1
|
Li Y, Li H, Gao J, Niu B, Wang H, Wang W. Visualizing the Intermittent Gating of Na + /H + Antiporters in Single Native Bioluminescent Bacteria. Angew Chem Int Ed Engl 2023; 62:e202215800. [PMID: 36562656 DOI: 10.1002/anie.202215800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/24/2022]
Abstract
While the intermittent gating of ion channels has been well studied for decades, dynamics of the action of secondary transporters, another major pathway for ion transmembrane transports, remains largely unexplored in living cells. Herein, intermittent blinking of the spontaneous bioluminescence (BL) from single native bacteria, P. phosphoreum, was reported, investigated and attributed to the intermittent gating of sodium/proton antiporters (NhaA) between the active and inactive conformations. Each gating event caused the rapid depolarization and recovery of membrane potential within several seconds, accompanying with the apparent BL blinking due to the transient inhibitions on the activity of the respiratory chain. Temperature-dependent measurements further obtained an activation energy barrier of the conformational change of 20.3 kJ mol-1 .
Collapse
Affiliation(s)
- Yaohua Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University, Nanjing, 210023, China
| | - Haoran Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University, Nanjing, 210023, China
| | - Jia Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University, Nanjing, 210023, China
| | - Ben Niu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University, Nanjing, 210023, China
| | - Huan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University, Nanjing, 210023, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
2
|
Samec T, Boulos J, Gilmore S, Hazelton A, Alexander-Bryant A. Peptide-based delivery of therapeutics in cancer treatment. Mater Today Bio 2022; 14:100248. [PMID: 35434595 PMCID: PMC9010702 DOI: 10.1016/j.mtbio.2022.100248] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/14/2022] [Accepted: 03/27/2022] [Indexed: 11/09/2022] Open
Abstract
Current delivery strategies for cancer therapeutics commonly cause significant systemic side effects due to required high doses of therapeutic, inefficient cellular uptake of drug, and poor cell selectivity. Peptide-based delivery systems have shown the ability to alleviate these issues and can significantly enhance therapeutic loading, delivery, and cancer targetability. Peptide systems can be tailor-made for specific cancer applications. This review describes three peptide classes, targeting, cell penetrating, and fusogenic peptides, as stand-alone nanoparticle systems, conjugations to nanoparticle systems, or as the therapeutic modality. Peptide nanoparticle design, characteristics, and applications are discussed as well as peptide applications in the clinical space.
Collapse
Affiliation(s)
- Timothy Samec
- Nanobiotechnology Laboratory, Clemson University, Department of Bioengineering, Clemson, SC, USA
| | - Jessica Boulos
- Nanobiotechnology Laboratory, Clemson University, Department of Bioengineering, Clemson, SC, USA
| | - Serena Gilmore
- Nanobiotechnology Laboratory, Clemson University, Department of Bioengineering, Clemson, SC, USA
| | - Anthony Hazelton
- Nanobiotechnology Laboratory, Clemson University, Department of Bioengineering, Clemson, SC, USA
| | - Angela Alexander-Bryant
- Nanobiotechnology Laboratory, Clemson University, Department of Bioengineering, Clemson, SC, USA
| |
Collapse
|
3
|
Xing H, Lu M, Yang T, Liu H, Sun Y, Zhao X, Xu H, Yang L, Ding P. Structure-function relationships of nonviral gene vectors: Lessons from antimicrobial polymers. Acta Biomater 2019; 86:15-40. [PMID: 30590184 DOI: 10.1016/j.actbio.2018.12.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/22/2018] [Accepted: 12/21/2018] [Indexed: 01/13/2023]
Abstract
In recent years, substantial advances have been achieved in the design and synthesis of nonviral gene vectors. However, lack of effective and biocompatible vectors still remains a major challenge that hinders their application in clinical settings. In the past decade, there has been a rapid expansion of cationic antimicrobial polymers, due to their potent, rapid, and broad-spectrum biocidal activity against resistant microbes, and biocompatible features. Given that antimicrobial polymers share common features with nonviral gene vectors in various aspects, such as membrane affinity, functional groups, physicochemical characteristics, and unique macromolecular architectures, these polymers may provide us with inspirations to overcome challenges in the design of novel vectors toward more safe and efficient gene delivery in clinic. Building off these observations, we provide here an overview of the structure-function relationships of polymers for both antimicrobial applications and gene delivery by elaborating some key structural parameters, including functional groups, charge density, hydrophobic/hydrophilic balance, MW, and macromolecular architectures. By borrowing a leaf from antimicrobial agents, great advancement in the development of newer nonviral gene vectors with high transfection efficiency and biocompatibility will be more promising. STATEMENT OF SIGNIFICANCE: The development of gene delivery is still in the preclinical stage for the lack of effective and biocompatible vectors. Given that antimicrobial polymers share common features with gene vectors in various aspects, such as membrane affinity, functional groups, physicochemical characteristics, and unique macromolecular architectures, these polymers may provide us with inspirations to overcome challenges in the design of novel vectors toward more safe and efficient gene delivery in clinic. In this review, we systematically summarized the structure-function relationships of antimicrobial polymers and gene vectors, with which the design of more advanced nonviral gene vectors is anticipated to be further boosted in the future.
