1
|
Devadiga D, Yan J, Devadiga D. Recent Advances in Probing Electron Delocalization in Conjugated Molecules by Attached Infrared Reporter Groups for Energy Conversion and Storage. ACS APPLIED ENERGY MATERIALS 2025; 8:1942-1963. [PMID: 40018390 PMCID: PMC11863185 DOI: 10.1021/acsaem.4c03246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 03/01/2025]
Abstract
This review article reports an overview of the recent developments in the field of electron delocalization study in organic conjugated molecules by utilizing the vibration frequencies exhibited by the attached functional groups such as nitrile (-C≡N), alkyne (-C≡C-), or carbonyl (-C=O). A brief introduction to electron delocalization, methods for study, and their importance is given first, followed by the application of infrared spectroscopy in organic molecules. Details of molecules with various infrared reporter groups have been explained in respective subsections based on the functional groups. All the reported organic molecules have been structured and presented with the electron delocalization properties studied using an infrared reporter group. Finally, an outlook on this recently promising, exciting, and interesting field of probing electron delocalization using infrared reporter groups is provided.
Collapse
Affiliation(s)
- Deepak Devadiga
- Department
of Physical Sciences, Eastern New Mexico
University, Portales, New Mexico 88130, United States
| | - Juchao Yan
- Department
of Physical Sciences, Eastern New Mexico
University, Portales, New Mexico 88130, United States
| | | |
Collapse
|
2
|
Stuart AN, de la Perrelle JM, Huang DM, Kee TW. Photodegradation reveals that singlet energy transfer impedes energy-gradient-driven singlet fission in polyacene blends. Chem Sci 2025; 16:3246-3258. [PMID: 39840298 PMCID: PMC11744680 DOI: 10.1039/d4sc06702a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
Singlet fission (SF) is a process that is potentially beneficial for photovoltaics by producing two triplet excitons from a single photon, but its application is often hindered by the inability to effectively separate the resultant triplet excitons. It has been proposed that an energy gradient can assist in separating triplet excitons through triplet energy transfer between chromophores of different triplet energies, but this approach has only been studied in solution and the efficacy of this strategy in the solid state is under explored. Here, we investigate energy-gradient-driven SF in a disordered solid state, in the form of suspensions of 5,12-bis(triisopropylsilylethnyl)tetracene:6,13-bis(triisopropylsilylethnyl)pentance (TIPS-Tn:TIPS-Pn) blend nanoparticles (NPs). Rather than using more conventional techniques such as ultrafast (sub-nanosecond) spectroscopy, we study the photophysics in these NPs through monitoring their photodegradation. TIPS-Tn photodegrades rapidly in neat NPs, but this photodegradation is suppressed upon the addition of TIPS-Pn, indicating a decrease in the TIPS-Tn triplet population. By modeling the photodegradation over a timescale of minutes to hours, we are able to reveal details of processes on the ultrafast timescale. We show that triplet energy transfer occurs from TIPS-Tn to TIPS-Pn, leading to slower photodegradation for TIPS-Tn, and faster photodegradation for TIPS-Pn. However, modeling additionally indicates that singlet energy transfer from TIPS-Tn to TIPS-Pn also occurs, and in fact acts to reduce the efficiency of TIPS-Tn SF. Hence, in this particular system, the energy gradient impedes SF, rather than assisting it. These findings indicate that chromophore pairs must be carefully selected to switch off singlet energy transfer for the energy-gradient approach to be effective in enhancing SF.
Collapse
Affiliation(s)
- Alexandra N Stuart
- Department of Chemistry, The University of Adelaide Adelaide South Australia 5005 Australia
| | | | - David M Huang
- Department of Chemistry, The University of Adelaide Adelaide South Australia 5005 Australia
| | - Tak W Kee
- Department of Chemistry, The University of Adelaide Adelaide South Australia 5005 Australia
| |
Collapse
|
3
|
Schaufelberger L, Blaskovits JT, Laplaza R, Jorner K, Corminboeuf C. Inverse Design of Singlet-Fission Materials with Uncertainty-Controlled Genetic Optimization. Angew Chem Int Ed Engl 2025; 64:e202415056. [PMID: 39321389 PMCID: PMC11735885 DOI: 10.1002/anie.202415056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024]
Abstract
Singlet fission has shown potential for boosting the efficiency of solar cells, but the scarcity of suitable molecular materials hinders its implementation. We introduce an uncertainty-controlled genetic algorithm (ucGA) based on ensemble machine learning predictions from different molecular representations that concurrently optimizes excited state energies, synthesizability, and exciton size for the discovery of singlet fission materials. The ucGA allows us to efficiently explore the chemical space spanned by the reFORMED fragment database, which consists of 45,000 cores and 5,000 substituents derived from crystallographic structures assembled in the FORMED repository. Running the ucGA in an exploitative setup performs local optimization on variations of known singlet fission scaffolds, such as acenes. In an explorative mode, hitherto unknown candidates displaying excellent excited state properties for singlet fission are generated. We suggest a class of heteroatom-rich mesoionic compounds as acceptors for charge-transfer mediated singlet fission. When included in larger donor-acceptor systems, these units exhibit localization of the triplet state, favorable diradicaloid character and suitable triplet energies for exciton injection into semiconductor solar cells.
Collapse
Affiliation(s)
- Luca Schaufelberger
- École polytechnique fédérale de Lausanne (EPFL)Institute of Chemical Sciences and EngineeringLausanneSwitzerland, CH-1015
| | - J. Terence Blaskovits
- École polytechnique fédérale de Lausanne (EPFL)Institute of Chemical Sciences and EngineeringLausanneSwitzerland, CH-1015
| | - Ruben Laplaza
- École polytechnique fédérale de Lausanne (EPFL)Institute of Chemical Sciences and EngineeringLausanneSwitzerland, CH-1015
- National Center for Competence in Research – Catalysis (NCCR-Catalysis)École polytechnique fédérale de Lausanne (EPFL)LausanneSwitzerland, CH-1015
| | - Kjell Jorner
- ETH Zürich, Institute of Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesVladimir-Prelog-Weg 1ZürichSwitzerlandCH-8093
| | - Clemence Corminboeuf
- École polytechnique fédérale de Lausanne (EPFL)Institute of Chemical Sciences and EngineeringLausanneSwitzerland, CH-1015
- National Center for Competence in Research – Catalysis (NCCR-Catalysis)École polytechnique fédérale de Lausanne (EPFL)LausanneSwitzerland, CH-1015
| |
Collapse
|
4
|
Braunscheidel NM, Bachhar A, Mayhall NJ. Accurate and interpretable representation of correlated electronic structure via Tensor Product Selected CI. Faraday Discuss 2024; 254:130-156. [PMID: 39119803 DOI: 10.1039/d4fd00049h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The task of computing wavefunctions that are accurate, yet simple enough mathematical objects to use for reasoning, has long been a challenge in quantum chemistry. The difficulty in drawing physical conclusions from a wavefunction is often related to the generally large number of configurations with similar weights. In Tensor Product Selected Configuration Interaction (TPSCI), we use a locally correlated tensor product state basis, which has the effect of concentrating the weight of a state onto a smaller number of physically interpretable degrees of freedom. In this paper, we apply TPSCI to a series of three molecular systems ranging in separability, one of which is the first application of TPSCI to an open-shell bimetallic system. For each of these systems, we obtain accurate solutions to large active spaces, and analyze the resulting wavefunctions through a series of different approaches including (i) direct inspection of the TPS basis coefficients, (ii) construction of Bloch effective Hamiltonians, and (iii) computation of cluster correlation functions.
Collapse
Affiliation(s)
| | - Arnab Bachhar
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24060, USA.
| | | |
Collapse
|
5
|
Lavarda G, Sharma A, Beslać M, Jansen SAH, Meskers SCJ, Friend RH, Rao A, Meijer EW. Long-Lived Triplets from Singlet Fission in Pentacene-Decorated Helical Supramolecular Polymers. J Am Chem Soc 2024; 146:28985-28993. [PMID: 39380134 PMCID: PMC11505394 DOI: 10.1021/jacs.4c09844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Singlet fission (SF), which involves the conversion of a singlet excited state into two triplet excitons, holds great potential to boost the efficiency of photovoltaics. However, losses due to triplet-triplet annihilation hamper the efficient harvesting of SF-generated triplet excitons, which limits an effective implementation in solar energy conversion schemes. A fundamental understanding of the underlying structure-property relationships is thus crucial to define design principles for cutting-edge SF materials, yet it remains elusive. Herein, we harness helical supramolecular polymers decorated with pentacene side groups to elucidate intermolecular SF dynamics in solution and promote the formation of long-lived mobile triplets. By leveraging the hydrogen bonding-driven assembly of benzene-1,3,5-tricarboxamide (BTA) cores into one-dimensional scaffolds, we direct the organization of appended pentacene motifs into long-range ordered helical frameworks. Dynamic interactions between weakly coupled SF pendants mediate singlet conversion within hundreds of picoseconds, affording triplet quantum yields well above 100%. Moreover, analysis of triplet dynamics with a Monte Carlo simulation model reveals that triplet diffusion along the supramolecular fibers is favored over annihilation, resulting in independent triplets exhibiting considerably slow decay on the time scale of tens of microseconds. The molecular packing within the assembly is tuned by subtle changes in monomer design to increase the rate and efficiency of SF while ensuring exceptionally long-lived mobile triplets, allowing to maintain triplet quantum yields exceeding 100% for at least 100 ns. This work opens new opportunities to exploit self-assembled supramolecular polymers as functional templates to achieve long-lived SF-generated triplets.
