1
|
Cerutti JP, Diniz LA, Santos VC, Vilchez Larrea SC, Alonso GD, Ferreira RS, Dehaen W, Quevedo MA. Structure-Aided Computational Design of Triazole-Based Targeted Covalent Inhibitors of Cruzipain. Molecules 2024; 29:4224. [PMID: 39275072 PMCID: PMC11396839 DOI: 10.3390/molecules29174224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
Cruzipain (CZP), the major cysteine protease present in T. cruzi, the ethiological agent of Chagas disease, has attracted particular attention as a therapeutic target for the development of targeted covalent inhibitors (TCI). The vast chemical space associated with the enormous molecular diversity feasible to explore by means of modern synthetic approaches allows the design of CZP inhibitors capable of exhibiting not only an efficient enzyme inhibition but also an adequate translation to anti-T. cruzi activity. In this work, a computer-aided design strategy was developed to combinatorially construct and screen large libraries of 1,4-disubstituted 1,2,3-triazole analogues, further identifying a selected set of candidates for advancement towards synthetic and biological activity evaluation stages. In this way, a virtual molecular library comprising more than 75 thousand diverse and synthetically feasible analogues was studied by means of molecular docking and molecular dynamic simulations in the search of potential TCI of CZP, guiding the synthetic efforts towards a subset of 48 candidates. These were synthesized by applying a Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) centered synthetic scheme, resulting in moderate to good yields and leading to the identification of 12 hits selectively inhibiting CZP activity with IC50 in the low micromolar range. Furthermore, four triazole derivatives showed good anti-T. cruzi inhibition when studied at 50 μM; and Ald-6 excelled for its high antitrypanocidal activity and low cytotoxicity, exhibiting complete in vitro biological activity translation from CZP to T. cruzi. Overall, not only Ald-6 merits further advancement to preclinical in vivo studies, but these findings also shed light on a valuable chemical space where molecular diversity might be explored in the search for efficient triazole-based antichagasic agents.
Collapse
Affiliation(s)
- Juan Pablo Cerutti
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (FCQ-UNC), Haya de la Torre y Medina Allende, Córdoba 5000, Argentina
- Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Lucas Abreu Diniz
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte 31270-901, Brazil
| | - Viviane Corrêa Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte 31270-901, Brazil
| | - Salomé Catalina Vilchez Larrea
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad de Buenos Aires 1428, Argentina
| | - Guillermo Daniel Alonso
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad de Buenos Aires 1428, Argentina
| | - Rafaela Salgado Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte 31270-901, Brazil
| | - Wim Dehaen
- Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Mario Alfredo Quevedo
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (FCQ-UNC), Haya de la Torre y Medina Allende, Córdoba 5000, Argentina
| |
Collapse
|
2
|
Saha A, Pushpa, Moitra S, Basak D, Brahma S, Mondal D, Molla SH, Samadder A, Nandi S. Targeting Cysteine Proteases and their Inhibitors to Combat Trypanosomiasis. Curr Med Chem 2024; 31:2135-2169. [PMID: 37340748 DOI: 10.2174/0929867330666230619160509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/21/2023] [Accepted: 05/18/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Trypanosomiasis, caused by protozoan parasites of the Trypanosoma genus, remains a significant health burden in several regions of the world. Cysteine proteases play a crucial role in the pathogenesis of Trypanosoma parasites and have emerged as potential therapeutic targets for the development of novel antiparasitic drugs. INTRODUCTION This review article aims to provide a comprehensive overview of the role of cysteine proteases in trypanosomiasis and their potential as therapeutic targets. We discuss the biological significance of cysteine proteases in Trypanosoma parasites and their involvement in essential processes, such as host immune evasion, cell invasion, and nutrient acquisition. METHODS A comprehensive literature search was conducted to identify relevant studies and research articles on the role of cysteine proteases and their inhibitors in trypanosomiasis. The selected studies were critically analyzed to extract key findings and provide a comprehensive overview of the topic. RESULTS Cysteine proteases, such as cruzipain, TbCatB and TbCatL, have been identified as promising therapeutic targets due to their essential roles in Trypanosoma pathogenesis. Several small molecule inhibitors and peptidomimetics have been developed to target these proteases and have shown promising activity in preclinical studies. CONCLUSION Targeting cysteine proteases and their inhibitors holds great potential for the development of novel antiparasitic drugs against trypanosomiasis. The identification of potent and selective cysteine protease inhibitors could significantly contribute to the combat against trypanosomiasis and improve the prospects for the treatment of this neglected tropical disease.
Collapse
Affiliation(s)
- Aloke Saha
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Pushpa
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Susmita Moitra
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Deblina Basak
- Endocrinology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sayandeep Brahma
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Dipu Mondal
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sabir Hossen Molla
- Parasitology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Asmita Samadder
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sisir Nandi
- Global Institute of Pharmaceutical Education and Research (Affiliated to Veer Madho Singh Bhandari Uttarakhand Technical University), Kashipur, 244713, India
| |
Collapse
|
3
|
Lameiro RF, Montanari CA. Investigating the Lack of Translation from Cruzain Inhibition to Trypanosoma cruzi Activity with Machine Learning and Chemical Space Analyses. ChemMedChem 2023; 18:e202200434. [PMID: 36692246 DOI: 10.1002/cmdc.202200434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023]
Abstract
Chagas disease is a neglected tropical disease caused by the protozoa Trypanosoma cruzi. Cruzain, its main cysteine protease, is commonly targeted in drug discovery efforts to find new treatments for this disease. Even though the essentiality of this enzyme for the parasite has been established, many cruzain inhibitors fail as trypanocidal agents. This lack of translation from biochemical to biological assays can involve several factors, including suboptimal physicochemical properties. In this work, we aim to rationalize this phenomenon through chemical space analyses of calculated molecular descriptors. These include statistical tests, visualization of projections, scaffold analysis, and creation of machine learning models coupled with interpretability methods. Our results demonstrate a significant difference between the chemical spaces of cruzain and T. cruzi inhibitors, with compounds with more hydrogen bond donors and rotatable bonds being more likely to be good cruzain inhibitors, but less likely to be active on T. cruzi. In addition, cruzain inhibitors seem to occupy specific regions of the chemical space that cannot be easily correlated with T. cruzi activity, which means that using predictive modeling to determine whether cruzain inhibitors will be trypanocidal is not a straightforward task. We believe that the conclusions from this work might be of interest for future projects that aim to develop novel trypanocidal compounds.
Collapse
Affiliation(s)
- Rafael F Lameiro
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo, Trabalhador São-Carlense Avenue 400, São Carlos, Brazil
| | - Carlos A Montanari
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo, Trabalhador São-Carlense Avenue 400, São Carlos, Brazil
| |
Collapse
|
4
|
Tagirasa R, Yoo E. Role of Serine Proteases at the Tumor-Stroma Interface. Front Immunol 2022; 13:832418. [PMID: 35222418 PMCID: PMC8873516 DOI: 10.3389/fimmu.2022.832418] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/24/2022] [Indexed: 01/19/2023] Open
Abstract
During tumor development, invasion and metastasis, the intimate interaction between tumor and stroma shapes the tumor microenvironment and dictates the fate of tumor cells. Stromal cells can also influence anti-tumor immunity and response to immunotherapy. Understanding the molecular mechanisms that govern this complex and dynamic interplay, thus is important for cancer diagnosis and therapy. Proteolytic enzymes that are expressed and secreted by both cancer and stromal cells play important roles in modulating tumor-stromal interaction. Among, several serine proteases such as fibroblast activation protein, urokinase-type plasminogen activator, kallikrein-related peptidases, and granzymes have attracted great attention owing to their elevated expression and dysregulated activity in the tumor microenvironment. This review highlights the role of serine proteases that are mainly derived from stromal cells in tumor progression and associated theranostic applications.
Collapse
|
5
|
Cysteine proteases as potential targets for anti-trypanosomatid drug discovery. Bioorg Med Chem 2021; 46:116365. [PMID: 34419821 DOI: 10.1016/j.bmc.2021.116365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022]
Abstract
Leishmaniasis and trypanosomiasis are endemic neglected disease in South America and Africa and considered a significant public health problem, mainly in poor communities. The limitations of the current available therapeutic options, including the lack of specificity, relatively high toxicity, and the drug resistance acquiring, drive the constant search for new targets and therapeutic options. Advances in knowledge of parasite biology have revealed essential enzymes involved in the replication, survival, and pathogenicity of Leishmania and Trypanosoma species. In this scenario, cysteine proteases have drawn the attention of researchers and they are being proposed as promising targets for drug discovery of antiprotozoal drugs. In this systematic review, we will provide an update on drug discovery strategies targeting the cysteine proteases as potential targets for chemotherapy against protozoal neglected diseases.
Collapse
|
6
|
Rivero CV, Martínez SJ, Novick P, Cueto JA, Salassa BN, Vanrell MC, Li X, Labriola CA, Polo LM, Engman DM, Clos J, Romano PS. Repurposing Carvedilol as a Novel Inhibitor of the Trypanosoma cruzi Autophagy Flux That Affects Parasite Replication and Survival. Front Cell Infect Microbiol 2021; 11:657257. [PMID: 34476220 PMCID: PMC8406938 DOI: 10.3389/fcimb.2021.657257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
T. cruzi, the causal agent of Chagas disease, is a parasite able to infect different types of host cells and to persist chronically in the tissues of human and animal hosts. These qualities and the lack of an effective treatment for the chronic stage of the disease have contributed to the durability and the spread of the disease around the world. There is an urgent necessity to find new therapies for Chagas disease. Drug repurposing is a promising and cost-saving strategy for finding new drugs for different illnesses. In this work we describe the effect of carvedilol on T. cruzi. This compound, selected by virtual screening, increased the accumulation of immature autophagosomes characterized by lower acidity and hydrolytic properties. As a consequence of this action, the survival of trypomastigotes and the replication of epimastigotes and amastigotes were impaired, resulting in a significant reduction of infection and parasite load. Furthermore, carvedilol reduced the whole-body parasite burden peak in infected mice. In summary, in this work we present a repurposed drug with a significant in vitro and in vivo activity against T. cruzi. These data in addition to other pharmacological properties make carvedilol an attractive lead for Chagas disease treatment.