Collapse
Affiliation(s)
- Haonan Xing
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Mei Lu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, ME, USA
| | - Hui Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanping Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaoyun Zhao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Hui Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Li Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
4
|
Al-azzawi S, Masheta D. Designing a drug delivery system for improved tumor treatment and targeting by functionalization of a cell-penetrating peptide. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-018-00424-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Cheng Y, Sun C, Ou X, Liu B, Lou X, Xia F. Dual-targeted peptide-conjugated multifunctional fluorescent probe with AIEgen for efficient nucleus-specific imaging and long-term tracing of cancer cells. Chem Sci 2017; 8:4571-4578. [PMID: 28626568 PMCID: PMC5471453 DOI: 10.1039/c7sc00402h] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/19/2017] [Indexed: 12/20/2022] Open
Abstract
Precisely targeted transportation of a long-term tracing regent to a nucleus with low toxicity is one of the most challenging concerns in revealing cancer cell behaviors. Here, we report a dual-targeted peptide-conjugated multifunctional fluorescent probe (cNGR-CPP-NLS-RGD-PyTPE, TCNTP) with aggregation-induced emission (AIE) characteristic, for efficient nucleus-specific imaging and long-term and low-toxicity tracing of cancer cells. TCNTP mainly consists of two components: one is a functionalized combinatorial peptide (TCNT) containing two targeted peptides (cNGR and RGD), a cell-penetrating peptide (CPP) and a nuclear localization signal (NLS), which can specifically bind to a cell surface and effectively enter into the nucleus; the other one is an AIE-active tetraphenylethene derivative (PyTPE, a typical AIEgen) as fluorescence imaging reagent. In the presence of aminopeptidase N (CD13) and integrin αvβ3, TCNTP can specifically bind to both of them using cNGR and RGD, respectively, lighting up its yellow fluorescence. Because it contains CPP, TCNTP can be effectively integrated into the cytoplasm, and then be delivered into the nucleus with the help of NLS. TCNTP exhibited strong fluorescence in the nucleus of CD13 and integrin αvβ3 overexpression cells due to the specific targeting ability, efficient transport capacity and AIE characteristic in a more crowded space. Furthermore, TCNTP can be applied for long-term tracing in living cells, scarcely affecting normal cells with negligible toxicity in more than ten passages.
Collapse
Affiliation(s)
- Yong Cheng
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica , School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China . ;
- National Engineering Research Center for Nanomedicine , Department of Biomedical Engineering , College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Chunli Sun
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica , School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China . ;
| | - Xiaowen Ou
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica , School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China . ;
| | - Bifeng Liu
- National Engineering Research Center for Nanomedicine , Department of Biomedical Engineering , College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Xiaoding Lou
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica , School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China . ;
| | - Fan Xia
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica , School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China . ;
- National Engineering Research Center for Nanomedicine , Department of Biomedical Engineering , College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| |
Collapse
|
6
|
McKinlay CJ, Waymouth RM, Wender PA. Cell-Penetrating, Guanidinium-Rich Oligophosphoesters: Effective and Versatile Molecular Transporters for Drug and Probe Delivery. J Am Chem Soc 2016; 138:3510-7. [PMID: 26900771 DOI: 10.1021/jacs.5b13452] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The design, synthesis, and biological evaluation of a new family of highly effective cell-penetrating molecular transporters, guanidinium-rich oligophosphoesters, are described. These unique transporters are synthesized in two steps, irrespective of oligomer length, by the organocatalytic ring-opening polymerization (OROP) of 5-membered cyclic phospholane monomers followed by oligomer deprotection. Varying the initiating alcohol results in a wide variety of cargo attachment strategies for releasable or nonreleasable transporter applications. Initiation of oligomerization with a fluorescent probe produces, upon deprotection, a transporter-probe conjugate that is shown to readily enter multiple cell lines in a dose-dependent manner. These new transporters are superior in cell uptake to previously studied guanidinium-rich oligocarbonates and oligoarginines, showing over 2-fold higher uptake than the former and 6-fold higher uptake than the latter. Initiation with a protected thiol gives, upon deprotection, thiol-terminated transporters which can be thiol-click conjugated to a variety of probes, drugs and other cargos as exemplified by the conjugation and delivery of the model probe fluorescein-maleimide and the medicinal agent paclitaxel (PTX) into cells. Of particular significance given that drug resistance is a major cause of chemotherapy failure, the PTX-transporter conjugate, designed to evade Pgp export and release free PTX after cell entry, shows efficacy against PTX-resistant ovarian cancer cells. Collectively this study introduces a new and highly effective class of guanidinium-rich cell-penetrating transporters and methodology for their single-step conjugation to drugs and probes, and demonstrates that the resulting drug/probe-conjugates readily enter cells, outperforming previously reported guanidinium-rich oligocarbonates and peptide transporters.
Collapse
Affiliation(s)
- Colin J McKinlay
- Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University , Stanford, California 94305, United States
| | - Robert M Waymouth
- Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University , Stanford, California 94305, United States
| | - Paul A Wender
- Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
7
|
Pavlovic I, Thakor DT, Vargas JR, McKinlay CJ, Hauke S, Anstaett P, Camuña RC, Bigler L, Gasser G, Schultz C, Wender PA, Jessen HJ. Cellular delivery and photochemical release of a caged inositol-pyrophosphate induces PH-domain translocation in cellulo. Nat Commun 2016; 7:10622. [PMID: 26842801 PMCID: PMC4743007 DOI: 10.1038/ncomms10622] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/05/2016] [Indexed: 02/07/2023] Open
Abstract
Inositol pyrophosphates, such as diphospho-myo-inositol pentakisphosphates (InsP7), are an important family of signalling molecules, implicated in many cellular processes and therapeutic indications including insulin secretion, glucose homeostasis and weight gain. To understand their cellular functions, chemical tools such as photocaged analogues for their real-time modulation in cells are required. Here we describe a concise, modular synthesis of InsP7 and caged InsP7. The caged molecule is stable and releases InsP7 only on irradiation. While photocaged InsP7 does not enter cells, its cellular uptake is achieved using nanoparticles formed by association with a guanidinium-rich molecular transporter. This novel synthesis and unprecedented polyphosphate delivery strategy enable the first studies required to understand InsP7 signalling in cells with controlled spatiotemporal resolution. It is shown herein that cytoplasmic photouncaging of InsP7 leads to translocation of the PH-domain of Akt, an important signalling-node kinase involved in glucose homeostasis, from the membrane into the cytoplasm. Photocaged inositol-pyrophosphates offer a tool to study cellular signalling, but their challenging synthesis has precluded any biological studies so far. Here, the authors report the synthesis and cellular delivery of a photocaged analogue, and show that it mediates protein translocation in cellulo.