Collapse
Affiliation(s)
- Giulia Lavarda
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Ashish Sharma
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB30HE, United
Kingdom
| | - Marko Beslać
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Stef A. H. Jansen
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Stefan C. J. Meskers
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Richard H. Friend
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB30HE, United
Kingdom
| | - Akshay Rao
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB30HE, United
Kingdom
| | - E. W. Meijer
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
6
|
Peng B, Wang Z, Jiang J, Huang Y, Liu W. Investigation of ultrafast intermediate states during singlet fission in lycopene H-aggregate using femtosecond stimulated Raman spectroscopy. J Chem Phys 2024; 160:194304. [PMID: 38757619 DOI: 10.1063/5.0200802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
The singlet fission process involves the conversion of one singlet excited state into two triplet states, which has significant potential for enhancing the energy utilization efficiency of solar cells. Carotenoid, a typical π conjugated chromophore, exhibits specific aggregate morphologies known to display singlet fission behavior. In this study, we investigate the singlet fission process in lycopene H-aggregates using femtosecond stimulated Raman spectroscopy aided by quantum chemical calculation. The experimental results reveal two reaction pathways that effectively relax the S2 (11Bu+) state populations in lycopene H-aggregates: a monomer-like singlet excited state relaxation pathway through S2 (11Bu+) → 11Bu- → S1 (21Ag-) and a dominant sequential singlet fission reaction pathway involving the S2 (11Bu+) state, followed by S* state, a triplet pair state [1(TT)], eventually leading to a long lifetime triplet state T1. Importantly, the presence of both anionic and cationic fingerprint Raman peaks in the S* state is indicative of a substantial charge-transfer character.
Collapse
Affiliation(s)
- Bo Peng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ziyu Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiaming Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yifan Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
7
|
Wang X, Gao S, Luo Y, Liu X, Tom R, Zhao K, Chang V, Marom N. Computational Discovery of Intermolecular Singlet Fission Materials Using Many-Body Perturbation Theory. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:7841-7864. [PMID: 38774154 PMCID: PMC11103713 DOI: 10.1021/acs.jpcc.4c01340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/24/2024]
Abstract
Intermolecular singlet fission (SF) is the conversion of a photogenerated singlet exciton into two triplet excitons residing on different molecules. SF has the potential to enhance the conversion efficiency of solar cells by harvesting two charge carriers from one high-energy photon, whose surplus energy would otherwise be lost to heat. The development of commercial SF-augmented modules is hindered by the limited selection of molecular crystals that exhibit intermolecular SF in the solid state. Computational exploration may accelerate the discovery of new SF materials. The GW approximation and Bethe-Salpeter equation (GW+BSE) within the framework of many-body perturbation theory is the current state-of-the-art method for calculating the excited-state properties of molecular crystals with periodic boundary conditions. In this Review, we discuss the usage of GW+BSE to assess candidate SF materials as well as its combination with low-cost physical or machine learned models in materials discovery workflows. We demonstrate three successful strategies for the discovery of new SF materials: (i) functionalization of known materials to tune their properties, (ii) finding potential polymorphs with improved crystal packing, and (iii) exploring new classes of materials. In addition, three new candidate SF materials are proposed here, which have not been published previously.
Collapse
Affiliation(s)
- Xiaopeng Wang
- School
of Foundational Education, University of
Health and Rehabilitation Sciences, Qingdao 266113, China
- Qingdao
Institute for Theoretical and Computational Sciences, Institute of
Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Siyu Gao
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yiqun Luo
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xingyu Liu
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rithwik Tom
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kaiji Zhao
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Vincent Chang
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Noa Marom
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
8
|
Kim J, Teo HT, Hong Y, Cha H, Kim W, Chi C, Kim D. Elucidating Singlet-Fission-Born Multiexciton Dynamics via Molecular Engineering: A Dilution Principle Extended to Quintet Triplet Pair. J Am Chem Soc 2024; 146:10833-10846. [PMID: 38578848 DOI: 10.1021/jacs.4c01326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Multiexciton in singlet exciton fission represents a critical quantum state with significant implications for both solar cell applications and quantum information science. Two distinct fields of interest explore contrasting phenomena associated with the geminate triplet pair: one focusing on the persistence of long-lived correlation and the other emphasizing efficient decorrelation. Despite the pivotal nature of multiexciton processes, a comprehensive understanding of their dependence on the structural and spin properties of materials is currently lacking in experimental realizations. To address this gap in knowledge, molecular engineering was employed to modify the TIPS-tetracene structures, enabling an investigation of the structure-property relationships in spin-related multiexciton processes. In lieu of the time-resolved electron paramagnetic resonance technique, two time-resolved magneto-optical spectroscopies were implemented for quantitative analysis of spin-dependent multiexciton dynamics. The utilization of absorption and fluorescence signals as complementary optical readouts, in the presence of a magnetic field, provided crucial insights into geminate triplet pair dynamics. These insights encompassed the duration of multiexciton correlation and the involvement of the spin state in multiexciton decorrelation. Furthermore, simulations based on our kinetic models suggested a role for quintet dilution in multiexciton dynamics, surpassing the singlet dilution principle established by the Merrifield model. The integration of intricate model structures and time-resolved magneto-optical spectroscopies served to explicitly elucidate the interplay between structural and spin properties in multiexciton processes. This comprehensive approach not only contributes to the fundamental understanding of these processes but also aligns with and reinforces previous experimental studies of solid states and theoretical assessments.
Collapse
Affiliation(s)
- Juno Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Hao Ting Teo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yongseok Hong
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Hyojung Cha
- Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Woojae Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Chunyan Chi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Dongho Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
9
|
Greißel PM, Thiel D, Gotfredsen H, Chen L, Krug M, Papadopoulos I, Miskolzie M, Torres T, Clark T, Brøndsted Nielsen M, Tykwinski RR, Guldi DM. Intramolecular Triplet Diffusion Facilitates Triplet Dissociation in a Pentacene Hexamer. Angew Chem Int Ed Engl 2024; 63:e202315064. [PMID: 38092707 DOI: 10.1002/anie.202315064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Indexed: 01/26/2024]
Abstract
Triplet dynamics in singlet fission depend strongly on the strength of the electronic coupling. Covalent systems in solution offer precise control over such couplings. Nonetheless, efficient free triplet generation remains elusive in most systems, as the intermediate triplet pair 1 (T1 T1 ) is prone to triplet-triplet annihilation due to its spatial confinement. In the solid state, entropically driven triplet diffusion assists in the spatial separation of triplets, resulting in higher yields of free triplets. Control over electronic coupling in the solid state is, however, challenging given its sensitivity to molecular packing. We have thus developed a hexameric system (HexPnc) to enable solid-state-like triplet diffusion at the molecular scale. This system is realized by covalently tethering three pentacene dimers to a central subphthalocyanine scaffold. Transient absorption spectroscopy, complemented by theoretical structural optimizations and steady-state spectroscopy, reveals that triplet diffusion is indeed facilitated due to intramolecular cluster formation. The yield of free triplets in HexPnc is increased by a factor of up to 14 compared to the corresponding dimeric reference (DiPnc). Thus, HexPnc establishes crucial design aspects for achieving efficient triplet dissociation in strongly coupled systems by providing avenues for diffusive separation of 1 (T1 T1 ), while, concomitantly, retaining strong interchromophore coupling which preserves rapid formation of 1 (T1 T1 ).
Collapse
Affiliation(s)
- Phillip M Greißel
- Department of Chemistry and Pharmacy &, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Dominik Thiel
- Department of Chemistry and Pharmacy &, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Henrik Gotfredsen
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
- Current address: Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Lan Chen
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Marcel Krug
- Department of Chemistry and Pharmacy &, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Ilias Papadopoulos
- Department of Chemistry and Pharmacy &, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058, Erlangen, Germany
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Mark Miskolzie
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Tomás Torres
- Department of Organic Chemistry, Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
- IMDEA Nanociencia, C/Faraday 9, Cantoblanco, 28049, Madrid, Spain
| | - Timothy Clark
- Department of Chemistry and Pharmacy &, Computer-Chemie-Center (CCC), Friedrich-Alexander-University Erlangen-Nuremberg, Nägelsbachstraße 25, 91052, Erlangen, Germany
| | - Mogens Brøndsted Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| | - Rik R Tykwinski
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy &, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058, Erlangen, Germany
| |
Collapse
|
10
|
Stuart AN, Kee TW, Huang DM. Role of Singlet and Triplet Excited States in the Oxygen-Mediated Photophysics and Photodegradation of Polyacenes. J Am Chem Soc 2024; 146:2174-2186. [PMID: 38197858 DOI: 10.1021/jacs.3c12245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Polyacenes, such as tetracene and pentacene, are common model systems for the study of photophysical phenomena such as singlet fission (SF) and triplet fusion, processes which may lead to increased photovoltaic efficiencies. While they exhibit desirable photophysical properties, these materials are not photostable and convert to unwanted endoperoxides in the presence of oxygen and light, limiting their use in real-world applications. Not only does oxygen degrade polyacenes but also it can affect their photophysics, leading to both the sensitization and quenching of different excited states. In this study, we characterize the effect of oxygen on 5,12-bis(triisopropylsilylethynyl) tetracene (TIPS-Tn) and 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-Pn) using transient absorption spectroscopy, and show that oxygen can significantly influence the population of excited states, in particular enhancing the polyacene triplet population. We additionally combine the time-resolved excited-state dynamics with photodegradation studies to determine the predominant mechanism of photooxidation, which has previously been unclear. We find that both molecules photodegrade predominantly via singlet oxygen; however, for TIPS-Tn, this occurs through the triplet state, whereas for TIPS-Pn, degradation occurs through the excited singlet. The photodegradation of TIPS-Tn is thus enhanced by faster rates of SF, whereas SF in TIPS-Pn increases the molecule's photostability. This work has implications both for the design of new materials for next-generation photovoltaics that can avoid photooxidation and for the study of their photophysics in real-world environments.
Collapse
Affiliation(s)
- Alexandra N Stuart
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Tak W Kee
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - David M Huang
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
11
|
Kim J, Teo HT, Hong Y, Liau YC, Yim D, Han Y, Oh J, Kim H, Chi C, Kim D. Leveraging Charge-Transfer Interactions in Through-Space-Coupled Pentacene Dendritic Oligomer for Singlet Exciton Fission. J Am Chem Soc 2023; 145:19812-19823. [PMID: 37656929 DOI: 10.1021/jacs.3c05660] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Singlet exciton fission in organic chromophores has received much attention during the past decade. Inspired by numerous spectroscopic studies in the solid state, there have been vigorous efforts to study singlet exciton fission dynamics in covalently bonded oligomers, which aims to investigate underlying mechanisms of this intriguing process in simplified model systems. In terms of through-space orbital interactions, however, most of covalently bonded pentacene oligomers studied so far fall into weakly interacting systems since they manifest chain-like structures based on various (non)conjugated linkers. Therefore, it remains as a compelling question to answer how through-space interactions in the solid state intervene this photophysical process since it is hypersensitive to displacements and orientations between neighboring chromophores. Herein, as one of experimental studies to answer this question, we introduced a tight-packing dendritic structure whose mesityl-pentacene constituents are coupled via moderate through-space orbital interactions. Based on the comparison with a suitably controlled dendritic structure, which is in a weak coupling regime, important mechanistic viewpoints are tackled such as configurational mixings between singlet, charge-transfer, and triplet pair states and the role of chromophore multiplication. We underscore that our through-space-coupled dendritic oligomer in a quasi-intermediate coupling regime provides a hint on the interplay of multiconfigurational excited-states, which might have drawn complexity in singlet exciton fission kinetics throughout numerous solid-state morphologies.