Collapse
Affiliation(s)
- Cynthia Vanesa Rivero
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora - Instituto de Histología y Embriología "Dr. Mario H. Burgos", IHEM-CONICET- Universidad Nacional de Cuyo, Mendoza, Argentina.,Leishmaniasis Group, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Santiago José Martínez
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora - Instituto de Histología y Embriología "Dr. Mario H. Burgos", IHEM-CONICET- Universidad Nacional de Cuyo, Mendoza, Argentina.,Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Paul Novick
- Department of Chemistry, Stanford University, San Francisco, CA, United States
| | - Juan Agustín Cueto
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora - Instituto de Histología y Embriología "Dr. Mario H. Burgos", IHEM-CONICET- Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Betiana Nebaí Salassa
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora - Instituto de Histología y Embriología "Dr. Mario H. Burgos", IHEM-CONICET- Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María Cristina Vanrell
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora - Instituto de Histología y Embriología "Dr. Mario H. Burgos", IHEM-CONICET- Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Xiaomo Li
- Leishmaniasis Group, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Carlos Alberto Labriola
- Laboratorio de Biología estructural y celular, Fundación Instituto Leloir (FIL-CONICET), Buenos Aires, Argentina
| | - Luis Mariano Polo
- Instituto de Histología y Embriología "Dr. Mario H. Burgos", IHEM-CONICET- Universidad Nacional de Cuyo, Mendoza, Argentina
| | - David M Engman
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Joachim Clos
- Leishmaniasis Group, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Patricia Silvia Romano
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora - Instituto de Histología y Embriología "Dr. Mario H. Burgos", IHEM-CONICET- Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
7
|
Doherty W, Adler N, Butler TJ, Knox AJS, Evans P. Synthesis and optimisation of P 3 substituted vinyl sulfone-based inhibitors as anti-trypanosomal agents. Bioorg Med Chem 2020; 28:115774. [PMID: 32992251 DOI: 10.1016/j.bmc.2020.115774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 10/23/2022]
Abstract
A series of lysine-based vinyl sulfone peptidomimetics were synthesised and evaluated for anti-trypanosomal activity against bloodstream forms of T. brucei. This focused set of compounds, varying in the P3 position, were accessed in a divergent manner from a common intermediate (ammonium salt 8). Several P3 analogues exhibited sub-micromolar EC50 values, with thiourea 14, urea 15 and amide 21 representing the most potent anti-trypanosomal derivatives of the series. In order to establish an in vitro selectivity index the most active anti-trypanosomal compounds were also assessed for their impact on cell viability and cytotoxity effects in mammalian cells. Encouragingly, all compounds only reduced cellular metabolic activity in mammalian cells to a modest level and little, or no cytotoxicity, was observed with the series.
Collapse
Affiliation(s)
- William Doherty
- Centre for Synthesis and Chemical Biology, School of Chemistry and Chemical Biology, University College Dublin, Dublin D04 N2E2, Ireland
| | - Nikoletta Adler
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Thomas J Butler
- School of Biological and Health Sciences, Technological University Dublin, Dublin City Campus, Kevin St., Dublin D08 NF82, Ireland
| | - Andrew J S Knox
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland; School of Biological and Health Sciences, Technological University Dublin, Dublin City Campus, Kevin St., Dublin D08 NF82, Ireland.
| | - Paul Evans
- Centre for Synthesis and Chemical Biology, School of Chemistry and Chemical Biology, University College Dublin, Dublin D04 N2E2, Ireland.
| |
Collapse
|
8
|
Soares FGN, Göethel G, Kagami LP, das Neves GM, Sauer E, Birriel E, Varela J, Gonçalves IL, Von Poser G, González M, Kawano DF, Paula FR, de Melo EB, Garcia SC, Cerecetto H, Eifler-Lima VL. Novel coumarins active against Trypanosoma cruzi and toxicity assessment using the animal model Caenorhabditis elegans. BMC Pharmacol Toxicol 2019; 20:76. [PMID: 31852548 PMCID: PMC6921407 DOI: 10.1186/s40360-019-0357-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Chagas disease (CD) is a tropical parasitic disease. Although the number of people infected is very high, the only drugs available to treat CD, nifurtimox (Nfx) and benznidazole, are highly toxic, particularly in the chronic stage of the disease. Coumarins are a large class of compounds that display a wide range of interesting biological properties, such as antiparasitic. Hence, the aim of this work is to find a good antitrypanosomal drug with less toxicity. The use of simple organism models has become increasingly attractive for planning and simplifying efficient drug discovery. Within these models, Caenorhabditis elegans has emerged as a convenient and versatile tool with significant advantages for the toxicological potential identification for new compounds. METHODS Trypanocidal activity: Forty-two 4-methylamino-coumarins were assayed against the epimastigote form of Trypanosoma cruzi (Tulahuen 2 strain) by inhibitory concentration 50% (IC50). Toxicity assays: Lethal dose 50% (LD50) and Body Area were determined by Caenorhabditis elegans N2 strain (wild type) after acute exposure. Structure-activity relationship: A classificatory model was built using 3D descriptors. RESULTS Two of these coumarins demonstrated near equipotency to Nifurtimox (IC50 = 5.0 ± 1 μM), with values of: 11 h (LaSOM 266), (IC50 = 6.4 ± 1 μM) and 11 g (LaSOM 231), (IC50 = 8.2 ± 2.3 μM). In C. elegans it was possible to observe that Nfx showed greater toxicity in both the LD50 assay and the evaluation of the development of worms. It is possible to observe that the efficacy between Nfx and the synthesized compounds (11 h and 11 g) are similar. On the other hand, the toxicity of Nfx is approximately three times higher than that of the compounds. Results from the QSAR-3D study indicate that the volume and hydrophobicity of the substituents have a significant impact on the trypanocidal activities for derivatives that cause more than 50% of inhibition. These results show that the C. elegans model is efficient for screening potentially toxic compounds. CONCLUSION Two coumarins (11 h and 11 g) showed activity against T. cruzi epimastigote similar to Nifurtimox, however with lower toxicity in both LD50 and development of C. elegans assays. These two compounds may be a feasible starting point for the development of new trypanocidal drugs.
Collapse
Affiliation(s)
- Fabiana Gomes Nascimento Soares
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriela Göethel
- Laboratório Toxicologia/LATOX, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luciano Porto Kagami
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gustavo Machado das Neves
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Elisa Sauer
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Estefania Birriel
- Facultad de Ciencias-Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Javier Varela
- Facultad de Ciencias-Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Itamar Luís Gonçalves
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gilsane Von Poser
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mercedes González
- Facultad de Ciencias-Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Daniel Fábio Kawano
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, SP, Brazil
- Departamento de Química Orgânica, Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Fávero Reisdorfer Paula
- Universidade Estadual do Oeste do Paraná, Centro de Ciências Médicas e Farmacêuticas, Cascavel, PR, Brazil
| | - Eduardo Borges de Melo
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, PR, Brazil
| | - Solange Cristina Garcia
- Laboratório Toxicologia/LATOX, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Hugo Cerecetto
- Facultad de Ciencias-Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Vera Lucia Eifler-Lima
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
9
|
Haroon M, Akhtar T, S. Santos AC, Pereira VRA, Ferreira LFGR, Hernandes MZ, Rocha REO, Ferreira RS, M. Gomes PAT, Sousa FA, B. Dias MCH, Tahir MN, Hameed S, Leite ACL. Design, Synthesis and In Vitro Trypanocidal and Leishmanicidal Activities of 2‐(2‐Arylidene)hydrazono‐4‐oxothiazolidine‐5‐acetic Acid Derivatives. ChemistrySelect 2019. [DOI: 10.1002/slct.201902561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Muhammad Haroon
- Department of ChemistryMirpur University of Science and Technology (MUST) 10250-Mirpur (AJK) Pakistan
| | - Tashfeen Akhtar
- Department of ChemistryMirpur University of Science and Technology (MUST) 10250-Mirpur (AJK) Pakistan
| | - Aline C. S. Santos
- Centro de Pesquisas Aggeu MagalhãesFundação Oswaldo Cruz 50670-420 Recife, PE Brazil
| | - Valéria R. A. Pereira
- Centro de Pesquisas Aggeu MagalhãesFundação Oswaldo Cruz 50670-420 Recife, PE Brazil
| | - Luiz F. G. R. Ferreira
- Departamento de Ciências FarmacêuticasCentro de Ciências da SaúdeUniversidade Federal de Pernambuco 50740-520 Recife, PE Brazil
| | - Marcelo Z. Hernandes
- Departamento de Ciências FarmacêuticasCentro de Ciências da SaúdeUniversidade Federal de Pernambuco 50740-520 Recife, PE Brazil
| | - Rafael E. O. Rocha
- Departamento de Bioquímica and ImunologiaUniversidade Federal de Minas Gerais CEP 31270–901 Belo Horizonte, MG Brazil
| | - Rafaela S. Ferreira
- Departamento de Bioquímica and ImunologiaUniversidade Federal de Minas Gerais CEP 31270–901 Belo Horizonte, MG Brazil
| | - Paulo A. T. M. Gomes
- Departamento de Ciências FarmacêuticasCentro de Ciências da SaúdeUniversidade Federal de Pernambuco 50740-520 Recife, PE Brazil
| | - Fabiano A. Sousa
- Departamento de Ciências FarmacêuticasCentro de Ciências da SaúdeUniversidade Federal de Pernambuco 50740-520 Recife, PE Brazil
| | - Mabilly C. H. B. Dias
- Departamento de Ciências FarmacêuticasCentro de Ciências da SaúdeUniversidade Federal de Pernambuco 50740-520 Recife, PE Brazil
| | - Muhammad N. Tahir
- Department of PhysicsUniversity of Sargodha, Sargodha Punjab Pakistan
| | - Shahid Hameed
- Department of ChemistryQuaid-i-Azam University Islamabad- 45320 Pakistan
| | - Ana C. L. Leite
- Departamento de Ciências FarmacêuticasCentro de Ciências da SaúdeUniversidade Federal de Pernambuco 50740-520 Recife, PE Brazil
| |
Collapse
|
10
|
Mantoani SP, de Andrade P, Chierrito TPC, Figueredo AS, Carvalho I. Potential Triazole-based Molecules for the Treatment of Neglected Diseases. Curr Med Chem 2019; 26:4403-4434. [DOI: 10.2174/0929867324666170727103901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
Neglected Diseases (NDs) affect million of people, especially the poorest population
around the world. Several efforts to an effective treatment have proved insufficient
at the moment. In this context, triazole derivatives have shown great relevance in
medicinal chemistry due to a wide range of biological activities. This review aims to describe
some of the most relevant and recent research focused on 1,2,3- and 1,2,4-triazolebased
molecules targeting four expressive NDs: Chagas disease, Malaria, Tuberculosis
and Leishmaniasis.