Collapse
Affiliation(s)
- Igor Pavlovic
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Divyeshsinh T Thakor
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Jessica R Vargas
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, USA
| | - Colin J McKinlay
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, USA
| | - Sebastian Hauke
- European Molecular Biology Laboratory (EMBL), Cell Biology &Biophysics Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Philipp Anstaett
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Rafael C Camuña
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, Malaga 29071, Spain
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Gilles Gasser
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL), Cell Biology &Biophysics Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Paul A Wender
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, USA
| | - Henning J Jessen
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| |
Collapse
|
8
|
Ganesan SJ, Xu H, Matysiak S. Effect of lipid head group interactions on membrane properties and membrane-induced cationic β-hairpin folding. Phys Chem Chem Phys 2016; 18:17836-50. [DOI: 10.1039/c5cp07669b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Stages in membrane induced SVS-1 folding.
Collapse
Affiliation(s)
- Sai J. Ganesan
- Fischell Department of Bioengineering
- University of Maryland
- College Park
- USA
| | - Hongcheng Xu
- Biophysics Program
- University of Maryland
- College Park
- USA
| | - Silvina Matysiak
- Fischell Department of Bioengineering
- University of Maryland
- College Park
- USA
- Biophysics Program
| |
Collapse
|
9
|
NKCS, a Mutant of the NK-2 Peptide, Causes Severe Distortions and Perforations in Bacterial, But Not Human Model Lipid Membranes. Molecules 2015; 20:6941-58. [PMID: 25913932 PMCID: PMC6272639 DOI: 10.3390/molecules20046941] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 01/05/2023] Open
Abstract
NKCS is an improved mutant of the bioactive peptide NK-2, which shows strong activity against Escherichia coli and low toxicity towards human cells. The different activity demonstrates the relevance of the physico-chemical nature of the target membrane for the biological effect of this peptide. We studied the effect of this potent antimicrobial peptide on model membranes by activity studies, differential scanning calorimetry, single molecule tracking and tracer efflux experiments. We found that NKCS severely distorted, penetrated and perforated model lipid membranes that resembled bacterial membranes, but not those that were similar to human cell membranes. The interactions of NKCS with phosphatidylethanolamine, which is abundant in bacterial membranes, were especially strong and are probably responsible for its antimicrobial activity.
Collapse
|
10
|
Nigatu AS, Vupputuri S, Flynn N, Ramsey JD. Effects of cell-penetrating peptides on transduction efficiency of PEGylated adenovirus. Biomed Pharmacother 2015; 71:153-60. [PMID: 25960231 DOI: 10.1016/j.biopha.2015.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/15/2015] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Adenovirus (Ad) is one of the viral vectors most widely used for gene delivery. The virus, however, has serious shortcomings such as immunogenicity, promiscuous tropism, and the inability to efficiently infect certain types of cells. The goal of this study was to improve the ability of an Ad-based vector to efficiently transform cells that lack the native coxsackie-adenovirus receptor (CAR(-)) by modifying the virus with CPP-PEG conjugates. METHODS The vector was produced by PEGylating Ad, which packages a lacZ reporter gene, and then conjugating CPPs to form CPP-PEG-Ad particles. The study compared the effectiveness of four different CPPs: Pen, Tat, Pep1, and pArg. The effects of CPP amount per virus, degree of PEGylation, and PEG molecular weight on transduction efficiency were studied on CAR(-) NIH/3T3 cells. RESULTS CPP-PEG-Ad particles transduced CAR(-) cells significantly better than unmodified Ad. Pen, the most effective CPP, produced an 80-fold improvement in transduction compared to the unmodified virus. The Pen peptide utilized a combination of electrostatic and hydrophobic interactions with the cell membrane to maximize cellular association while the other CPPs used only electrostatic or hydrophobic interactions but not both. Lastly, higher degrees of PEGylation, which prompted PEG to adopt a "brush" conformation, resulted in more efficient CPP-PEG-Ad particles because of both better conjugation of CPPs to the PEGylated virus and better exposure of the conjugated CPPs on the surface of the particle. CONCLUSIONS CPP-PEG-Ad particles efficiently deliver genes to cells that Ad alone would not efficiently infect, thereby extending potential gene therapy treatments to a much broader range of cell types and diseases.
Collapse
Affiliation(s)
- Adane S Nigatu
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - Sravanthi Vupputuri
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - Nicholas Flynn
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - Joshua D Ramsey
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
11
|
Purkayastha N, Capone S, Beck AK, Seebach D, Leeds J, Thompson K, Moser HE. Antibacterial Activity of Enrofloxacin and Ciprofloxacin Derivatives ofβ-Octaarginine. Chem Biodivers 2015; 12:179-93. [DOI: 10.1002/cbdv.201400456] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Indexed: 11/09/2022]
|
12
|
The role of tryptophans on the cellular uptake and membrane interaction of arginine-rich cell penetrating peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:593-602. [PMID: 25445669 DOI: 10.1016/j.bbamem.2014.11.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 01/04/2023]
Abstract
Cell-penetrating peptides (CPP) are able to efficiently transport cargos across cell membranes without being cytotoxic to cells, thus present a great potential in drug delivery and diagnosis. While the role of cationic residues in CPPs has been well studied, that of Trp is still not clear. Herein 7 peptide analogs of RW9 (RRWWRRWRR, an efficient CPP) were synthesized in which Trp were systematically replaced by Phe residues. Quantification of cellular uptake reveals that substitution of Trp by Phe strongly reduces the internalization of all peptides despite the fact that they strongly accumulate in the cell membrane. Cellular internalization and biophysical studies show that not only the number of Trp residues but also their positioning in the helix and the size of the hydrophobic face they form are important for their internalization efficacy, the highest uptake occurring for the analog with 3 Trp residues. Using CD and ATR-FTIR spectroscopy we observe that all peptides became structured in contact with lipids, mainly in α-helix. Intrinsic tryptophan fluorescence studies indicate that all peptides partition in the membrane in about the same manner (Kp~10(5)) and that they are located just below the lipid headgroups (~10 Å) with slightly different insertion depths for the different analogs. Plasmon Waveguide Resonance studies reveal a direct correlation between the number of Trp residues and the reversibility of the interaction following membrane washing. Thus a more interfacial location of the CPP renders the interaction with the membrane more adjustable and transitory enhancing its internalization ability.
