1a was shifted at the benzamide C3 position or replaced by 2- or 3-furyl, 2- or 3-thienyl, or 4-pyridyl group, all at the benzamide C4 or C3 position. In anti-LSD1-CoREST assay, all the meta derivatives were more effective than the para analogues, with the meta thienyl analogs 4b and 5b being the most potent (IC50 values = 0.015 and 0.005 μM) and the most selective over MAO-B (selectivity indexes: 24.4 and 164). When tested in U937 AML and prostate cancer LNCaP cells, selected compounds 1a,b, 2b, 3b, 4b, and 5a,b displayed cell growth arrest mainly in LNCaP cells. Western blot analyses showed increased levels of H3K4me2 and/or H3K9me2 confirming the involvement of LSD1 inhibition in these assays.
Collapse
Affiliation(s)
- Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti
| | - Veronica Rodriguez
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti
| | - Jonatan Caroli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Ugo Chianese
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Elisabetta Di Bello
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti
| | - Beatrice Noce
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti
| | - Davide Corinti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti
| | - Dolores Viña
- Center for Research in Molecular Medicine and Chronic Disease (CIMUS), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Biogem Institute of Molecular and Genetic Biology, Ariano Irpino, Italy
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti
| |
Collapse
|
24
|
Choi PJ, Cooper EA, Park TIH, Denny WA, Jose J. Novel synthetic approach for accessing drug–dye conjugates for targeted tumour therapy. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
25
|
Near-Infrared MAO A Inhibitor (NMI) Outperformed FDA-Approved Chemotherapeutic Agents in Brain and Other Cancers: A Bioinformatic Analysis of NCI60 Screening Data. Brain Sci 2021; 11:brainsci11101318. [PMID: 34679383 PMCID: PMC8534240 DOI: 10.3390/brainsci11101318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/14/2021] [Accepted: 09/30/2021] [Indexed: 01/03/2023] Open
Abstract
Our previous work has shown that monoamine oxidase A (MAO A) is overexpressed in glioma and prostate cancer. Near-infrared dye conjugate MAO A Inhibitor (NMI) inhibited the growth of these cancers. This study investigated the effects of NMI on other cancers by NCI60 screening. Our results showed that 48 out of 59 screened cell lines from nine types of cancer had 100% growth inhibition at 10 μM NMI treatment. The in vitro efficacy of NMI determined by growth inhibition (GI50 and TGI) and lethal doses (LC50) has been further studied in various cell lines of CNS cancer, prostate cancer, and non-small cell lung cancer (NSCLC), these three cancers showed increased MAO A expression in tumors compared to normal tissues. Based on the waterfall plots and the 3D scatter plot of GI50, TGI, and LC50 data, NMI showed higher potency to several CNS cancer and NSCLC cell lines than prostate cancer cell lines. In vitro efficacy of NMI outperformed FDA-approved drugs for CNS cancer, prostate cancer, and NSCLC, respectively. The Pairwise Pearson Correlation Coefficient (PCC) showed that NMI has a unique mechanism compared to the existing anticancer drugs. This study shows that NMI is a novel theragnostic drug with high potency and unique mechanisms for brain, prostate, NSCLC, and other cancers.
Collapse
|
26
|
Ye D, Xu H, Tang Q, Xia H, Zhang C, Bi F. The role of 5-HT metabolism in cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188618. [PMID: 34428515 DOI: 10.1016/j.bbcan.2021.188618] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) metabolism has long been linked to tumorigenesis and tumor progression. Numerous studies have shown the functions of 5-HT and its metabolites in the regulation of tumor biological processes like cell proliferation, invasion, metastasis, tumor angiogenesis and immunomodulatory through multi-step complex mechanisms. Reprogramming of 5-HT metabolism has been revealed in various tumors paving way for development of drugs that target enzymes, metabolites or receptors involved in 5-HT metabolic pathway. However, information on the role of 5-HT metabolism in cancer is scanty. This review briefly describes the main metabolic routes of 5-HT, the role of 5-HT metabolism in cancer and systematically summarizes the most recent advances in 5-HT metabolism-targeted cancer therapy.
Collapse
Affiliation(s)
- Di Ye
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Huanji Xu
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Qiulin Tang
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Hongwei Xia
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Chenliang Zhang
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Feng Bi
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China.