Collapse
Affiliation(s)
- Susimaire Pedersoli Mantoani
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, 14040-903, SP, Brazil
| | - Peterson de Andrade
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, 14040-903, SP, Brazil
| | | | - Andreza Silva Figueredo
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, 14040-903, SP, Brazil
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, 14040-903, SP, Brazil
| |
Collapse
|
11
|
Casnati A, Perrone A, Mazzeo PP, Bacchi A, Mancuso R, Gabriele B, Maggi R, Maestri G, Motti E, Stirling A, Ca' ND. Synthesis of Imidazolidin-2-ones and Imidazol-2-ones via Base-Catalyzed Intramolecular Hydroamidation of Propargylic Ureas under Ambient Conditions. J Org Chem 2019; 84:3477-3490. [PMID: 30788963 DOI: 10.1021/acs.joc.9b00064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The first organo-catalyzed synthesis of imidazolidin-2-ones and imidazol-2-ones via intramolecular hydroamidation of propargylic ureas is reported. The phosphazene base BEMP turned out to be the most active organo-catalyst compared with guanidine and amidine bases. Excellent chemo- and regioselectivities to five-membered cyclic ureas have been achieved under ambient conditions, with a wide substrate scope and exceptionally short reaction times (down to 1 min). A base-mediated isomerization step to an allenamide intermediate is the most feasible reaction pathway to give imidazol-2-ones, as suggested by DFT studies.
Collapse
Affiliation(s)
- Alessandra Casnati
- Department of Chemistry, Life Sciences and Environmental Sustainability , University of Parma , 43124 Parma , Italy
| | - Antonio Perrone
- Department of Chemistry, Life Sciences and Environmental Sustainability , University of Parma , 43124 Parma , Italy
| | - Paolo P Mazzeo
- Department of Chemistry, Life Sciences and Environmental Sustainability , University of Parma , 43124 Parma , Italy.,Biopharmanet-tec , Parco delle Scienze, 27/A , 43124 Parma , Italy
| | - Alessia Bacchi
- Department of Chemistry, Life Sciences and Environmental Sustainability , University of Parma , 43124 Parma , Italy.,Biopharmanet-tec , Parco delle Scienze, 27/A , 43124 Parma , Italy
| | - Raffaella Mancuso
- Dipartimento di Chimica e Tecnologie Chimiche , Università della Calabria , 87036 Arcavacata di Rende, Cosenza , Italy
| | - Bartolo Gabriele
- Dipartimento di Chimica e Tecnologie Chimiche , Università della Calabria , 87036 Arcavacata di Rende, Cosenza , Italy
| | - Raimondo Maggi
- Department of Chemistry, Life Sciences and Environmental Sustainability , University of Parma , 43124 Parma , Italy
| | - Giovanni Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability , University of Parma , 43124 Parma , Italy
| | - Elena Motti
- Department of Chemistry, Life Sciences and Environmental Sustainability , University of Parma , 43124 Parma , Italy
| | - András Stirling
- Theoretical Chemistry Research Group, Institute of Organic Chemistry , Research Centre for Natural Sciences , Budapest , Hungary
| | - Nicola Della Ca'
- Department of Chemistry, Life Sciences and Environmental Sustainability , University of Parma , 43124 Parma , Italy
| |
Collapse
|
12
|
Costa RA, Cruz JN, Nascimento FCA, Silva SG, Silva SO, Martelli MC, Carvalho SML, Santos CBR, Neto AMJC, Brasil DSB. Studies of NMR, molecular docking, and molecular dynamics simulation of new promising inhibitors of cruzaine from the parasite Trypanosoma cruzi. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2280-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Amaral PDA, Autheman D, de Melo GD, Gouault N, Cupif JF, Goyard S, Dutra P, Coatnoan N, Cosson A, Monet D, Saul F, Haouz A, Uriac P, Blondel A, Minoprio P. Designed mono- and di-covalent inhibitors trap modeled functional motions for Trypanosoma cruzi proline racemase in crystallography. PLoS Negl Trop Dis 2018; 12:e0006853. [PMID: 30372428 PMCID: PMC6224121 DOI: 10.1371/journal.pntd.0006853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/08/2018] [Accepted: 09/18/2018] [Indexed: 11/19/2022] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, affects millions of people in South America and no satisfactory therapy exists, especially for its life threatening chronic phase. We targeted the Proline Racemase of T. cruzi, which is present in all stages of the parasite life cycle, to discover new inhibitors against this disease. The first published crystal structures of the enzyme revealed that the catalytic site is too small to allow any relevant drug design. In previous work, to break through the chemical space afforded to virtual screening and drug design, we generated intermediate models between the open (ligand free) and closed (ligand bound) forms of the enzyme. In the present work, we co-crystallized the enzyme with the selected inhibitors and found that they were covalently bound to the catalytic cysteine residues in the active site, thus explaining why these compounds act as irreversible inhibitors. These results led us to the design of a novel, more potent specific inhibitor, NG-P27. Co-crystallization of this new inhibitor with the enzyme allowed us to confirm the predicted protein functional motions and further characterize the chemical mechanism. Hence, the catalytic Cys300 sulfur atom of the enzyme attacks the C2 carbon of the inhibitor in a coupled, regiospecific—stereospecific Michael reaction with trans-addition of a proton on the C3 carbon. Strikingly, the six different conformations of the catalytic site in the crystal structures reported in this work had key similarities to our intermediate models previously generated by inference of the protein functional motions. These crystal structures span a conformational interval covering roughly the first quarter of the opening mechanism, demonstrating the relevance of modeling approaches to break through chemical space in drug design. There is an urgent need to develop innovative medicines addressing neglected diseases, multi-drug resistance and other unmet therapeutic needs. To create new drug design opportunities, we attempted to exploit protein functional motions by using a rational approach to model structural intermediates of a therapeutic target. After successfully designing inhibitors based on modeled intermediates of T. Cruzi proline racemase, the determination of crystal structures of the target protein in complex with the inhibitors revealed conformations that were strikingly close to the predicted models. Thus, beyond the discovery of compounds establishing a novel mode of action that can lead to innovative treatments of Chagas disease, we illustrate how modeling protein functional motions can be exploited in a rational approach to create opportunities in drug design.
Collapse
Affiliation(s)
- Patricia de Aguiar Amaral
- Université de Rennes 1, Equipe Chimie organique et interfaces (CORINT), UMR 6226 Sciences Chimiques de Rennes, Rennes, France
| | - Delphine Autheman
- Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Paris, France
| | - Guilherme Dias de Melo
- Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Paris, France
| | - Nicolas Gouault
- Université de Rennes 1, Equipe Chimie organique et interfaces (CORINT), UMR 6226 Sciences Chimiques de Rennes, Rennes, France
| | - Jean-François Cupif
- Université de Rennes 1, Equipe Chimie organique et interfaces (CORINT), UMR 6226 Sciences Chimiques de Rennes, Rennes, France
| | - Sophie Goyard
- Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Paris, France
| | - Patricia Dutra
- Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Paris, France
| | - Nicolas Coatnoan
- Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Paris, France
| | - Alain Cosson
- Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Paris, France
| | - Damien Monet
- Institut Pasteur, Unité de Bioinformatique Structurale, Département de Biologie Structurale et Chimie, CNRS-UMR 3528, Paris, France
| | - Frederick Saul
- Institut Pasteur, Plateforme de Cristallographie, Département de Biologie Structurale et Chimie, CNRS-UMR 3528, Paris, France
| | - Ahmed Haouz
- Institut Pasteur, Plateforme de Cristallographie, Département de Biologie Structurale et Chimie, CNRS-UMR 3528, Paris, France
| | - Philippe Uriac
- Université de Rennes 1, Equipe Chimie organique et interfaces (CORINT), UMR 6226 Sciences Chimiques de Rennes, Rennes, France
- * E-mail: (PU); (AB); (PM)
| | - Arnaud Blondel
- Institut Pasteur, Unité de Bioinformatique Structurale, Département de Biologie Structurale et Chimie, CNRS-UMR 3528, Paris, France
- * E-mail: (PU); (AB); (PM)
| | - Paola Minoprio
- Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Paris, France
- * E-mail: (PU); (AB); (PM)
| |
Collapse
|
14
|
Rocha DA, Silva EB, Fortes IS, Lopes MS, Ferreira RS, Andrade SF. Synthesis and structure-activity relationship studies of cruzain and rhodesain inhibitors. Eur J Med Chem 2018; 157:1426-1459. [DOI: 10.1016/j.ejmech.2018.08.079] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 08/13/2018] [Accepted: 08/27/2018] [Indexed: 12/27/2022]
|
15
|
Wünsch M, Schröder D, Fröhr T, Teichmann L, Hedwig S, Janson N, Belu C, Simon J, Heidemeyer S, Holtkamp P, Rudlof J, Klemme L, Hinzmann A, Neumann B, Stammler HG, Sewald N. Asymmetric synthesis of propargylamines as amino acid surrogates in peptidomimetics. Beilstein J Org Chem 2017; 13:2428-2441. [PMID: 29234470 PMCID: PMC5704752 DOI: 10.3762/bjoc.13.240] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/19/2017] [Indexed: 12/26/2022] Open
Abstract
The amide moiety of peptides can be replaced for example by a triazole moiety, which is considered to be bioisosteric. Therefore, the carbonyl moiety of an amino acid has to be replaced by an alkyne in order to provide a precursor of such peptidomimetics. As most amino acids have a chiral center at Cα, such amide bond surrogates need a chiral moiety. Here the asymmetric synthesis of a set of 24 N-sulfinyl propargylamines is presented. The condensation of various aldehydes with Ellman's chiral sulfinamide provides chiral N-sulfinylimines, which were reacted with (trimethylsilyl)ethynyllithium to afford diastereomerically pure N-sulfinyl propargylamines. Diverse functional groups present in the propargylic position resemble the side chain present at the Cα of amino acids. Whereas propargylamines with (cyclo)alkyl substituents can be prepared in a direct manner, residues with polar functional groups require suitable protective groups. The presence of particular functional groups in the side chain in some cases leads to remarkable side reactions of the alkyne moiety. Thus, electron-withdrawing substituents in the Cα-position facilitate a base induced rearrangement to α,β-unsaturated imines, while azide-substituted propargylamines form triazoles under surprisingly mild conditions. A panel of propargylamines bearing fluoro or chloro substituents, polar functional groups, or basic and acidic functional groups is accessible for the use as precursors of peptidomimetics.