Collapse
|
13
|
Vargas JR, Stanzl EG, Teng NNH, Wender PA. Cell-penetrating, guanidinium-rich molecular transporters for overcoming efflux-mediated multidrug resistance. Mol Pharm 2014; 11:2553-65. [PMID: 24798708 PMCID: PMC4123947 DOI: 10.1021/mp500161z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Multidrug resistance (MDR) is a major
cause of chemotherapy failure
in the clinic. Drugs that were once effective against naïve
disease subsequently prove ineffective against recurrent disease,
which often exhibits an MDR phenotype. MDR can be attributed to many
factors; often dominating among these is the ability of a cell to
suppress or block drug entry through upregulation of membrane-bound
drug efflux pumps. Efflux pumps exhibit polyspecificity, recognizing
and exporting many different types of drugs, especially those whose
lipophilic nature contributes to residence in the membrane. We have
developed a general strategy to overcome efflux-based resistance.
This strategy involves conjugating a known drug that succumbs to efflux-mediated
resistance to a cell-penetrating molecular transporter, specifically,
the cell-penetrating peptide (CPP), d-octaarginine. The resultant
conjugates are discrete single entities (not particle mixtures) and
highly water-soluble. They rapidly enter cells, are not substrates
for efflux pumps, and release the free drug only after cellular entry
at a rate controlled by linker design and favored by target cell chemistry.
This general strategy can be applied to many classes of drugs and
allows for an exceptionally rapid advance to clinical testing, especially
of drugs that succumb to resistance. The efficacy of this strategy
has been successfully demonstrated with Taxol in cellular and animal
models of resistant cancer and with ex vivo samples from patients
with ovarian cancer. Next generation efforts in this area will involve
the extension of this strategy to other chemotherapeutics and other
MDR-susceptible diseases.
Collapse
Affiliation(s)
- Jessica R Vargas
- Departments of Chemistry and Chemical and Systems Biology, Stanford University , Stanford, California 94305, United States
| | | | | | | |
Collapse
|
14
|
Wender PA, Donnelly AC, Loy BA, Near KE, Staveness D. Rethinking the Role of Natural Products: Function-Oriented Synthesis, Bryostatin, and Bryologs. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1002/9783527676545.ch14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
15
|
Stanzl EG, Trantow BM, Vargas JR, Wender PA. Fifteen years of cell-penetrating, guanidinium-rich molecular transporters: basic science, research tools, and clinical applications. Acc Chem Res 2013; 46:2944-54. [PMID: 23697862 DOI: 10.1021/ar4000554] [Citation(s) in RCA: 265] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
All living systems require biochemical barriers. As a consequence, all drugs, imaging agents, and probes have targets that are either on, in, or inside of these barriers. Fifteen years ago, we initiated research directed at more fully understanding these barriers and at developing tools and strategies for breaching them that could be of use in basic research, imaging, diagnostics, and medicine. At the outset of this research and now to a lesser extent, the "rules" for drug design biased the selection of drug candidates mainly to those with an intermediate and narrow log P. At the same time, it was becoming increasingly apparent that Nature had long ago developed clever strategies to circumvent these "rules." In 1988, for example, independent reports documented the otherwise uncommon passage of a protein (HIV-Tat) across a membrane. A subsequent study implicated a highly basic domain in this protein (Tat49-57) in its cellular entry. This conspicuously contradictory behavior of a polar, highly charged peptide passing through a nonpolar membrane set the stage for learning how Nature had gotten around the current "rules" of transport. As elaborated in our studies and discussed in this Account, the key strategy used in Nature rests in part on the ability of a molecule to change its properties as a function of microenvironment; such molecules need to be polarity chameleons, polar in a polar milieu and relatively nonpolar in a nonpolar environment. Because this research originated in part with the protein Tat and its basic peptide domain, Tat49-57, the field focused heavily on peptides, even limiting its nomenclature to names such as "cell-penetrating peptides," "cell-permeating peptides," "protein transduction domains," and "membrane translocating peptides." Starting in 1997, through a systematic reverse engineering approach, we established that the ability of Tat49-57 to enter cells is not a function of its peptide backbone, but rather a function of the number and spatial array of its guanidinium groups. These function-oriented studies enabled us and others to design more effective peptidic agents and to think beyond the confines of peptidic systems to new and even more effective nonpeptidic agents. Because the function of passage across a cell membrane is not limited to or even best achieved with the peptide backbone, we referred to these agents by their shared function, "cell-penetrating molecular transporters." The scope of this molecular approach to breaching biochemical barriers has expanded remarkably in the past 15 years: enabling or enhancing the delivery of a wide range of cargos into cells and across other biochemical barriers, creating new tools for research, imaging, and diagnostics, and introducing new therapies into clinical trials.