| |
Collapse
|
27
|
Cooper E, Choi PJ, Denny WA, Jose J, Dragunow M, Park TIH. The Use of Heptamethine Cyanine Dyes as Drug-Conjugate Systems in the Treatment of Primary and Metastatic Brain Tumors. Front Oncol 2021; 11:654921. [PMID: 34141613 PMCID: PMC8204086 DOI: 10.3389/fonc.2021.654921] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/01/2021] [Indexed: 12/24/2022] Open
Abstract
Effective cancer therapeutics for brain tumors must be able to cross the blood-brain barrier (BBB) to reach the tumor in adequate quantities and overcome the resistance conferred by the local tumor microenvironment. Clinically approved chemotherapeutic agents have been investigated for brain neoplasms, but despite their effectiveness in peripheral cancers, failed to show therapeutic success in brain tumors. This is largely due to their poor bioavailability and specificity towards brain tumors. A targeted delivery system might improve the efficacy of the candidate compounds by increasing the retention time in the tumor tissue, and minimizing the numerous side effects associated with the non-specific distribution of the chemotherapy agent. Heptamethine cyanine dyes (HMCDs) are a class of near-infrared fluorescence (NIRF) compounds that have recently emerged as promising agents for drug delivery. Initially explored for their use in imaging and monitoring neoplasms, their tumor-targeting properties have recently been investigated for their use as drug carrier systems. This review will explore the recent developments in the tumour-targeting properties of a specific group of NIRF cyanine dyes and the preclinical evidence for their potential as drug-delivery systems in the treatment of primary and metastatic brain tumors.
Collapse
Affiliation(s)
- Elizabeth Cooper
- Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Peter J. Choi
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - William A. Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Jiney Jose
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Mike Dragunow
- Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Hugh Green Biobank, The Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Thomas I.-H. Park
- Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
28
|
Chen S, Yu S, Du Z, Huang X, He M, Long S, Liu J, Lan Y, Yang D, Wang H, Li S, Chen A, Hao Y, Su Y, Wang C, Luo S. Synthesis of Mitochondria-Anchored Nitroimidazoles with a Versatile NIR Fluorophore for Hypoxic Tumor-Targeting Imaging and Chemoradiotherapy. J Med Chem 2021; 64:3381-3391. [PMID: 33688738 DOI: 10.1021/acs.jmedchem.0c02250] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nitroimidazoles are one of the most common radiosensitizers investigated to combat hypoxia-induced resistance to cancer radiotherapy. However, due to poor selectivity distinguishing cancer cells from normal cells, effective doses of radiosensitization are much closer to the doses of toxicity induced by nitroimidazoles, limiting their clinical application. In this work, a tumor-targeting near-infrared (NIR) cyanine dye (IR-808) was utilized as a targeting ligand and an NIR fluorophore tracer to chemically conjugate with different structures of hypoxia-affinic nitroimidazoles. One of the NIR fluorophore-conjugated nitroimidazoles (808-NM2) was identified to preferentially accumulate in hypoxic tumor cells, sensitively outline the tumor contour, and effectively inhibit tumor growth synergistically by chemotherapy and radiotherapy. More importantly, nitroimidazoles were successfully taken into cancer cell mitochondria via 808-NM2 conjugate to exert the synergistic effect of chemoradiotherapy. Regarding the important roles of mitochondria on cancer cell survival and metastasis under hypoxia, 808-NM2 may be hopeful to fight against hypoxic tumors.
Collapse
Affiliation(s)
- Sha Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing 400038, People's Republic of China
- Department of Clinical Biochemistry, Laboratory Sciences, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing 400038, People's Republic of China
| | - Songtao Yu
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing 400038, People's Republic of China
| | - Zaizhi Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing 400038, People's Republic of China
| | - Xie Huang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing 400038, People's Republic of China
| | - Meng He
- Department of Clinical Biochemistry, Laboratory Sciences, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing 400038, People's Republic of China
| | - Shuang Long
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing 400038, People's Republic of China
| | - Jing Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing 400038, People's Republic of China
| | - Yu Lan
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Dong Yang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Hao Wang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Shuhui Li
- Department of Clinical Biochemistry, Laboratory Sciences, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing 400038, People's Republic of China
| | - An Chen
- Department of Clinical Biochemistry, Laboratory Sciences, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing 400038, People's Republic of China
| | - Yuhui Hao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing 400038, People's Republic of China
| | - Yongping Su
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing 400038, People's Republic of China
| | - Changning Wang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Shenglin Luo
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing 400038, People's Republic of China
| |
Collapse
|
29
|
Irwin RW, Escobedo AR, Shih JC. Near-Infrared Monoamine Oxidase Inhibitor Biodistribution in a Glioma Mouse Model. Pharm Res 2021; 38:461-471. [PMID: 33709330 DOI: 10.1007/s11095-021-03012-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/04/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE The biodistribution imaging kinetics of near-infrared monoamine oxidase inhibitor (NMI) are reported here. METHODS NMI was administered intravenously or orally to mice and detected by NIR fluorescence optical imaging within minutes and the longitudinal signal distribution was measured for up to 1 week after a single dose. RESULTS NMI rapidly reached 3.7-fold higher ventral and 3.2-fold higher brain region fluorescent signal intensity compared to oral route at 24 h. Similar patterns of NMI biodistribution were found in mice with or without intracranial implanted GL26 brain tumors. NMI was highly associated with tumors in contrast to adjacent non-tumor brain, confirming diagnostic utility. NMI 5 mg/kg imaging signal in brain at 48 h was optimal (tumor/non-tumor ratio > 3.5) with minimum off-target distribution. Intravenous NMI imaging signal peaked between 24 h and 48 h for lung, liver, kidney, blood, brain, and most other tissues. Clearance (signal weaker, but still present) from most tissues occurred by day 7. Intravenous low dose (0.5 mg/kg) minimally labeled tumor and other tissues, 5 mg/kg showed optimal imaging signal in glioma at a dose we previously reported as efficacious, and 50 mg/kg was tolerable but saturated the tissue signals beyond tumor specificity. Gel electrophoresis showed two major bands present in brain tumor and tissue protein lysates. CONCLUSIONS Intravenous 5 mg/kg was optimal dose to target brain tumor and identified off-target organs of concern: lungs, liver, and kidneys. These results demonstrate the biodistribution and optimal dose range of NMI for treatment and diagnostic monitoring of glioma.
