1
|
Chemla Y, Kaufman F, Amiram M, Alfonta L. Expanding the Genetic Code of Bioelectrocatalysis and Biomaterials. Chem Rev 2024; 124:11187-11241. [PMID: 39377473 DOI: 10.1021/acs.chemrev.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Genetic code expansion is a promising genetic engineering technology that incorporates noncanonical amino acids into proteins alongside the natural set of 20 amino acids. This enables the precise encoding of non-natural chemical groups in proteins. This review focuses on the applications of genetic code expansion in bioelectrocatalysis and biomaterials. In bioelectrocatalysis, this technique enhances the efficiency and selectivity of bioelectrocatalysts for use in sensors, biofuel cells, and enzymatic electrodes. In biomaterials, incorporating non-natural chemical groups into protein-based polymers facilitates the modification, fine-tuning, or the engineering of new biomaterial properties. The review provides an overview of relevant technologies, discusses applications, and highlights achievements, challenges, and prospects in these fields.
Collapse
|
2
|
Megušar P, Calder EDD, Vodopivec Seravalli T, Lebar S, Walport LJ, Sekirnik R. HPLC for at-line reaction monitoring and purification improves yield and purity of tRNA. Front Mol Biosci 2024; 11:1443917. [PMID: 39398276 PMCID: PMC11466894 DOI: 10.3389/fmolb.2024.1443917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Engineered transfer RNA is an emerging therapeutic modality, particularly suited to treatment of diseases caused by genetic disorders based on premature termination codons, frameshifts, or missense mutations. It is also extensively used in reprogramming of in vitro translation systems to generate non-canonical amino acid-containing proteins and peptides, such as in mRNA display. Due to its length, chemical synthesis of tRNA is challenging and production of engineered tRNA at scale is currently limited to in vitro transcription from a DNA template. Previously, the highest reported in vitro transcription yield was 2.5 g/L, significantly below the industry standard for mRNA production of 7-10 g/L. To improve this process, we implemented monitoring of nucleoside triphosphate consumption and tRNA production during in vitro transcription, using at-line high-performance liquid chromatography, with a monolithic solid phase. This allowed for optimization of nucleoside triphosphate concentration, reduction of the in vitro transcription time to <4 h, and improvement of yield up to 4.7 g/L. A step-elution purification on a DEAE chromatographic monolith with >90% step yield was then developed. These improvements in the production and purification of tRNA represent an important step in facilitating production of tRNA for research purposes, and provide a method for purification of therapeutic tRNAs that is scalable and compatible with Good Manufacturing Practice requirements for clinical production.
Collapse
Affiliation(s)
| | - Ewen D. D. Calder
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
- Protein-Protein Interaction Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Sergeja Lebar
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| | - Louise J. Walport
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
- Protein-Protein Interaction Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Rok Sekirnik
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| |
Collapse
|
3
|
Sigal M, Matsumoto S, Beattie A, Katoh T, Suga H. Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers. Chem Rev 2024; 124:6444-6500. [PMID: 38688034 PMCID: PMC11122139 DOI: 10.1021/acs.chemrev.3c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Ribosome-dependent protein biosynthesis is an essential cellular process mediated by transfer RNAs (tRNAs). Generally, ribosomally synthesized proteins are limited to the 22 proteinogenic amino acids (pAAs: 20 l-α-amino acids present in the standard genetic code, selenocysteine, and pyrrolysine). However, engineering tRNAs for the ribosomal incorporation of non-proteinogenic monomers (npMs) as building blocks has led to the creation of unique polypeptides with broad applications in cellular biology, material science, spectroscopy, and pharmaceuticals. Ribosomal polymerization of these engineered polypeptides presents a variety of challenges for biochemists, as translation efficiency and fidelity is often insufficient when employing npMs. In this Review, we will focus on the methodologies for engineering tRNAs to overcome these issues and explore recent advances both in vitro and in vivo. These efforts include increasing orthogonality, recruiting essential translation factors, and creation of expanded genetic codes. After our review on the biochemical optimizations of tRNAs, we provide examples of their use in genetic code manipulation, with a focus on the in vitro discovery of bioactive macrocyclic peptides containing npMs. Finally, an analysis of the current state of tRNA engineering is presented, along with existing challenges and future perspectives for the field.