Collapse
Affiliation(s)
- Juno Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Hao Ting Teo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yongseok Hong
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Yuan Cheng Liau
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Daniel Yim
- Department of Chemistry, Incheon National University, Incheon 22012, Korea
| | - Yi Han
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Juwon Oh
- Department of ICT Environmental Health System and Department of Chemistry, Soonchunhyang University, Asan 31538, Korea
| | - Hyungjun Kim
- Department of Chemistry, Incheon National University, Incheon 22012, Korea
| | - Chunyan Chi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Dongho Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
12
|
Yoneda Y, Kuramochi H. Rapid-Scan Resonant Two-Dimensional Impulsive Stimulated Raman Spectroscopy of Excited States. J Phys Chem A 2023. [PMID: 37289973 DOI: 10.1021/acs.jpca.3c02489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photochemical reactions occur in the electronically excited state, which is effectively represented by a multidimensional potential energy surface (PES) with a vast degree of freedom of nuclear coordinates. The elucidation of the intricate shape of the PES constitutes an important topic in the field of photochemistry and has long been studied both experimentally and theoretically. Recently, fully time-domain resonant two-dimensional Raman spectroscopy has emerged as a potentially powerful tool to provide unique information about the coupling between vibrational manifolds in the excited state. However, the wide application of this technique has been significantly hampered by the technical difficulties associated with experimental implementation and remains challenging. Herein, we demonstrate time-domain resonant two-dimensional impulsive stimulated Raman spectroscopy (2D-ISRS) of excited states using sub-10 fs pulses based on the rapid scan of the time delay, which facilitates the efficient collection of time-domain vibrational signals with high sensitivity. As a proof-of-principle experiment, we performed 2D-ISRS of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) in solution. Through 2D Fourier transformation of the high-quality time-time oscillatory signal, we obtained a 2D frequency-frequency correlation map of excited-state TIPS-pentacene in the broad frequency window of 0-2000 cm-1. The data clearly resolve a number of cross peaks that signify the correlations among excited-state vibrational manifolds. The high capability of the rapid-scan-based 2D-ISRS spectrometer presented in this study enables the systematic investigation of various photochemical reaction systems, thereby further promoting the understanding and applications of this new multidimensional spectroscopy.
Collapse
Affiliation(s)
- Yusuke Yoneda
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Hikaru Kuramochi
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| |
Collapse
|
13
|
de la Perrelle JM, Tapping PC, Schrefl E, Stuart AN, Huang DM, Kee TW. Singlet fission preserves polarisation correlation of excitons. Phys Chem Chem Phys 2023; 25:6817-6829. [PMID: 36790866 DOI: 10.1039/d2cp01943d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Singlet fission (SF) holds the promise to circumvent the photovoltaic efficiency limit to reach a power-conversion efficiency above 34%. SF of TIPS-pentacene (TIPS-Pn) has been investigated but its mechanism is yet to be well elucidated. Recently, we developed a nanoparticle (NP) system, in which doping of TIPS-Pn in a host matrix yields a range of average intermolecular distances, d, to study the dependence of SF in TIPS-Pn on d. At large d values, where the bimolecular SF process should be unfavourable, a relatively high SF quantum yield (ΦSF) is still observed, which implies a deviation from a random distribution of TIPS-Pn throughout the NP. Here, using polarisation-sensitive femtosecond time-resolved spectroscopy and Monte Carlo simulations of exciton migration and SF, we quantify the level of clustering of TIPS-Pn in the host matrix, which is responsible for the higher than expected ΦSF. The experimental data indicate a preservation of polarisation correlation by SF, which is uncommon because energy transfer in amorphous materials tends to result in depolarisation. We show that the preservation of polarisation correlation is due to SF upon exciton migration. Although exciton migration decorrelates polarisation, SF acts to remove decorrelated excitons to give an overall preservation of polarisation correlation.
Collapse
Affiliation(s)
| | - Patrick C Tapping
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia.
| | - Elisabeth Schrefl
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia.
| | - Alexandra N Stuart
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia.
| | - David M Huang
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia.
| | - Tak W Kee
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia.
| |
Collapse
|
14
|
Unger F, Moretti L, Hausch J, Bredehoeft J, Zeiser C, Haug S, Tempelaar R, Hestand NJ, Cerullo G, Broch K. Modulating Singlet Fission by Scanning through Vibronic Resonances in Pentacene-Based Blends. J Am Chem Soc 2022; 144:20610-20619. [DOI: 10.1021/jacs.2c07237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Frederik Unger
- Institute for Applied Physics, University of Tuebingen, Auf der Morgenstelle 10, Tuebingen, 72076, Germany
| | - Luca Moretti
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133, Italy
| | - Julian Hausch
- Institute for Applied Physics, University of Tuebingen, Auf der Morgenstelle 10, Tuebingen, 72076, Germany
| | - Jona Bredehoeft
- Institute for Applied Physics, University of Tuebingen, Auf der Morgenstelle 10, Tuebingen, 72076, Germany
| | - Clemens Zeiser
- Institute for Applied Physics, University of Tuebingen, Auf der Morgenstelle 10, Tuebingen, 72076, Germany
| | - Sara Haug
- Institute for Applied Physics, University of Tuebingen, Auf der Morgenstelle 10, Tuebingen, 72076, Germany
| | - Roel Tempelaar
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Nicholas J. Hestand
- Department of Natural and Applied Sciences, Evangel University, 1111 North Glenstone Avenue, Springfield, Missouri 65802, United States
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133, Italy
| | - Katharina Broch
- Institute for Applied Physics, University of Tuebingen, Auf der Morgenstelle 10, Tuebingen, 72076, Germany
| |
Collapse
|
15
|
Symmetry Breaking Charge Transfer in DNA-Templated Perylene Dimer Aggregates. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196612. [PMID: 36235149 PMCID: PMC9571668 DOI: 10.3390/molecules27196612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022]
Abstract
Molecular aggregates are of interest to a broad range of fields including light harvesting, organic optoelectronics, and nanoscale computing. In molecular aggregates, nonradiative decay pathways may emerge that were not present in the constituent molecules. Such nonradiative decay pathways may include singlet fission, excimer relaxation, and symmetry-breaking charge transfer. Singlet fission, sometimes referred to as excitation multiplication, is of great interest to the fields of energy conversion and quantum information. For example, endothermic singlet fission, which avoids energy loss, has been observed in covalently bound, linear perylene trimers and tetramers. In this work, the electronic structure and excited-state dynamics of dimers of a perylene derivative templated using DNA were investigated. Specifically, DNA Holliday junctions were used to template the aggregation of two perylene molecules covalently linked to a modified uracil nucleobase through an ethynyl group. The perylenes were templated in the form of monomer, transverse dimer, and adjacent dimer configurations. The electronic structure of the perylene monomers and dimers were characterized via steady-state absorption and fluorescence spectroscopy. Initial insights into their excited-state dynamics were gleaned from relative fluorescence intensity measurements, which indicated that a new nonradiative decay pathway emerges in the dimers. Femtosecond visible transient absorption spectroscopy was subsequently used to elucidate the excited-state dynamics. A new excited-state absorption feature grows in on the tens of picosecond timescale in the dimers, which is attributed to the formation of perylene anions and cations resulting from symmetry-breaking charge transfer. Given the close proximity required for symmetry-breaking charge transfer, the results shed promising light on the prospect of singlet fission in DNA-templated molecular aggregates.
Collapse
|
16
|
Baronas P, Kreiza G, Naimovičius L, Radiunas E, Kazlauskas K, Orentas E, Juršėnas S. Sweet Spot of Intermolecular Coupling in Crystalline Rubrene: Intermolecular Separation to Minimize Singlet Fission and Retain Triplet-Triplet Annihilation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:15327-15335. [PMID: 36147521 PMCID: PMC9484276 DOI: 10.1021/acs.jpcc.2c04572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Singlet fission is detrimental to NIR-to-vis photon upconversion in the solid rubrene (Rub) films, as it diminishes photoluminescence efficiency. Previous studies have shown that thermally activated triplet energy transport drives singlet fission with nearly 100% efficiency in closely packed Rub crystals. Here, we examine triplet separation and recombination as a function of intermolecular distance in the crystalline films of Rub and the t-butyl substituted rubrene (tBRub) derivative. The increased intermolecular distance and altered molecular packing in tBRub films cause suppressed singlet dissociation into free triplets due to slower triplet energy transport. It was found that the formation of correlated triplet pairs 1(TT) and partial triplet separation 1(T···T) occurs in both Rub and tBRub films despite differences in intermolecular coupling. Under weak intermolecular coupling as in tBRub, geminate triplet annihilation of 1(T···T) outcompetes dissociation into free triplets, resulting in emission from the 1(TT) state. Essentially, increasing intermolecular distance up to a certain point (a sweet spot) is a good strategy for suppressing singlet fission and retaining triplet-triplet annihilation properties.