Collapse
Affiliation(s)
- Ronald W Irwin
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Alesi R Escobedo
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Jean C Shih
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA. .,USC-Taiwan Center for Translational Research, Los Angeles, California, USA.
| |
Collapse
|
30
|
Li Y, Zhou Y, Yue X, Dai Z. Cyanine conjugates in cancer theranostics. Bioact Mater 2021; 6:794-809. [PMID: 33024900 PMCID: PMC7528000 DOI: 10.1016/j.bioactmat.2020.09.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Cyanine is a meritorious fluorogenic core for the construction of fluorescent probes and its phototherapeutic potential has been enthusiastically explored as well. Alternatively, the covalent conjugation of cyanine with other potent therapeutic agents not only boosts its therapeutic efficacy but also broadens its therapeutic modality. Herein, we summarize miscellaneous cyanine-therapeutic agent conjugates in cancer theranostics from literature published between 2014 and 2020. The application scenarios of such theranostic cyanine conjugates covered common cancer therapeutic modalities, including chemotherapy, phototherapy and targeted therapy. Besides, cyanine conjugates that serve as nanocarriers for drug delivery are introduced as well. In an additional section, we analyze the potential of these conjugates for clinical translation. Overall, this review is aimed to stimulate research interest in exploring unattempted therapeutic agents and novel conjugation strategies and hopefully, accelerate clinical translation in this field.
Collapse
Affiliation(s)
- Yang Li
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yiming Zhou
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Xiuli Yue
- School of Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
31
|
Santin Y, Resta J, Parini A, Mialet-Perez J. Monoamine oxidases in age-associated diseases: New perspectives for old enzymes. Ageing Res Rev 2021; 66:101256. [PMID: 33434685 DOI: 10.1016/j.arr.2021.101256] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/04/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022]
Abstract
Population aging is one of the most significant social changes of the twenty-first century. This increase in longevity is associated with a higher prevalence of chronic diseases, further rising healthcare costs. At the molecular level, cellular senescence has been identified as a major process in age-associated diseases, as accumulation of senescent cells with aging leads to progressive organ dysfunction. Of particular importance, mitochondrial oxidative stress and consequent organelle alterations have been pointed out as key players in the aging process, by both inducing and maintaining cellular senescence. Monoamine oxidases (MAOs), a class of enzymes that catalyze the degradation of catecholamines and biogenic amines, have been increasingly recognized as major producers of mitochondrial ROS. Although well-known in the brain, evidence showing that MAOs are also expressed in a variety of peripheral organs stimulated a growing interest in the extra-cerebral roles of these enzymes. Besides, the fact that MAO-A and/or MAO-B are frequently upregulated in aged or dysfunctional organs has uncovered new perspectives on their roles in pathological aging. In this review, we will give an overview of the major results on the regulation and function of MAOs in aging and age-related diseases, paying a special attention to the mechanisms linked to the increased degradation of MAO substrates or related to MAO-dependent ROS formation.
Collapse
Affiliation(s)
- Yohan Santin
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France
| | - Jessica Resta
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France
| | - Angelo Parini
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France
| | - Jeanne Mialet-Perez
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France.