Collapse
Affiliation(s)
- Maxwell Sigal
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satomi Matsumoto
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Adam Beattie
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Lu W, Terasaka N, Sakaguchi Y, Suzuki T, Suzuki T, Suga H. An anticodon-sensing T-boxzyme generates the elongator nonproteinogenic aminoacyl-tRNA in situ of a custom-made translation system for incorporation. Nucleic Acids Res 2024; 52:3938-3949. [PMID: 38477328 DOI: 10.1093/nar/gkae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/24/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
In the hypothetical RNA world, ribozymes could have acted as modern aminoacyl-tRNA synthetases (ARSs) to charge tRNAs, thus giving rise to the peptide synthesis along with the evolution of a primitive translation apparatus. We previously reported a T-boxzyme, Tx2.1, which selectively charges initiator tRNA with N-biotinyl-phenylalanine (BioPhe) in situ in a Flexible In-vitro Translation (FIT) system to produce BioPhe-initiating peptides. Here, we performed in vitro selection of elongation-capable T-boxzymes (elT-boxzymes), using para-azido-l-phenylalanine (PheAZ) as an acyl-donor. We implemented a new strategy to enrich elT-boxzyme-tRNA conjugates that self-aminoacylated on the 3'-terminus selectively. One of them, elT32, can charge PheAZ onto tRNA in trans in response to its cognate anticodon. Further evolution of elT32 resulted in elT49, with enhanced aminoacylation activity. We have demonstrated the translation of a PheAZ-containing peptide in an elT-boxzyme-integrated FIT system, revealing that elT-boxzymes are able to generate the PheAZ-tRNA in response to the cognate anticodon in situ of a custom-made translation system. This study, together with Tx2.1, illustrates a scenario where a series of ribozymes could have overseen aminoacylation and co-evolved with a primitive RNA-based translation system.
Collapse
Affiliation(s)
- Wei Lu
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naohiro Terasaka
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeo Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Medical Biochemistry, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0125, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Pelton JM, Hochuli JE, Sadecki PW, Katoh T, Suga H, Hicks LM, Muratov EN, Tropsha A, Bowers AA. Cheminformatics-Guided Cell-Free Exploration of Peptide Natural Products. J Am Chem Soc 2024; 146:8016-8030. [PMID: 38470819 PMCID: PMC11151186 DOI: 10.1021/jacs.3c11306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
There have been significant advances in the flexibility and power of in vitro cell-free translation systems. The increasing ability to incorporate noncanonical amino acids and complement translation with recombinant enzymes has enabled cell-free production of peptide-based natural products (NPs) and NP-like molecules. We anticipate that many more such compounds and analogs might be accessed in this way. To assess the peptide NP space that is directly accessible to current cell-free technologies, we developed a peptide parsing algorithm that breaks down peptide NPs into building blocks based on ribosomal translation logic. Using the resultant data set, we broadly analyze the biophysical properties of these privileged compounds and perform a retrobiosynthetic analysis to predict which peptide NPs could be directly synthesized in augmented cell-free translation reactions. We then tested these predictions by preparing a library of highly modified peptide NPs. Two macrocyclases, PatG and PCY1, were used to effect the head-to-tail macrocyclization of candidate NPs. This retrobiosynthetic analysis identified a collection of high-priority building blocks that are enriched throughout peptide NPs, yet they had not previously been tested in cell-free translation. To expand the cell-free toolbox into this space, we established, optimized, and characterized the flexizyme-enabled ribosomal incorporation of piperazic acids. Overall, these results demonstrate the feasibility of cell-free translation for peptide NP total synthesis while expanding the limits of the technology. This work provides a novel computational tool for exploration of peptide NP chemical space, that could be expanded in the future to allow design of ribosomal biosynthetic pathways for NPs and NP-like molecules.
