1
|
Lussier D, Ito E, McClain KR, Smith PW, Kwon H, Rutkauskaite R, Harvey BG, Shuh DK, Long JR. Metal-Halide Covalency, Exchange Coupling, and Slow Magnetic Relaxation in Triangular (Cp iPr5) 3U 3X 6 (X = Cl, Br, I) Clusters. J Am Chem Soc 2024; 146:21280-21295. [PMID: 39044394 PMCID: PMC11311243 DOI: 10.1021/jacs.3c11678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
The actinide elements are attractive alternatives to transition metals or lanthanides for the design of exchange-coupled multinuclear single-molecule magnets. However, the synthesis of such compounds is challenging, as is unraveling any contributions from exchange coupling to the overall magnetism. To date, only a few actinide compounds have been shown to exhibit exchange coupling and single-molecule magnetism. Here, we report triangular uranium(III) clusters of the type (CpiPr5)3U3X (1-X; X = Cl, Br, I; CpiPr5 = pentaisopropylcyclopentadienyl), which are synthesized via reaction of the aryloxide-bridged precursor (CpiPr5)2U2(OPhtBu)4 with excess Me3SiX. Spectroscopic analysis suggests the presence of covalency in the uranium-halide interactions arising from 5f orbital participation in bonding. The dc magnetic susceptibility data reveal the presence of antiferromagnetic exchange coupling between the uranium(III) centers in these compounds, with the strength of the exchange decreasing down the halide series. Ac magnetic susceptibility data further reveal all compounds to exhibit slow magnetic relaxation under zero dc field. In 1-I, which exhibits particularly weak exchange, magnetic relaxation occurs via a Raman mechanism associated with the individual uranium(III) centers. In contrast, for 1-Br and 1-Cl, magnetic relaxation occurs via an Orbach mechanism, likely involving relaxation between ground and excited exchange-coupled states. Significantly, in the case of 1-Cl, magnetic relaxation is sufficiently slow such that open magnetic hysteresis is observed up to 2.75 K, and the compound exhibits a 100-s blocking temperature of 2.4 K. This compound provides the first example of magnetic blocking in a compound containing only actinide-based ions, as well as the first example involving the uranium(III) oxidation state.
Collapse
Affiliation(s)
- Daniel
J. Lussier
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Emi Ito
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - K. Randall McClain
- U.S.
Navy, Naval Air Warfare Center, Weapons Division, Research Department, Chemistry Division, China Lake, California 93555, United States
| | - Patrick W. Smith
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Hyunchul Kwon
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ryte Rutkauskaite
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Benjamin G. Harvey
- U.S.
Navy, Naval Air Warfare Center, Weapons Division, Research Department, Chemistry Division, China Lake, California 93555, United States
| | - David K. Shuh
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Jeffrey R. Long
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Réant BL, Mackintosh FJ, Gransbury GK, Mattei CA, Alnami B, Atkinson BE, Bonham KL, Baldwin J, Wooles AJ, Vitorica-Yrezabal IJ, Lee D, Chilton NF, Liddle ST, Mills DP. Tris-Silanide f-Block Complexes: Insights into Paramagnetic Influence on NMR Chemical Shifts. JACS AU 2024; 4:2695-2711. [PMID: 39055148 PMCID: PMC11267535 DOI: 10.1021/jacsau.4c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
The paramagnetism of f-block ions has been exploited in chiral shift reagents and magnetic resonance imaging, but these applications tend to focus on 1H NMR shifts as paramagnetic broadening makes less sensitive nuclei more difficult to study. Here we report a solution and solid-state (ss) 29Si NMR study of an isostructural series of locally D 3h -symmetric early f-block metal(III) tris-hypersilanide complexes, [M{Si(SiMe3)3}3(THF)2] (1-M; M = La, Ce, Pr, Nd, U); 1-M were also characterized by single crystal and powder X-ray diffraction, EPR, ATR-IR, and UV-vis-NIR spectroscopies, SQUID magnetometry, and elemental analysis. Only one SiMe3 signal was observed in the 29Si ssNMR spectra of 1-M, while two SiMe3 signals were seen in solution 29Si NMR spectra of 1-La and 1-Ce. This is attributed to dynamic averaging of the SiMe3 groups in 1-M in the solid state due to free rotation of the M-Si bonds and dissociation of THF from 1-M in solution to give the locally C 3v -symmetric complexes [M{Si(SiMe3)3}3(THF) n ] (n = 0 or 1), which show restricted rotation of M-Si bonds on the NMR time scale. Density functional theory and complete active space self-consistent field spin-orbit calculations were performed on 1-M and desolvated solution species to model paramagnetic NMR shifts. We find excellent agreement of experimental 29Si NMR data for diamagnetic 1-La, suggesting n = 1 in solution and reasonable agreement of calculated paramagnetic shifts of SiMe3 groups for 1-M (M = Pr and Nd); the NMR shifts for metal-bound 29Si nuclei could only be reproduced for diamagnetic 1-La, showing the current limitations of pNMR calculations for larger nuclei.
Collapse
Affiliation(s)
- Benjamin
L. L. Réant
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Fraser J. Mackintosh
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Gemma K. Gransbury
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Carlo Andrea Mattei
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Barak Alnami
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Benjamin E. Atkinson
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Katherine L. Bonham
- Department
of Chemical Engineering, The University
of Manchester, Oxford
Road, Manchester M13 9PL, U.K.
| | - Jack Baldwin
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ashley J. Wooles
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | | | - Daniel Lee
- Department
of Chemical Engineering, The University
of Manchester, Oxford
Road, Manchester M13 9PL, U.K.
| | - Nicholas F. Chilton
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Research
School of Chemistry, The Australian National
University, Sullivans
Creek Road, Canberra 2601, Australian Capital Territory, Australia
| | - Stephen T. Liddle
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - David P. Mills
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
3
|
MacGregor F, Tarula-Marin JL, Metta-Magaña A, Fortier S. A Metallocene Bis(phosphoranocarbene) of Uranium and a Probe of Its Reactivity with Alcohols. Inorg Chem 2024; 63:9648-9658. [PMID: 38506446 DOI: 10.1021/acs.inorgchem.3c04565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The addition of 2 equiv of the phosphaylide H2C═PPh3 to the dimethyl uranium metallocene Cp*2UMe2 (Cp* = η5-C5Me5) in toluene with gentle heating at 40 °C generates the phosphorano-stabilized bis(carbene) Cp*2U[C(H)PPh3]2 (1) in good yield. Characterization of 1 by X-ray crystallographic analysis reveals two short uranium-carbon bonds, ranging from 2.301(5) to 2.322(5) Å, consistent with the presence of U═C carbene-type bonds. Monitoring the reaction by NMR spectroscopy suggests that it proceeds through the intermediate formation of the methyl carbene complex Cp*2U[C(H)PPh3](Me) (1Int); however, prolonged heating of these solutions leads to the ortho-cyclometalated carbene species Cp*2U{κ2-[C(H)PPh2(C6H4)]} (2) via intramolecular C-H activation. Rapid conversion from 1 to 2 occurs within hours upon heating its toluene solutions to 100 °C. Preliminary reactivity studies of 1 show that it readily reacts with alcohols, such as HODipp (Dipp = 2,6-diisopropylphenyl) and HOC(CF3)3, to give the mixed carbene alkoxide compounds Cp*2U[C(H)PPh3](OR) (R = Dipp (4Dipp), C(CF3)3 (5CF3)). In one case, the reaction of 1 with HODipp in the presence of adventitious water led to the formation of a few crystals of the terminal U(IV) oxo complex, [Ph3PCH3][Cp*2U(O)(ODipp)] (3oxo). The isolation of 1 marks the first instance of an unchelated, heteroatom-stabilized bis(carbene) complex of uranium that also provides an entryway to the synthesis of its monocarbene derivatives through protonolysis.