| |
Collapse
|
32
|
Buguis FL, Maar RR, Staroverov VN, Gilroy JB. Near‐Infrared Boron Difluoride Formazanate Dyes. Chemistry 2021; 27:2854-2860. [DOI: 10.1002/chem.202004793] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Indexed: 01/26/2023]
Affiliation(s)
- Francis L. Buguis
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Ryan R. Maar
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Viktor N. Staroverov
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Joe B. Gilroy
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| |
Collapse
|
33
|
Yan C, Zhang Y, Guo Z. Recent progress on molecularly near-infrared fluorescent probes for chemotherapy and phototherapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213556] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
34
|
Josa‐Culleré L, Llebaria A. In the Search for Photocages Cleavable with Visible Light: An Overview of Recent Advances and Chemical Strategies. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000253] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Laia Josa‐Culleré
- Laboratory of Medicinal Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| | - Amadeu Llebaria
- Laboratory of Medicinal Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| |
Collapse
|
35
|
Black CE, Zhou E, DeAngelo CM, Asante I, Louie SG, Petasis NA, Humayun MS. Cyanine Nanocages Activated by Near-Infrared Light for the Targeted Treatment of Traumatic Brain Injury. Front Chem 2020; 8:769. [PMID: 33062635 PMCID: PMC7489144 DOI: 10.3389/fchem.2020.00769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/23/2020] [Indexed: 01/03/2023] Open
Abstract
Traumatic brain injury (TBI) is a common and prevalent condition that affects large numbers of people across a range of ages. Individuals engaging in physical activities and victims of accidents are at a higher risk for TBI. There is a lack of available treatment specifically for TBI. Given the difficulty to determine its precise location in the brain, TBI remains difficult to fully diagnose or treat. Herein, we disclose a novel strategy for directing therapeutic agents to TBI sites, without the need to determine the precise location of the TBI activity in the brain. This novel approach is based on the use of a cyanine dye nanocage carrying Gabapentin, a known TBI therapeutic agent. Upon exposure of the cyanine nanocage to near-infrared light, the local release of Gabapentin is triggered, selectively at the TBI-affected site.
Collapse
Affiliation(s)
- Caroline E Black
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Eugene Zhou
- School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Caitlin M DeAngelo
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Isaac Asante
- School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Stan G Louie
- School of Pharmacy, University of Southern California, Los Angeles, CA, United States.,Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, United States
| | - Nicos A Petasis
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States.,School of Pharmacy, University of Southern California, Los Angeles, CA, United States.,Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, United States
| | - Mark S Humayun
- Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, United States.,Keck School of Medicine, Viterbi School of Engineering, and Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
36
|
Chen L, Guo L, Sun Z, Yang G, Guo J, Chen K, Xiao R, Yang X, Sheng L. Monoamine Oxidase A is a Major Mediator of Mitochondrial Homeostasis and Glycolysis in Gastric Cancer Progression. Cancer Manag Res 2020; 12:8023-8035. [PMID: 32943935 PMCID: PMC7481281 DOI: 10.2147/cmar.s257848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/02/2020] [Indexed: 01/07/2023] Open
Abstract
Objective Monoamine oxidase A (MAO-A) is a mitochondrial protein involved in tumourigenesis in different types of cancer. However, the biological function of MAO-A in gastric cancer development remains unknown. Methods We examined MAO-A expression in gastric cancer tissues and in gastric cancer cell lines by immunohistochemistry and Western blot analyses. CCK8, FACS and bromodeoxyuridine incorporation assays were performed to assess the effects of MAO-A on gastric cancer cell proliferation. The role of MAO-A in mitochondrial function was determined through MitoSOX Red staining, ATP generation and glycolysis assays. Results In the present study, we observed that MAO-A was significantly upregulated in gastric cancer tissues and in AGS and MGC803 cells. The observed MAO-A inhibition indicated decreased cell cycle progression and proliferation. Silencing MAO-A expression was associated with suppressed migration and invasion of gastric cancer cells in vitro. Moreover, alleviated mitochondrial damage in these cells was demonstrated by decreased levels of mitochondrial reactive oxygen species and increased ATP generation. MAO-A knockdown also regulated the expression of the glycolysis rate-limiting enzymes hexokinase 2 and pyruvate dehydrogenase. Finally, we observed that the glycolysis-mediated effect was weakened in AGS and MGC803 cells when MAO-A was blocked. Conclusion The findings of the present study indicate that MAO-A is responsible for mitochondrial dysfunction and aerobic glycolysis, which in turn leads to the proliferation and metastasis of human gastric tumour cells.