Collapse
Affiliation(s)
- Matthias Wünsch
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - David Schröder
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Tanja Fröhr
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Lisa Teichmann
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Sebastian Hedwig
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Nils Janson
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Clara Belu
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Jasmin Simon
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Shari Heidemeyer
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Philipp Holtkamp
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Jens Rudlof
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Lennard Klemme
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Alessa Hinzmann
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Beate Neumann
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Hans-Georg Stammler
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| |
Collapse
|
16
|
de Oliveira Filho GB, Cardoso MVDO, Espíndola JWP, Oliveira E Silva DA, Ferreira RS, Coelho PL, Anjos PSD, Santos EDS, Meira CS, Moreira DRM, Soares MBP, Leite ACL. Structural design, synthesis and pharmacological evaluation of thiazoles against Trypanosoma cruzi. Eur J Med Chem 2017; 141:346-361. [PMID: 29031078 DOI: 10.1016/j.ejmech.2017.09.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/29/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
Abstract
Chagas disease is one of the most significant health problems in the American continent. benznidazole (BDZ) and nifurtimox (NFX) are the only drugs approved for treatment and exhibit strong side effects and ineffectiveness in the chronic stage, besides different susceptibility among T. cruzi DTUs (Discrete Typing Units). Therefore, new drugs to treat this disease are necessary. Thiazole compounds have been described as potent trypanocidal agents. Here we report the structural planning, synthesis and anti-T. cruzi evaluation of a new series of 1,3-thiazoles (7-28), which were designed by placing this heterocycle instead of thiazolidin-4-one ring. The synthesis was conducted in an ultrasonic bath with 2-propanol as solvent at room temperature. By varying substituents attached to the phenyl and thiazole rings, substituents were observed to retain, enhance or greatly increase their anti-T. cruzi activity. In some cases, methyl at position 5 of the thiazole (compounds 9, 12 and 23) increased trypanocidal property. The exchange of phenyl for pyridinyl heterocycle resulted in increased activity, giving rise to the most potent compound against the trypomasigote form (14, IC50trypo = 0.37 μM). Importantly, these new thiazoles were toxic for trypomastigotes without affecting macrophages and cardiomyoblast viability. The compounds were also evaluated against cruzain, and five of the most active compounds against trypomastigotes (7, 9, 12, 16 and 23) inhibited more than 70% of enzymatic activity at 10 μM, among which compound 7 had an IC50 in the submicromolar range, suggesting a possible mechanism of action. In addition, examination of T. cruzi cell death showed that compound 14 induces apoptosis. We also examined the activity against intracellular parasites, revealing that compound 14 inhibited T. cruzi infection with potency similar to benznidazole. The antiparasitic effect of 14 and benznidazole in combination was also investigated against trypomastigotes and revealed that they have synergistic effects, showing a promising profile for drug combination. Finally, in mice acutely-infected with T. cruzi,14 treatment significanty reduced the blood parasitaemia and had a protective effect on mortality. In conclusion, we report the identification of compounds (7), (12), (15), (23) and (26) with similar trypanocidal activity of benznidazole; compounds (9) and (21) as trypanocidal agents equipotent with BDZ, and compound 14 with potency 28 times better than the reference drug without affecting macrophages and cardiomyoblast viability. Mechanistically, the compounds inhibit cruzain, and 14 induces T. cruzi cell death by an apoptotic process, being considered a good starting point for the development of new anti-Chagas drug candidates.
Collapse
Affiliation(s)
- Gevanio Bezerra de Oliveira Filho
- Laboratório de Planejamento em Química Medicinal - LpQM, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco - UFPE, 50740-520, Recife, PE, Brazil; Faculdade de Integração do Sertão - FIS, Rua João Luiz de Melo, 2110, COHAB, Serra Talhada, PE, Brazil.
| | | | - José Wanderlan Pontes Espíndola
- Laboratório de Planejamento em Química Medicinal - LpQM, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco - UFPE, 50740-520, Recife, PE, Brazil
| | - Dayane Albuquerque Oliveira E Silva
- Laboratório de Planejamento em Química Medicinal - LpQM, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco - UFPE, 50740-520, Recife, PE, Brazil
| | - Rafaela Salgado Ferreira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Pollyanne Lacerda Coelho
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, MG, Brazil
| | | | | | - Cássio Santana Meira
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, CEP 40296-710, Salvador, BA, Brazil
| | | | - Milena Botelho Pereira Soares
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, CEP 40296-710, Salvador, BA, Brazil; Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Salvador, BA, Brazil
| | - Ana Cristina Lima Leite
- Laboratório de Planejamento em Química Medicinal - LpQM, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco - UFPE, 50740-520, Recife, PE, Brazil.
| |
Collapse
|
17
|
Braga SFP, Martins LC, da Silva EB, Sales Júnior PA, Murta SMF, Romanha AJ, Soh WT, Brandstetter H, Ferreira RS, de Oliveira RB. Synthesis and biological evaluation of potential inhibitors of the cysteine proteases cruzain and rhodesain designed by molecular simplification. Bioorg Med Chem 2017; 25:1889-1900. [DOI: 10.1016/j.bmc.2017.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 10/20/2022]
|
18
|
Doherty W, Adler N, Knox A, Nolan D, McGouran J, Nikalje AP, Lokwani D, Sarkate A, Evans P. Synthesis and Evaluation of 1,2,3-Triazole-Containing Vinyl and Allyl Sulfones as Anti-Trypanosomal Agents. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601221] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- William Doherty
- Centre for Synthesis and Chemical Biology; School of Chemistry; University College Dublin; 4 Dublin Ireland
| | - Nikoletta Adler
- School of Biochemistry and Immunology; Trinity Biomedical Sciences Institute; Trinity College Dublin; Pearse Street 2 Dublin Ireland
| | - Andrew Knox
- School of Biochemistry and Immunology; Trinity Biomedical Sciences Institute; Trinity College Dublin; Pearse Street 2 Dublin Ireland
- School of Biological Sciences; Dublin Institute of Technology; Kevin Street 8 Dublin Ireland
| | - Derek Nolan
- School of Biochemistry and Immunology; Trinity Biomedical Sciences Institute; Trinity College Dublin; Pearse Street 2 Dublin Ireland
| | - Joanna McGouran
- School of Chemistry; Trinity Biomedical Sciences Institute; Trinity College Dublin; Pearse Street 2 Dublin Ireland
| | - Anna Pratima Nikalje
- Y. B. Chavan College of Pharmacy; Dr. Rafiq Zakaria Campus 431001 Aurangabad Maharashtra India
| | - Deepak Lokwani
- Y. B. Chavan College of Pharmacy; Dr. Rafiq Zakaria Campus 431001 Aurangabad Maharashtra India
| | - Aniket Sarkate
- Department of Chemical Technology; Dr. Babasaheb Ambedkar Marathwada University; 431004 Aurangabad Maharashtra India
| | - Paul Evans
- Centre for Synthesis and Chemical Biology; School of Chemistry; University College Dublin; 4 Dublin Ireland
| |
Collapse
|
19
|
Wu S, Luo Howard H, Wang H, Zhao W, Hu Q, Yang Y. Cysteinome: The first comprehensive database for proteins with targetable cysteine and their covalent inhibitors. Biochem Biophys Res Commun 2016; 478:1268-73. [PMID: 27553277 DOI: 10.1016/j.bbrc.2016.08.109] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 08/18/2016] [Indexed: 01/27/2023]
Abstract
The covalent modification of intrinsically nucleophilic cysteine in proteins is crucial for diverse biochemical events. Bioinformatics approaches may prove useful in the design and discovery of covalent molecules targeting the cysteine in proteins to tune their functions and activities. Herein, we describe the Cysteinome, the first online database that provides a rich resource for the display, search and analysis of structure, function and related annotation for proteins with targetable cysteine as well as their covalent modulators. To this end, Cysteinome compiles 462 proteins with targetable cysteine from 122 different species along with 1217 covalent modulators curated from existing literatures. Proteins are annotated with a detailed description of protein families, biological process and related diseases. In addition, covalent modulators are carefully annotated with chemical name, chemical structure, binding affinity, physicochemical properties, molecule type and related diseases etc. The Cysteinome database may serve as a useful platform for the identification of crucial proteins with targetable cysteine in certain cellular context. Furthermore, it may help biologists and chemists for the design and discovery of covalent chemical probes or inhibitors homing at functional cysteine of critical protein targets implicated in various physiological or disease process. The Cysteinome database is freely available to public at http://www.cysteinome.org/.
Collapse
Affiliation(s)
- Sijin Wu
- Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116023, PR China; School of Pharmacology, Dalian University of Technology, Dalian, 116023, PR China
| | - Huizhe Luo Howard
- Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116023, PR China
| | - Haina Wang
- Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116023, PR China
| | - Weijie Zhao
- School of Pharmacology, Dalian University of Technology, Dalian, 116023, PR China
| | - Qiwan Hu
- Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116023, PR China
| | - Yongliang Yang
- Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116023, PR China.
| |
Collapse
|
20
|
Rodriguez JB, Falcone BN, Szajnman SH. Detection and treatment ofTrypanosoma cruzi: a patent review (2011-2015). Expert Opin Ther Pat 2016; 26:993-1015. [DOI: 10.1080/13543776.2016.1209487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
de Moraes Gomes PAT, de Oliveira Barbosa M, Farias Santiago E, de Oliveira Cardoso MV, Capistrano Costa NT, Hernandes MZ, Moreira DRM, da Silva AC, Dos Santos TAR, Pereira VRA, Brayner Dos Santosd FA, do Nascimento Pereira GA, Ferreira RS, Leite ACL. New 1,3-thiazole derivatives and their biological and ultrastructural effects on Trypanosoma cruzi. Eur J Med Chem 2016; 121:387-398. [PMID: 27295485 DOI: 10.1016/j.ejmech.2016.05.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/05/2016] [Accepted: 05/22/2016] [Indexed: 12/27/2022]
Abstract
In previous studies, the compound 3-(bromopropiophenone) thiosemicarbazone was described as a potent anti-Trypanosoma cruzi and cruzain inhibitor. In view to optimize this activity, 1,3-thiazole core was used as building-block strategy to access new lead generation of anti T. cruzi agents. In this way a series of thiazole derivatives were synthesized and most of these derivatives exhibited antiparasitic activity similar to benznidazole (Bzd). Among them, compounds (1c) and (1g) presented better selective index (SI) than Bzd. In addition, compounds showed inhibitory activity against the cruzain protease. As observed by electron microscopy, compound (1c) treatment caused irreversible and specific morphological changes on ultrastructure organization of T. cruzi, demonstrating that this class of compounds is killing parasites.