Collapse
Affiliation(s)
- P. Baronas
- Institute
of Photonics and Nanotechnology, Vilnius
University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - G. Kreiza
- Institute
of Photonics and Nanotechnology, Vilnius
University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - L. Naimovičius
- Institute
of Photonics and Nanotechnology, Vilnius
University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - E. Radiunas
- Institute
of Photonics and Nanotechnology, Vilnius
University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - K. Kazlauskas
- Institute
of Photonics and Nanotechnology, Vilnius
University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - E. Orentas
- Institute
of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - S. Juršėnas
- Institute
of Photonics and Nanotechnology, Vilnius
University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
17
|
Zhou J, Liu H, Liu S, Su P, Wang W, Li Z, Liu Z, Chen Y, Dong Y, Li X. Singlet Fission in Colloidal Nanoparticles of Amphipathic Diketopyrrolopyrrole Derivatives: Probing the Role of the Charge Transfer State. J Phys Chem B 2022; 126:6483-6492. [PMID: 35979942 DOI: 10.1021/acs.jpcb.2c03163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To evaluate the role of the charge transfer (CT) state in the singlet fission (SF) process, we prepared three 3,6-bis(thiophen-2-yl)diketopyrrolopyrrole (TDPP) derivatives with zero (Ph2TDPP), one (Ph2TDPP-COOH), and two (Ph2TDPP-(COOH)2) carboxylic groups, respectively. Their colloidal nanoparticles were also prepared by a simple precipitation method. The SF dynamics and mechanism in these colloid nanoparticles were investigated by using steady-state/transient absorption and fluorescence spectroscopy. Steady-state absorption spectra reveal that the strength of the CT resonance interactions between the adjacent DPP units is increased gradually from Ph2TDPP to Ph2TDPP-COOH and then to Ph2TDPP-(COOH)2. Fluorescence and transient absorption spectra demonstrate that SF is proceeded via a CT-assisted superexchange mechanism in these three nanoparticles. Furthermore, SF rate and yield are enhanced gradually with the increase of the number of the carboxylic group, which may be attributed to the enhancement of the CT coupling strength. The result of this work not only provides a better understanding of the SF mechanism especially for the role of the CT state but also gives some new insights for the design of efficient SF materials based on DPP derivatives.
Collapse
Affiliation(s)
- Jun Zhou
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Heyuan Liu
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China.,National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - Shanshan Liu
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Pengkun Su
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Weijie Wang
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Zhi Li
- Shandong Energy Group Co., Ltd., Jinan, Shandong 250014, China
| | - Zhaobin Liu
- Shandong Energy Group Co., Ltd., Jinan, Shandong 250014, China
| | - Yanli Chen
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Yunqin Dong
- College of Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Xiyou Li
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|
18
|
Silori Y, Yadav A, Chawla S, De AK. Effect of nanoscale confinement on ultrafast dynamics of singlet fission in TIPS-pentacene. Chemphyschem 2022; 23:e202200454. [PMID: 35830606 DOI: 10.1002/cphc.202200454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/12/2022] [Indexed: 11/06/2022]
Abstract
Singlet fission (SF) is a phenomenon for the generation of a pair of triplet excitons from a singlet excited molecule interacting with another adjacent molecule in its ground electronic state. By increasing the effective number of charge carriers and reducing thermal dissipation of excess energy, SF is promised to enhance light-harvesting efficiency for photovoltaic applications. While SF has been extensively studied in thin films and crystals, the same has not been explored much within a confined medium. Here, we report the ultrafast SF dynamics of triisopropylsilylethynyl pentacene (TIPS-Pn) in micellar nanocavity of varying sizes (prepared from TX-100, CTAB, and SDS surfactants). The nanoparticle with a smaller size contains weakly coupled chromophores and is shown to be more efficient for SF followed by triplet generation as compared to the nanoparticles of larger size which contain strongly coupled chromophores and are less efficient due to the presence of singlet exciton traps. Through these studies, we delineate how a subtle interplay between short-range and long-range interaction among chromophores confined within nanoparticles, fine-tuned by the curvature of the micellar interface but irrespective of the nature of the micelle (cationic or anionic or neutral), play a crucial role in SF through and generation of triplets.
Collapse
Affiliation(s)
- Yogita Silori
- IISER Mohali: Indian Institute of Science Education and Research Mohali, Chemical Sciences, INDIA
| | - Anita Yadav
- IISER Mohali: Indian Institute of Science Education and Research Mohali, Chemical Sciences, INDIA
| | - Sakshi Chawla
- IISER Mohali: Indian Institute of Science Education and Research Mohali, Chemical Sciences, INDIA
| | - Arijit Kumar De
- Indian Institute of Science Education and Research Mohali, Chemical Sciences, Knowledge City, Sector 81, 140306, SAS Nagar,, INDIA
| |
Collapse
|
19
|
DuBose JT, Kamat PV. Energy Versus Electron Transfer: Managing Excited-State Interactions in Perovskite Nanocrystal-Molecular Hybrids. Chem Rev 2022; 122:12475-12494. [PMID: 35793168 DOI: 10.1021/acs.chemrev.2c00172] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Energy and electron transfer processes in light harvesting assemblies dictate the outcome of the overall light energy conversion process. Halide perovskite nanocrystals such as CsPbBr3 with relatively high emission yield and strong light absorption can transfer singlet and triplet energy to surface-bound acceptor molecules. They can also induce photocatalytic reduction and oxidation by selectively transferring electrons and holes across the nanocrystal interface. This perspective discusses key factors dictating these excited-state pathways in perovskite nanocrystals and the fundamental differences between energy and electron transfer processes. Spectroscopic methods to decipher between these complex photoinduced pathways are presented. A basic understanding of the fundamental differences between the two excited deactivation processes (charge and energy transfer) and ways to modulate them should enable design of more efficient light harvesting assemblies with semiconductor and molecular systems.
Collapse
Affiliation(s)
- Jeffrey T DuBose
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Prashant V Kamat
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
20
|
Pensack RD, Purdum GE, Mazza SM, Grieco C, Asbury JB, Anthony JE, Loo YL, Scholes GD. Excited-State Dynamics of 5,14- vs 6,13-Bis(trialkylsilylethynyl)-Substituted Pentacenes: Implications for Singlet Fission. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:9784-9793. [PMID: 35756579 PMCID: PMC9210346 DOI: 10.1021/acs.jpcc.2c00897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/20/2022] [Indexed: 05/16/2023]
Abstract
Singlet fission is a process in conjugated organic materials that has the potential to considerably improve the performance of devices in many applications, including solar energy conversion. In any application involving singlet fission, efficient triplet harvesting is essential. At present, not much is known about molecular packing arrangements detrimental to singlet fission. In this work, we report a molecular packing arrangement in crystalline films of 5,14-bis(triisopropylsilylethynyl)-substituted pentacene, specifically a local (pairwise) packing arrangement, responsible for complete quenching of triplet pairs generated via singlet fission. We first demonstrate that the energetic condition necessary for singlet fission is satisfied in amorphous films of the 5,14-substituted pentacene derivative. However, while triplet pairs form highly efficiently in the amorphous films, only a modest yield of independent triplets is observed. In crystalline films, triplet pairs also form highly efficiently, although independent triplets are not observed because triplet pairs decay rapidly and are quenched completely. We assign the quenching to a rapid nonadiabatic transition directly to the ground state. Detrimental quenching is observed in crystalline films of two additional 5,14-bis(trialkylsilylethynyl)-substituted pentacenes with either ethyl or isobutyl substituents. Developing a better understanding of the losses identified in this work, and associated molecular packing, may benefit overcoming losses in solids of other singlet fission materials.
Collapse
Affiliation(s)
- Ryan D. Pensack
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Geoffrey E. Purdum
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Samuel M. Mazza
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Christopher Grieco
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - John B. Asbury
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - John E. Anthony
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Yueh-Lin Loo
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger
Center for Energy and the Environment, Princeton
University, Princeton, New Jersey 08544, United States
| | - Gregory D. Scholes
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
21
|
Wang T, Zhang BY, Zhang HL. Singlet Fission Materials for Photovoltaics: from Small Molecules to Macromolecules. Macromol Rapid Commun 2022; 43:e2200326. [PMID: 35703581 DOI: 10.1002/marc.202200326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/29/2022] [Indexed: 11/08/2022]
Abstract
Singlet fission (SF) is a spin-allowed process in which a singlet state splits into two triplet states. Materials that enable SF have attracted great attention in the last decade, mainly stemming from the potential of overcoming the Shockley-Queisser (SQ) limit in photoenergy conversion. In the past decade, a large number of new molecules exhibiting SF have been explored and many devices based on SF materials have been studied, though the mechanistic understanding is still obscure. This review focuses on the recent developments of SF materials, including small molecules, oligomers and polymers. The molecular design strategies and related mechanisms of SF are discussed. Then the dynamics of charge transfer and energy transfer between SF materials and other materials are introduced. Further, we discuss the progresses of implementing SF in photovoltaics. It is hoped that a comprehensive understanding to the SF materials, devices and mechanism may pave a new way for the design of next generation photovoltaics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Bo-Yang Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.,Prof. H. L. Zhang, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
22
|
Fan S, Li W, Li T, Gao F, Hu W, Liu S, Wang X, Liu H, Liu Z, Li Z, Chen Y, Li X. Singlet fission in colloid nanoparticles of amphipathic 9,10-bis(phenylethynyl)anthracene derivatives. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Barclay MS, Wilson CK, Roy SK, Mass OA, Obukhova OM, Svoiakov RP, Tatarets AL, Chowdhury AU, Huff JS, Turner DB, Davis PH, Terpetschnig EA, Yurke B, Knowlton WB, Lee J, Pensack RD. Oblique Packing and Tunable Excitonic Coupling in DNA‐Templated Squaraine Rotaxane Dimer Aggregates. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Matthew S. Barclay
- Boise State University Micron School of Materials Science & Engineering UNITED STATES
| | - Christopher K. Wilson
- Boise State University Micron School of Materials Science & Engineering UNITED STATES
| | - Simon K. Roy
- Boise State University Micron School of Materials Science & Engineering UNITED STATES
| | - Olga A. Mass
- Boise State University Micron School of Materials Science & Engineering UNITED STATES
| | - Olena M. Obukhova
- SSI Institute for Single Crystals NAS of Ukraine: Naukovo-tehnologicnij kompleks Institut monokristaliv Nacional'na akademia nauk Ukraini Department of Luminescent Materials and Dyes UKRAINE
| | - Rostyslav P. Svoiakov
- SSI Institute for Single Crystals NAS of Ukraine: Naukovo-tehnologicnij kompleks Institut monokristaliv Nacional'na akademia nauk Ukraini Department of Luminescent Materials and Dyes UKRAINE
| | - Anatoliy L. Tatarets
- SSI Institute for Single Crystals NAS of Ukraine: Naukovo-tehnologicnij kompleks Institut monokristaliv Nacional'na akademia nauk Ukraini Department of Luminescent Materials and Dyes UKRAINE
| | - Azhad U. Chowdhury
- Boise State University Micron School of Materials Science & Engineering UNITED STATES
| | - Jonathan S. Huff
- Boise State University Micron School of Materials Science & Engineering UNITED STATES
| | - Daniel B. Turner
- Boise State University Micron School of Materials Science & Engineering UNITED STATES
| | - Paul H. Davis
- Boise State University Micron School of Materials Science & Engineering UNITED STATES