Collapse
Affiliation(s)
- Ling Chen
- Department of Oncology, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Li Guo
- Department of Clinical Laboratory, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Ziwen Sun
- Department of Scientific Research and Education, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Guochun Yang
- Department of Emergency Medicine, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Jing Guo
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Kai Chen
- The Department of Cardiovascular and Thoracic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Ruixue Xiao
- Department of Pathology, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Xigui Yang
- Department of Oncology, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Lijun Sheng
- Department of Oncology, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
37
|
Li PC, Chen SY, Xiangfei D, Mao C, Wu CH, Shih JC. PAMs inhibits monoamine oxidase a activity and reduces glioma tumor growth, a potential adjuvant treatment for glioma. BMC Complement Med Ther 2020; 20:252. [PMID: 32799864 PMCID: PMC7429690 DOI: 10.1186/s12906-020-03041-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/02/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Monoamine oxidase (MAO) A catalyzes oxidative deamination of monoamine neurotransmitters and dietary amines and regulates brain development and functions. Recently, we showed that MAO A mediates the progression and migration of glioma and MAO A inhibitors reduce glioma cell growth. Glioblastoma (GBM) is a common and most malignant brain tumor which is difficult to treat. Temozolomide (TMZ) is the current standard chemotherapy for glioma, but tumors usually become resistant and recur. So far, no effective therapy for TMZ-resistant glioma is available. Natural plant antimicrobial solution (PAMs) is a Chinese herbal medicine which has been used for decades without toxicity and has multiple medical functions including anti- inflammatory effects. Here, we report the effects of PAMs on glioblastoma growth. METHODS The growth of TMZ -sensitive (U251S),-resistant (U251R) human glioma cells, and mouse glioma cell line GL-26 were assessed by MTS colorimetric assay, colony formation, and cell migration assays. Male C57BL/6 mice were implanted subcutaneously or intracranial with luciferase-positive mouse glioma GL-26 cells and treated with vehicle; MAO A inhibitor clorgyline (10 mg/kg); TMZ (1 mg/kg); PAMs (48 mg/kg) alone or in combination with TMZ (1 mg/kg) for 14 days. At the end of the treatment, mice were sacrificed, MAO A catalytic activity in tumors was measured, and tumor sizes were determined by imaging and weight. RESULTS These results show that PAMs inhibits MAO A catalytic activity in all three glioma cell lines studied U251S, U251R, and GL-26. PAMs reduced glioma growth and has greater effects in combination with low dose of TMZ than PAMS or TMZ alone in all three cell lines as shown by MTS, colony formation, and cell migration assays. Using the subcutaneous or intracranial GL-26 glioma mouse model, PAMs reduced the tumor growth and MAO A activity, similar to the MAO A inhibitor clorgyline. Combining PAMs with non-toxic dose TMZ increased survival to a greater extent than those of PAMs or TMZ alone. CONCLUSIONS This is the first study which suggests that PAMs alone or co-administration with low doses of TMZ may be a potential adjuvant to reduce the toxicity of TMZ and to abrogate drug resistance for the effective treatment of glioma.
Collapse
Affiliation(s)
- Pei-Chuan Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Rm. 518, 1985 Zonal Ave, Los Angeles, CA, 90089, USA.,USC-Taiwan Center for Translational Research, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Shih-Yi Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Rm. 518, 1985 Zonal Ave, Los Angeles, CA, 90089, USA.,USC-Taiwan Center for Translational Research, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA.,School of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | | | - Canquan Mao
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Chieh-His Wu
- School of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Jean Chen Shih
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Rm. 518, 1985 Zonal Ave, Los Angeles, CA, 90089, USA. .,USC-Taiwan Center for Translational Research, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA. .,Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA. .,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
38
|
Štacková L, Muchová E, Russo M, Slavíček P, Štacko P, Klán P. Deciphering the Structure–Property Relations in Substituted Heptamethine Cyanines. J Org Chem 2020; 85:9776-9790. [DOI: 10.1021/acs.joc.0c01104] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Lenka Štacková
- Department of Chemistry and RECETOX, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Eva Muchová
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Marina Russo
- Department of Chemistry and RECETOX, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Peter Štacko
- Department of Chemistry and RECETOX, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Klán
- Department of Chemistry and RECETOX, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
39
|
Choi PJ, Park TI, Cooper E, Dragunow M, Denny WA, Jose J. Heptamethine Cyanine Dye Mediated Drug Delivery: Hype or Hope. Bioconjug Chem 2020; 31:1724-1739. [DOI: 10.1021/acs.bioconjchem.0c00302] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Peter J. Choi
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Thomas I−H. Park
- Department of Pharmacology & The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag
92019, Auckland 1142, New Zealand
| | - Elizabeth Cooper
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Department of Pharmacology & The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag
92019, Auckland 1142, New Zealand
| | - Mike Dragunow
- Department of Pharmacology & The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag
92019, Auckland 1142, New Zealand
| | - William A. Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jiney Jose
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
40
|
Choi PJ, Cooper E, Schweder P, Mee E, Turner C, Faull R, Denny WA, Dragunow M, Park TIH, Jose J. PARP inhibitor cyanine dye conjugate with enhanced cytotoxic and antiproliferative activity in patient derived glioblastoma cell lines. Bioorg Med Chem Lett 2020; 30:127252. [PMID: 32527552 DOI: 10.1016/j.bmcl.2020.127252] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 01/30/2023]
Abstract
We describe the synthesis and in vitro activity of drug-dye conjugate 1, which is a combination of the PARP inhibitor rucaparib and heptamethine cyanine dye IR-786. The drug-dye conjugate 1 was evaluated in three different patient-derived glioblastoma cell lines and showed strong cytotoxic activity with nanomolar potency (EC50: 128 nM), which was a 780 fold improvement over rucaparib itself. We also observe a synergistic effect of 1 with temozolomide (TMZ), the standard drug for treatment for glioblastoma even though these cell lines were resistant to TMZ treatment. We envisage such conjugates to be worth exploring for their utility in the treatment of various brain cancers.