Collapse
Affiliation(s)
| | - Miria de Oliveira Barbosa
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | - Edna Farias Santiago
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | | | - Natáli Tereza Capistrano Costa
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | - Marcelo Zaldini Hernandes
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | | | - Aline Caroline da Silva
- Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, CEP 50670-420, Recife, PE, Brazil
| | | | | | | | - Glaécia Aparecida do Nascimento Pereira
- CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, Brazil; Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Rafaela Salgado Ferreira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Ana Cristina Lima Leite
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil.
| |
Collapse
|
22
|
Costa LB, Cardoso MVDO, de Oliveira Filho GB, de Moraes Gomes PAT, Espíndola JWP, de Jesus Silva TG, Torres PHM, Silva FP, Martin J, de Figueiredo RCBQ, Leite ACL. Compound profiling and 3D-QSAR studies of hydrazone derivatives with activity against intracellular Trypanosoma cruzi. Bioorg Med Chem 2016; 24:1608-18. [DOI: 10.1016/j.bmc.2016.02.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/15/2016] [Accepted: 02/21/2016] [Indexed: 12/20/2022]
|
23
|
Gladysz R, Lambeir AM, Joossens J, Augustyns K, Van der Veken P. Substrate Activity Screening (SAS) and Related Approaches in Medicinal Chemistry. ChemMedChem 2016; 11:467-76. [PMID: 26845065 DOI: 10.1002/cmdc.201500569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Indexed: 12/24/2022]
Abstract
Substrate activity screening (SAS) was presented a decade ago by Ellman and co-workers as a straightforward methodology for the identification of fragment-sized building blocks for enzyme inhibitors. Ever since, SAS and variations derived from it have been successfully applied to the discovery of inhibitors of various families of enzymatically active drug targets. This review covers key achievements and challenges of SAS and related methodologies, including the modified substrate activity screening (MSAS) approach. Special attention is given to the kinetic and thermodynamic aspects of these methodologies, as a thorough understanding thereof is crucial for successfully transforming the identified fragment-sized hits into potent inhibitors.
Collapse
Affiliation(s)
- Rafaela Gladysz
- Medicinal Chemistry (UAMC), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Jurgen Joossens
- Medicinal Chemistry (UAMC), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Koen Augustyns
- Medicinal Chemistry (UAMC), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Pieter Van der Veken
- Medicinal Chemistry (UAMC), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| |
Collapse
|
24
|
Doherty W, Evans P. Aminooxylation Horner–Wadsworth–Emmons Sequence for the Synthesis of Enantioenriched γ-Functionalized Vinyl Sulfones. J Org Chem 2016; 81:1416-24. [DOI: 10.1021/acs.joc.5b02556] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- William Doherty
- Centre
for Synthesis and
Chemical Biology, School of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Paul Evans
- Centre
for Synthesis and
Chemical Biology, School of Chemistry, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
25
|
Jones BD, Tochowicz A, Tang Y, Cameron MD, McCall LI, Hirata K, Siqueira-Neto JL, Reed SL, McKerrow JH, Roush WR. Synthesis and Evaluation of Oxyguanidine Analogues of the Cysteine Protease Inhibitor WRR-483 against Cruzain. ACS Med Chem Lett 2016; 7:77-82. [PMID: 26819670 DOI: 10.1021/acsmedchemlett.5b00336] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/07/2015] [Indexed: 11/29/2022] Open
Abstract
A series of oxyguanidine analogues of the cysteine protease inhibitor WRR-483 were synthesized and evaluated against cruzain, the major cysteine protease of the protozoan parasite Trypanosoma cruzi. Kinetic analyses of these analogues indicated that they have comparable potency to previously prepared vinyl sulfone cruzain inhibitors. Co-crystal structures of the oxyguanidine analogues WRR-666 (4) and WRR-669 (7) bound to cruzain demonstrated different binding interactions with the cysteine protease, depending on the aryl moiety of the P1' inhibitor subunit. Specifically, these data demonstrate that WRR-669 is bound noncovalently in the crystal structure. This represents a rare example of noncovalent inhibition of a cysteine protease by a vinyl sulfone inhibitor.
Collapse
Affiliation(s)
- Brian D. Jones
- Department
of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Anna Tochowicz
- Department
of Pathology and Sandler Center for Drug Discovery, University of California-San Francisco, 1700 Fourth Street, San
Francisco, California 94158-2250, United States
| | - Yinyan Tang
- Small
Molecule Discovery Center, University of California-San Francisco, 1700 Fourth Street, San Francisco, California 94158-2250, United States
| | - Michael D. Cameron
- Department
of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps
Way, Jupiter, Florida 33458, United States
| | - Laura-Isobel McCall
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Ken Hirata
- Department
of Pathology, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jair L. Siqueira-Neto
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Sharon L. Reed
- Departments
of Pathology and Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - James H. McKerrow
- Department
of Pathology and Sandler Center for Drug Discovery, University of California-San Francisco, 1700 Fourth Street, San
Francisco, California 94158-2250, United States
| | - William R. Roush
- Department
of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
26
|
Cerny N, Sánchez Alberti A, Bivona AE, De Marzi MC, Frank FM, Cazorla SI, Malchiodi EL. Coadministration of cruzipain and GM-CSF DNAs, a new immunotherapeutic vaccine against Trypanosoma cruzi infection. Hum Vaccin Immunother 2016; 12:438-50. [PMID: 26312947 PMCID: PMC5049742 DOI: 10.1080/21645515.2015.1078044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/03/2015] [Accepted: 07/24/2015] [Indexed: 12/11/2022] Open
Abstract
Therapeutic vaccine research and development are especially important in Chagas disease considering the characteristics of the chronic infection and the number of people in the Americas living with a parasite infection for decades. We have previously reported the efficacy of attenuated Salmonella enterica (S) carrying plasmid encoding cruzipain (SCz) to protect against Trypanosoma cruzi infection. In the present work we investigated whether Cz DNA vaccine immunotherapy could be effective in controlling an ongoing T. cruzi infection in mice. We here report the intramuscular administration of naked Cz DNA or the oral administration of Salmonella as Cz DNA delivery system as therapeutic vaccines in mice during acute or chronic infection. The coadministration of a plasmid encoding GM-CSF improved vaccine performance, indicating that the stimulation of innate immune cells is needed in the event of an ongoing infection. These therapeutic vaccines were able to address the response to a protective and sustained Th1 biased profile not only against Cz but also against a variety of parasite antigens. The combined therapeutic vaccine during the chronic phase of infection prevents tissue pathology as shown by a reduced level of enzyme activity characteristic of tissue damage and a tissue status compatible with normal tissue. The obtained results suggest that immunotherapy with Cz and GM-CSF DNAs, either alone or in combination with other drug treatments, may represent a promising alternative for Chagas disease therapy.
Collapse
Affiliation(s)
- Natacha Cerny
- Cátedra de Inmunología e Instituto de Estudios de la Inmunidad Humoral (IDEHU); CONICET-UBA; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Buenos Aires, Argentina
- Instituto de Microbiología y Parasitología Médica; IMPaM (UBA-CONICET) y Departamento de Microbiología; Parasitología e Inmunología; Facultad de Medicina; UBA; Buenos Aires, Argentina
- Laboratorio de Inmunología; Departamento Ciencias Básicas- INEDES; Universidad Nacional de Luján; Luján, Argentina
| | - Andrés Sánchez Alberti
- Cátedra de Inmunología e Instituto de Estudios de la Inmunidad Humoral (IDEHU); CONICET-UBA; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Buenos Aires, Argentina
- Instituto de Microbiología y Parasitología Médica; IMPaM (UBA-CONICET) y Departamento de Microbiología; Parasitología e Inmunología; Facultad de Medicina; UBA; Buenos Aires, Argentina
| | - Augusto E Bivona
- Cátedra de Inmunología e Instituto de Estudios de la Inmunidad Humoral (IDEHU); CONICET-UBA; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Buenos Aires, Argentina
- Instituto de Microbiología y Parasitología Médica; IMPaM (UBA-CONICET) y Departamento de Microbiología; Parasitología e Inmunología; Facultad de Medicina; UBA; Buenos Aires, Argentina
| | - Mauricio C De Marzi
- Cátedra de Inmunología e Instituto de Estudios de la Inmunidad Humoral (IDEHU); CONICET-UBA; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Buenos Aires, Argentina
- Laboratorio de Inmunología; Departamento Ciencias Básicas- INEDES; Universidad Nacional de Luján; Luján, Argentina
| | - Fernanda M Frank
- Cátedra de Inmunología e Instituto de Estudios de la Inmunidad Humoral (IDEHU); CONICET-UBA; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Buenos Aires, Argentina
- Instituto de Microbiología y Parasitología Médica; IMPaM (UBA-CONICET) y Departamento de Microbiología; Parasitología e Inmunología; Facultad de Medicina; UBA; Buenos Aires, Argentina
| | - Silvia I Cazorla
- Cátedra de Inmunología e Instituto de Estudios de la Inmunidad Humoral (IDEHU); CONICET-UBA; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Buenos Aires, Argentina
- Instituto de Microbiología y Parasitología Médica; IMPaM (UBA-CONICET) y Departamento de Microbiología; Parasitología e Inmunología; Facultad de Medicina; UBA; Buenos Aires, Argentina
| | - Emilio L Malchiodi
- Cátedra de Inmunología e Instituto de Estudios de la Inmunidad Humoral (IDEHU); CONICET-UBA; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Buenos Aires, Argentina
- Instituto de Microbiología y Parasitología Médica; IMPaM (UBA-CONICET) y Departamento de Microbiología; Parasitología e Inmunología; Facultad de Medicina; UBA; Buenos Aires, Argentina
| |
Collapse
|
27
|
Cysteine proteases as therapeutic targets: does selectivity matter? A systematic review of calpain and cathepsin inhibitors. Acta Pharm Sin B 2015; 5:506-19. [PMID: 26713267 PMCID: PMC4675809 DOI: 10.1016/j.apsb.2015.08.001] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/09/2015] [Accepted: 07/14/2015] [Indexed: 01/17/2023] Open
Abstract
Cysteine proteases continue to provide validated targets for treatment of human diseases. In neurodegenerative disorders, multiple cysteine proteases provide targets for enzyme inhibitors, notably caspases, calpains, and cathepsins. The reactive, active-site cysteine provides specificity for many inhibitor designs over other families of proteases, such as aspartate and serine; however, a) inhibitor strategies often use covalent enzyme modification, and b) obtaining selectivity within families of cysteine proteases and their isozymes is problematic. This review provides a general update on strategies for cysteine protease inhibitor design and a focus on cathepsin B and calpain 1 as drug targets for neurodegenerative disorders; the latter focus providing an interesting query for the contemporary assumptions that irreversible, covalent protein modification and low selectivity are anathema to therapeutic safety and efficacy.