Collapse
Affiliation(s)
- Frank MacGregor
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - José L Tarula-Marin
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Alejandro Metta-Magaña
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Skye Fortier
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
4
|
Li T, Heng Y, Wang D, Hou G, Zi G, Ding W, Walter MD. Uranium versus Thorium: A Case Study on a Base-Free Terminal Uranium Imido Metallocene. Inorg Chem 2024; 63:9487-9510. [PMID: 38048266 DOI: 10.1021/acs.inorgchem.3c03356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
The structure of and bonding in two base-free terminal actinide imido metallocenes, [η5-1,2,4-(Me3C)3C5H2]2An═N(p-tolyl) (An = U (1), Th (1')) are compared and connected to their individual reactivity. While structurally rather similar, the U(IV) derivative 1 is slightly more sterically crowded. Furthermore, density functional theory (DFT) studies imply that the 5f orbital contribution to the bonding within the individual actinide imido An═N(p-tolyl) moieties is significantly larger for 1 than for 1', which makes the bonds between the [η5-1,2,4-(Me3C)3C5H2]2U2+ and [(p-tolyl)N]2- fragments more covalent. Therefore, steric and electronic factors impact the reactivity of these imido complexes. For example, complex 1 is inert toward internal alkynes, but it readily forms Lewis base adducts [η5-1,2,4-(Me3C)3C5H2]2U═N(p-tolyl)(L) (L = OPMe3 (6), dmap (9), PhCN (14), and 2,6-Me2PhNC (17)) with Me3PO, 4-dimethylaminopyridine (dmap), nitrile, PhCN, or isonitrile 2,6-Me2PhNC. It may also react as a nucleophile or undergo a [2 + 2] cycloaddition with CS2, isothiocyanates, thio-ketones, ketones, lactides, and acyl nitriles, forming the four- or five-membered metallaheteroacycles, terminal sulfido, or oxido complexes, and cyanide amidate complexes, respectively. In contrast, after the addition of aldehyde p-tolylCHO, the tetranuclear complex [η5-1,2,4-(Me3C)3C5H2]4[OCH(p-tolyl)CH(p-tolyl)O]2U4O4 (10) is isolated. However, while 1 is unreactive toward dicyclohexylcarbodiimide (DCC), an equilibrium exists in benzene solution between N,N'-diisopropylcarbodiimide (DIC), 1, and the four-membered metallaheterocycle [η5-1,2,4-(Me3C)3C5H2]2U[N(p-tolyl)C(═NiPr)N(iPr)] (12). Furthermore, 1 may also engage in single- and two-electron transfer processes. It is singly oxidized by Ph3CN3, CuI, Ph2S2, and Ph2Se2, yielding the uranium(V) imido complexes [η5-1,2,4-(Me3C)3C5H2]2U═N(p-tolyl)(X) (X = N3 (20), I (22), PhS (23), and PhSe (24)), or is doubly oxidized by organic azides (RN3) and 9-diazofluorene, forming the uranium(VI) bis-imido metallocenes [η5-1,2,4-(Me3C)3C5H2]2U═N(p-tolyl)(=NR) (R = p-tolyl (18), mesityl (19)) and [η5-1,2,4-(Me3C)3C5H2]2U=N(p-tolyl)[=NN=(9-C13H8)] (21), respectively.
Collapse
Affiliation(s)
- Tongyu Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yi Heng
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Dongwei Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wanjian Ding
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
5
|
Li T, Wang D, Heng Y, Hou G, Zi G, Walter MD. Reactivity of a Lewis base-supported uranium terminal imido metallocene towards small molecules. Dalton Trans 2023; 52:13618-13630. [PMID: 37698550 DOI: 10.1039/d3dt02165c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The Lewis base-supported uranium terminal imido metallocene [η5-1,2,4-(Me3Si)3C5H2]2UN(p-tolyl)(dmap) (1) readily reacts with various small molecules such as internal alkynes, isothiocyanates, thioketones, amidates, organic nitriles and imines, chlorosilanes, copper iodide, diphenyl disulfide, organic azides and diazoalkane derivatives. For example, treatment of 1 with PhCCCCPh and PhNCS forms metallaheterocycles originating from a [2 + 2] cycloaddition to yield [η5-1-(p-tolyl)NC(Ph)CHCC(Ph)CH2Si(Me)2-2,4-(Me3Si)2C5H2][η5-1,2,4-(Me3Si)3C5H2]U (2) and [η5-1,2,4-(Me3Si)3C5H2]2U[N(p-tolyl)C(NPh)S](dmap) (3), respectively. The reaction of 1 with the thioketone Ph2CS forms the known uranium sulfido complex [η5-1,2,4-(Me3Si)3C5H2]2US(dmap) (4), which reacts with a second molecule of Ph2CS to give the disulfido compound [η5-1,2,4-(Me3Si)3C5H2]2U(S2CPh2) (5). The imido moiety also promotes deprotonation reactions as illustrated in the reactions with the amide PhCONH(p-tolyl), the nitrile PhCH2CN and the imine (p-tolyl)2CNH to form the bis-amidate [η5-1,2,4-(Me3Si)3C5H2]2U[OC(Ph)N(p-tolyl)]2 (7), and the iminato complexes [η5-1,2,4-(Me3Si)3C5H2]2U[N(p-tolyl)C(CH2Ph)NH](NCCHPh) (8) and [η5-1,2,4-(Me3Si)3C5H2]2U[NH(p-tolyl)][NC(p-tolyl)2] (9), respectively. Addition of PhSiH2Cl to 1 yields [η5-1,2,4-(Me3Si)3C5H2]2U(Cl)[N(p-tolyl)SiH2Ph] (10). In contrast, the uranium(V) imido complexes [η5-1,2,4-(Me3Si)3C5H2]2UN(p-tolyl)(I) (11) and [η5-1,2,4-(Me3Si)3C5H2]2UN(p-tolyl)(SPh) (12), may be isolated upon addition of CuI or Ph2S2 to 1, respectively. Uranium(VI) bis-imido metallocenes [η5-1,2,4-(Me3Si)3C5H2]2UN(p-tolyl)(NR) (R = p-tolyl (13), mesityl (14)) and [η5-1,2,4-(Me3Si)3C5H2]2UN(p-tolyl)[NN(9-C13H8)] (15) are accessible from 1 on exposure to RN3 (R = p-tolyl, mesityl) and 9-diazofluorene, respectively. Complexes 2, 3, 5, and 7-15 were characterized by various spectroscopic techniques and, in addition, compounds 2, 3, 5, and 7-13 were structurally authenticated by single-crystal X-ray diffraction analyses.
Collapse
Affiliation(s)
- Tongyu Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Dongwei Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yi Heng
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Marc D Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
| |
Collapse
|
6
|
Riedhammer J, Halter DP, Meyer K. Nonaqueous Electrochemistry of Uranium Complexes: A Guide to Structure-Reactivity Tuning. Chem Rev 2023. [PMID: 37134149 DOI: 10.1021/acs.chemrev.2c00903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Uranium complexes can be stabilized in a wide range of oxidation states, ranging from UII to UVI and a very recent example of a UI complex. This review provides a comprehensive summary of electrochemistry data reported on uranium complexes in nonaqueous electrolyte, to serve as a clear point of reference for newly synthesized compounds, and to evaluate how different ligand environments influence experimentally observed electrochemical redox potentials. Data for over 200 uranium compounds are reported, together with a detailed discussion of trends observed across larger series of complexes in response to ligand field variations. In analogy to the traditional Lever parameter, we utilized the data to derive a new uranium-specific set of ligand field parameters UEL(L) that more accurately represent metal-ligand bonding situations than previously existing transition metal derived parameters. Exemplarily, we demonstrate UEL(L) parameters to be useful for the prediction of structure-reactivity correlations in order to activate specific substrate targets.
Collapse
Affiliation(s)
- Judith Riedhammer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Dominik P Halter
- Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich (TUM), TUM School of Natural Sciences, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 1, 91058 Erlangen, Germany
| |
Collapse
|
7
|
Nguyen TH, Paul EL, Lukens WW, Hayton TW. Evaluating f-Orbital Participation in the U V═E Multiple Bonds of [U(E)(NR 2) 3] (E = O, NSiMe 3, NAd; R = SiMe 3). Inorg Chem 2023; 62:6447-6457. [PMID: 37053543 DOI: 10.1021/acs.inorgchem.3c00455] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
The reaction of 1 equiv of 1-azidoadamantane with [UIII(NR2)3] (R = SiMe3) in Et2O results in the formation of [UV(NR2)3(NAd)] (1, Ad = 1-adamantyl) in good yields. The electronic structure of 1, as well as those of the related U(V) complexes, [UV(NR2)3(NSiMe3)] (2) and [UV(NR2)3(O)] (3), were analyzed with EPR spectroscopy, SQUID magnetometry, NIR-visible spectroscopy, and crystal field modeling. This analysis revealed that, within this series of complexes, the steric bulk of the E2- (E═O, NR) ligand is the most important factor in determining the electronic structure. In particular, the increasing steric bulk of this ligand, on moving from O2- to [NAd]2-, results in increasing U═E distances and E-U-Namide angles. These changes have two principal effects on the resulting electronic structure: (1) the increasing U═E distances decreases the energy of the fσ orbital, which is primarily σ* with respect to the U═E bond, and (2) the increasing E-U-Namide angles increases the energy of fδ, due to increasing antibonding interactions with the amide ligands. As a result of the latter change, the electronic ground state for complexes 1 and 2 is primarily fφ in character, whereas the ground state for complex 3 is primarily fδ.