Collapse
Affiliation(s)
- Jarrett M. Pelton
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joshua E. Hochuli
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Patric W. Sadecki
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Leslie M. Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Eugene N. Muratov
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alexander Tropsha
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Albert A. Bowers
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC, 27599, USA
| |
Collapse
|
6
|
Franck C, Patel K, Walport LJ, Christie M, Norman A, Passioura T, Suga H, Payne RJ, Mackay JP. Discovery and characterization of cyclic peptides selective for the C-terminal bromodomains of BET family proteins. Structure 2023; 31:912-923.e4. [PMID: 37269828 DOI: 10.1016/j.str.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/19/2023] [Accepted: 05/09/2023] [Indexed: 06/05/2023]
Abstract
DNA-encoded cyclic peptide libraries can yield high-potency, high-specificity ligands against target proteins. We used such a library to seek ligands that could distinguish between paralogous bromodomains from the closely related bromodomain and extra-terminal domain family of epigenetic regulators. Several peptides isolated from a screen against the C-terminal bromodomain of BRD2, together with new peptides discovered in previous screens against the corresponding domain from BRD3 and BRD4, bound their targets with nanomolar and sub-nanomolar affinities. X-ray crystal structures of several of these bromodomain-peptide complexes reveal diverse structures and binding modes, which nevertheless display several conserved features. Some peptides demonstrate significant paralog-level specificity, although the physicochemical explanations for this specificity are often not clear. Our data demonstrate the power of cyclic peptides to discriminate between very similar proteins with high potency and hint that differences in conformational dynamics might modulate the affinity of these domains for particular ligands.
Collapse
Affiliation(s)
- Charlotte Franck
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Karishma Patel
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Louise J Walport
- Protein-Protein Interaction Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Mary Christie
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alexander Norman
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Toby Passioura
- Sydney Analytical Core Research Facility, The University of Sydney, Sydney, NSW 2006, Australia
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
7
|
Lee K, Willi JA, Cho N, Kim I, Jewett MC, Lee J. Cell-free Biosynthesis of Peptidomimetics. BIOTECHNOL BIOPROC E 2023; 28:1-17. [PMID: 36778039 PMCID: PMC9896473 DOI: 10.1007/s12257-022-0268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/16/2022] [Accepted: 11/13/2022] [Indexed: 02/05/2023]
Abstract
A wide variety of peptidomimetics (peptide analogs) possessing innovative biological functions have been brought forth as therapeutic candidates through cell-free protein synthesis (CFPS) systems. A key feature of these peptidomimetic drugs is the use of non-canonical amino acid building blocks with diverse biochemical properties that expand functional diversity. Here, we summarize recent technologies leveraging CFPS platforms to expand the reach of peptidomimetics drugs. We also offer perspectives on engineering the translational machinery that may open new opportunities for expanding genetically encoded chemistry to transform drug discovery practice beyond traditional boundaries.
Collapse
Affiliation(s)
- Kanghun Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
| | - Jessica A. Willi
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208 USA
| | - Namjin Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
| | - Inseon Kim
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208 USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208 USA
| | - Joongoo Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
| |
Collapse
|
8
|
Chan AI, Sawant MS, Burdick DJ, Tom J, Song A, Cunningham CN. Evaluating Translational Efficiency of Noncanonical Amino Acids to Inform the Design of Druglike Peptide Libraries. ACS Chem Biol 2023; 18:81-90. [PMID: 36607609 PMCID: PMC9872084 DOI: 10.1021/acschembio.2c00712] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Advances in genetic code reprogramming have allowed the site-specific incorporation of noncanonical functionalities into polypeptides and proteins, providing access to wide swaths of chemical space via in vitro translation techniques like mRNA display. Prior efforts have established that the translation machinery can tolerate amino acids with modifications to both the peptide backbone and side chains, greatly broadening the chemical space that can be interrogated in ligand discovery efforts. However, existing methods for confirming the translation yield of new amino acid building blocks for these technologies necessitate multistep workups and, more importantly, are not relevant for measuring translation within the context of a combinatorial library consisting of multiple noncanonical amino acids. In this study, we developed a luminescence-based assay to rapidly assess the relative translation yield of any noncanonical amino acid in real time. Among the 59 amino acids tested here, we found that many translate with high efficiency, but translational yield is not necessarily correlated to whether the amino acid is proteinogenic or has high tRNA acylation efficiency. Interestingly, we found that single-template translation data can inform the library-scale translation yield and that shorter peptide libraries are more tolerant of lower-efficiency amino acid monomers. Together our data show that the luminescence-based assay described herein is an essential tool in evaluating new building blocks and codon table designs within mRNA display toward the goal of developing druglike peptide-based libraries for drug discovery campaigns.