Collapse
Affiliation(s)
- Erika Geihe Stanzl
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Brian M. Trantow
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Jessica R. Vargas
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Paul A. Wender
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
16
|
Wender PA. Toward the Ideal Synthesis and Transformative Therapies: The Roles of Step Economy and Function Oriented Synthesis. Tetrahedron 2013; 69:7529-7550. [PMID: 23956471 PMCID: PMC3743450 DOI: 10.1016/j.tet.2013.06.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Paul A Wender
- Department of Chemistry, Department of Chemical and Systems Biology, Stanford University, Stanford CA 94305-5080 USA
| |
Collapse
|
17
|
Seo JH, Kakinoki S, Inoue Y, Yamaoka T, Ishihara K, Yui N. Inducing Rapid Cellular Response on RGD-Binding Threaded Macromolecular Surfaces. J Am Chem Soc 2013; 135:5513-6. [DOI: 10.1021/ja400817q] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ji-Hun Seo
- Institute of Biomaterials
and
Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
- Japan Science and Technology Agency (JST), CREST, Chiyoda, Tokyo 102-0076,
Japan
| | - Sachiro Kakinoki
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
- Japan Science and Technology Agency (JST), CREST, Chiyoda, Tokyo 102-0076,
Japan
| | - Yuuki Inoue
- Department of Materials Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
- Japan Science and Technology Agency (JST), CREST, Chiyoda, Tokyo 102-0076,
Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
- Japan Science and Technology Agency (JST), CREST, Chiyoda, Tokyo 102-0076,
Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
- Japan Science and Technology Agency (JST), CREST, Chiyoda, Tokyo 102-0076,
Japan
| | - Nobuhiko Yui
- Institute of Biomaterials
and
Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
- Japan Science and Technology Agency (JST), CREST, Chiyoda, Tokyo 102-0076,
Japan
| |
Collapse
|
18
|
Gu Y, Sun W, Wang G, Zimmermann MT, Jernigan RL, Fang N. Revealing rotational modes of functionalized gold nanorods on live cell membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:785-792. [PMID: 23124917 DOI: 10.1002/smll.201201808] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/11/2012] [Indexed: 06/01/2023]
Abstract
A full understanding of cell mechanics requires knowledge of both translational and rotational dynamics. The single particle orientation and rotational tracking (SPORT) technique is combined here with correlation analysis to identify the fundamental rotational modes: in-plane rotation and out-of-plane tilting, as well as other more complex rotational patterns, from the vast image data captured at a temporal resolution of 5 ms for single gold nanorod probes in live cell imaging experiments. The unique capabilities of visualizing and understanding rotational motions of functional nanoparticles on live cell membranes allow correlation of the rotational and translational dynamics in unprecedented detail and provide new insights into complex membrane processes. Particles with functionalized surfaces, which interact with the membrane in fundamentally different ways, can exhibit distinct rotational modes and are, for the first time, directly visualized, and these show the early events for membrane approach and attachment.
Collapse
Affiliation(s)
- Yan Gu
- Ames Laboratory, US Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA
| | | | | | | | | | | |
Collapse
|
19
|
Lee J, Miyanaga Y, Ueda M, Hohng S. Video-rate confocal microscopy for single-molecule imaging in live cells and superresolution fluorescence imaging. Biophys J 2012; 103:1691-7. [PMID: 23083712 DOI: 10.1016/j.bpj.2012.09.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/24/2012] [Accepted: 09/12/2012] [Indexed: 10/27/2022] Open
Abstract
There is no confocal microscope optimized for single-molecule imaging in live cells and superresolution fluorescence imaging. By combining the swiftness of the line-scanning method and the high sensitivity of wide-field detection, we have developed a, to our knowledge, novel confocal fluorescence microscope with a good optical-sectioning capability (1.0 μm), fast frame rates (<33 fps), and superior fluorescence detection efficiency. Full compatibility of the microscope with conventional cell-imaging techniques allowed us to do single-molecule imaging with a great ease at arbitrary depths of live cells. With the new microscope, we monitored diffusion motion of fluorescently labeled cAMP receptors of Dictyostelium discoideum at both the basal and apical surfaces and obtained superresolution fluorescence images of microtubules of COS-7 cells at depths in the range 0-85 μm from the surface of a coverglass.
Collapse
Affiliation(s)
- Jinwoo Lee
- Department of Physics and Astronomy, Seoul National University, Seoul, Korea
| | | | | | | |
Collapse
|
20
|
Ondrus AE, Lee HLD, Iwanaga S, Parsons WH, Andresen BM, Moerner W, Bois JD. Fluorescent saxitoxins for live cell imaging of single voltage-gated sodium ion channels beyond the optical diffraction limit. CHEMISTRY & BIOLOGY 2012; 19:902-12. [PMID: 22840778 PMCID: PMC3731772 DOI: 10.1016/j.chembiol.2012.05.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/24/2012] [Accepted: 05/25/2012] [Indexed: 12/19/2022]
Abstract
A desire to better understand the role of voltage-gated sodium channels (Na(V)s) in signal conduction and their dysregulation in specific disease states motivates the development of high precision tools for their study. Nature has evolved a collection of small molecule agents, including the shellfish poison (+)-saxitoxin, that bind to the extracellular pore of select Na(V) isoforms. As described in this report, de novo chemical synthesis has enabled the preparation of fluorescently labeled derivatives of (+)-saxitoxin, STX-Cy5, and STX-DCDHF, which display reversible binding to Na(V)s in live cells. Electrophysiology and confocal fluorescence microscopy studies confirm that these STX-based dyes function as potent and selective Na(V) labels. The utility of these probes is underscored in single-molecule and super-resolution imaging experiments, which reveal Na(V) distributions well beyond the optical diffraction limit in subcellular features such as neuritic spines and filopodia.
Collapse
Affiliation(s)
- Alison E. Ondrus
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305-5080, USA
| | - Hsiao-lu D. Lee
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305-5080, USA
| | - Shigeki Iwanaga
- SYSMEX Corporation, Central Research Laboratories, 4-4-4, Takatsukadai, Nishi-ku, Kobe 651-2271, Japan
| | - William H. Parsons
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305-5080, USA
| | - Brian M. Andresen
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305-5080, USA
| | - W.E. Moerner
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305-5080, USA
| | - J. Du Bois
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305-5080, USA
| |
Collapse
|
21
|
Mohandessi S, Rajendran M, Magda D, Miller LW. Cell-penetrating peptides as delivery vehicles for a protein-targeted terbium complex. Chemistry 2012; 18:10825-9. [PMID: 22807190 DOI: 10.1002/chem.201201805] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Indexed: 11/07/2022]
Abstract
Release after transmission: Arginine-rich, cell-penetrating peptides (CPPs) mediate cytoplasmic delivery of trimethoprim (TMP)-terbium complex conjugates and selective, intracellular labeling of E. coli dihydrofolate reductase (eDHFR) fusion proteins. A disulfide bond linking CPP and cargo is reduced following uptake. CPP conjugation can be used to deliver otherwise cell-impermeable, ligand-fluorophore conjugates.