Collapse
Affiliation(s)
- Thien H Nguyen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Edward L Paul
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Wayne W Lukens
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
8
|
Meskaldji S, Belkhiri L, Maurice R, Costuas K, Le Guennic B, Boucekkine A, Ephritikhine M. Electronic Structure and Magneto-Structural Correlations Study of Cu 2UL Trinuclear Schiff Base Complexes: A 3d-5f-3d Case. J Phys Chem A 2023; 127:1475-1490. [PMID: 36749943 DOI: 10.1021/acs.jpca.2c08755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The magnetic properties of trinuclear Schiff base complexes M2AnLi (MII = Zn, Cu; AnIV = Th, U; Li = Schiff base; i = 1-4, 6, 7, 9), exhibiting the [M(μ-O)2]2U core structure with adjacent M1···U and M2···U and next-adjacent M1···M2 interactions, featuring 3d-5f-3d subsystems, have been investigated theoretically using relativistic ZORA/B3LYP computations combined with the broken symmetry (BS) approach. Bond order and natural population analyses reveal that the covalent contribution to the bonding within the Cu-O-U coordination is important thus favoring superexchange coupling between the transition metal and the uranium magnetic centers. The calculated coupling constants JCuU between the Cu and U atoms, agree with the observed shift from the antiferromagnetic (AF) character of the L1,2,3,4 complexes to the ferromagnetic (ferro) of the L6,7,9 ones. The structural parameters, i.e., the Cu···U distances and the Cu-O-U angles, as well as the electronic factors driving the magnetic couplings are discussed. The analyses are supported by the study of the mixed ZnCuULi and Cu2ThLi systems, where in the first complex the CuII (3d9) ion is replaced by the diamagnetic ZnII (3d10) one, whereas in the second complex the UIV (5f2) paramagnetic center is replaced by the diamagnetic ThIV (5f0) one.
Collapse
Affiliation(s)
- Samir Meskaldji
- Laboratoire de Physique Mathématique et Subatomique LPMS, Département de Chimie, Université des Frères Mentouri, 25017 Constantine, Algeria.,Ecole Normale Supérieure de l'Enseignement Technologique ENSET, 21000 Skikda, Algeria
| | - Lotfi Belkhiri
- Laboratoire de Physique Mathématique et Subatomique LPMS, Département de Chimie, Université des Frères Mentouri, 25017 Constantine, Algeria.,Centre de Recherche en Sciences Pharmaceutiques CRSP, Ali Mendjeli, 25000 Constantine, Algeria
| | - Rémi Maurice
- Univ Rennes, ISCR UMR 6226 CNRS, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Karine Costuas
- Univ Rennes, ISCR UMR 6226 CNRS, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Boris Le Guennic
- Univ Rennes, ISCR UMR 6226 CNRS, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Abdou Boucekkine
- Univ Rennes, ISCR UMR 6226 CNRS, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Michel Ephritikhine
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
9
|
Gransbury GK, Réant BLL, Wooles AJ, Emerson-King J, Chilton NF, Liddle ST, Mills DP. Electronic structure comparisons of isostructural early d- and f-block metal(iii) bis(cyclopentadienyl) silanide complexes. Chem Sci 2023; 14:621-634. [PMID: 36741509 PMCID: PMC9847655 DOI: 10.1039/d2sc04526e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
We report the synthesis of the U(iii) bis(cyclopentadienyl) hypersilanide complex [U(Cp'')2{Si(SiMe3)3}] (Cp'' = {C5H3(SiMe3)2-1,3}), together with isostructural lanthanide and group 4 M(iii) homologues, in order to meaningfully compare metal-silicon bonding between early d- and f-block metals. All complexes were characterised by a combination of NMR, EPR, UV-vis-NIR and ATR-IR spectroscopies, single crystal X-ray diffraction, SQUID magnetometry, elemental analysis and ab initio calculations. We find that for the [M(Cp'')2{Si(SiMe3)3}] (M = Ti, Zr, La, Ce, Nd, U) series the unique anisotropy axis is conserved tangential to ; this is governed by the hypersilanide ligand for the d-block complexes to give easy plane anisotropy, whereas the easy axis is fixed by the two Cp'' ligands in f-block congeners. This divergence is attributed to hypersilanide acting as a strong σ-donor and weak π-acceptor with the d-block metals, whilst f-block metals show predominantly electrostatic bonding with weaker π-components. We make qualitative comparisons on the strength of covalency to derive the ordering Zr > Ti ≫ U > Nd ≈ Ce ≈ La in these complexes, using a combination of analytical techniques. The greater covalency of 5f3 U(iii) vs. 4f3 Nd(iii) is found by comparison of their EPR and electronic absorption spectra and magnetic measurements, with calculations indicating that uranium 5f orbitals have weak π-bonding interactions with both the silanide and Cp'' ligands, in addition to weak δ-antibonding with Cp''.
Collapse
Affiliation(s)
- Gemma K Gransbury
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Benjamin L L Réant
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ashley J Wooles
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Jack Emerson-King
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Nicholas F Chilton
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - David P Mills
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
10
|
Li K, Liu W, Zhang H, Cheng L, Zhang Y, Wang Y, Chen N, Zhu C, Chai Z, Wang S. Progress in solid state and coordination chemistry of actinides in China. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2022-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In the past decade, the area of solid state chemistry of actinides has witnessed a rapid development in China, based on the significantly increased proportion of the number of actinide containing crystal structures reported by Chinese researchers from only 2% in 2010 to 36% in 2021. In this review article, we comprehensively overview the synthesis, structure, and characterizations of representative actinide solid compounds including oxo-compounds, organometallic compounds, and endohedral metallofullerenes reported by Chinese researchers. In addition, Chinese researchers pioneered several potential applications of actinide solid compounds in terms of adsorption, separation, photoelectric materials, and photo-catalysis, which are also briefly discussed. It is our hope that this contribution not only calls for further development of this area in China, but also arouses new research directions and interests in actinide chemistry and material sciences.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Wei Liu
- School of Environmental and Material Engineering, Yantai University , Yantai , 264005 , China
| | - Hailong Zhang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Liwei Cheng
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Yugang Zhang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials Science and State Key Laboratory of Radiation Medicine and Protection, Soochow University , Suzhou , Jiangsu 215123 , China
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials , School of Chemistry and Chemical Engineering, Nanjing University , Nanjing , 210023 , China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| |
Collapse
|
11
|
Wedal JC, Ziller JW, Evans WJ. Identification of the U(V) complex (C 5Me 5) 2U VI(NSiMe 3) in the reaction of (C 5Me 5) 2U IIII(THF) with N 3SiMe 3. Dalton Trans 2022; 51:12804-12807. [PMID: 35980149 DOI: 10.1039/d2dt01926d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The U(V) imido complex (C5Me5)2UVI(NSiMe3), 1, was crystallographically characterized from the reaction of (C5Me5)2UIIII(THF) with N3SiMe3 which demonstrates that it can be an intermediate in the reaction which ultimately forms (C5Me5)2UVI(NSiMe3)2 and (C5Me5)2UIVI2. U(V) intermediates have been proposed in such reactions, but have not been previously observed. The direct observation of 1 provides insight into the reaction mechanisms of U(III) compounds with azide reagents.
Collapse
Affiliation(s)
- Justin C Wedal
- Department of Chemistry, University of California, Irvine, California 92697, USA.
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, California 92697, USA.
| | - William J Evans
- Department of Chemistry, University of California, Irvine, California 92697, USA.
| |
Collapse
|
12
|
Ward RJ, Kelley SP, Lukens WW, Walensky JR. Reduction of CO 2 and CS 2 with Uranium(III) Metallocene Aryloxides. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robert J. Ward
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Steven P. Kelley
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Wayne W. Lukens
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Justin R. Walensky
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
13
|
Perales D, Lin NJ, Bronstetter MR, Ford SA, Zeller M, Bart SC. Conversion of Uranium(III) Anilido Complexes to Uranium(IV) Imido Complexes via Hydrogen Atom Transfer. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Diana Perales
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nathan J. Lin
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michaela R. Bronstetter
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shannon A. Ford
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Matthias Zeller
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Suzanne C. Bart
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
14
|
Goodwin CAP, Janicke MT, Scott BL, Gaunt AJ. [AnI 3(THF) 4] (An = Np, Pu) Preparation Bypassing An 0 Metal Precursors: Access to Np 3+/Pu 3+ Nonaqueous and Organometallic Complexes. J Am Chem Soc 2021; 143:20680-20696. [PMID: 34854294 DOI: 10.1021/jacs.1c07967] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Direct comparison of homologous molecules provides a foundation from which to elucidate both subtle and patent changes in reactivity patterns, redox processes, and bonding properties across a series of elements. While trivalent molecular U chemistry is richly developed, analogous Np or Pu research has long been hindered by synthetic routes often requiring scarcely available metallic-phase source material, high-temperature solid-state reactions producing poorly soluble binary halides, or the use of pyrophoric reagents. The development of routes to nonaqueous Np3+/Pu3+ from widely available precursors can potentially transform the scope and pace of research into actinide periodicity. Here, aqueous stocks of An4+ (An = Np, Pu) are dehydrated to well-defined [AnCl4(DME)2] (DME = 1,2-dimethoxyethane), and then a single-step halide exchange/reduction employing Me3SiI produces [AnI3(THF)4] (THF = tetrahydrofuran) in a high to nearly quantitative crystalline yield (with I2 and Me3SiCl as easily removed byproducts). We demonstrate the synthetic utility of these An-iodide molecules, prepared by metal0-free routes, through characterization of archetypal complexes including the tris-silylamide, [Np{N(SiMe3)2}3], and bent metallocenes, [An(C5Me5)2(I)(THF)] (An = Np, Pu)─chosen because both motifs are ubiquitous in Th, U, and lanthanide research. The synthesis of [Np{N(Se═PPh2)2}3] is also reported, completing an isomorphous series that now extends from U to Am and is the first characterized Np3+-Se bond.