Collapse
Affiliation(s)
- Alix I Chan
- Department
of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - Manali S. Sawant
- Department
of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - Daniel J. Burdick
- Department
of Discovery Chemistry, Genentech, South San Francisco, California 94080, United States
| | - Jeffrey Tom
- Department
of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - Aimin Song
- Department
of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - Christian N. Cunningham
- Department
of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States,
| |
Collapse
|
9
|
Choi YN, Cho N, Lee K, Gwon DA, Lee JW, Lee J. Programmable Synthesis of Biobased Materials Using Cell-Free Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203433. [PMID: 36108274 DOI: 10.1002/adma.202203433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Motivated by the intricate mechanisms underlying biomolecule syntheses in cells that chemistry is currently unable to mimic, researchers have harnessed biological systems for manufacturing novel materials. Cell-free systems (CFSs) utilizing the bioactivity of transcriptional and translational machineries in vitro are excellent tools that allow supplementation of exogenous materials for production of innovative materials beyond the capability of natural biological systems. Herein, recent studies that have advanced the ability to expand the scope of biobased materials using CFS are summarized and approaches enabling the production of high-value materials, prototyping of genetic parts and modules, and biofunctionalization are discussed. By extending the reach of chemical and enzymatic reactions complementary to cellular materials, CFSs provide new opportunities at the interface of materials science and synthetic biology.
Collapse
Affiliation(s)
- Yun-Nam Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Namjin Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Kanghun Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Da-Ae Gwon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jeong Wook Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Joongoo Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
10
|
Feng D, Liu L, Shi Y, Du P, Xu S, Zhu Z, Xu J, Yao H. Current development of bicyclic peptides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Melsen PRA, Yoshisada R, Jongkees SAK. Opportunities for Expanding Encoded Chemical Diversification and Improving Hit Enrichment in mRNA-Displayed Peptide Libraries. Chembiochem 2022; 23:e202100685. [PMID: 35100479 PMCID: PMC9306583 DOI: 10.1002/cbic.202100685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Indexed: 11/07/2022]
Abstract
DNA-encoded small-molecule libraries and mRNA displayed peptide libraries both use numerically large pools of oligonucleotide-tagged molecules to identify potential hits for protein targets. They differ dramatically, however, in the 'drug-likeness' of the molecules that each can be used to discover. We give here an overview of the two techniques, comparing some advantages and disadvantages of each, and suggest areas where particularly mRNA display can benefit from adopting advances developed with DNA-encoded small molecule libraries. We outline cases where chemical modification of the peptide library has already been used in mRNA display, and survey opportunities to expand this using examples from DNA-encoded small molecule libraries. We also propose potential opportunities for encoding such reactions within the mRNA/cDNA tag of an mRNA-displayed peptide library to allow a more diversity-oriented approach to library modification. Finally, we outline alternate approaches for enriching target-binding hits from a pooled and tagged library, and close by detailing several examples of how an adjusted mRNA-display based approach could be used to discover new 'drug-like' modified small peptides.