Collapse
Affiliation(s)
- Shabnam Mohandessi
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
22
|
Wender PA, Cooley CB, Geihe EI. Beyond Cell Penetrating Peptides: Designed Molecular Transporters. DRUG DISCOVERY TODAY. TECHNOLOGIES 2012; 9:e1-e70. [PMID: 22712022 DOI: 10.1016/j.ddtec.2011.07.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Inspired originally by peptides that traverse biological barriers, research on molecular transporters has since identified the key structural requirements that govern cellular entry, leading to new, significantly more effective and more readily available agents. These new drug delivery systems enable or enhance cellular and tissue uptake, can be targeted, and provide numerous additional advantages of significance in imaging, diagnostics and therapy.
Collapse
Affiliation(s)
- Paul A Wender
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, CA
| | | | | |
Collapse
|
23
|
Wu Z, Cui Q, Yethiraj A. A New Coarse-Grained Force Field for Membrane–Peptide Simulations. J Chem Theory Comput 2011; 7:3793-802. [DOI: 10.1021/ct200593t] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Zhe Wu
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Qiang Cui
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Arun Yethiraj
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
24
|
Distinct transduction modes of arginine-rich cell-penetrating peptides for cargo delivery into tumor cells. Int J Pharm 2011; 419:200-8. [PMID: 21843610 DOI: 10.1016/j.ijpharm.2011.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/22/2011] [Accepted: 08/02/2011] [Indexed: 01/28/2023]
Abstract
The application of cell-penetrating peptides (CPPs) for delivering various cargo molecules with biological functions into cells has gained much attention in recent years. However, the internalization mechanisms and delivery properties of CPP-cargo remains controversial. In this study, low- and high-molecular-weight cargoes attached to arginine-rich CPPs were employed: the former was the fluorescein isothiocyanate-labeled nona-arginine (CPP-FITC), and the latter was the fluorescently labeled nona-arginine-avidin complex (CPP-avidin). We measured the intracellular trafficking of CPP-FITC and CPP-avidin in four cancer cell lines in a series of microenvironments altered by the presence or absence of serum, different temperatures and different incubation times. The results revealed that CPP-cargo delivery exhibited no specificity toward any cell line, but the levels were found to be related to cell type and cargo. Furthermore, their endocytic mechanisms were investigated via incubation with related endocytic inhibitors. Two different types of CPP-cargo were required to cross the plasma membrane to bind to cell surface-associated heparan sulfate proteoglycans in a time-dependent manner. CPPs and small cargoes attached to CPP may enter cells rapidly via direct translocation in addition to the endocytic route. Translocation of large components linked to CPP tended to be mediated by macropinocytosis in an energy-dependent manner with slower rates for larger compounds. In contrast, the clathrin-dependent pathway is not essential to the translocation of either type of CPP-cargo.
Collapse
|
25
|
Rudat B, Birtalan E, Thomé I, Kölmel DK, Horhoiu VL, Wissert MD, Lemmer U, Eisler HJ, Balaban TS, Bräse S. Novel pyridinium dyes that enable investigations of peptoids at the single-molecule level. J Phys Chem B 2011; 114:13473-80. [PMID: 20923224 DOI: 10.1021/jp103308s] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Single-molecule microscopy is a powerful tool for investigating various uptake mechanisms of cell-penetrating biomolecules. A particularly interesting class of potential transporter molecules are peptoids. Fluorescence labels for such experiments need to comply with several physical, chemical, and biological requirements. Herein, we report the synthesis and photophysical investigation of new fluorescent pyridinium derived dyes. These fluorescent labels have advantageous structural variations and spacer units in order to avoid undesirable interactions with the labeled molecule and are able to easily functionalize biomolecules. In our case, cell-penetrating peptoids are successfully labeled on solid supports, and in ensemble measurements the photophysical properties of the dyes and the fluorescently labeled peptoids are investigated. Both fluorophores and peptoids are imaged at the single-molecule level in thin polymer gels. With respect to bleaching times and fluorescence lifetimes the dye molecules and the peptoids show only slightly perturbed optical behaviors. These investigations indicate that the new fluorophores fulfill well single-molecule microscopy and solid-phase synthesis requirements.
Collapse
Affiliation(s)
- Birgit Rudat
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kamena F, Monnanda B, Makou D, Capone S, Patora-Komisarska K, Seebach D. On the Mechanism of Eukaryotic Cell Penetration by α- and β-Oligoarginines - Targeting Infected Erythrocytes. Chem Biodivers 2011; 8:1-12. [DOI: 10.1002/cbdv.201000318] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Biteen JS, Shapiro L, Moerner WE. Exploring protein superstructures and dynamics in live bacterial cells using single-molecule and superresolution imaging. Methods Mol Biol 2011; 783:139-58. [PMID: 21909887 DOI: 10.1007/978-1-61779-282-3_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Single-molecule imaging enables biophysical measurements devoid of ensemble averaging, gives enhanced spatial resolution beyond the optical diffraction limit, and enables superresolution reconstruction of structures beyond the diffraction limit. This work summarizes how single-molecule and superresolution imaging can be applied to the study of protein dynamics and superstructures in live Caulobacter crescentus cells to illustrate the power of these methods in bacterial imaging. Based on these techniques, the diffusion coefficient and dynamics of the histidine protein kinase PleC, the localization behavior of the polar protein PopZ, and the treadmilling behavior and protein superstructure of the structural protein MreB are investigated with sub-40-nm spatial resolution, all in live cells.