Collapse
Affiliation(s)
- Conrad A P Goodwin
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Michael T Janicke
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Brian L Scott
- Materials Physics & Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Andrew J Gaunt
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
15
|
Tarlton ML, Vilanova SP, Kaumini MG, Kelley SP, Huang P, Walensky JR. Structural, Spectroscopic, and Computational Analysis of Heterometallic Thorium Phosphinidiide Complexes. Inorg Chem 2021; 60:14932-14943. [PMID: 34528785 DOI: 10.1021/acs.inorgchem.1c02308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To synthesize complexes with thorium-phosphorus multiple-bond character, reactions of (C5Me5)2Th[P(H)Mes]2 with monovalent alkali-metal bases, MN(SiMe3)2, as well as CuMes, have been investigated. The results with MN(SiMe3)2 are phosphinidiide complexes of the form {(C5Me5)2Th[μ2-P(Mes)][μ2-P(H)Mes]M(L)n}2 (M = Na, n = 0; M = K, L = THF, n = 1; M = Rb, L = THF, n = 1; M = Cs, L = Et2O, n = 1). With CuMes, the product is a Th2Cu3P5 heterometallic structure, {(C5Me5)2Th[(μ2-P(H)Mes)P(Mes)]Cu}2Cu[μ2-P(H)Mes]. All complexes have been characterized using heteronuclear NMR and IR spectroscopy, density functional theory calculations, and their solid-state structure identified by X-ray crystallography. We also report the structure of {(C5Me5)2Th[(μ2-As(H)Mes)As(Mes)]Cu}2Cu[μ2-As(H)Mes] obtained from (C5Me5)2Th[As(H)Mes]2 with CuMes.
Collapse
Affiliation(s)
- Michael L Tarlton
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Sean P Vilanova
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - M Gayanethra Kaumini
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Steven P Kelley
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Patrick Huang
- Department of Chemistry and Biochemistry, California State University, East Bay, Hayward, California 94542, United States
| | - Justin R Walensky
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
16
|
Curran DJ, Ganguly G, Heit YN, Wolford NJ, Minasian SG, Löble MW, Cary SK, Kozimor SA, Autschbach J, Neidig ML. Near-infrared C-term MCD spectroscopy of octahedral uranium(V) complexes. Dalton Trans 2021; 50:5483-5492. [PMID: 33908963 DOI: 10.1039/d1dt00513h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
C-term magnetic circular dichroism (MCD) spectroscopy is a powerful method for probing d-d and f-f transitions in paramagnetic metal complexes. However, this technique remains underdeveloped both experimentally and theoretically for studies of U(v) complexes of Oh symmetry, which have been of longstanding interest for probing electronic structure, bonding, and covalency in 5f systems. In this study, C-term NIR MCD of the Laporte forbidden f-f transitions of [UCl6]- and [UF6]- are reported, demonstrating the significant fine structure resolution possible with this technique including for the low energy Γ7 → Γ8 transitions in [UF6]-. The experimental NIR MCD studies were further extended to [U(OC6F5)6]-, [U(CH2SiMe3)6]-, and [U(NC(tBu)(Ph))6]- to evaluate the effects of ligand-type on the f-f MCD fine structure features. Theoretical calculations were conducted to determine the Laporte forbidden f-f transitions and their MCD intensity experimentally observed in the NIR spectra of the U(v) hexahalide complexes, via the inclusion of vibronic coupling, to better understand the underlying spectral fine structure features for these complexes. These spectra and simulations provide an important platform for the application of MCD spectroscopy to this widely studied class of U(v) complexes and identify areas for continued theoretical development.
Collapse
Affiliation(s)
- Daniel J Curran
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA.
| | - Gaurab Ganguly
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, USA.
| | - Yonaton N Heit
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, USA.
| | - Nikki J Wolford
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA.
| | - Stefan G Minasian
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Matthias W Löble
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| | - Samantha K Cary
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| | - Stosh A Kozimor
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, USA.
| | - Michael L Neidig
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA.
| |
Collapse
|
17
|
Talha Yassia K, Belkhiri L, Costuas K, Boucekkine A. How the Ancillary Ligand X Drives the Redox Properties of Biscyclopentadienyl Pentavalent Uranium Cp 2U(═N-Ar)X Complexes. Inorg Chem 2021; 60:2203-2218. [PMID: 33481573 DOI: 10.1021/acs.inorgchem.0c02908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Relativistic zero order regular approximation (ZORA) density functional theory computations, coupled with the conductor-like screening model for solvation effects, are used to investigate the redox properties of a series of biscyclopentadienyl pentavalent uranium(V) complexes Cp2U(═N-Ar)X (Ar = 2,6-Me2-C6H3; X = OTf, C6F5, SPh, C═CPh, NPh2, Ph, Me, OPh, N(TMS)2, N═CPh2). Regarding the UV/UIV and UVI/UV couple systems, a linear correlation (R2 ∼ 0.99) is obtained at the ZORA/BP86/TZP level, between the calculated ionization energies and the measured experimental E1/2 half-wave oxidation potentials (UVI/UV) and between the electron affinities and the reduction potentials E1/2 (UV/UIV). The study brings to light the importance of solvation effects that are needed in order to achieve a good agreement between the theory and experiment. Introducing spin-orbit coupling corrections slightly improves this agreement. Both the singly occupied molecular orbital and the lowest unoccupied molecular orbital of the neutral UV complexes exhibit a majority 5f orbital character. The frontier molecular orbitals show a substantial ancillary ligand X σ and/or π character that drives the redox properties. Moreover, our investigations allow estimating the redox potentials of the X = Ph, X = C6F5, and N(TMS)2 UV complexes for which no experimental electrochemical data exist.
Collapse
Affiliation(s)
- Khadidja Talha Yassia
- Laboratoire de Physique Mathématique et Subatomique LPMS, Département de Chimie, Université des Frères Mentouri Constantine 1, 25017 Constantine, Algeria
| | - Lotfi Belkhiri
- Laboratoire de Physique Mathématique et Subatomique LPMS, Département de Chimie, Université des Frères Mentouri Constantine 1, 25017 Constantine, Algeria
| | - Karine Costuas
- Univ Rennes, ISCR UMR 6226 CNRS-Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex, France
| | - Abdou Boucekkine
- Univ Rennes, ISCR UMR 6226 CNRS-Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex, France
| |
Collapse
|
18
|
Shen YP, Cai HX, Chen FY, Guo YR, Pan QJ. A relativistic DFT probe for small-molecule activation mediated by low-valent uranium metallocenes. NEW J CHEM 2021. [DOI: 10.1039/d0nj06296k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DFT calculations rationalize the capability of uranium metallocenes in activating small molecules, and the experimentally inaccessible CO2 adduct is addressed.
Collapse
Affiliation(s)
- Yong-Peng Shen
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin
- China
| | - Hong-Xue Cai
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin
- China
| | - Fang-Yuan Chen
- School of Electrical and Information Engineering
- Heilongjiang University of Technology
- Jixi 158100
- China
| | - Yuan-Ru Guo
- Key Laboratory of Bio-Based Material Science & Technology (Ministry of Education)
- College of Material Science and Engineering
- Northeast Forestry University
- Harbin 150040
- China
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin
- China
| |
Collapse
|
19
|
Collins TS, Celis-Barros C, Beltrán-Leiva MJ, Anderson NH, Zeller M, Albrecht-Schönzart T, Bart SC. Origin of Bond Elongation in a Uranium(IV) cis-Bis(imido) Complex. Inorg Chem 2020; 59:18461-18468. [PMID: 33270423 DOI: 10.1021/acs.inorgchem.0c03340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The activation of U-N multiple bonds in an imido analogue of the uranyl ion is accomplished by using a system that is very electron-rich with sterically encumbering ligands. Treating the uranium(VI) trans-bis(imido) UI2(NDIPP)2(THF)3 (DIPP = 2,6-diisopropylphenyl and THF = tetrahydrofuran) with tert-butyl(dimethylsilyl)amide (NTSA) results in a reduction and rearrangement to form the uranium(IV) cis-bis(imido) [U(NDIPP)2(NTSA)2]K2 (1). Compound 1 features long U-N bonds, pointing toward substantial activation of the N═U═N unit, as determined by X-ray crystallography and 1H NMR, IR, and electronic absorption spectroscopies. Computational analyses show that uranium(IV)-imido bonds in 1 are significantly weakened multiple bonds due to polarization toward antibonding and nonbonding orbitals. Such geometric control has important effects on the electronic structures of these species, which could be useful in the recycling of spent nuclear fuels.