Collapse
Affiliation(s)
- Paddy R. A. Melsen
- Department of Chemistry and Pharmaceutical SciencesVU AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Ryoji Yoshisada
- Department of Chemistry and Pharmaceutical SciencesVU AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Seino A. K. Jongkees
- Department of Chemistry and Pharmaceutical SciencesVU AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| |
Collapse
|
12
|
Tamura T, Inoue M, Yoshimitsu Y, Hashimoto I, Ohashi N, Tsumura K, Suzuki K, Watanabe T, Hohsaka T. Chemical Synthesis and Cell-Free Expression of Thiazoline Ring-Bridged Cyclic Peptides and Their Properties on Biomembrane Permeability. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Takashi Tamura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1211, Japan
- Synthetic Organic Chemistry Laboratories, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Masaaki Inoue
- Synthetic Organic Chemistry Laboratories, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Yuji Yoshimitsu
- Synthetic Organic Chemistry Laboratories, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Ichihiko Hashimoto
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minamiashigara, Kanagawa 258-0123, Japan
| | - Noriyuki Ohashi
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minamiashigara, Kanagawa 258-0123, Japan
| | - Kyosuke Tsumura
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minamiashigara, Kanagawa 258-0123, Japan
| | - Koo Suzuki
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minamiashigara, Kanagawa 258-0123, Japan
| | - Takayoshi Watanabe
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1211, Japan
| | - Takahiro Hohsaka
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1211, Japan
| |
Collapse
|
13
|
In Vitro Selection of Thioether-Closed Macrocyclic Peptide Ligands by Means of the RaPID System. Methods Mol Biol 2021. [PMID: 34596852 DOI: 10.1007/978-1-0716-1689-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The Random nonstandard Peptides Integrated Discovery (RaPID) system enables efficient screening of macrocyclic peptides with high affinities against target molecules. Random peptide libraries are prepared by in vitro translation using the Flexible In vitro Translation (FIT) system, which allows for incorporation of diverse nonproteinogenic amino acids into peptides by genetic code reprogramming. By introducing an N-chloroacetyl amino acid at the N-terminus and a Cys at the downstream, macrocyclic peptide libraries can be readily generated via posttranslational thioether formation. Here, we describe how to prepare a thioether-closed macrocyclic peptide library, and its application to the RaPID screening.
Collapse
|
14
|
Dengler S, Mandal PK, Allmendinger L, Douat C, Huc I. Conformational interplay in hybrid peptide-helical aromatic foldamer macrocycles. Chem Sci 2021; 12:11004-11012. [PMID: 34522297 PMCID: PMC8386670 DOI: 10.1039/d1sc03640h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022] Open
Abstract
Macrocyclic peptides are an important class of bioactive substances. When inserting an aromatic foldamer segment in a macrocyclic peptide, the strong folding propensity of the former may influence the conformation and alter the properties of the latter. Such an insertion is relevant because some foldamer-peptide hybrids have recently been shown to be tolerated by the ribosome, prior to forming macrocycles, and can thus be produced using an in vitro translation system. We have investigated the interplay of peptide and foldamer conformations in such hybrid macrocycles. We show that foldamer helical folding always prevails and stands as a viable means to stretch, i.e. unfold, peptides in a solvent dependent manner. Conversely, the peptide systematically has a reciprocal influence and gives rise to strong foldamer helix handedness bias as well as foldamer helix stabilisation. The hybrid macrocycles also show resistance towards proteolytic degradation.