Collapse
Key Words
- AD, Alzheimer׳s disease
- ALS, amyotrophic lateral sclerosis
- APP, amyloid precursor protein
- APP/PS1, Aβ overexpressing mice APP (K670N/M671L) and PS1 (M146L) mutants
- Ala, alanine
- Alzheimer׳s disease
- AppLon, London familial amyloid precursor protein mutation, APP (V717I)
- AppSwe, Swedish amyloid precursor protein mutation, APP (K670N/M671L)
- Arg, arginine
- Aβ, amyloid β
- Aβ1-42, amyloid β, 42 amino acid protein
- BACE-1, β-amyloid cleaving enzyme
- BBB, blood–brain barrier
- CANP, calcium-activated neutral protease
- CNS, central nervous system
- CREB, cyclic adenosine monophosphate response element binding protein
- CaMKII, Ca2+/calmodulin-dependent protein kinases II
- Calpain
- Cathepsin
- Cdk5/p35, activator of cyclin-dependent kinase 5
- Cysteine protease
- DTT, dithioerythritol
- EGFR, epidermal growth factor receptor
- ERK1/2, extracellular signal-regulated kinase 1/2
- Enzyme inhibitors
- GSH, glutathione
- Gln, glutamine
- Glu, glutamic acid
- Gly, glutamine
- Hsp70.1, heat shock protein 70.1
- Ile, isoleucine
- KO, knockout
- Leu, leucine
- Lys, lysine
- MAP-2, microtubule-associated protein 2
- MMP-9, matrix metalloproteinase 9
- Met, methionine
- NFT, neurofibrilliary tangles
- Neurodegeneration
- Nle, norleucine
- PD, Parkinson׳s disease
- PK, pharmacokinetic
- PKC, protein kinase C
- PTP1B, protein-tyrosine phosphatase 1B
- Phe, phenylalanine
- Pro, proline
- SP, senile plaques
- TBI, traumatic brain injury
- TNF, tumor necrosis factor
- Thr, threonine
- Tyr, tyrosine
- Val, valine
- WRX, Trp-Arg containing epoxysuccinate cysteine protease inhibitor
- WT, wildtype
- isoAsp, isoaspartate
- pGlu, pyroglutamate
- pyroGluAβ, pyroglutamate-amyloid β
Collapse
|
28
|
Palchak ZL, Nguyen PT, Larsen CH. Synthesis of alpha-tetrasubstituted triazoles by copper-catalyzed silyl deprotection/azide cycloaddition. Beilstein J Org Chem 2015; 11:1425-33. [PMID: 26425198 PMCID: PMC4578341 DOI: 10.3762/bjoc.11.154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/02/2015] [Indexed: 11/23/2022] Open
Abstract
Propargylamines are popular substrates for triazole formation, but tetrasubstituted variants have required multistep syntheses involving stoichiometric amounts of metal. A recent cyclohexanone–amine–silylacetylene coupling forms silyl-protected tetrasubstituted propargylamines in a single copper-catalyzed step. The development of the tandem silyl deprotection–triazole formation reported herein offers rapid access to alpha-tetrasubstituted triazoles. A streamlined two-step approach to this uncommon class of hindered triazoles will accelerate exploration of their therapeutic potential. The superior activity of copper(II) triflate in the formation of triazoles from sensitive alkyne substrates extends to simple terminal alkynes.
Collapse
Affiliation(s)
- Zachary L Palchak
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Paula T Nguyen
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Catharine H Larsen
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| |
Collapse
|
29
|
Latorre A, Rodríguez S, González FV, Florea BI, Overkleeft HS. Synthetic Studies on the Preparation of Alanyl Epoxysulfones as Cathepsin Cysteine Protease Electrophilic Traps. J Org Chem 2015; 80:7752-6. [DOI: 10.1021/acs.joc.5b01013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Antonio Latorre
- Departament
de Química Inorgànica i Orgànica, Universitat Jaume I, 12080 Castelló, Spain
| | - Santiago Rodríguez
- Departament
de Química Inorgànica i Orgànica, Universitat Jaume I, 12080 Castelló, Spain
| | - Florenci V. González
- Departament
de Química Inorgànica i Orgànica, Universitat Jaume I, 12080 Castelló, Spain
| | - Bogdan I. Florea
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Herman S. Overkleeft
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
30
|
Espíndola JWP, Cardoso MVDO, Filho GBDO, Oliveira e Silva DA, Moreira DRM, Bastos TM, Simone CAD, Soares MBP, Villela FS, Ferreira RS, Castro MCABD, Pereira VRA, Murta SMF, Sales Junior PA, Romanha AJ, Leite ACL. Synthesis and structure–activity relationship study of a new series of antiparasitic aryloxyl thiosemicarbazones inhibiting Trypanosoma cruzi cruzain. Eur J Med Chem 2015; 101:818-35. [DOI: 10.1016/j.ejmech.2015.06.048] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 11/28/2022]
|
31
|
Neitz RJ, Bryant C, Chen S, Gut J, Hugo Caselli E, Ponce S, Chowdhury S, Xu H, Arkin MR, Ellman JA, Renslo AR. Tetrafluorophenoxymethyl ketone cruzain inhibitors with improved pharmacokinetic properties as therapeutic leads for Chagas' disease. Bioorg Med Chem Lett 2015; 25:4834-4837. [PMID: 26144347 DOI: 10.1016/j.bmcl.2015.06.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 06/18/2015] [Indexed: 01/26/2023]
Abstract
Inhibition of the cysteine protease cruzain from Trypanosoma cruzi has been studied pre-clinically as a new chemotherapeutic approach to treat Chagas' disease. Efficacious effects of vinylsulfone-based cruzain inhibitors in animal models support this therapeutic hypothesis. More recently, substrate-activity screening was used to identify nonpeptidic tetrafluorophenoxymethyl ketone inhibitors of cruzain that showed promising efficacy in animal models. Herein we report efforts to further optimize the in vitro potency and in vivo pharmacokinetic properties of this new class of cruzain inhibitors. Through modifications of the P1, P2 and/or P3 positions, new analogs have been identified with reduced lipophilicity, enhanced potency, and improved oral exposure and bioavailability.
Collapse
Affiliation(s)
- R Jeffrey Neitz
- Small Molecule Discovery Center, and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, United States
| | - Clifford Bryant
- Small Molecule Discovery Center, and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, United States
| | - Steven Chen
- Small Molecule Discovery Center, and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, United States
| | - Jiri Gut
- Small Molecule Discovery Center, and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, United States
| | - Estefania Hugo Caselli
- Small Molecule Discovery Center, and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, United States
| | - Servando Ponce
- Small Molecule Discovery Center, and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, United States
| | - Somenath Chowdhury
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Haichao Xu
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Michelle R Arkin
- Small Molecule Discovery Center, and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, United States
| | - Jonathan A Ellman
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Adam R Renslo
- Small Molecule Discovery Center, and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, United States.
| |
Collapse
|
32
|
Arafet K, Ferrer S, Moliner V. First quantum mechanics/molecular mechanics studies of the inhibition mechanism of cruzain by peptidyl halomethyl ketones. Biochemistry 2015; 54:3381-91. [PMID: 25965914 DOI: 10.1021/bi501551g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cruzain is a primary cysteine protease expressed by the protozoan parasite Trypanosoma cruzi during Chagas disease infection, and thus, the development of inhibitors of this protein is a promising target for designing an effective therapy against the disease. In this paper, the mechanism of inhibition of cruzain by two different irreversible peptidyl halomethyl ketones (PHK) inhibitors has been studied by means of hybrid quantum mechanics/molecular mechanics-molecular dynamics (MD) simulations to obtain a complete representation of the possible free energy reaction paths. These have been traced on free energy surfaces in terms of the potential of mean force computed at AM1d/MM and DFT/MM levels of theory. An analysis of the possible reaction mechanisms of the inhibition process has been performed showing that the nucleophilic attack of an active site cysteine, Cys25, on a carbon atom of the inhibitor and the cleavage of the halogen-carbon bond take place in a single step. PClK appears to be much more favorable than PFK from a kinetic point of view. This result would be in agreement with experimental studies in other papain-like enzymes. A deeper analysis of the results suggests that the origin of the differences between PClK and PFK can be the different stabilizing interactions established between the inhibitors and the residues of the active site of the protein. Any attempt to explore the viability of the inhibition process through a stepwise mechanism involving the formation of a thiohemiketal intermediate and a three-membered sulfonium intermediate has been unsuccessful. Nevertheless, a mechanism through a protonated thiohemiketal, with participation of His159 as a proton donor, appears to be feasible despite showing higher free energy barriers. Our results suggest that PClK can be used as a starting point to develop a proper inhibitor of cruzain.
Collapse
Affiliation(s)
- Kemel Arafet
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castelló, Spain
| | - Silvia Ferrer
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castelló, Spain
| | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castelló, Spain
| |
Collapse
|
33
|
Jamali H, Khan HA, Stringer JR, Chowdhury S, Ellman JA. Identification of multiple structurally distinct, nonpeptidic small molecule inhibitors of protein arginine deiminase 3 using a substrate-based fragment method. J Am Chem Soc 2015; 137:3616-21. [PMID: 25742366 PMCID: PMC4447334 DOI: 10.1021/jacs.5b00095] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The protein arginine deiminases (PADs) are a family of enzymes that catalyze the post-translational hydrolytic deimination of arginine residues. Four different enzymologically active PAD subtypes have been characterized and exhibit tissue-specific expression and association with a number of different diseases. In this Article we describe the development of an approach for the reliable discovery of low molecular weight, nonpeptidic fragment substrates of the PADs that then can be optimized and converted to mechanism-based irreversible PAD inhibitors. The approach is demonstrated by the development of potent and selective inhibitors of PAD3, a PAD subtype implicated in the neurodegenerative response to spinal cord injury. Multiple structurally distinct inhibitors were identified with the most potent inhibitors having >10,000 min(-1) M(-1) k(inact)/K(I) values and ≥10-fold selectivity for PAD3 over PADs 1, 2, and 4.