Collapse
Affiliation(s)
- Tyler S Collins
- H. C. Brown Laboratory, Department of Chemistry Purdue University, West Lafayette, Indiana 47907, United States
| | - Cristian Celis-Barros
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - María J Beltrán-Leiva
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Nickolas H Anderson
- H. C. Brown Laboratory, Department of Chemistry Purdue University, West Lafayette, Indiana 47907, United States
| | - Matthias Zeller
- H. C. Brown Laboratory, Department of Chemistry Purdue University, West Lafayette, Indiana 47907, United States
| | - Thomas Albrecht-Schönzart
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Suzanne C Bart
- H. C. Brown Laboratory, Department of Chemistry Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
20
|
Ward RJ, Del Rosal I, Chirdon DN, Kelley SP, Tarlton ML, Maron L, Walensky JR. Two-Electron Reduction of a U(VI) Complex with Al(C 5Me 5). Inorg Chem 2020; 59:16137-16142. [PMID: 33095563 DOI: 10.1021/acs.inorgchem.0c03036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The reduction of U(VI) to U(IV) is rare, especially in one step, and not observed electrochemically as a one-wave, two-electron couple. Here, we demonstrate that reduction of the uranium(VI) bis(imido) complex, (C5Me5)2U[═N(4-OiPrC6H4)]2, is readily accomplished with Al(C5Me5), forming the bridging uranium(IV)/aluminum(III) imido complex (C5Me5)2U[μ2-N(4-OiPrC6H4)]2Al(C5Me5). The structure and bonding of the bridging imido complex is examined with electrochemical measurements in tandem with density functional theory calculations.
Collapse
Affiliation(s)
- Robert J Ward
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Iker Del Rosal
- Universite de Toulouse and CNRS, INSA, UPS, UMR 5215, LPCNO, Toulouse 31077, France
| | - Danielle N Chirdon
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Steven P Kelley
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Michael L Tarlton
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Laurent Maron
- Universite de Toulouse and CNRS, INSA, UPS, UMR 5215, LPCNO, Toulouse 31077, France
| | - Justin R Walensky
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
21
|
Li X, Roselló Y, Yao YR, Zhuang J, Zhang X, Rodríguez-Fortea A, de Graaf C, Echegoyen L, Poblet JM, Chen N. U 2N@ I h(7)-C 80: fullerene cage encapsulating an unsymmetrical U(iv)[double bond, length as m-dash]N[double bond, length as m-dash]U(v) cluster. Chem Sci 2020; 12:282-292. [PMID: 34163596 PMCID: PMC8178745 DOI: 10.1039/d0sc04677a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
For the first time, an actinide nitride clusterfullerene, U2N@Ih(7)-C80, is synthesized and fully characterized by X-ray single crystallography and multiple spectroscopic methods. U2N@Ih(7)-C80 is by far the first endohedral fullerene that violates the well-established tri-metallic nitride template for nitride clusterfullerenes. The novel UNU cluster features two UN bonds with uneven bond distances of 2.058(3) Å and 1.943(3) Å, leading to a rare unsymmetrical structure for the dinuclear nitride motif. The combined experimental and theoretical investigations suggest that the two uranium ions show different oxidation states of +4 and +5. Quantum-chemical investigation further reveals that the f1/f2 population dominantly induces a distortion of the UNU cluster, which leads to the unsymmetrical structure. A comparative study of U2X@C80 (X = C, N and O) reveals that the U–X interaction in UXU clusters can hardly be seen as being formed by classical multiple bonds, but is more like an anionic central ion Xq− with biased overlaps with the two metal ions, which decrease as the electronegativity of X increases. This study not only demonstrates the unique bonding variety of actinide clusters stabilized by fullerene cages, showing different bonding from that observed for the lanthanide analogs, it also reveals the electronic structure of the UXU clusters (X = C, N and O), which are of fundamental significance to understanding these actinide bonding motifs. A novel actinide cluster, UNU, is stabilized inside a C80 fullerene cage. The U(iv)NU(v) cluster features two UN bonds with uneven bond distances of 2.058(3) Å and 1.943(3) Å, leading to an unsymmetrical structure.![]()
Collapse
Affiliation(s)
- Xiaomeng Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Yannick Roselló
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili 43007 Tarragona Spain
| | - Yang-Rong Yao
- Department of Chemistry, University of Texas at El Paso 500 West University Avenue El Paso Texas 79968 USA
| | - Jiaxin Zhuang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Xingxing Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 P. R. China
| | | | - Coen de Graaf
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili 43007 Tarragona Spain.,ICREA Passeig Lluís Companys 23 Barcelona Spain
| | - Luis Echegoyen
- Department of Chemistry, University of Texas at El Paso 500 West University Avenue El Paso Texas 79968 USA
| | - Josep M Poblet
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili 43007 Tarragona Spain
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|
22
|
Electronic structure and magnetic properties of naphthalene- and stilbene-diimide-bridged diuranium(V) complexes: a theoretical study. J Mol Model 2020; 26:282. [DOI: 10.1007/s00894-020-04552-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/17/2020] [Indexed: 11/26/2022]
|
23
|
Raghavan A, Anderson NH, Tatebe CJ, Stanley DA, Zeller M, Bart SC. Insight into geometric preferences in uranium(VI) mixed tris(imido) systems. Chem Commun (Camb) 2020; 56:11138-11141. [PMID: 32815935 DOI: 10.1039/d0cc03261a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uranium tris(imido) species have been synthesized using different imido groups in the axial and equatorial positions by treating [(MesPDIMe)U(THF)]2 (1-THF), which is a uranium(iv) dimer that is supported by MesPDIMe tetraanions, with mixed organoazide solutions. While the origin of the geometric preference isn't clear, both steric and electronic factors are likely at play.
Collapse
Affiliation(s)
- Adharsh Raghavan
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Nickolas H Anderson
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Caleb J Tatebe
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Dalton A Stanley
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Matthias Zeller
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Suzanne C Bart
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
24
|
Jori N, Falcone M, Scopelliti R, Mazzanti M. Carbon Dioxide Reduction by Multimetallic Uranium(IV) Complexes Supported by Redox-Active Schiff Base Ligands. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nadir Jori
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Marta Falcone
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
25
|
Pagano JK, Xie J, Erickson KA, Cope SK, Scott BL, Wu R, Waterman R, Morris DE, Yang P, Gagliardi L, Kiplinger JL. Actinide 2-metallabiphenylenes that satisfy Hückel’s rule. Nature 2020; 578:563-567. [DOI: 10.1038/s41586-020-2004-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/20/2019] [Indexed: 11/09/2022]
|
26
|
Dovrat G, Illy MC, Berthon C, Lerner A, Mintz MH, Maimon E, Vainer R, Ben-Eliyahu Y, Moiseev Y, Moisy P, Bettelheim A, Zilbermann I. On the Aqueous Chemistry of the U IV -DOTA Complex. Chemistry 2020; 26:3390-3403. [PMID: 31943407 DOI: 10.1002/chem.201905357] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/24/2019] [Indexed: 01/24/2023]
Abstract
The 1,4,7,10-tetrazacyclodecane-1,4,7,10-tetraacetic acid (DOTA) aqueous complex of UIV with H2 O, OH- , and F- as axial ligands was studied by using UV/Vis spectrophotometry, ESI-MS, NMR spectroscopy, X-ray crystallography, and electrochemistry. The UIV -DOTA complex with either water or fluoride as axial ligands was found to be inert to oxidation by molecular oxygen, whereas the complex with hydroxide as an axial ligand slowly hydrolyzed and was oxidized by dioxygen to a diuranate precipitate. The combined data set acquired shows that, although axial substitution of fluoride and hydroxide ligands instead of water does not seem to significantly change the aqueous DOTA complex structure, it has an important effect on the electronic configuration of the complex. The UIV /UIII redox couple was found to be quasi-reversible for the complex with both axially bonded H2 O and hydroxide, but irreversible for the complex with axially bonded fluoride. Intriguingly, binding of the axial fluoride renders the irreversible one-electron UV /UIV oxidation of the [UIV (DOTA)(H2 O)] complex quasi-reversible, which suggests the formation of the short-lived pentavalent form of the complex, an aqueous non-uranyl chelated UV cation.