| | | | - Bernard Yurke
- Boise State University Micron School of Materials Science & Engineering; Department of Electrical & Computer Engineering UNITED STATES
| | - William B. Knowlton
- Boise State University Micron School of Materials Science & Engineering; Department of Electrical & Computer Engineering UNITED STATES
| | - Jeunghoon Lee
- Boise State University Micron School of Materials Science & Engineering; Department of Chemistry & Biochemistry UNITED STATES
| | - Ryan D. Pensack
- Boise State University Micron School of Materials Science & Engineering 1435 W University Dr 83706 Boise UNITED STATES
| |
Collapse
|
24
|
|
25
|
Chowdhury A, Díaz S, Huff JS, Barclay MS, Chiriboga M, Ellis GA, Mathur D, Patten LK, Sup A, Hallstrom N, Cunningham PD, Lee J, Davis PH, Turner DB, Yurke B, Knowlton WB, Medintz IL, Melinger JS, Pensack RD. Tuning between Quenching and Energy Transfer in DNA-Templated Heterodimer Aggregates. J Phys Chem Lett 2022; 13:2782-2791. [PMID: 35319215 PMCID: PMC8978177 DOI: 10.1021/acs.jpclett.2c00017] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/15/2022] [Indexed: 05/07/2023]
Abstract
Molecular excitons, which propagate spatially via electronic energy transfer, are central to numerous applications including light harvesting, organic optoelectronics, and nanoscale computing; they may also benefit applications such as photothermal therapy and photoacoustic imaging through the local generation of heat via rapid excited-state quenching. Here we show how to tune between energy transfer and quenching for heterodimers of the same pair of cyanine dyes by altering their spatial configuration on a DNA template. We assemble "transverse" and "adjacent" heterodimers of Cy5 and Cy5.5 using DNA Holliday junctions. We find that the transverse heterodimers exhibit optical properties consistent with excitonically interacting dyes and fluorescence quenching, while the adjacent heterodimers exhibit optical properties consistent with nonexcitonically interacting dyes and disproportionately large Cy5.5 emission, suggestive of energy transfer between dyes. We use transient absorption spectroscopy to show that quenching in the transverse heterodimer occurs via rapid nonradiative decay to the ground state (∼31 ps) and that in the adjacent heterodimer rapid energy transfer from Cy5 to Cy5.5 (∼420 fs) is followed by Cy5.5 excited-state relaxation (∼700 ps). Accessing such drastically different photophysics, which may be tuned on demand for different target applications, highlights the utility of DNA as a template for dye aggregation.
Collapse
Affiliation(s)
- Azhad
U. Chowdhury
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Sebastián
A. Díaz
- Center for Bio/Molecular
Science and Engineering Code 6900 and Electronics Science
and Technology Division Code 6800, U.S.
Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Jonathan S. Huff
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Matthew S. Barclay
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Matthew Chiriboga
- Center for Bio/Molecular
Science and Engineering Code 6900 and Electronics Science
and Technology Division Code 6800, U.S.
Naval Research Laboratory, Washington, D.C. 20375, United States
- Volgenau
School of Engineering, George Mason University, Fairfax, Virginia 22030, United States
| | - Gregory A. Ellis
- Center for Bio/Molecular
Science and Engineering Code 6900 and Electronics Science
and Technology Division Code 6800, U.S.
Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Divita Mathur
- Center for Bio/Molecular
Science and Engineering Code 6900 and Electronics Science
and Technology Division Code 6800, U.S.
Naval Research Laboratory, Washington, D.C. 20375, United States
- College
of
Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Lance K. Patten
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Aaron Sup
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Natalya Hallstrom
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Paul D. Cunningham
- Center for Bio/Molecular
Science and Engineering Code 6900 and Electronics Science
and Technology Division Code 6800, U.S.
Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Jeunghoon Lee
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Paul H. Davis
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Daniel B. Turner
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Bernard Yurke
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - William B. Knowlton
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Igor L. Medintz
- Center for Bio/Molecular
Science and Engineering Code 6900 and Electronics Science
and Technology Division Code 6800, U.S.
Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Joseph S. Melinger
- Center for Bio/Molecular
Science and Engineering Code 6900 and Electronics Science
and Technology Division Code 6800, U.S.
Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Ryan D. Pensack
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| |
Collapse
|
26
|
Valianti S, Skourtis SS. The Role of Bridge-State Intermediates in Singlet Fission for Donor-Bridge-Acceptor Systems: A Semianalytical Approach to Bridge-Tuning of the Donor-Acceptor Fission Coupling. J Phys Chem Lett 2022; 13:939-946. [PMID: 35050642 PMCID: PMC9836358 DOI: 10.1021/acs.jpclett.1c03700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We describe a semianalytical/computational framework to explore structure-function relationships for singlet fission in Donor (D)-Bridge (B)-Acceptor (A) molecular architectures. The aim of introducing a bridging linker between the D and A molecules is to tune, by modifying the bridge structure, the electronic pathways that lead to fission and to D-A-separated correlated triplets. We identify different bridge-mediation regimes for the effective singlet-fission coupling in the coherent tunneling limit and show how to derive the dominant fission pathways in each regime. We describe the dependence of these regimes on D-B-A many-electron state energetics and on D-B (A-B) one-electron and two-electron matrix elements. This semianalytical approach can be used to guide computational and experimental searches for D-B-A systems with tuned singlet fission rates. We use this approach to interpret the bridge-resonance effect of singlet fission that has been observed in recent experiments.
Collapse
|
27
|
Yablon LM, Sanders SN, Miyazaki K, Kumarasamy E, He G, Choi B, Ananth N, Sfeir MY, Campos LM. Singlet fission and triplet pair recombination in bipentacenes with a twist. MATERIALS HORIZONS 2022; 9:462-470. [PMID: 34846410 DOI: 10.1039/d1mh01201k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We investigate triplet pair dynamics in pentacene dimers that have varying degrees of coplanarity (pentacene-pentacene twist angle). The fine-tuning of the twist angle was achieved by alternating connectivity at the 1-position or 2-positions of pentacene. This mix-and-match connectivity leads to tunable twist angles between the two covalently linked pentacenes. These twisted dimers allow us to investigate the subtle effects that the dihedral angle between the covalently linked pentacenes imparts on singlet fission and triplet pair recombination dynamics. We observe that as the dihedral angle between the two bonded pentacenes is increased, the rates of singlet fission decrease, while the accompanying decrease in triplet recombination rates is stark. Temperature-dependent transient optical studies combined with theoretical calculations show that the triplet pair recombination proceeds primarily through a direct multiexciton internal conversion process. Calculations further show that the significant decrease in recombination rates can be directly attributed to a corresponding decrease in the magnitude of the nonadiabatic coupling between the singlet multiexcitonic state and the ground state. These results highlight the importance of the twist angle in designing systems that exhibit rapid singlet fission, while maintaining long triplet pair lifetimes in pentacene dimers.
Collapse
Affiliation(s)
- Lauren M Yablon
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | - Samuel N Sanders
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | - Ken Miyazaki
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA.
| | - Elango Kumarasamy
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | - Guiying He
- Department of Physics, Graduate Center, City University of New York, New York, New York 10016, USA.
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, USA
| | - Bonnie Choi
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | - Nandini Ananth
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA.
| | - Matthew Y Sfeir
- Department of Physics, Graduate Center, City University of New York, New York, New York 10016, USA.
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, USA
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| |
Collapse
|
28
|
Zhang J, Sakai H, Suzuki K, Hasobe T, Tkachenko NV, Chang IY, Hyeon-Deuk K, Kaji H, Teranishi T, Sakamoto M. Near-Unity Singlet Fission on a Quantum Dot Initiated by Resonant Energy Transfer. J Am Chem Soc 2021; 143:17388-17394. [PMID: 34647732 DOI: 10.1021/jacs.1c04731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The conversion of a high-energy photon into two excitons using singlet fission (SF) has stimulated a variety of studies in fields from fundamental physics to device applications. However, efficient SF has only been achieved in limited systems, such as solid crystals and covalent dimers. Here, we established a novel system by assembling 4-(6,13-bis(2-(triisopropylsilyl)ethynyl)pentacen-2-yl)benzoic acid (Pc) chromophores on nanosized CdTe quantum dots (QDs). A near-unity SF (198 ± 5.7%) initiated by interfacial resonant energy transfer from CdTe to surface Pc was obtained. The unique arrangement of Pc determined by the surface atomic configuration of QDs is the key factor realizing unity SF. The triplet-triplet annihilation was remarkably suppressed due to the rapid dissociation of triplet pairs, leading to long-lived free triplets. In addition, the low light-harvesting ability of Pc in the visible region was promoted by the efficient energy transfer (99 ± 5.8%) from the QDs to Pc. The synergistically enhanced light-harvesting ability, high triplet yield, and long-lived triplet lifetime of the SF system on nanointerfaces could pave the way for an unmatched advantage of SF.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Chemistry, Graduate School of Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Hayato Sakai
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Katsuaki Suzuki
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Taku Hasobe
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Nikolai V Tkachenko
- Chemistry and Advanced Materials Group, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, FI33720 Tampere, Finland
| | - I-Ya Chang
- Department of Chemistry, Kyoto University, Kyoto, Kyoto 606-8502, Japan
| | - Kim Hyeon-Deuk
- Department of Chemistry, Kyoto University, Kyoto, Kyoto 606-8502, Japan
| | - Hironori Kaji
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Toshiharu Teranishi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masanori Sakamoto
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
29
|
Gish MK, Raulerson EK, Pekarek RT, Greenaway AL, Thorley KJ, Neale NR, Anthony JE, Johnson JC. Resolving electron injection from singlet fission-borne triplets into mesoporous transparent conducting oxides. Chem Sci 2021; 12:11146-11156. [PMID: 34522312 PMCID: PMC8386672 DOI: 10.1039/d1sc03253d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/17/2021] [Indexed: 11/21/2022] Open
Abstract
Photoinduced electron transfer into mesoporous oxide substrates is well-known to occur efficiently for both singlet and triplet excited states in conventional metal-to-ligand charge transfer (MLCT) dyes. However, in all-organic dyes that have the potential for producing two triplet states from one absorbed photon, called singlet fission dyes, the dynamics of electron injection from singlet vs. triplet excited states has not been elucidated. Using applied bias transient absorption spectroscopy with an anthradithiophene-based chromophore (ADT-COOH) adsorbed to mesoporous indium tin oxide (nanoITO), we modulate the driving force and observe changes in electron injection dynamics. ADT-COOH is known to undergo fast triplet pair formation in solid-state films. We find that the electronic coupling at the interface is roughly one order of magnitude weaker for triplet vs. singlet electron injection, which is potentially related to the highly localized nature of triplets without significant charge-transfer character. Through the use of applied bias on nanoITO:ADT-COOH films, we map the electron injection rate constant dependence on driving force, finding negligible injection from triplets at zero bias due to competing recombination channels. However, at driving forces greater than -0.6 eV, electron injection from the triplet accelerates and clearly produces a trend with increased applied bias that matches predictions from Marcus theory with a metallic acceptor.