Collapse
Affiliation(s)
- Peter J Choi
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Elizabeth Cooper
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Department of Pharmacology & The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Patrick Schweder
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Department of Neurosurgery, Auckland City Hospital, Private Bag 92024, Auckland 1142, New Zealand
| | - Edward Mee
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Department of Neurosurgery, Auckland City Hospital, Private Bag 92024, Auckland 1142, New Zealand
| | - Clinton Turner
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, 2 Park Road, Auckland, New Zealand
| | - Richard Faull
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Mike Dragunow
- Department of Pharmacology & The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Thomas I-H Park
- Department of Pharmacology & The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jiney Jose
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
41
|
Wang W, Fang Z, Zhang X, Cai H, Zhao Y, Gu W, Yang X, Wu Y. A Self-Assembled "Albumin-Conjugate" Nanoprobe for Near Infrared Optical Imaging of Subcutaneous and Metastatic Tumors. ACS APPLIED BIO MATERIALS 2020; 3:327-334. [PMID: 35019449 DOI: 10.1021/acsabm.9b00839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The need for in situ accurate identification of tumor assisted real-time image-guided surgical resection calls for new near-infrared fluorescence agents with high tumor-sensitivity and excellent biocompatibility. Here, an albumin-conjugate nanoparticle system HSA-Er-RI-Cl was designed, synthesized, and applied in cancer imaging, which simultaneously achieved the EPR effect, hypoxia-targeting, and EGFR-targeting property. Our novel nanoprobe is composed of human serum albumin (HSA) and double-targeting small molecule conjugate (Er-RI-Cl): a hypoxia-targeting heptamethine carbocyanine dye (RI-Cl) conjugated with a clinic anti-EGFR antagonist (Erlotinib) by covalent bonding. This conjugate could bind to albumin proteins, forming albumin-conjugate complexes, and those complexes self-assemble into particles with diameters of approximately 100 nm in the aqueous solution. The tumor hypoxia and EGFR targeting specificity of HSA-Er-RI-Cl was, respectively, evaluated in vitro and in vivo. Using murine xenograft subcutaneous and brain metastatic tumor models, we demonstrated that HSA-Er-RI-Cl is a highly potent tumor-targeting NIR agent for noninvasive imaging with remarkable tumor localization and excellent pharmacokinetic properties.
Collapse
Affiliation(s)
- Weiwei Wang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhixiao Fang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xingming Zhang
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Haiyan Cai
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yucheng Zhao
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenli Gu
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xi Yang
- Department of Oral & Maxillofaciale-Head and Neck Oncology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
42
|
Zhao Y, Zhang H, Wu P, Tan D, Zhao Y, Zhang C, Wang J, Bai B, An J, Shi C. Mediated Imaging and Improved Targeting of Farnesylthiosalicylic Acid Delivery for Pancreatic Cancer via Conjugation with Near-Infrared Fluorescence Heptamethine Carbocyanine Dye. ACS APPLIED BIO MATERIALS 2020; 3:1129-1138. [DOI: 10.1021/acsabm.9b01068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ya Zhao
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an 710032, China
| | - He Zhang
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an 710032, China
| | - Pengpeng Wu
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an 710032, China
| | - Dengxu Tan
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an 710032, China
| | - Yong Zhao
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an 710032, China
| | - Caiqin Zhang
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an 710032, China
| | - Jie Wang
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an 710032, China
| | - Bing Bai
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an 710032, China
| | - Jiaze An
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an 710069, China
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
43
|
Qian K, Chen H, Qu C, Qi J, Du B, Ko T, Xiang Z, Kandawa-Schulz M, Wang Y, Cheng Z. Mitochondria-targeted delocalized lipophilic cation complexed with human serum albumin for tumor cell imaging and treatment. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 23:102087. [DOI: 10.1016/j.nano.2019.102087] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 11/26/2022]
|
44
|
Kumari R, Sunil D, Ningthoujam RS. Hypoxia-responsive nanoparticle based drug delivery systems in cancer therapy: An up-to-date review. J Control Release 2019; 319:135-156. [PMID: 31881315 DOI: 10.1016/j.jconrel.2019.12.041] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 02/08/2023]
Abstract
Hypoxia is a salient feature observed in most solid malignancies that holds a pivotal role in angiogenesis, metastasis and resistance to conventional cancer therapeutic approaches, and thus enables cancer progression. However, the typical characteristics of hypoxic cells such as low oxygen levels and highly bio-reductive environment can offer stimuli-responsive drug release to aid in tumor-specific chemo, radio, photodyanamic and sonodynamic therapies. This approach based on targeting the poorly oxygenated tumor habitats offers the prospective to overcome the difficulties that arises due to heterogenic nature of tumor and could be possibly used in the design of diagnostic as well as therapeutic nanocarriers for targeting various types of solid cancers. Consequently, hypoxia triggered nanoparticle based drug delivery systems is a rapidly progressing research area in developing effective strategies to combat drug-resistance in solid tumors. The present review presents the recent advances in the development of hypoxia-responsive nanovehicles for drug delivery to heterogeneous tumors. The initial sections of the article provides insights into the development of hypoxia in growing cancer and its role in disease progression. The current limitations and the future prospective of hypoxia-stimulated nanomachines for cancer treatment are also discussed.