Collapse
Affiliation(s)
- Julie S Biteen
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| | | | | |
Collapse
|
28
|
Walrant A, Correia I, Jiao CY, Lequin O, Bent EH, Goasdoué N, Lacombe C, Chassaing G, Sagan S, Alves ID. Different membrane behaviour and cellular uptake of three basic arginine-rich peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:382-93. [DOI: 10.1016/j.bbamem.2010.09.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 11/30/2022]
|
29
|
Fei L, Ren L, Zaro JL, Shen WC. The influence of net charge and charge distribution on cellular uptake and cytosolic localization of arginine-rich peptides. J Drug Target 2010; 19:675-80. [DOI: 10.3109/1061186x.2010.531729] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Biteen JS, Moerner WE. Single-molecule and superresolution imaging in live bacteria cells. Cold Spring Harb Perspect Biol 2010; 2:a000448. [PMID: 20300204 DOI: 10.1101/cshperspect.a000448] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Single-molecule imaging enables biophysical measurements devoid of ensemble averaging, gives enhanced spatial resolution beyond the diffraction limit, and permits superresolution reconstructions. Here, single-molecule and superresolution imaging are applied to the study of proteins in live Caulobacter crescentus cells to illustrate the power of these methods in bacterial imaging. Based on these techniques, the diffusion coefficient and dynamics of the histidine protein kinase PleC, the localization behavior of the polar protein PopZ, and the treadmilling behavior and protein superstructure of the structural protein MreB are investigated with sub-40-nm spatial resolution, all in live cells.
Collapse
Affiliation(s)
- Julie S Biteen
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | | |
Collapse
|
31
|
Lord SJ, Lee HLD, Moerner WE. Single-molecule spectroscopy and imaging of biomolecules in living cells. Anal Chem 2010; 82:2192-203. [PMID: 20163145 DOI: 10.1021/ac9024889] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The number of reports per year on single-molecule imaging experiments has grown roughly exponentially since the first successful efforts to optically detect a single molecule were completed over two decades ago. Single-molecule spectroscopy has developed into a field that includes a wealth of experiments at room temperature and inside living cells. The fast growth of single-molecule biophysics has resulted from its benefits in probing heterogeneous populations, one molecule at a time, as well as from advances in microscopes and detectors. This Perspective summarizes the field of live-cell imaging of single biomolecules.
Collapse
Affiliation(s)
- Samuel J Lord
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | | | | |
Collapse
|
32
|
Bruyneel F, D'Auria L, Payen O, Courtoy PJ, Marchand-Brynaert J. Live-Cell Imaging with Water-Soluble Aminophenoxazinone Dyes Synthesised through Laccase Biocatalysis. Chembiochem 2010; 11:1451-7. [DOI: 10.1002/cbic.201000145] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Eiríksdóttir E, Konate K, Langel Ü, Divita G, Deshayes S. Secondary structure of cell-penetrating peptides controls membrane interaction and insertion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1119-28. [DOI: 10.1016/j.bbamem.2010.03.005] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 01/19/2010] [Accepted: 03/02/2010] [Indexed: 01/05/2023]
|
34
|
Lévy R, Shaheen U, Cesbron Y, Sée V. Gold nanoparticles delivery in mammalian live cells: a critical review. NANO REVIEWS 2010; 1:NANO-1-4889. [PMID: 22110850 PMCID: PMC3215206 DOI: 10.3402/nano.v1i0.4889] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 01/17/2010] [Accepted: 01/17/2010] [Indexed: 12/31/2022]
Abstract
Functional nanomaterials have recently attracted strong interest from the biology community, not only as potential drug delivery vehicles or diagnostic tools, but also as optical nanomaterials. This is illustrated by the explosion of publications in the field with more than 2,000 publications in the last 2 years (4,000 papers since 2000; from ISI Web of Knowledge, 'nanoparticle and cell' hit). Such a publication boom in this novel interdisciplinary field has resulted in papers of unequal standard, partly because it is challenging to assemble the required expertise in chemistry, physics, and biology in a single team. As an extreme example, several papers published in physical chemistry journals claim intracellular delivery of nanoparticles, but show pictures of cells that are, to the expert biologist, evidently dead (and therefore permeable). To attain proper cellular applications using nanomaterials, it is critical not only to achieve efficient delivery in healthy cells, but also to control the intracellular availability and the fate of the nanomaterial. This is still an open challenge that will only be met by innovative delivery methods combined with rigorous and quantitative characterization of the uptake and the fate of the nanoparticles. This review mainly focuses on gold nanoparticles and discusses the various approaches to nanoparticle delivery, including surface chemical modifications and several methods used to facilitate cellular uptake and endosomal escape. We will also review the main detection methods and how their optimum use can inform about intracellular localization, efficiency of delivery, and integrity of the surface capping.
Collapse
Affiliation(s)
- Raphaël Lévy
- School of Biological Sciences, University of Liverpool, UK
| | | | | | | |
Collapse
|
35
|
Cooley CB, Trantow BM, Nederberg F, Kiesewetter MK, Hedrick JL, Waymouth RM, Wender PA. Oligocarbonate molecular transporters: oligomerization-based syntheses and cell-penetrating studies. J Am Chem Soc 2010; 131:16401-3. [PMID: 19860416 DOI: 10.1021/ja907363k] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new family of guanidinium-rich molecular transporters featuring a novel oligocarbonate backbone with 1,7-side chain spacing is described. Conjugates can be rapidly assembled irrespective of length in a one-step oligomerization strategy that can proceed with concomitant introduction of probes (or by analogy drugs). The new transporters exhibit excellent cellular entry as determined by flow cytometry and fluorescence microscopy, and the functionality of their drug delivery capabilities was confirmed by the delivery of the bioluminescent small molecule probe luciferin and turnover by its intracellular target enzyme.
Collapse
Affiliation(s)
- Christina B Cooley
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Moerner WE. Single-Molecule Optical Spectroscopy and Imaging: From Early Steps to Recent Advances. SINGLE MOLECULE SPECTROSCOPY IN CHEMISTRY, PHYSICS AND BIOLOGY 2010. [DOI: 10.1007/978-3-642-02597-6_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
37
|
Abstract
Cell-penetrating peptides (CPPs) are small peptides that can facilitate the uptake of macromolecular drugs, such as proteins or nucleic acids, into mammalian cells. Cytosolic delivery of CPPs could be beneficial to bypass conventional endocytosis in order to avoid degradation in the lysosomes. Oligoarginine conjugates have characteristics similar to CPPs in terms of cell translocation and are used in the intracellular delivery of plasmid DNA. In these cases, oligoarginine length and/or charge are important factors in the cellular uptake of oligoarginine alone. The arginine moiety of oligoarginine-modified particles may also be a decisive factor for vectors to deliver plasmid DNA. Oligoarginine-PEG-lipids can form self-assembled particles and modify the surface of lipid- and polymer-based particles. This review focuses on the influence of: i) oligoarginine-modified particles such as micelles, liposomes and polymer-based particles; ii) the morphology of oligoarginine-PEG-lipid complexed with plasmid DNA by decreasing the charge ratio; and iii) the oligoarginine length in the complex on its cellular uptake, transfection efficiency and uptake mechanism. The oligoarginine length of oligoarginine-modified particle complexed with plasmid DNA governs the cellular uptake pathway that determines the destiny of intracellular trafficking and finally transfection efficiency. The new aspects of surface-functionalized particle vectors with oligoarginine are discussed.