Collapse
Affiliation(s)
- Gev Dovrat
- Nuclear Engineering Department, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | | | - Claude Berthon
- CEA, DEN, DMRC, Univ Montpellier, BP17171, 30207, Marcoule, France
| | - Ana Lerner
- Israeli Atomic Energy Commission, 61070, Tel-Aviv, Israel.,Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Moshe H Mintz
- Nuclear Engineering Department, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel.,Chemistry Department, Nuclear Research Centre Negev, 84190, Beer Sheva, Israel
| | - Eric Maimon
- Chemistry Department, Nuclear Research Centre Negev, 84190, Beer Sheva, Israel.,Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Radion Vainer
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | | | - Yulia Moiseev
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Philippe Moisy
- CEA, DEN, DMRC, Univ Montpellier, BP17171, 30207, Marcoule, France
| | - Armand Bettelheim
- Chemical Engineering Department, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Israel Zilbermann
- Chemistry Department, Nuclear Research Centre Negev, 84190, Beer Sheva, Israel.,Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| |
Collapse
|
27
|
Boreen MA, Lussier DJ, Skeel BA, Lohrey TD, Watt FA, Shuh DK, Long JR, Hohloch S, Arnold J. Structural, Electrochemical, and Magnetic Studies of Bulky Uranium(III) and Uranium(IV) Metallocenes. Inorg Chem 2019; 58:16629-16641. [DOI: 10.1021/acs.inorgchem.9b02719] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Michael A. Boreen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Daniel J. Lussier
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Brighton A. Skeel
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Trevor D. Lohrey
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Fabian A. Watt
- University of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - David K. Shuh
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jeffrey R. Long
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Stephan Hohloch
- University of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
28
|
Tomson NC, Anderson NH, Tondreau AM, Scott BL, Boncella JM. Oxidation of uranium(iv) mixed imido-amido complexes with PhEEPh and to generate uranium(vi) bis(imido) dichalcogenolates, U(NR) 2(EPh) 2(L) 2. Dalton Trans 2019; 48:10865-10873. [PMID: 31049520 DOI: 10.1039/c9dt00680j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This work provides new routes for the conversion of U(iv) into U(vi) bis(imido) complexes and offers new information on the manner in which the U(vi) compounds form. Many compounds from the series described by the general formula U(NR)2(EPh)2(L)2 (R = 2,6-diisopropylphenyl, tert-butyl; E = S, Se, Te; L = py, EPh) were synthesized via oxidation of an in situ generated U(iv) amido-imido species with Ph2E2. This synthetic sequence provides a general route into bis(imido) U(vi) chalcogenolate complexes, circumventing the need to perform problematic salt metathesis reactions on U(vi) iodides. Investigation into the speciation of the U(iv) complexes that form prior to oxidation found a significant dependence on the identity of the ancillary ligands, with tBu2bpy forming the isolable imido-(bis)amido complex, U(NDipp)(NHDipp)2(tBu2bpy)2. Together, these data are consistent with the view that the bis(imido) U(vi) motif - much like the uranyl ion, UO22+- is a thermodynamic sink into which simple ligand frameworks are unable to prevent uranium from falling when in the presence of a suitable retinue of imido proligands.
Collapse
Affiliation(s)
- Neil C Tomson
- Chemistry Division, Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, USA.
| | - Nickolas H Anderson
- Chemistry Division, Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, USA.
| | - Aaron M Tondreau
- Chemistry Division, Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, USA.
| | - Brian L Scott
- Chemistry Division, Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, USA.
| | - James M Boncella
- Chemistry Division, Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, USA.
| |
Collapse
|
29
|
Teyar B, Boucenina S, Belkhiri L, Le Guennic B, Boucekkine A, Mazzanti M. Theoretical Investigation of the Electronic Structure and Magnetic Properties of Oxo-Bridged Uranyl(V) Dinuclear and Trinuclear Complexes. Inorg Chem 2019; 58:10097-10110. [PMID: 31287673 DOI: 10.1021/acs.inorgchem.9b01237] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The uranyl(V) complexes [UO2(dbm)2K(18C6)]2 (dbm = dibenzoylmethanate) and [UO2(L)]3(L = 2-(4-tolyl)-1,3-bis(quinolyl)malondiiminate), exhibiting diamond-shaped U2O2 and triangular-shaped U3O3 cores respectively with 5f1-5f1 and 5f1-5f1-5f1 configurations, have been investigated using relativistic density functional theory (DFT). The bond order and QTAIM analyses reveal that the covalent contribution to the bonding within the oxo cores is slightly more important for U3O3 than for U2O2, in line with the shorter U-O distances existing in the trinuclear complex in comparison to those in the binuclear complex. Using the broken symmetry (BS) approach combined with the B3LYP functional for the calculation of the magnetic exchange coupling constants (J) between the magnetic centers, the antiferromagnetic (AF) character of these complexes was confirmed, the estimated J values being respectively equal to -24.1 and -7.2 cm-1 for the dioxo and trioxo species. It was found that the magnetic exchange is more sensitive to small variations of the core geometry of the dioxo species in comparison to the trioxo species. Although the robust AF exchange coupling within the UxOx cores is generally maintained when small variations of the UOU angle are applied, a weak ferromagnetic character appears in the dioxo species when this angle is higher than 114°, its value for the actual structure being equal to 105.9°. The electronic factors driving the magnetic coupling are discussed.
Collapse
Affiliation(s)
- Billel Teyar
- Faculté des Sciences Exactes , Université des Frères Mentouri , Laboratoire de Physique Mathématique et Subatomique LPMS, 25017 Constantine , Algeria.,Université Ziane Achour de Djelfa , 17000 Djelfa , Algeria
| | - Seddik Boucenina
- Faculté des Sciences Exactes , Université des Frères Mentouri , Laboratoire de Physique Mathématique et Subatomique LPMS, 25017 Constantine , Algeria
| | - Lotfi Belkhiri
- Faculté des Sciences Exactes , Université des Frères Mentouri , Laboratoire de Physique Mathématique et Subatomique LPMS, 25017 Constantine , Algeria
| | | | | | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
30
|
Bacha RUS, Bi YT, Xuan LC, Pan QJ. Inverse Trans Influence in Low-Valence Actinide-Group 10 Metal Complexes of Phosphinoaryl Oxides: A Theoretical Study via Tuning Metals and Donor Ligands. Inorg Chem 2019; 58:10028-10037. [PMID: 31298034 DOI: 10.1021/acs.inorgchem.9b01193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The recognition and in-depth understanding of inverse trans influence (ITI) have successfully guided the synthesis of novel actinide complexes and enriched actinide chemistry. Those complexes, however, are mainly limited to the involvement of high-valence actinide and/or metal-ligand multiple bonds. Examples containing both low oxidation state actinide and metal-metal single bond remain rare. Herein, more than 20 actinide-transition metal (An-TM) complexes of phosphinoaryl oxide ligands have been designed in accordance with several experimentally known analogs, by changing the metal atoms (An = Th, Pa, U, Np, and Pu; and TM = Ni, Pd, and Pt), actinide oxidation states (IV and III) and metal-metal axial donor ligands (X = Me3SiO, F, Cl, Br, and I). The relativistic density functional theory study of structural (trans-An-X and cis-An-O toward An-TM), bonding (topological electron/energy density), and electronic properties reveals the order of the ITI stabilizing actinide-metal bond. Computed electron affinity (EA) values, related to the electrochemical reduction, linearly correlate with experimentally measured reduction potentials. Although the same ITI order for the ligand donors was shown as in a previous study, the correlation between electrochemical reduction and the ITI was found to be weak when the actinide atoms were changed. For most complexes, the reduction is primarily of an actinide-based mechanism with minor participation of transition metal and phosphinoaryl oxide, whereas that of thorium-nickel complexes is different.