Collapse
Affiliation(s)
- Sebastian Dengler
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität Butenandtstraße 5-13 D-81377 Munich Germany
| | - Pradeep K Mandal
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität Butenandtstraße 5-13 D-81377 Munich Germany
| | - Lars Allmendinger
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität Butenandtstraße 5-13 D-81377 Munich Germany
| | - Céline Douat
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität Butenandtstraße 5-13 D-81377 Munich Germany
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität Butenandtstraße 5-13 D-81377 Munich Germany
| |
Collapse
|
15
|
Wang W, Khojasteh SC, Su D. Biosynthetic Strategies for Macrocyclic Peptides. Molecules 2021; 26:3338. [PMID: 34206124 PMCID: PMC8199541 DOI: 10.3390/molecules26113338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 11/28/2022] Open
Abstract
Macrocyclic peptides are predominantly peptide structures bearing one or more rings and spanning multiple amino acid residues. Macrocyclization has become a common approach for improving the pharmacological properties and bioactivity of peptides. A variety of ribosomal-derived and non-ribosomal synthesized cyclization approaches have been established. The biosynthesis of backbone macrocyclic peptides using seven new emerging methodologies will be discussed with regard to the features and strengths of each platform rather than medicinal chemistry tools. The mRNA display variant, known as the random nonstandard peptide integrated discovery (RaPID) platform, utilizes flexible in vitro translation (FIT) to access macrocyclic peptides containing nonproteinogenic amino acids (NAAs). As a new discovery approach, the ribosomally synthesized and post-translationally modified peptides (RiPPs) method involves the combination of ribosomal synthesis and the phage screening platform together with macrocyclization chemistries to generate libraries of macrocyclic peptides. Meanwhile, the split-intein circular ligation of peptides and proteins (SICLOPPS) approach relies on the in vivo production of macrocyclic peptides. In vitro and in vivo peptide library screening is discussed as an advanced strategy for cyclic peptide selection. Specifically, biosynthetic bicyclic peptides are highlighted as versatile and attractive modalities. Bicyclic peptides represent another type of promising therapeutics that allow for building blocks with a heterotrimeric conjugate to address intractable challenges and enable multimer complexes via linkers. Additionally, we discuss the cell-free chemoenzymatic synthesis of macrocyclic peptides with a non-ribosomal catalase known as the non-ribosomal synthetase (NRPS) and chemo-enzymatic approach, with recombinant thioesterase (TE) domains. Novel insights into the use of peptide library tools, activity-based two-hybrid screening, structure diversification, inclusion of NAAs, combinatorial libraries, expanding the toolbox for macrocyclic peptides, bicyclic peptides, chemoenzymatic strategies, and future perspectives are presented. This review highlights the broad spectrum of strategy classes, novel platforms, structure diversity, chemical space, and functionalities of macrocyclic peptides enabled by emerging biosynthetic platforms to achieve bioactivity and for therapeutic purposes.
Collapse
Affiliation(s)
| | | | - Dian Su
- Drug Metabolism and Disposition, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (W.W.); (S.C.K.)
| |
Collapse
|
16
|
Dahiya R, Dahiya S, Kumar P, Kumar RV, Dahiya S, Kumar S, Saharan R, Basu P, Mitra A, Sharma A, Kashaw SK, Patel JK. Structural and biological aspects of natural bridged macrobicyclic peptides from marine resources. Arch Pharm (Weinheim) 2021; 354:e2100034. [PMID: 33913195 DOI: 10.1002/ardp.202100034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/29/2022]
Abstract
Among peptide-based drugs, naturally occurring bicyclic compounds have been established as molecules with unique therapeutic potential. The diverse pharmacological activities associated with bicyclic peptides from marine tunicates, sponges, and bacteria render them suitable to be employed as effective surrogate between complex and small therapeutic moieties. Bicyclic peptides possess greater conformational rigidity and higher metabolic stability as compared with linear and monocyclic peptides. The antibody-like affinity and specificity of bicyclic peptides enable their binding to the challenging drug targets. Bridged macrobicyclic peptides from natural marine resources represent an underexplored class of molecules that provides promising platforms for drug development owing to their biocompatibility, similarity, and chemical diversity to proteins. The present review explores major marine-derived bicyclic peptides including disulfide-bridged, histidinotyrosine-bridged, or histidinoalanine-bridged macrobicyclic peptides along with their structural characteristics, synthesis, structure-activity relationship, and bioproperties.The comparison of these macrobicyclic congeners with linear/monocyclic peptides along with their therapeutic potential are also briefly discussed.