Collapse
Affiliation(s)
- Rashmi Kumari
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India.
| | | |
Collapse
|
45
|
Peng R, Yuan J, Cheng D, Ren T, Jin F, Yang R, Yuan L, Zhang X. Evolving a Unique Red-Emitting Fluorophore with an Optically Tunable Hydroxy Group for Imaging Nitroreductase in Cells, in Tissues, and in Vivo. Anal Chem 2019; 91:15974-15981. [DOI: 10.1021/acs.analchem.9b04564] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rong Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 P. R. China
| | - Jie Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 P. R. China
| | - Dan Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 P. R. China
| | - Tianbing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 P. R. China
| | - Fangping Jin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 P. R. China
| | - Ronghua Yang
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 P. R. China
| | - Xiaobing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 P. R. China
| |
Collapse
|
46
|
Guan Y, Zhang Y, Zou J, Huang LP, Chordia MD, Yue W, Wu JJ, Pan DF. Synthesis and Biological Evaluation of Genistein-IR783 Conjugate: Cancer Cell Targeted Delivery in MCF-7 for Superior Anti-Cancer Therapy. Molecules 2019; 24:molecules24224120. [PMID: 31739548 PMCID: PMC6891397 DOI: 10.3390/molecules24224120] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022] Open
Abstract
The flavonoid-based natural product genistein is a biologically active compound possessing promising anti-oxidant and anti-cancer properties. Poor pharmacokinetics along with low potency limit however the therapeutic application of genistein in cancer therapy. In order to overcome those limitations and to expand its therapeutic window of efficacy, we sought to covalently attach genistein with a heptamethine cyanine dye—IR 783—for cancer cell targeting and enhanced delivery to tumors. Herein we report the synthesis, a selective detailed characterization and preliminary in vitro/in vivo biological evaluation of genistein-IR 783 conjugate 4. The conjugate 4 displayed improved potency against human breast cancer MCF-7 cells (10.4 ± 1.0 μM) as compared with the parent genistein (24.8 ± 0.5 μM) or IR 783 (25.7 ± 0.7 μM) and exhibited selective high uptake in MCF-7 as against the normal mammary gland MCF-10A cells in various assays. In the cell viability assay, conjugate 4 exhibited over threefold lower potency against MCF-10A cells (32.1 ± 1.1 μM) suggesting that the anti-cancer profile of parent genistein is significantly improved upon conjugation with the dye IR783. Furthermore, the genistein-IR783 conjugate 4 was shown to be especially accumulated in MCF-7 cancer cells by fluorescent intensity measurements and inverted fluorescence microscopy in fixed cells as well as in live cells with time via live cell confocal fluorescence imaging. The mechanism-based uptake inhibition of conjugate 4 was observed with OATPs inhibitor BSP and in part with amiloride, as a macropinocytosis inhibitor. For the first time we have shown amiloride inhibited uptake of cyanine dye by about ~40%. Finally, genistein-IR 783 conjugate 4 was shown to be localized in MCF-7 tumor xenografts of mice breast cancer model via in vivo near infrared fluorescence (NIRF) imaging. In conclusion, conjugation of genistein with cyanine dye IR783 indeed improved its pharmacological profile by cancer cell selective uptake and targeting and therefore warrants further investigations as a new anti-cancer therapeutics derived from natural product genistein.
Collapse
Affiliation(s)
- Yang Guan
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China; (Y.G.); (L.-P.H.)
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China;
- Department of Radiology and Medical Imaging, Charlottesville, VA 22903, USA; (Y.Z.); (M.D.C.)
| | - Yi Zhang
- Department of Radiology and Medical Imaging, Charlottesville, VA 22903, USA; (Y.Z.); (M.D.C.)
| | - Juan Zou
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China;
| | - Li-Ping Huang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China; (Y.G.); (L.-P.H.)
| | - Mahendra D. Chordia
- Department of Radiology and Medical Imaging, Charlottesville, VA 22903, USA; (Y.Z.); (M.D.C.)
| | - Wei Yue
- Department of Endocrinology, University of Virginia, Charlottesville, VA 22903, USA;
| | - Jin-Jun Wu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China;
- Correspondence: (J.-J.W.); (D.-F.P.); +86-159-1435-8366 (J.-J.W.); Tel.: +1-(434)-243-2893 (D.-F.P.)
| | - Dong-Feng Pan
- Department of Radiology and Medical Imaging, Charlottesville, VA 22903, USA; (Y.Z.); (M.D.C.)