Collapse
Affiliation(s)
- Raza Ullah Shah Bacha
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science , Heilongjiang University , Harbin 150080 , China
| | - Yan-Ting Bi
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science , Heilongjiang University , Harbin 150080 , China
| | - Li-Chun Xuan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science , Heilongjiang University , Harbin 150080 , China
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science , Heilongjiang University , Harbin 150080 , China
| |
Collapse
|
31
|
Mullane KC, Hrobárik P, Cheisson T, Manor BC, Carroll PJ, Schelter EJ. 13C NMR Shifts as an Indicator of U-C Bond Covalency in Uranium(VI) Acetylide Complexes: An Experimental and Computational Study. Inorg Chem 2019; 58:4152-4163. [PMID: 30848588 DOI: 10.1021/acs.inorgchem.8b03175] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of uranium(VI)-acetylide complexes of the general formula UVI(O)(C≡C-C6H4-R)[N(SiMe3)2]3, with variation of the para substituent (R = NMe2, OMe, Me, Ph, H, Cl) on the aryl(acetylide) ring, was prepared. These compounds were analyzed by 13C NMR spectroscopy, which showed that the acetylide carbon bound to the uranium(VI) center, U- C≡C-Ar, was shifted strongly downfield, with δ(13C) values ranging from 392.1 to 409.7 ppm for Cl and NMe2 substituted complexes, respectively. These extreme high-frequency 13C resonances are attributed to large negative paramagnetic (σpara) and relativistic spin-orbit (σSO) shielding contributions, associated with extensive U(5f) and C(2s) orbital contributions to the U-C bonding in title complexes. The trend in the 13C chemical shift of the terminal acetylide carbon is opposite that observed in the series of parent (aryl)acetylenes, due to shielding effects of the para substituent. The 13C chemical shifts of the acetylide carbon instead correlate with DFT computed U-C bond lengths and corresponding QTAIM delocalization indices or Wiberg bond orders. SQUID magnetic susceptibility measurements were indicative of the Van Vleck temperature independent paramagnetism (TIP) of the uranium(VI) complexes, suggesting a magnetic field-induced mixing of the singlet ground-state (f0) of the U(VI) ion with low-lying (thermally inaccessible) paramagnetic excited states (involved also in the perturbation-theoretical treatment of the unusually large paramagnetic and SO contributions to the 13C shifts). Thus, together with reported data, we demonstrate that the sensitive 13C NMR shifts serve as a direct, simple, and accessible measure of uranium(VI)-carbon bond covalency.
Collapse
Affiliation(s)
- Kimberly C Mullane
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| | - Peter Hrobárik
- Department of Inorganic Chemistry, Faculty of Natural Sciences , Comenius University , SK-84215 Bratislava , Slovakia.,Institut für Chemie , Technische Universität Berlin , Straße des 17. Juni 135 , D-10623 Berlin , Germany
| | - Thibault Cheisson
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| | - Brian C Manor
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| | - Patrick J Carroll
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| | - Eric J Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
32
|
Tatebe CJ, Kiernicki JJ, Higgins RF, Ward RJ, Natoli SN, Langford JC, Clark CL, Zeller M, Wenthold P, Shores MP, Walensky JR, Bart SC. Investigation of the Electronic Structure of Aryl-Bridged Dinuclear U(III) and U(IV) Compounds. Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Caleb J. Tatebe
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - John J. Kiernicki
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Robert F. Higgins
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Robert J. Ward
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Sean N. Natoli
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - James C. Langford
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christopher L. Clark
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Matthias Zeller
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Paul Wenthold
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Matthew P. Shores
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Justin R. Walensky
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Suzanne C. Bart
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
33
|
Abstract
Over the past 25 years, magnetic actinide complexes have been the object of considerable attention, not only at the experimental level, but also at the theoretical one. Such systems are of great interest, owing to the well-known larger spin–orbit coupling for actinide ions, and could exhibit slow relaxation of the magnetization, arising from a large anisotropy barrier, and magnetic hysteresis of purely molecular origin below a given blocking temperature. Furthermore, more diffuse 5f orbitals than lanthanide 4f ones (more covalency) could lead to stronger magnetic super-exchange. On the other hand, the extraordinary experimental challenges of actinide complexes chemistry, because of their rarity and toxicity, afford computational chemistry a particularly valuable role. However, for such a purpose, the use of a multiconfigurational post-Hartree-Fock approach is required, but such an approach is computationally demanding for polymetallic systems—notably for actinide ones—and usually simplified models are considered instead of the actual systems. Thus, Density Functional Theory (DFT) appears as an alternative tool to compute magnetic exchange coupling and to explore the electronic structure and magnetic properties of actinide-containing molecules, especially when the considered systems are very large. In this paper, relevant achievements regarding DFT investigations of the magnetic properties of actinide complexes are surveyed, with particular emphasis on some representative examples that illustrate the subject, including actinides in Single Molecular Magnets (SMMs) and systems featuring metal-metal super-exchange coupling interactions. Examples are drawn from studies that are either entirely computational or are combined experimental/computational investigations in which the latter play a significant role.
Collapse
|
34
|
Abstract
Elaborate synthesis schemes pave the way to f-element and group 3 complexes with multiply bonded imido ligands displaying intriguing reactivity.
Collapse
Affiliation(s)
- Dorothea Schädle
- Department of Chemistry
- University of Tübingen
- 72076 Tübingen
- Germany
| | - Reiner Anwander
- Department of Chemistry
- University of Tübingen
- 72076 Tübingen
- Germany
| |
Collapse
|
35
|
Pagano JK, Arney DSJ, Scott BL, Morris DE, Kiplinger JL, Burns CJ. A sulphur and uranium fiesta! Synthesis, structure, and characterization of neutral terminal uranium(vi) monosulphide, uranium(vi) η2-disulphide, and uranium(iv) phosphine sulphide complexes. Dalton Trans 2019; 48:50-57. [DOI: 10.1039/c8dt02932f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new uranium species, (C5Me5)2U(N-2,6-iPr2-C6H3)(S), (C5Me5)2U(N-2,6-iPr2-C6H3)(η2-S2), and (C5Me5)2U(N-2,6-iPr2-C6H3)(SPMe3) have been prepared.
Collapse
|
36
|
Pagano JK, Scott BL, Morris DE, Kiplinger JL. Synthesis, characterization, and reactivity of the first uranium metallocene 1,2-bis(diphenylphosphino)acetylene complexes. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Settineri NS, Shiau AA, Arnold J. Two-electron oxidation of a homoleptic U(iii) guanidinate complex by diphenyldiazomethane. Chem Commun (Camb) 2018; 54:10913-10916. [PMID: 30206592 DOI: 10.1039/c8cc06514d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Reaction of the first homoleptic U(iii) guanidinate complex with diphenyldiazomethane results in two-electron oxidation of U(iii) to U(v) and isolation of a U(v) hydrazido complex. Corresponding U(v) imido, U(v) oxo, and U(iv) azido complexes were also synthesized for structural comparison.
Collapse
Affiliation(s)
- Nicholas S Settineri
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
38
|
Tondreau AM, Duignan TJ, Stein BW, Fleischauer VE, Autschbach J, Batista ER, Boncella JM, Ferrier MG, Kozimor SA, Mocko V, Neidig ML, Cary SK, Yang P. A Pseudotetrahedral Uranium(V) Complex. Inorg Chem 2018; 57:8106-8115. [DOI: 10.1021/acs.inorgchem.7b03139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Aaron M. Tondreau
- Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, United States
| | - Thomas J. Duignan
- Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, United States
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Benjamin W. Stein
- Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, United States
| | - Valerie E. Fleischauer
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Enrique R. Batista
- Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, United States
| | - James M. Boncella
- Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, United States
| | - Maryline G. Ferrier
- Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, United States
| | - Stosh A. Kozimor
- Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, United States
| | - Veronika Mocko
- Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, United States
| | - Michael L. Neidig
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Samantha K. Cary
- Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, United States
| | - Ping Yang
- Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
39
|
Goodwin CAP, Tuna F, McInnes EJL, Mills DP. Exploring Synthetic Routes to Heteroleptic UIII, UIV, and ThIVBulky Bis(silyl)amide Complexes. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Floriana Tuna
- School of Chemistry; The University of Manchester; M13 9PL Manchester UK
| | - Eric J. L. McInnes
- School of Chemistry; The University of Manchester; M13 9PL Manchester UK
| | - David P. Mills
- School of Chemistry; The University of Manchester; M13 9PL Manchester UK
| |
Collapse
|
40
|
McSkimming A, Su J, Cheisson T, Gau MR, Carroll PJ, Batista ER, Yang P, Schelter EJ. Coordination Chemistry of a Strongly-Donating Hydroxylamine with Early Actinides: An Investigation of Redox Properties and Electronic Structure. Inorg Chem 2018; 57:4387-4394. [DOI: 10.1021/acs.inorgchem.7b03238] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Alex McSkimming
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Jing Su
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Thibault Cheisson
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Michael R. Gau
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J. Carroll
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Enrique R. Batista
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ping Yang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Eric J. Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
41
|
Kiernicki JJ, Tatebe CJ, Zeller M, Bart SC. Tailoring the Electronic Structure of Uranium Mono(imido) Species through Ligand Variation. Inorg Chem 2018; 57:1870-1879. [PMID: 29419291 DOI: 10.1021/acs.inorgchem.7b02791] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- John J. Kiernicki
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Caleb J. Tatebe
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Matthias Zeller
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Suzanne C. Bart
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
42
|
Exploiting the reactivity of actinide fluoride bonds for the synthesis and characterization of a new class of monometallic bis(azide) uranium complexes. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2017.10.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Gotthelf G, Stuber MA, Kornienko AY, Emge TJ, Brennan JG. Organosoluble tetravalent actinide di- and trifluorides. Chem Commun (Camb) 2018; 54:12018-12020. [DOI: 10.1039/c8cc05501g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Soluble molecular actinide(iv) fluorides can be prepared in high yield via redox or metathesis reactions of silver fluorides with actinide compounds containing ancillary iodide or fluorinated thiolate ligands.