Collapse
Affiliation(s)
- Haya Jamali
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hasan A. Khan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | | | | - Jonathan A. Ellman
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
34
|
Bellera CL, Balcazar DE, Vanrell MC, Casassa AF, Palestro PH, Gavernet L, Labriola CA, Gálvez J, Bruno-Blanch LE, Romano PS, Carrillo C, Talevi A. Computer-guided drug repurposing: Identification of trypanocidal activity of clofazimine, benidipine and saquinavir. Eur J Med Chem 2015; 93:338-48. [DOI: 10.1016/j.ejmech.2015.01.065] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/29/2014] [Accepted: 01/28/2015] [Indexed: 01/31/2023]
|
35
|
Synthesis of a sugar-based thiosemicarbazone series and structure-activity relationship versus the parasite cysteine proteases rhodesain, cruzain, and Schistosoma mansoni cathepsin B1. Antimicrob Agents Chemother 2015; 59:2666-77. [PMID: 25712353 DOI: 10.1128/aac.04601-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/02/2015] [Indexed: 01/27/2023] Open
Abstract
The pressing need for better drugs against Chagas disease, African sleeping sickness, and schistosomiasis motivates the search for inhibitors of cruzain, rhodesain, and Schistosoma mansoni CB1 (SmCB1), the major cysteine proteases from Trypanosoma cruzi, Trypanosoma brucei, and S. mansoni, respectively. Thiosemicarbazones and heterocyclic analogues have been shown to be both antitrypanocidal and inhibitory against parasite cysteine proteases. A series of compounds was synthesized and evaluated against cruzain, rhodesain, and SmCB1 through biochemical assays to determine their potency and structure-activity relationships (SAR). This approach led to the discovery of 6 rhodesain, 4 cruzain, and 5 SmCB1 inhibitors with 50% inhibitory concentrations (IC50s) of ≤ 10 μM. Among the compounds tested, the thiosemicarbazone derivative of peracetylated galactoside (compound 4i) was discovered to be a potent rhodesain inhibitor (IC50 = 1.2 ± 1.0 μM). The impact of a range of modifications was determined; removal of thiosemicarbazone or its replacement by semicarbazone resulted in virtually inactive compounds, and modifications in the sugar also diminished potency. Compounds were also evaluated in vitro against the parasites T. cruzi, T. brucei, and S. mansoni, revealing active compounds among this series.
Collapse
|
36
|
Breen ME, Soellner MB. Small molecule substrate phosphorylation site inhibitors of protein kinases: approaches and challenges. ACS Chem Biol 2015; 10:175-89. [PMID: 25494294 PMCID: PMC4301090 DOI: 10.1021/cb5008376] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Protein kinases are
important mediators of cellular communication
and attractive drug targets for many diseases. Although success has
been achieved with developing ATP-competitive kinase inhibitors, the
disadvantages of ATP-competitive inhibitors have led to increased
interest in targeting sites outside of the ATP binding pocket. Kinase
inhibitors with substrate-competitive, ATP-noncompetitive binding
modes are promising due to the possibility of increased selectivity
and better agreement between biochemical and in vitro potency. However, the difficulty of identifying these types of inhibitors
has resulted in significantly fewer small molecule substrate phosphorylation
site inhibitors being reported compared to ATP-competitive inhibitors.
This review surveys reported substrate phosphorylation site inhibitors
and methods that can be applied to the discovery of such inhibitors,
including a discussion of the challenges inherent to these screening
methods.
Collapse
Affiliation(s)
- Meghan E. Breen
- Department of Medicinal Chemistry and ‡Department of
Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| | - Matthew B. Soellner
- Department of Medicinal Chemistry and ‡Department of
Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
37
|
Merritt C, Silva L, Tanner AL, Stuart K, Pollastri MP. Kinases as druggable targets in trypanosomatid protozoan parasites. Chem Rev 2014; 114:11280-304. [PMID: 26443079 PMCID: PMC4254031 DOI: 10.1021/cr500197d] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Christopher Merritt
- Seattle
Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, Washington 98109-5219, United States
| | - Lisseth
E. Silva
- Department
of Chemistry & Chemical Biology, Northeastern
University, 417 Egan
Research Center, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Angela L. Tanner
- Department
of Chemistry & Chemical Biology, Northeastern
University, 417 Egan
Research Center, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Kenneth Stuart
- Seattle
Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, Washington 98109-5219, United States
| | - Michael P. Pollastri
- Department
of Chemistry & Chemical Biology, Northeastern
University, 417 Egan
Research Center, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
38
|
Ferreira RS, Dessoy MA, Pauli I, Souza ML, Krogh R, Sales AIL, Oliva G, Dias LC, Andricopulo AD. Synthesis, biological evaluation, and structure-activity relationships of potent noncovalent and nonpeptidic cruzain inhibitors as anti-Trypanosoma cruzi agents. J Med Chem 2014; 57:2380-92. [PMID: 24533839 DOI: 10.1021/jm401709b] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development of cruzain inhibitors has been driven by the urgent need to develop novel and more effective drugs for the treatment of Chagas' disease. Herein, we report the lead optimization of a class of noncovalent cruzain inhibitors, starting from an inhibitor previously cocrystallized with the enzyme (K(i) = 0.8 μM). With the goal of achieving a better understanding of the structure-activity relationships, we have synthesized and evaluated a series of over 40 analogues, leading to the development of a very promising competitive inhibitor (8r, IC50 = 200 nM, K(i) = 82 nM). Investigation of the in vitro trypanocidal activity and preliminary cytotoxicity revealed the potential of the most potent cruzain inhibitors in guiding further medicinal chemistry efforts to develop drug candidates for Chagas' disease.
Collapse
Affiliation(s)
- Rafaela S Ferreira
- Laboratório de Química Medicinal e Computacional, Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo , Avenida João Dagnone 1100, Jardim Santa Angelina, São Carlos, SP 13563-120, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Conformational restriction of aryl thiosemicarbazones produces potent and selective anti-Trypanosoma cruzi compounds which induce apoptotic parasite death. Eur J Med Chem 2014; 75:467-78. [DOI: 10.1016/j.ejmech.2014.02.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/30/2014] [Accepted: 02/02/2014] [Indexed: 11/21/2022]
|
40
|
Bellera CL, Balcazar DE, Alberca L, Labriola CA, Talevi A, Carrillo C. Identification of levothyroxine antichagasic activity through computer-aided drug repurposing. ScientificWorldJournal 2014; 2014:279618. [PMID: 24592161 PMCID: PMC3926237 DOI: 10.1155/2014/279618] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/13/2013] [Indexed: 12/12/2022] Open
Abstract
Cruzipain (Cz) is the major cysteine protease of the protozoan Trypanosoma cruzi, etiological agent of Chagas disease. A conformation-independent classifier capable of identifying Cz inhibitors was derived from a 163-compound dataset and later applied in a virtual screening campaign on the DrugBank database, which compiles FDA-approved and investigational drugs. 54 approved drugs were selected as candidates, 3 of which were acquired and tested on Cz and T. cruzi epimastigotes proliferation. Among them, levothyroxine, traditionally used in hormone replacement therapy in patients with hypothyroidism, showed dose-dependent inhibition of Cz and antiproliferative activity on the parasite.
Collapse
Affiliation(s)
- Carolina L. Bellera
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, 47 y 115, La Plata (B1900AJI) Buenos Aires, Argentina
| | - Darío E. Balcazar
- Instituto de Ciencia y Tecnología Dr. César Milstein (ICT Milstein), Argentinean National Council of Scientific and Technical Research (CONICET), Saladillo 2468, Ciudad Autónoma de Buenos Aires (C1440FFX), Argentina
| | - Lucas Alberca
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, 47 y 115, La Plata (B1900AJI) Buenos Aires, Argentina
| | - Carlos A. Labriola
- Instituto de Investigaciones Bioquímicas de Buenos Aires, Argentinean National Council of Scientific and Technical Research (CONICET), Avenida Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires (C1405BWE), Argentina
| | - Alan Talevi
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, 47 y 115, La Plata (B1900AJI) Buenos Aires, Argentina
| | - Carolina Carrillo
- Instituto de Ciencia y Tecnología Dr. César Milstein (ICT Milstein), Argentinean National Council of Scientific and Technical Research (CONICET), Saladillo 2468, Ciudad Autónoma de Buenos Aires (C1440FFX), Argentina
| |
Collapse
|
41
|
Smirlis D, Soares MBP. Selection of molecular targets for drug development against trypanosomatids. Subcell Biochem 2014; 74:43-76. [PMID: 24264240 DOI: 10.1007/978-94-007-7305-9_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Trypanosomatid parasites are a group of flagellated protozoa that includes the genera Leishmania and Trypanosoma, which are the causative agents of diseases (leishmaniases, sleeping sickness and Chagas disease) that cause considerable morbidity and mortality, affecting more than 27 million people worldwide. Today no effective vaccines for the prevention of these diseases exist, whereas current chemotherapy is ineffective, mainly due to toxic side effects of current drugs and to the emergence of drug resistance and lack of cost effectiveness. For these reasons, rational drug design and the search of good candidate drug targets is of prime importance. The search for drug targets requires a multidisciplinary approach. To this end, the completion of the genome project of many trypanosomatid species gives a vast amount of new information that can be exploited for the identification of good drug candidates with a prediction of "druggability" and divergence from mammalian host proteins. In addition, an important aspect in the search for good drug targets is the "target identification" and evaluation in a biological pathway, as well as the essentiality of the gene in the mammalian stage of the parasite, which is provided by basic research and genetic and proteomic approaches. In this chapter we will discuss how these bioinformatic tools and experimental evaluations can be integrated for the selection of candidate drug targets, and give examples of metabolic and signaling pathways in the parasitic protozoa that can be exploited for rational drug design.
Collapse
|
42
|
de Carvalho da Silva F, Cardoso MFDC, Ferreira PG, Ferreira VF. Biological Properties of 1H-1,2,3- and 2H-1,2,3-Triazoles. TOPICS IN HETEROCYCLIC CHEMISTRY 2014. [DOI: 10.1007/7081_2014_124] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Abstract
Chiral amines are prevalent in many bioactive molecules, including amino acids and pharmaceutical agents. tert-Butanesulfinamide (tBS) is a chiral amine reagent that has enabled the reliable asymmetric synthesis of a very broad range of different amine structures from simple, readily available starting materials. Three steps are commonly applied to the asymmetric synthesis of amines: (i) condensation of tBS with a carbonyl compound, (ii) nucleophile addition and (iii) tert-butanesulfinyl group cleavage. Here we demonstrate these steps with the preparation of a propargylic tertiary carbinamine, one of a class of amines that have been used for many different biological purposes, including click chemistry applications, diversity-oriented synthesis, the preparation of peptide isosteres and the development of protease inhibitors as drug candidates and imaging agents. The process described here can be performed in 3-4 d.
Collapse
|
44
|
Bellera CL, Balcazar DE, Alberca L, Labriola CA, Talevi A, Carrillo C. Application of computer-aided drug repurposing in the search of new cruzipain inhibitors: discovery of amiodarone and bromocriptine inhibitory effects. J Chem Inf Model 2013; 53:2402-8. [PMID: 23906322 DOI: 10.1021/ci400284v] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cruzipain (Cz) is the major cystein protease of the protozoan Trypanosoma cruzi , etiological agent of Chagas disease. From a 163 compound data set, a 2D-classifier capable of identifying Cz inhibitors was obtained and applied in a virtual screening campaign on the DrugBank database, which compiles FDA-approved and investigational drugs. Fifty-four approved drugs were selected as candidates, four of which were acquired and tested on Cz and T. cruzi epimastigotes. Among them, the antiparkinsonian and antidiabetic drug bromocriptine and the antiarrhythmic amiodarone showed dose-dependent inhibition of Cz and antiproliferative activity on the parasite.