Collapse
Affiliation(s)
- Yoshie Maitani
- Hoshi University, Institute of Medicinal Chemistry, Tokyo, Japan.
| | | |
Collapse
|
38
|
Jiao CY, Delaroche D, Burlina F, Alves ID, Chassaing G, Sagan S. Translocation and endocytosis for cell-penetrating peptide internalization. J Biol Chem 2009; 284:33957-65. [PMID: 19833724 DOI: 10.1074/jbc.m109.056309] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell-penetrating peptides (CPPs) share the property of cellular internalization. The question of how these peptides reach the cytoplasm of cells is still widely debated. Herein, we have used a mass spectrometry-based method that enables quantification of internalized and membrane-bound peptides. Internalization of the most used CPP was studied at 37 degrees C (endocytosis and translocation) and 4 degrees C (translocation) in wild type and proteoglycan-deficient Chinese hamster ovary cells. Both translocation and endocytosis are internalization pathways used by CPP. The choice of one pathway versus the other depends on the peptide sequence (not the number of positive changes), the extracellular peptide concentration, and the membrane components. There is no relationship between the high affinity of these peptides for the cell membrane and their internalization efficacy. Translocation occurs at low extracellular peptide concentration, whereas endocytosis, a saturable and cooperative phenomenon, is activated at higher concentrations. Translocation operates in a narrow time window, which implies a specific lipid/peptide co-import in cells.
Collapse
Affiliation(s)
- Chen-Yu Jiao
- Laboratoire des Biomolécules, Université Pierre et Marie Curie (Paris 6), 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
39
|
Bertin PA, Meade TJ. Novel redox active bifunctional crosslinkers from unsymmetrical 1,1′-disubstituted ferrocenes. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2009.07.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Kulinich AV, Ishchenko AA. Merocyanine dyes: synthesis, structure, properties and applications. RUSSIAN CHEMICAL REVIEWS 2009. [DOI: 10.1070/rc2009v078n02abeh003900] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Heitz F, Morris MC, Divita G. Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol 2009; 157:195-206. [PMID: 19309362 PMCID: PMC2697800 DOI: 10.1111/j.1476-5381.2009.00057.x] [Citation(s) in RCA: 664] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The recent discovery of new potent therapeutic molecules that do not reach the clinic due to poor delivery and low bioavailability have made of delivery a key stone in therapeutic development. Several technologies have been designed to improve cellular uptake of therapeutic molecules, including cell-penetrating peptides (CPPs). CPPs were first discovered based on the potency of several proteins to enter cells. Numerous CPPs have been described so far, which can be grouped into two major classes, the first requiring chemical linkage with the drug for cellular internalization and the second involving formation of stable, non-covalent complexes with drugs. Nowadays, CPPs constitute very promising tools for non-invasive cellular import of cargo and have been successfully applied for in vitro and in vivo delivery of therapeutic molecules varying from small chemical molecule, nucleic acids, proteins, peptides, liposomes and particles. This review will focus on the structure/function and cellular uptake mechanism of CPPs in the general context of drug delivery. We will also highlight the application of peptide carriers for the delivery of therapeutic molecules and provide an update of their clinical evaluation. This article is part of a themed section on Vector Design and Drug Delivery. For a list of all articles in this section see the end of this paper, or visit: http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2009
Collapse
Affiliation(s)
- Frederic Heitz
- Centre de Recherches de Biochimie Macromoléculaire, UMR 5237, CNRS, UM-1, UM-2, CRBM-Department of Molecular Biophysics and Therapeutics, 1919 Route de Mende, Montpellier, France
| | | | | |
Collapse
|
42
|
Lord SJ, Conley NR, Lee HLD, Nishimura SY, Pomerantz AK, Willets KA, Lu Z, Wang H, Liu N, Samuel R, Weber R, Semyonov A, He M, Twieg RJ, Moerner WE. DCDHF fluorophores for single-molecule imaging in cells. Chemphyschem 2009; 10:55-65. [PMID: 19025732 PMCID: PMC2688640 DOI: 10.1002/cphc.200800581] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Indexed: 11/10/2022]
Abstract
There is a persistent need for small-molecule fluorescent labels optimized for single-molecule imaging in the cellular environment. Application of these labels comes with a set of strict requirements: strong absorption, efficient and stable emission, water solubility and membrane permeability, low background emission, and red-shifted absorption to avoid cell autofluorescence. We have designed and characterized several fluorophores, termed "DCDHF" fluorophores, for use in live-cell imaging based on the push-pull design: an amine donor group and a 2-dicyanomethylene-3-cyano-2,5-dihydrofuran (DCDHF) acceptor group, separated by a pi-rich conjugated network. In general, the DCDHF fluorophores are comparatively photostable, sensitive to local environment, and their chemistries and photophysics are tunable to optimize absorption wavelength, membrane affinity, and solubility. Especially valuable are fluorophores with sophisticated photophysics for applications requiring additional facets of control, such as photoactivation. For example, we have reengineered a red-emitting DCDHF fluorophore so that it is dark until photoactivated with a short burst of low-intensity violet light. This molecule and its relatives provide a new class of bright photoactivatable small-molecule fluorophores, which are needed for super-resolution imaging schemes that require active control (here turning-on) of single-molecule emission.
Collapse
Affiliation(s)
- Samuel J Lord
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|