Collapse
Affiliation(s)
- Melissa K Gish
- National Renewable Energy Laboratory 15013 Denver West Pkwy CO 80401 USA
| | - Emily K Raulerson
- National Renewable Energy Laboratory 15013 Denver West Pkwy CO 80401 USA
| | - Ryan T Pekarek
- National Renewable Energy Laboratory 15013 Denver West Pkwy CO 80401 USA
| | - Ann L Greenaway
- National Renewable Energy Laboratory 15013 Denver West Pkwy CO 80401 USA
| | - Karl J Thorley
- Department of Chemistry, University of Kentucky Lexington Kentucky 40506 USA
| | - Nathan R Neale
- National Renewable Energy Laboratory 15013 Denver West Pkwy CO 80401 USA
| | - John E Anthony
- Department of Chemistry, University of Kentucky Lexington Kentucky 40506 USA
| | - Justin C Johnson
- National Renewable Energy Laboratory 15013 Denver West Pkwy CO 80401 USA
| |
Collapse
|
30
|
Dvořák M, Prasad SKK, Dover CB, Forest CR, Kaleem A, MacQueen RW, Petty AJ, Forecast R, Beves JE, Anthony JE, Tayebjee MJY, Widmer-Cooper A, Thordarson P, Schmidt TW. Singlet Fission in Concentrated TIPS-Pentacene Solutions: The Role of Excimers and Aggregates. J Am Chem Soc 2021; 143:13749-13758. [PMID: 34397219 DOI: 10.1021/jacs.1c05767] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The excited-state dynamics of 6,13-bis(triisopropylsilylethynyl)pentacene is investigated to determine the role of excimer and aggregate formation in singlet fission in high-concentration solutions. Photoluminescence spectra were measured by excitation with the evanescent wave in total internal reflection, in order to avoid reabsorption effects. The spectra over nearly two magnitudes of concentration were nearly identical, with no evidence for excimer emission. Time-correlated single-photon counting measurements confirm that the fluorescence lifetime shortens with concentration. The observed rate constant grows at high concentrations, and this effect is modeled in terms of the hard-sphere radial distribution function. NMR measurements confirm that aggregation takes place with a binding constant of between 0.14 and 0.43 M-1. Transient absorption measurements are consistent with a diffusive encounter mechanism for singlet fission, with hints of more rapid singlet fission in aggregates at the highest concentration measured. These data show that excimers do not play the role of an emissive intermediate in exothermic singlet fission in solution and that, while aggregation occurs at higher concentrations, the mechanism of singlet fission remains dominated by diffusive encounters.
Collapse
Affiliation(s)
- Miroslav Dvořák
- ARC Centre of Excellence in Exciton Science, School of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia.,Department of Physical Electronics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, V Holešovičkách 2, 180 00 Prague 8, Czechia
| | - Shyamal K K Prasad
- ARC Centre of Excellence in Exciton Science, School of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Cameron B Dover
- ARC Centre of Excellence in Exciton Science, School of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Chelsea R Forest
- Australian Centre for Nanomedicine and The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, School of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Akasha Kaleem
- School of Photovoltaic and Renewable Energy Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Rowan W MacQueen
- Department of Spins in Energy Conversion and Quantum Information Science, Helmholtz-Zentrum Berlin für Materialen und Energie GmbH, Berlin 14109, Germany
| | - Anthony J Petty
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Roslyn Forecast
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Jonathon E Beves
- ARC Centre of Excellence in Exciton Science, School of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - John E Anthony
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Murad J Y Tayebjee
- School of Photovoltaic and Renewable Energy Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Pall Thordarson
- Australian Centre for Nanomedicine and The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, School of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Timothy W Schmidt
- ARC Centre of Excellence in Exciton Science, School of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| |
Collapse
|
31
|
Zeiser C, Moretti L, Geiger T, Kalix L, Valencia AM, Maiuri M, Cocchi C, Bettinger HF, Cerullo G, Broch K. Permanent Dipole Moments Enhance Electronic Coupling and Singlet Fission in Pentacene. J Phys Chem Lett 2021; 12:7453-7458. [PMID: 34339199 DOI: 10.1021/acs.jpclett.1c01805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Singlet fission (SF), the photophysical process in which one singlet exciton is transformed into two triplets, depends inter alia on the coupling of electronic states. Here, we use fluorination and the resulting changes in partial charge distribution across the chromophore backbone as a particularly powerful tool to control this parameter in pentacene. We find that the introduction of a permanent dipole moment leads to an enhanced coupling of Frenkel exciton and charge transfer states and to an increased SF rate which we probed using ultrafast transient absorption spectroscopy. These findings are contrasted with H-aggregate formation and a significantly reduced triplet-pair state lifetime in a fluorinated pentacene for which the different partial charge distribution leads to a negligible dipole moment.
Collapse
Affiliation(s)
- Clemens Zeiser
- Institute for Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Luca Moretti
- Dipartimento di Fisica, IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Thomas Geiger
- Institute for Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Lukas Kalix
- Institute for Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Ana M Valencia
- Institute of Physics, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9, 26129 Oldenburg, Germany
- Physics Department and IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 6, 12489 Berlin, Germany
| | - Margherita Maiuri
- Dipartimento di Fisica, IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Caterina Cocchi
- Institute of Physics, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9, 26129 Oldenburg, Germany
- Physics Department and IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 6, 12489 Berlin, Germany
| | - Holger F Bettinger
- Institute for Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Giulio Cerullo
- Dipartimento di Fisica, IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Katharina Broch
- Institute for Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| |
Collapse
|
32
|
Kim Y, Han M, Lee C, Park S. Singlet Fission Dynamics of Colloidal Nanoparticles of a Perylenediimide Derivative in Solutions. J Phys Chem B 2021; 125:7967-7974. [PMID: 34128379 DOI: 10.1021/acs.jpcb.1c03285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Singlet fission (SF) is an intriguing process in which a singlet exciton produces two triplet excitons in molecular aggregates. Perylenediimide (PDI) derivatives are promising materials for SF-based photovoltaics, and the SF process in PDI aggregates is important to investigate for their applications. In this work, we studied the entire SF process occurring in the colloidal nanoparticles of a PDI derivative in solutions by using time-resolved fluorescence and transient absorption (TA) experiments. PE-PDI was found to form the colloidal nanoparticles of H- and J-aggregates in polar solvents. The TA signals of PE-PDI aggregates in solutions were selectively measured by wavelength-dependent excitation. The TA signals were analyzed by using a global fitting analysis, and all kinetic parameters involved in the entire SF process were determined. Our current investigation has confirmed that fast SF occurs on the surface of the colloidal nanoparticles of PDI aggregates via the charge transfer mediated mechanism, giving a high quantum yield of triplet excitons.
Collapse
Affiliation(s)
- Youngseo Kim
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Minhi Han
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Chiho Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sungnam Park
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
33
|
Kim W, Tahara S, Kuramochi H, Takeuchi S, Kim T, Tahara T, Kim D. Mode‐Specific Vibrational Analysis of Exciton Delocalization and Structural Dynamics in Conjugated Oligomers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Woojae Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional, π-Electronic Systems Yonsei University Seoul 03722 Korea
- Current address: Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
| | - Shinya Tahara
- Molecular Spectroscopy Laboratory RIKEN 2-1 Hirosawa Wako 351-0198 Japan
- Current address: Graduate School of Pharmaceutical Sciences Tohoku University 6-3 Aramaki-aza-Aoba, Aoba-ku Sendai 980-8578 Japan
| | - Hikaru Kuramochi
- Molecular Spectroscopy Laboratory RIKEN 2-1 Hirosawa Wako 351-0198 Japan
- Ultrafast Spectroscopy Research Team RIKEN Center for Advanced Photonics (RAP) 2-1 Hirosawa Wako 351-0198 Japan
- JST PRESTO 4-1-8 Honcho Kawaguchi 332-0012 Japan
- Current address: Research Center of Integrative Molecular Systems (CIMoS) Institute for Molecular Science 38 Nishigo-Naka, Myodaji Okazaki 444-8585 Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory RIKEN 2-1 Hirosawa Wako 351-0198 Japan
- Ultrafast Spectroscopy Research Team RIKEN Center for Advanced Photonics (RAP) 2-1 Hirosawa Wako 351-0198 Japan
- Current address: Graduate School of Material Science University of Hyogo 3-2-1 Koto Kamigori Ako 678-1297 Japan
| | - Taeyeon Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional, π-Electronic Systems Yonsei University Seoul 03722 Korea
- Current address: Department of Chemistry and Institute for Sustainability and Energy at Northwestern Northwestern University Evanston IL 60208-3113 USA
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory RIKEN 2-1 Hirosawa Wako 351-0198 Japan
- Ultrafast Spectroscopy Research Team RIKEN Center for Advanced Photonics (RAP) 2-1 Hirosawa Wako 351-0198 Japan
| | - Dongho Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional, π-Electronic Systems Yonsei University Seoul 03722 Korea
| |
Collapse
|
34
|
Catti L, Narita H, Tanaka Y, Sakai H, Hasobe T, Tkachenko NV, Yoshizawa M. Supramolecular Singlet Fission of Pentacene Dimers within Polyaromatic Capsules. J Am Chem Soc 2021; 143:9361-9367. [PMID: 34133165 DOI: 10.1021/jacs.0c13172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We herein report a new set of supramolecular nanotools for the generation and modulation of singlet fission (SF) of noncovalent/covalent pentacene dimers. Two molecules of a pentacene monomer with bulky substituents are facilely encapsulated by a polyaromatic capsule, composed of naphthalene-based bent amphiphiles, in water. The encapsulated noncovalent dimer converts to otherwise undetectable triplet pairs and an individual triplet in high quantum yields (179% and 53%, respectively) even under high dilution conditions. Within the capsule, a covalently linked pentacene dimer with bulky groups generates two triplet pair intermediates in parallel, which are hardly distinguished in bulk solution, in excellent total quantum yield (196%). The yield of the individual triplet is enhanced by 1.6 times upon encapsulation. For both types of pentacene dimers, the SF features can be readily tuned by changing the polyaromatic panels of the capsule (i.e., anthracene and phenanthrene).