Collapse
Affiliation(s)
- Carolina L Bellera
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata , 47 y 115, La Plata (B1900AJI), Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
45
|
Choy JW, Bryant C, Calvet CM, Doyle PS, Gunatilleke SS, Leung SSF, Ang KKH, Chen S, Gut J, Oses-Prieto JA, Johnston JB, Arkin MR, Burlingame AL, Taunton J, Jacobson MP, McKerrow JM, Podust LM, Renslo AR. Chemical-biological characterization of a cruzain inhibitor reveals a second target and a mammalian off-target. Beilstein J Org Chem 2013; 9:15-25. [PMID: 23400640 PMCID: PMC3566858 DOI: 10.3762/bjoc.9.3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 11/27/2012] [Indexed: 12/17/2022] Open
Abstract
Inhibition of the Trypanosoma cruzi cysteine protease cruzain has been proposed as a therapeutic approach for the treatment of Chagas’ disease. Among the best-studied cruzain inhibitors to date is the vinylsulfone K777 (1), which has proven effective in animal models of Chagas’ disease. Recent structure–activity studies aimed at addressing potential liabilities of 1 have now produced analogues such as N-[(2S)-1-[[(E,3S)-1-(benzenesulfonyl)-5-phenylpent-1-en-3-yl]amino]-3-(4-methylphenyl)-1-oxopropan-2-yl]pyridine-4-carboxamide (4), which is trypanocidal at ten-fold lower concentrations than for 1. We now find that the trypanocidal activity of 4 derives primarily from the inhibition of T. cruzi 14-α-demethylase (TcCYP51), a cytochrome P450 enzyme involved in the biosynthesis of ergosterol in the parasite. Compound 4 also inhibits mammalian CYP isoforms but is trypanocidal at concentrations below those required to significantly inhibit mammalian CYPs in vitro. A chemical-proteomics approach employing an activity-based probe derived from 1 was used to identify mammalian cathepsin B as a potentially important off-target of 1 and 4. Computational docking studies and the evaluation of truncated analogues of 4 reveal structural determinants for TcCYP51 binding, information that will be useful in further optimization of this new class of inhibitors.
Collapse
Affiliation(s)
- Jonathan W Choy
- Small Molecule Discovery Center, University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA ; Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA ; Department of Cellular and Molecular Pharmacology, University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Moreira DRM, Costa SPM, Hernandes MZ, Rabello MM, de Oliveira Filho GB, de Melo CML, da Rocha LF, de Simone CA, Ferreira RS, Fradico JRB, Meira CS, Guimarães ET, Srivastava RM, Pereira VRA, Soares MBP, Leite ACL. Structural Investigation of Anti-Trypanosoma cruzi 2-Iminothiazolidin-4-ones Allows the Identification of Agents with Efficacy in Infected Mice. J Med Chem 2012; 55:10918-36. [DOI: 10.1021/jm301518v] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Diogo Rodrigo Magalhaes Moreira
- Departamento de Química
Fundamental, Centro de Ciências Exatas and da Natureza, Universidade Federal de Pernambuco, 50670-901, Recife,
PE, Brazil
- Departamento
de Ciências
Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife,
PE, Brazil
| | - Salvana Priscylla Manso Costa
- Departamento
de Ciências
Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife,
PE, Brazil
| | - Marcelo Zaldini Hernandes
- Departamento
de Ciências
Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife,
PE, Brazil
| | - Marcelo Montenegro Rabello
- Departamento
de Ciências
Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife,
PE, Brazil
| | - Gevanio Bezerra de Oliveira Filho
- Departamento
de Ciências
Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife,
PE, Brazil
| | | | - Lucas Ferreira da Rocha
- Centro de Pesquisas Aggeu Magalhaes, Fundação Oswaldo Cruz,
CEP, 50670-420, Salvador-PE, Brazil
| | - Carlos Alberto de Simone
- Departamento de Física
and Informática, Instituto de Física, Universidade de São Paulo, CEP 13560-970, São Carlos,
SP, Brazil
| | - Rafaela Salgado Ferreira
- Departamento de Bioquímica
and
Imunologia, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, MG, Brazil
| | | | - Cássio Santana Meira
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo
Cruz, CEP 40296-710, Salvador, BA, Brazil
| | - Elisalva Teixeira Guimarães
- Departamento de Ciências da
Vida, Universidade Estadual da Bahia, CEP
41150-000, Salvador, BA, Brazil
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo
Cruz, CEP 40296-710, Salvador, BA, Brazil
| | - Rajendra Mohan Srivastava
- Departamento de Química
Fundamental, Centro de Ciências Exatas and da Natureza, Universidade Federal de Pernambuco, 50670-901, Recife,
PE, Brazil
| | | | - Milena Botelho Pereira Soares
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo
Cruz, CEP 40296-710, Salvador, BA, Brazil
- Centro de Biotecnologia and
Terapia Celular, Hospital São Rafael, CEP 41253-190, Salvador, BA, Brazil
| | - Ana Cristina Lima Leite
- Departamento
de Ciências
Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife,
PE, Brazil
| |
Collapse
|
47
|
dos Santos Filho JM, Moreira DRM, de Simone CA, Ferreira RS, McKerrow JH, Meira CS, Guimarães ET, Soares MBP. Optimization of anti-Trypanosoma cruzi oxadiazoles leads to identification of compounds with efficacy in infected mice. Bioorg Med Chem 2012; 20:6423-33. [PMID: 23006639 DOI: 10.1016/j.bmc.2012.08.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/16/2012] [Accepted: 08/23/2012] [Indexed: 10/27/2022]
Abstract
We recently showed that oxadiazoles have anti-Trypanosoma cruzi activity at micromolar concentrations. These compounds are easy to synthesize and show a number of clear and interpretable structure-activity relationships (SAR), features that make them attractive to pursue potency enhancement. We present here the structural design, synthesis, and anti-T. cruzi evaluation of new oxadiazoles denoted 5a-h and 6a-h. The design of these compounds was based on a previous model of computational docking of oxadiazoles on the T. cruzi protease cruzain. We tested the ability of these compounds to inhibit catalytic activity of cruzain, but we found no correlation between the enzyme inhibition and the antiparasitic activity of the compounds. However, we found reliable SAR data when we tested these compounds against the whole parasite. While none of these oxadiazoles showed toxicity for mammalian cells, oxadiazoles 6c (fluorine), 6d (chlorine), and 6e (bromine) reduced epimastigote proliferation and were cidal for trypomastigotes of T. cruzi Y strain. Oxadiazoles 6c and 6d have IC(50) of 9.5 ± 2.8 and 3.5 ± 1.8 μM for trypomastigotes, while Benznidazole, which is the currently used drug for Chagas disease treatment, showed an IC(50) of 11.3 ± 2.8 μM. Compounds 6c and 6d impair trypomastigote development and invasion in macrophages, and also induce ultrastructural alterations in trypomastigotes. Finally, compound 6d given orally at 50mg/kg substantially reduces the parasitemia in T. cruzi-infected BALB/c mice. Our drug design resulted in potency enhancement of oxadiazoles as anti-Chagas disease agents, and culminated with the identification of oxadiazole 6d, a trypanosomicidal compound in an animal model of infection.
Collapse
Affiliation(s)
- José Maurício dos Santos Filho
- Departamento de Engenharia Química, Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco, CEP 50740-521, Recife, PE, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Host-parasite interaction: parasite-derived and -induced proteases that degrade human extracellular matrix. J Parasitol Res 2012; 2012:748206. [PMID: 22792442 PMCID: PMC3390111 DOI: 10.1155/2012/748206] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 05/07/2012] [Indexed: 12/29/2022] Open
Abstract
Parasitic protozoa are among the most important pathogens worldwide. Diseases such as malaria, leishmaniasis, amoebiasis, giardiasis, trichomoniasis, and trypanosomiasis affect millions of people. Humans are constantly threatened by infections caused by these pathogens. Parasites engage a plethora of surface and secreted molecules to attach to and enter mammalian cells. The secretion of lytic enzymes by parasites into host organs mediates critical interactions because of the invasion and destruction of interstitial tissues, enabling parasite migration to other sites within the hosts. Extracellular matrix is a complex, cross-linked structure that holds cells together in an organized assembly and that forms the basement membrane lining (basal lamina). The extracellular matrix represents a major barrier to parasites. Therefore, the evolution of mechanisms for connective-tissue degradation may be of great importance for parasite survival. Recent advances have been achieved in our understanding of the biochemistry and molecular biology of proteases from parasitic protozoa. The focus of this paper is to discuss the role of protozoan parasitic proteases in the degradation of host ECM proteins and the participation of these molecules as virulence factors. We divide the paper into two sections, extracellular and intracellular protozoa.
Collapse
|
49
|
Yang P, Wang M, Liu K, Ngai MH, Sheriff O, Lear MJ, Sze SK, He CY, Yao SQ. Parasite‐Based Screening and Proteome Profiling Reveal Orlistat, an FDA‐Approved Drug, as a Potential Anti
Trypanosoma brucei
Agent
[
]. Chemistry 2012; 18:8403-13. [DOI: 10.1002/chem.201200482] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 03/22/2012] [Indexed: 12/21/2022]
Affiliation(s)
- Peng‐Yu Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore), Fax: (+65) 6779‐1691
| | - Min Wang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543 (Singapore)
| | - Kai Liu
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543 (Singapore)
| | - Mun Hong Ngai
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore), Fax: (+65) 6779‐1691
| | - Omar Sheriff
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543 (Singapore)
| | - Martin J. Lear
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore), Fax: (+65) 6779‐1691
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore)
| | - Cynthia Y. He
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543 (Singapore)
| | - Shao Q. Yao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore), Fax: (+65) 6779‐1691
| |
Collapse
|
50
|
Abstract
Drug discovery has moved toward more rational strategies based on our increasing understanding of the fundamental principles of protein–ligand interactions. Structure- (SBDD) and ligand-based drug design (LBDD) approaches bring together the most powerful concepts in modern chemistry and biology, linking medicinal chemistry with structural biology. The definition and assessment of both chemical and biological space have revitalized the importance of exploring the intrinsic complementary nature of experimental and computational methods in drug design. Major challenges in this field include the identification of promising hits and the development of high-quality leads for further development into clinical candidates. It becomes particularly important in the case of neglected tropical diseases (NTDs) that affect disproportionately poor people living in rural and remote regions worldwide, and for which there is an insufficient number of new chemical entities being evaluated owing to the lack of innovation and R&D investment by the pharmaceutical industry. This perspective paper outlines the utility and applications of SBDD and LBDD approaches for the identification and design of new small-molecule agents for NTDs.
Collapse
|