- Correspondence: (J.-J.W.); (D.-F.P.); +86-159-1435-8366 (J.-J.W.); Tel.: +1-(434)-243-2893 (D.-F.P.)
| |
Collapse
|
47
|
Zhou L, Wu Y, Luo Y, Li H, Meng X, Liu C, Xiang J, Zhang P, Gong P, Cai L. Mitochondria-Localized Self-Reporting Small-Molecule-Decorated Theranostic Agents for Cancer-Organelle Transporting and Imaging. ACS APPLIED BIO MATERIALS 2019; 2:5164-5173. [DOI: 10.1021/acsabm.9b00811] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Lihua Zhou
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, CAS-HK Joint Lab for Biomaterials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yayun Wu
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, CAS-HK Joint Lab for Biomaterials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuan Luo
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, CAS-HK Joint Lab for Biomaterials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hongfeng Li
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, CAS-HK Joint Lab for Biomaterials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoqing Meng
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, CAS-HK Joint Lab for Biomaterials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB Ann Arbor, Michigan 48109, United States
| | - Chuangjun Liu
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, CAS-HK Joint Lab for Biomaterials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Jingjing Xiang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, CAS-HK Joint Lab for Biomaterials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, CAS-HK Joint Lab for Biomaterials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
- HKUST Shenzhen Research Institute, No. 9 Yuexing First RD, South Area, Hi-Tech Park, Nanshan, Shenzhen 518057, China
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, CAS-HK Joint Lab for Biomaterials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan 523808, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, CAS-HK Joint Lab for Biomaterials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
48
|
Geng Y, Zhong Y, Zhou Q, Chen S, Piao Y, Yin W, Lu H, Shen Y. A neutral water-soluble mitochondria-targeting polymer. Chem Commun (Camb) 2019; 55:10015-10018. [PMID: 31378791 DOI: 10.1039/c9cc04291a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report the first neutral and water-soluble polymer capable of strong mitochondrial targeting in vitro and in vivo, zwitterionic poly[2-(N-oxide-N,N-diethylamino)ethyl methacrylate] (OPDEA). OPDEA is quickly internalized via macropinocytosis by various cancer cells and transferred into the mitochondria, which slightly lowers the mitochondrial membrane potential as determined by the JC-1 assay.
Collapse
Affiliation(s)
- Yu Geng
- Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Usama SM, Jiang Z, Pflug K, Sitcheran R, Burgess K. Conjugation of Dasatinib with MHI-148 Has a Significant Advantageous Effect in Viability Assays for Glioblastoma Cells. ChemMedChem 2019; 14:1575-1579. [PMID: 31322832 DOI: 10.1002/cmdc.201900356] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/17/2019] [Indexed: 12/24/2022]
Abstract
We hypothesized that conjugation of the near-infrared dye MHI-148 with the anti-leukemia drug dasatinib might produce a potential theranostic for glioblastoma. In fact, the conjugate was found to bind the kinases Src and Lyn, and to inhibit the viability of a glioblastoma cell line with significantly greater potency than dasatinib alone, MHI-148 alone, or a mixture of dasatinib and MHI-148 at the same concentration. It was also used to successfully image a subcutaneous glioblastoma tumor in vivo.
Collapse
Affiliation(s)
- Syed Muhammad Usama
- Department of Chemistry, Texas A&M University, Box 30012, College Station, TX, 77842, USA
| | - Zhengyang Jiang
- Department of Chemistry, Texas A&M University, Box 30012, College Station, TX, 77842, USA
| | - Kathryn Pflug
- Department of Molecular & Cellular Medicine, Texas A&M University Health Science Center, College Station, TX, 77843, USA
| | - Raquel Sitcheran
- Department of Molecular & Cellular Medicine, Texas A&M University Health Science Center, College Station, TX, 77843, USA
| | - Kevin Burgess
- Department of Chemistry, Texas A&M University, Box 30012, College Station, TX, 77842, USA
| |
Collapse
|
50
|
Abstract
Kinase inhibitors (KIs) have had a huge impact on clinical treatment of various cancers, but they are far from perfect medicines. In particular, their efficacies are limited to certain cancer types and, in many cases, provide only temporary remission. This paper explores the possibility of covalently binding a fluorophore for in vivo optical imaging to the KI dasatinib where the particular fluorophore chosen for this study, a heptamethine cyanine (Cy) derivative, tends to accumulate in tumors. Thus, we hypothesized that the dasatinib-fluorophore conjugate might target tumor cells more effectively than the parent KI, give enhanced suppression of viability, and simultaneously serve as a probe for optical imaging. As far as we are aware, the dasatinib conjugate (1) is the first reported to contain this KI and a probe for near-IR imaging, and it is certainly the first conjugate of a tumor-targeting near-IR dye and a KI of any kind. Conjugate 1 suppressed the viability of liver cancer cells (HepG2) more effectively than dasatinib at the same concentration. In scratch assays, 1 prevented regrowth of the tumor cells. Conjugate 1 is cell permeable, and confocal imaging indicates the fluorescence of those cells is concentrated in the mitochondria than lysosomes. In general, this study suggests there is untapped potential for conjugates of KIs with tumor-targeting near-IR dyes in the development of theranostics for optical imaging and treatment of cancer.
Collapse
Affiliation(s)
- Syed Muhammad Usama
- Department of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, United States
| | - Bosheng Zhao
- Department of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, United States
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, United States
| |
Collapse
|