Collapse
Affiliation(s)
- Lorenzo Catti
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Haruna Narita
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Yuya Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Hayato Sakai
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Taku Hasobe
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Nikolai V Tkachenko
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, FI33720 Tampere, Finland
| | - Michito Yoshizawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
35
|
Open questions on the photophysics of ultrafast singlet fission. Commun Chem 2021; 4:85. [PMID: 36697779 PMCID: PMC9814646 DOI: 10.1038/s42004-021-00527-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/07/2021] [Indexed: 01/28/2023] Open
|
36
|
Wang Z, Liu H, Xie X, Zhang C, Wang R, Chen L, Xu Y, Ma H, Fang W, Yao Y, Sang H, Wang X, Li X, Xiao M. Free-triplet generation with improved efficiency in tetracene oligomers through spatially separated triplet pair states. Nat Chem 2021; 13:559-567. [PMID: 33833447 DOI: 10.1038/s41557-021-00665-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 02/22/2021] [Indexed: 02/01/2023]
Abstract
Singlet fission (SF) can potentially boost the efficiency of solar energy conversion by converting a singlet exciton (S1) into two free triplets (T1 + T1) through an intermediate state of a correlated triplet pair (TT). Although efficient TT generation has been recently realized in many intramolecular SF materials, their potential applications have been hindered by the poor efficiency of TT dissociation. Here we demonstrate that this can be overcome by employing a spatially separated 1(T…T) state with weak intertriplet coupling in tetracene oligomers with three or more chromophores. By using transient magneto-optical spectroscopic methods, we show that free-triplet generation can be markedly enhanced through the SF pathway that involves the spatially separated 1(T…T) state rather than the pathway mediated by the spatially adjacent TT state, leading to a marked improvement in free-triplet generation with an efficiency increase from 21% for the dimer to 85% (124%) for the trimer (tetramer).
Collapse
Affiliation(s)
- Zhiwei Wang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Heyuan Liu
- School of Materials Science and Engineering, Institute of New Energy, China University of Petroleum (East China), Qingdao, China
| | - Xiaoyu Xie
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
| | - Rui Wang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Lan Chen
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Yihe Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Haibo Ma
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Weihai Fang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.,Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Department of Chemistry, Beijing Normal University, Beijing, China
| | - Yao Yao
- Department of Physics and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, China
| | - Hai Sang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Xiaoyong Wang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Xiyou Li
- School of Materials Science and Engineering, Institute of New Energy, China University of Petroleum (East China), Qingdao, China.
| | - Min Xiao
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China. .,Department of Physics, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
37
|
Kim W, Tahara S, Kuramochi H, Takeuchi S, Kim T, Tahara T, Kim D. Mode-Specific Vibrational Analysis of Exciton Delocalization and Structural Dynamics in Conjugated Oligomers. Angew Chem Int Ed Engl 2021; 60:16999-17008. [PMID: 33730430 DOI: 10.1002/anie.202102168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Indexed: 11/09/2022]
Abstract
Exciton delocalization in organic semiconducting polymers, affected by structures at a molecular level, plays a crucial role in modulating relaxation pathways, such as charge generation and singlet fission, which can boost device efficiency. However, the structural diversity of polymers and broad signals from typical electronic spectroscopy have their limits when it comes to revealing the interplay between local structures and exciton delocalization. To tackle these problems, we apply femtosecond stimulated Raman spectroscopy in archetypical conjugated oligothiophenes with different chain lengths. We observed Raman frequency dispersions of symmetric bond stretching modes and mode-specific kinetics in the S1 Raman spectra, which underpins the subtle and complex interplay between exciton delocalization and bond length alternation along the conjugation coordinate. Our results provide a more general picture of exciton delocalization in the context of molecular structures for conjugated materials.
Collapse
Affiliation(s)
- Woojae Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional, π-Electronic Systems, Yonsei University, Seoul, 03722, Korea.,Current address: Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Shinya Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Japan.,Current address: Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Hikaru Kuramochi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, 351-0198, Japan.,JST PRESTO, 4-1-8 Honcho, Kawaguchi, 332-0012, Japan.,Current address: Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, 38 Nishigo-Naka, Myodaji, Okazaki, 444-8585, Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, 351-0198, Japan.,Current address: Graduate School of Material Science, University of Hyogo, 3-2-1 Koto, Kamigori, Ako, 678-1297, Japan
| | - Taeyeon Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional, π-Electronic Systems, Yonsei University, Seoul, 03722, Korea.,Current address: Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL, 60208-3113, USA
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, 351-0198, Japan
| | - Dongho Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional, π-Electronic Systems, Yonsei University, Seoul, 03722, Korea
| |
Collapse
|
38
|
Manna B, Nandi A, Vats BG. Role of nanosize and defect trapping upon singlet fission yield and singlet fission dynamics of 1,6-Diphenyl-1,3,5-hexatriene nanoaggregates. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Manna B, Nandi A. Singlet fission in nanoaggregate of bis(phenylethynyl) derivative of benzene (BPEB): High energy triplet exciton generation with >100 % yield. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Kundu A, Dasgupta J. Photogeneration of Long-Lived Triplet States through Singlet Fission in Lycopene H-Aggregates. J Phys Chem Lett 2021; 12:1468-1474. [PMID: 33528257 DOI: 10.1021/acs.jpclett.0c03301] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Molecular triplet excitons produced through singlet fission (SF) usually have shorter triplet lifetimes due to exciton-exciton recombination and relaxation pathways, thereby resulting in complex device architectures for SF-boosted solar cells. Using broadband transient absorption spectroscopy, we here show that the photoexcitation of nanostructured lycopene H-aggregates at room temperature produces free triplets with an unprecedented 35-fold enhancement in the lifetime compared to those localized on the monomer backbone. The observed rise of a spectrally blue-shifted correlated T-T pair state in ∼19 ps with distinct vibronic features provides the basis for SF-induced triplet generation.
Collapse
Affiliation(s)
- Arup Kundu
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005, India
| | - Jyotishman Dasgupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005, India
| |
Collapse
|
41
|
Abstract
Singlet fission (SF) is a photophysical downconversion pathway, in which a singlet excitation transforms into two triplet excited states. As such, it constitutes an exciton multiplication generation process, which is currently at the focal point for future integration into solar energy conversion devices. Beyond this, various other exciting applications were proposed, including quantum cryptography or organic light emitting diodes. Also, the mechanistic understanding evolved rapidly during the last year. Unfortunately, the number of suitable SF-chromophores is still limited. This is per se problematic, considering the wide range of envisaged applicability. With that in mind, we emphasize uncommon SF-scaffolds and outline requirements as well as strategies to expand the chromophore pool of SF-materials.
Collapse
Affiliation(s)
- Tobias Ullrich
- Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Department für Chemie und Pharmazie, Egerlandstr. 1-3, 91058 Erlangen, Germany.
| | | | | |
Collapse
|
42
|
Wu T, Ni W, Gurzadyan GG, Sun L. Singlet fission from upper excited singlet states and polaron formation in rubrene film. RSC Adv 2021; 11:4639-4645. [PMID: 35424413 PMCID: PMC8694490 DOI: 10.1039/d0ra10780h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/14/2021] [Indexed: 11/21/2022] Open
Abstract
Femtosecond fluorescence up-conversion and transient absorption pump-probe setups are applied to study the relaxation dynamics of the lower and upper excited singlet electronic states in easy-to-make rubrene films. Upon 250 nm (4.96 eV) excitation, singlet fission was observed directly from S2 state bypassing S1 state within 30 fs i.e. breaking the classical Kasha rule. From the transient absorption measurements, polaron formation was also detected on the same time scale. Both singlet fission and polaron formation are accelerated from upper excited states compared with S1 state. Our work shows that rubrene films with low degree of crystallinity could display efficient singlet fission, notably in the case of excitation to upper lying electronic states. This can strongly expand the applications of rubrene in organic electronics. Moreover, our results will provide a new direction for synthesizing novel materials with optimized excited state properties for organic photovoltaic applications.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, Dalian University of Technology 116024 Dalian China
| | - Wenjun Ni
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, Dalian University of Technology 116024 Dalian China
| | - Gagik G Gurzadyan
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, Dalian University of Technology 116024 Dalian China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, Dalian University of Technology 116024 Dalian China
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology 10044 Stockholm Sweden
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University 310024 Hangzhou China
| |
Collapse
|
43
|
Yoshino K, Sakai H, Shoji Y, Kajitani T, Anetai H, Akutagawa T, Fukushima T, Tkachenko NV, Hasobe T. Room-Temperature Pentacene Fluids: Oligoethylene Glycol Substituent-Controlled Morphologies and Singlet Fission. J Phys Chem B 2020; 124:11910-11918. [PMID: 33336576 DOI: 10.1021/acs.jpcb.0c09754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We report the first synthesis of solvent-free pentacene fluids at room temperature together with observation of singlet fission (SF). Three pentacenes with different number of ethylene glycol (EG) side chains (n) were employed (denoted as (EG)n-Pc-(EG)n: n = 2, 3, and 4). The morphologies of these pentacenes largely depend on the lengths of EG chains (n). (EG)3-Pc-(EG)3 and (EG)4-Pc-(EG)4 indicate fluid compounds at room temperature, whereas (EG)2-Pc-(EG)2 is a solid compound. Microscopic clustering with short-range interactions between pentacene chromophores was confirmed in X-ray diffraction profiles of solvent-free fluids. Such a structural trend is an important origin of SF and consistent with the steady-state spectroscopic results. To one's surprise, femtosecond transient absorption spectroscopy demonstrated that SF occurred in thin films prepared from solvent-free fluids of (EG)3-Pc-(EG)3 and (EG)4-Pc-(EG)4 in spite of such excessive EG chains.