Collapse
Affiliation(s)
- Garret Gotthelf
- Department of Chemistry and Chemical Biology
- Rutgers
- The State University of New Jersey
- Piscataway
- USA
| | - Matthew A. Stuber
- Department of Chemistry and Chemical Biology
- Rutgers
- The State University of New Jersey
- Piscataway
- USA
| | - Anna Y. Kornienko
- Department of Chemistry and Chemical Biology
- Rutgers
- The State University of New Jersey
- Piscataway
- USA
| | - Thomas J. Emge
- Department of Chemistry and Chemical Biology
- Rutgers
- The State University of New Jersey
- Piscataway
- USA
| | - John G. Brennan
- Department of Chemistry and Chemical Biology
- Rutgers
- The State University of New Jersey
- Piscataway
- USA
| |
Collapse
|
44
|
Kagan BD, Lichtscheidl AG, Erickson KA, Monreal MJ, Scott BL, Nelson AT, Kiplinger JL. Synthesis of Actinide Fluoride Complexes Using Trimethyltin Fluoride as a Mild and Selective Fluorinating Reagent. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201701232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Benjamin D. Kagan
- Chemistry Division; Los Alamos National Laboratory; Mailstop J-514 87545 Los Alamos New Mexico USA
- Department of Chemistry; University of Vermont; Discovery Hall 05405 Burlington Vermont USA
| | | | - Karla A. Erickson
- Chemistry Division; Los Alamos National Laboratory; Mailstop J-514 87545 Los Alamos New Mexico USA
| | - Marisa J. Monreal
- Chemistry Division; Los Alamos National Laboratory; Mailstop J-514 87545 Los Alamos New Mexico USA
| | - Brian L. Scott
- Materials Physics and Applications Division; Los Alamos National Laboratory; Mailstop J-514 87545 Los Alamos New Mexico USA
| | - Andrew T. Nelson
- Materials Science and Technology Division; Los Alamos National Laboratory; Mailstop E-549 87545 Los Alamos New Mexico USA
| | - Jaqueline L. Kiplinger
- Chemistry Division; Los Alamos National Laboratory; Mailstop J-514 87545 Los Alamos New Mexico USA
| |
Collapse
|
45
|
Lan W, Wang X, He L, Meng Y, Li J, Qiu B, Nie C. Computational insight into asymmetric uranyl‐salophen coordinated with α, β‐unsaturated aldehydes and ketones. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.4137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Wen‐Bo Lan
- School of Public HealthXiangnan University Chenzhou Hunan 423000 China
- School of Chemistry and Chemical EngineeringUniversity of South China Hengyang China
| | - Xiao‐Feng Wang
- School of Public HealthXiangnan University Chenzhou Hunan 423000 China
| | - Li‐Ping He
- School of Public HealthXiangnan University Chenzhou Hunan 423000 China
| | - Yan‐Bin Meng
- School of Public HealthXiangnan University Chenzhou Hunan 423000 China
| | - Jun Li
- School of Public HealthXiangnan University Chenzhou Hunan 423000 China
| | - Bin Qiu
- Chenzhou City Center for Disease Control and Prevention Chenzhou Hunan 423000 China
| | - Chang‐Ming Nie
- School of Chemistry and Chemical EngineeringUniversity of South China Hengyang China
| |
Collapse
|
46
|
Kias F, Talbi F, Elkechai A, Boucekkine A, Hauchard D, Berthet JC, Ephritikhine M. Redox Properties of Monocyclooctatetraenyl Uranium(IV) and (V) Complexes: Experimental and Relativistic DFT Studies. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00585] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Farida Kias
- Laboratoire
de Physique et Chimie Quantique, Faculté des Sciences, Université Mouloud Mammeri de Tizi-Ouzou, 15000 Tizi-Ouzou, Algeria
| | - Fatiha Talbi
- Laboratoire
de Physique et Chimie Quantique, Faculté des Sciences, Université Mouloud Mammeri de Tizi-Ouzou, 15000 Tizi-Ouzou, Algeria
| | - Aziz Elkechai
- Laboratoire
de Physique et Chimie Quantique, Faculté des Sciences, Université Mouloud Mammeri de Tizi-Ouzou, 15000 Tizi-Ouzou, Algeria
| | - Abdou Boucekkine
- Institut
des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1, Campus de Beaulieu, Rennes CEDEX 35042, France
| | - Didier Hauchard
- Ecole
Nationale Supérieure de Chimie de Rennes, ISCR, UMR 6226 CNRS, 11 allée de Beaulieu, CS 50837, Rennes CEDEX 35708, France
| | - Jean-Claude Berthet
- NIMBE,
CEA, CNRS, Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Michel Ephritikhine
- NIMBE,
CEA, CNRS, Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
47
|
Kelly RP, Falcone M, Lamsfus CA, Scopelliti R, Maron L, Meyer K, Mazzanti M. Metathesis of a U V imido complex: a route to a terminal U V sulfide. Chem Sci 2017; 8:5319-5328. [PMID: 28970911 PMCID: PMC5607896 DOI: 10.1039/c7sc01111c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/25/2017] [Indexed: 11/21/2022] Open
Abstract
The metathesis reaction of a UV imido complex supported by sterically demanding tris(tert-butoxy)siloxide ligands with CS2 afforded a terminal UV thiocarbonate but metathesis with H2S afforded the first example of a terminal UV sulfide.
Herein, we report the synthesis and characterisation of the first terminal uranium(v) sulfide and a related UV trithiocarbonate complex supported by sterically demanding tris(tert-butoxy)siloxide ligands. The reaction of the potassium-bound UV imido complex, [U(NAd){OSi(OtBu)3}4K] (4), with CS2 led to the isolation of perthiodicarbonate [K(18c6)]2[C2S6] (6), with concomitant formation of the UIV complex, [U{OSi(OtBu)3}4], and S
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
CNAd. In contrast, the reaction of the UV imido complex, [K(2.2.2-cryptand)][U(NAd){OSi(OtBu)3}4] (5), with one or two equivalents of CS2 afforded the trithiocarbonate complex, [K(2.2.2-cryptand)][U(CS3){OSi(OtBu)3}4] (7), which was isolated in 57% yield, with concomitant elimination of the admantyl thiocyanate product, SCNAd. Complex 7 is likely formed by fast nucleophilic addition of a UV terminal sulfide intermediate, resulting from the slow metathesis reaction of the imido complex with CS2, to a second CS2 molecule. The addition of a solution of H2S in thf (1.3 eq.) to 4 afforded the first isolable UV terminal sulfide complex, [K(2.2.2-cryptand)][US{OSi(OtBu)3}4] (8), in 41% yield. Based on DFT calculations, triple-bond character with a strong covalent interaction is suggested for the U–S bond in complex 7.
Collapse
Affiliation(s)
- Rory P Kelly
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| | - Marta Falcone
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| | - Carlos Alvarez Lamsfus
- Université de Toulouse et CNRS INSA , UPS , CNRS , UMR 5215 , LPCNO , 135 avenue de Rangueil , 31077 Toulouse , France
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| | - Laurent Maron
- Université de Toulouse et CNRS INSA , UPS , CNRS , UMR 5215 , LPCNO , 135 avenue de Rangueil , 31077 Toulouse , France
| | - Karsten Meyer
- Department of Chemistry and Pharmacy , Inorganic Chemistry , Friedrich-Alexander University Erlangen-Nürnberg , Egerlandstraße 1 , 91058 Erlangen , Germany
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| |
Collapse
|
48
|
Zhang C, Yang P, Zhou E, Deng X, Zi G, Walter MD. Reactivity of a Lewis Base Supported Thorium Terminal Imido Metallocene toward Small Organic Molecules. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00212] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Congcong Zhang
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Pikun Yang
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Enwei Zhou
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xuebin Deng
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D. Walter
- Institut
für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
49
|
Mullane KC, Carroll PJ, Schelter EJ. Synthesis and Reduction of Uranium(V) Imido Complexes with Redox‐Active Substituents. Chemistry 2017; 23:5748-5757. [DOI: 10.1002/chem.201605758] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Kimberly C. Mullane
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Patrick J. Carroll
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Eric J. Schelter
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| |
Collapse
|
50
|
Tatebe CJ, Zeller M, Bart SC. [2π+2π] Cycloaddition of Isocyanates to Uranium(IV) Imido Complexes for the Synthesis of U(IV) κ2-Ureato Compounds. Inorg Chem 2017; 56:1956-1965. [PMID: 28165733 DOI: 10.1021/acs.inorgchem.6b02547] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Caleb J. Tatebe
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Matthias Zeller
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Suzanne C. Bart
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|