Collapse
Affiliation(s)
- Keisuke Yoshino
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Hayato Sakai
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Takashi Kajitani
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan.,Materials Analysis Division, Open Facility Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Hayato Anetai
- Graduate School of Engineering, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Tomoyuki Akutagawa
- Graduate School of Engineering, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.,Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Nikolai V Tkachenko
- Chemistry and Advanced Materials Group, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, Tampere FI33720, Finland
| | - Taku Hasobe
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| |
Collapse
|
44
|
van Son MHC, Berghuis AM, Eisenreich F, de Waal B, Vantomme G, Gómez Rivas J, Meijer EW. Highly Ordered 2D-Assemblies of Phase-Segregated Block Molecules for Upconverted Linearly Polarized Emission. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004775. [PMID: 33118197 DOI: 10.1002/adma.202004775] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/17/2020] [Indexed: 05/24/2023]
Abstract
Materials based on the laminar ordering of self-assembled molecules have a unique potential for applications requiring efficient energy migration through densely packed chromophores. Here, employing molecular assemblies of coil-rod-coil block molecules for triplet-triplet annihilation upconversion (TTA-UC) based on triplet energy migration with linearly polarized emission is reported. By covalently attaching discrete-length oligodimethylsiloxane (oDMS) to 9,10-diphenylanthracene (DPA), highly ordered 2D crystalline DPA sheets separated by oDMS layers are obtained. Transparent films of this material doped with small amounts of triplet sensitizer PtII octaethylporphyrin show air-stable TTA-UC under non-coherent excitation. Upon annealing, an increase in TTA-UC up to two orders of magnitude is observed originating from both an improved molecular ordering of DPA and an increased dispersion of the sensitizer. The molecular alignment in millimeter-sized domains leads to upconverted linearly polarized emission without alignment layers. By using a novel technique, upconversion imaging microscopy, the TTA-UC intensity is spatially resolved on a micrometer scale to visually demonstrate the importance of molecular dispersion of sensitizer molecules for efficient TTA-UC. The reported results are promising for anti-counterfeiting and 3D night-vision applications, but also exemplify the potential of discrete oligodimethylsiloxane functionalized chromophores for highly aligned and densely packed molecular materials.
Collapse
Affiliation(s)
- Martin H C van Son
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands
| | - Anton M Berghuis
- Department of Applied Physics and Institute for Photonic Integration, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands
| | - Fabian Eisenreich
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands
| | - Bas de Waal
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands
| | - Ghislaine Vantomme
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands
| | - Jaime Gómez Rivas
- Department of Applied Physics and Institute for Photonic Integration, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands
| | - E W Meijer
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands
| |
Collapse
|
45
|
Kim J, Teo HT, Hong Y, Oh J, Kim H, Chi C, Kim D. Multiexcitonic Triplet Pair Generation in Oligoacene Dendrimers as Amorphous Solid‐State Miniatures. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Juno Kim
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| | - Hao Ting Teo
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Yongseok Hong
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| | - Juwon Oh
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| | - Hyungjun Kim
- Department of Chemistry Incheon National University 22012 Incheon Korea
| | - Chunyan Chi
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Dongho Kim
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| |
Collapse
|
46
|
Van Schenck JDB, Mayonado G, Anthony JE, Graham MW, Ostroverkhova O. Molecular packing-dependent exciton dynamics in functionalized anthradithiophene derivatives: From solutions to crystals. J Chem Phys 2020; 153:164715. [PMID: 33138416 DOI: 10.1063/5.0026072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Understanding the impact of inter-molecular orientation on the optical properties of organic semiconductors is important for designing next-generation organic (opto)electronic and photonic devices. However, fundamental aspects of how various features of molecular packing in crystalline systems determine the nature and dynamics of excitons have been a subject of debate. Toward this end, we present a systematic study of how various molecular crystal packing motifs affect the optical properties of a class of high-performance organic semiconductors: functionalized derivatives of fluorinated anthradithiophene. The absorptive and emissive species present in three such derivatives (exhibiting "brickwork," "twisted-columnar," and "sandwich-herringbone" motifs, controlled by the side group R) were analyzed both in solution and in single crystals, using various modalities of optical and photoluminescence spectroscopy, revealing the nature of these excited states. In solution, in the emission band, two states were identified: a Franck-Condon state present at all concentrations and an excimer that emerged at higher concentrations. In single crystal systems, together with ab initio calculations, it was found in the absorptive band that Frenkel and Charge Transfer (CT) excitons mixed due to nonvanishing CT integrals in all derivatives, but the amount of admixture and exciton delocalization depended on the packing, with the "sandwich-herringbone" packing motif least conducive to delocalization. Three emissive species in the crystal phase were also identified: Frenkel excitons, entangled triplet pairs 1(TT) (which are precursors to forming free triplet states via singlet fission), and self-trapped excitons (STEs, similar in origin to excimers present in concentrated solution). The "twisted-columnar" packing motif was most conducive to the formation of Frenkel excitons delocalized over 4-7 molecules depending on the temperature. These delocalized Frenkel states were dominant across the full temperature range (78 K-293 K), though at lower temperatures, the entangled triplet states and STEs were present. In the derivative with the "brickwork" packing, all three emissive species were observed across the full temperature range and, most notably, the 1(TT) state was present at room temperature. Finally, the derivative with the "sandwich-herringbone" packing exhibited localized Frenkel excitons and had a strong propensity for self-trapped exciton formation even at higher temperatures. In this derivative, no formation of the 1(TT) state was observed. The temperature-dependent dynamics of these emissive states are reported, as well as their origin in fundamental inter-molecular interactions.
Collapse
Affiliation(s)
- J D B Van Schenck
- Department of Physics, Oregon State University, Corvallis, Oregon 97330, USA
| | - G Mayonado
- Department of Physics, Oregon State University, Corvallis, Oregon 97330, USA
| | - J E Anthony
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, USA
| | - M W Graham
- Department of Physics, Oregon State University, Corvallis, Oregon 97330, USA
| | - O Ostroverkhova
- Department of Physics, Oregon State University, Corvallis, Oregon 97330, USA
| |
Collapse
|
47
|
Scholes GD. Polaritons and excitons: Hamiltonian design for enhanced coherence. Proc Math Phys Eng Sci 2020; 476:20200278. [PMID: 33223931 PMCID: PMC7655764 DOI: 10.1098/rspa.2020.0278] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
The primary questions motivating this report are: Are there ways to increase coherence and delocalization of excitation among many molecules at moderate electronic coupling strength? Coherent delocalization of excitation in disordered molecular systems is studied using numerical calculations. The results are relevant to molecular excitons, polaritons, and make connections to classical phase oscillator synchronization. In particular, it is hypothesized that it is not only the magnitude of electronic coupling relative to the standard deviation of energetic disorder that decides the limits of coherence, but that the structure of the Hamiltonian-connections between sites (or molecules) made by electronic coupling-is a significant design parameter. Inspired by synchronization phenomena in analogous systems of phase oscillators, some properties of graphs that define the structure of different Hamiltonian matrices are explored. The report focuses on eigenvalues and ensemble density matrices of various structured, random matrices. Some reasons for the special delocalization properties and robustness of polaritons in the single-excitation subspace (the star graph) are discussed. The key result of this report is that, for some classes of Hamiltonian matrix structure, coherent delocalization is not easily defeated by energy disorder, even when the electronic coupling is small compared to disorder.
Collapse
|
48
|
Gish MK, Thorley KJ, Parkin SR, Anthony JE, Johnson JC. Hydrogen Bonding Optimizes Singlet Fission in Carboxylic Acid Functionalized Anthradithiophene Films. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Melissa K. Gish
- Chemistry and Nanoscience Center National Renewable Energy Laboratory 15013 Denver West Parkway Golden CO 80401 USA
| | - Karl J. Thorley
- Department of Chemistry University of Kentucky Lexington, Kentucky 40506 USA
| | - Sean R. Parkin
- Department of Chemistry University of Kentucky Lexington, Kentucky 40506 USA
| | - John E. Anthony
- Department of Chemistry University of Kentucky Lexington, Kentucky 40506 USA
| | - Justin C. Johnson
- Chemistry and Nanoscience Center National Renewable Energy Laboratory 15013 Denver West Parkway Golden CO 80401 USA
| |
Collapse
|
49
|
Kim J, Teo HT, Hong Y, Oh J, Kim H, Chi C, Kim D. Multiexcitonic Triplet Pair Generation in Oligoacene Dendrimers as Amorphous Solid‐State Miniatures. Angew Chem Int Ed Engl 2020; 59:20956-20964. [DOI: 10.1002/anie.202008533] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Juno Kim
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| | - Hao Ting Teo
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Yongseok Hong
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| | - Juwon Oh
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| | - Hyungjun Kim
- Department of Chemistry Incheon National University 22012 Incheon Korea
| | - Chunyan Chi
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Dongho Kim
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| |
Collapse
|
50
|
Pradhan E, Bentley JN, Caputo CB, Zeng T. Designs of Singlet Fission Chromophores with a Diazadiborinine Framework**. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ekadashi Pradhan
- Department of Chemistry York University Toronto Ontario M3 J 1P3 Canada
| | - Jordan N. Bentley
- Department of Chemistry York University Toronto Ontario M3 J 1P3 Canada
| | | | - Tao Zeng
- Department of Chemistry York University Toronto Ontario M3 J 1P3 Canada
| |
Collapse
|