Collapse
Affiliation(s)
- Rajiv Dahiya
- Laboratory of Peptide Research and Development, School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Sunita Dahiya
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, USA
| | - Priyank Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, Marshall B. Ketchum University, Fullerton, California, USA
| | - Radhika V Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy, American University of Health Sciences, Signal Hill, California, USA
| | - Saurabh Dahiya
- Department of Quality Assurance, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Suresh Kumar
- Department of Pharmaceutical Chemistry, Bharat Institute of Pharmacy, Pehladpur, Babain, Kurukshetra, Haryana, India
| | - Renu Saharan
- Department of Pharmaceutics, M. M. College of Pharmacy, Maharishi Markandeshwar Deemed to be University, Ambala, Haryana, India
| | - Paramita Basu
- Department of Pharmaceutical & Biomedical Sciences, Touro College of Pharmacy, New York, USA
| | - Arindam Mitra
- Department of Microbiology, School of Life Science and Biotechnology, Adamas University, Barasat, West Bengal, India
| | - Ajay Sharma
- Department of Pharmacognosy and Phytochemistry, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Sushil K Kashaw
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, Madhya Pradesh, India
| | - Jayvadan K Patel
- Department of Pharmaceutics, Nootan Pharmacy College, Faculty of Pharmacy, Sankalchand Patel University, Visnagar, Mehsana, Gujarat, India
| |
Collapse
|
17
|
Discovery of De Novo Macrocyclic Peptides by Messenger RNA Display. Trends Pharmacol Sci 2021; 42:385-397. [PMID: 33771353 DOI: 10.1016/j.tips.2021.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022]
Abstract
Macrocyclic peptides are a promising class of compounds that can often engage challenging therapeutic targets. Display technologies, such as mRNA display, allow for the efficient discovery of macrocyclic peptides. This article reviews the current approaches for generating macrocyclic peptide libraries using mRNA display and highlights some recent examples of ribosomal incorporation of nonproteinogenic amino acids into macrocyclic peptides.
Collapse
|
18
|
Dotter H, Boll M, Eder M, Eder AC. Library and post-translational modifications of peptide-based display systems. Biotechnol Adv 2021; 47:107699. [PMID: 33513435 DOI: 10.1016/j.biotechadv.2021.107699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 01/04/2021] [Accepted: 01/14/2021] [Indexed: 12/27/2022]
Abstract
Innovative biotechnological methods empower the successful identification of new drug candidates. Phage, ribosome and mRNA display represent high throughput screenings, allowing fast and efficient progress in the field of targeted drug discovery. The identification range comprises low molecular weight peptides up to whole antibodies. However, a major challenge poses the stability and affinity in particular of peptides. Chemical modifications e.g. the introduction of unnatural amino acids or cyclization, have been proven to be essential tools to overcome these limitations. This review article particularly focuses on available methods for the targeted chemical modification of peptides and peptide libraries in selected display approaches.
Collapse
Affiliation(s)
- Hanna Dotter
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; Division of Radiopharmaceutical Development, German Cancer Consortium, partner site Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany, and German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Melanie Boll
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; Division of Radiopharmaceutical Development, German Cancer Consortium, partner site Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany, and German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Matthias Eder
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; Division of Radiopharmaceutical Development, German Cancer Consortium, partner site Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany, and German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Ann-Christin Eder
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; Division of Radiopharmaceutical Development, German Cancer Consortium, partner site Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany, and German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
19
|
Iskandar SE, Haberman VA, Bowers AA. Expanding the Chemical Diversity of Genetically Encoded Libraries. ACS COMBINATORIAL SCIENCE 2020; 22:712-733. [PMID: 33167616 PMCID: PMC8284915 DOI: 10.1021/acscombsci.0c00179] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The power of ribosomes has increasingly been harnessed for the synthesis and selection of molecular libraries. Technologies, such as phage display, yeast display, and mRNA display, effectively couple genotype to phenotype for the molecular evolution of high affinity epitopes for many therapeutic targets. Genetic code expansion is central to the success of these technologies, allowing researchers to surpass the intrinsic capabilities of the ribosome and access new, genetically encoded materials for these selections. Here, we review techniques for the chemical expansion of genetically encoded libraries, their abilities and limits, and opportunities for further development. Importantly, we also discuss methods and metrics used to assess the efficiency of modification and library diversity with these new techniques.
Collapse
Affiliation(s)
- Sabrina E Iskandar
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Victoria A Haberman
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Albert A Bowers
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
20
|
Liu M, Thijssen V, Jongkees SAK. Suppression of Formylation Provides an Alternative Approach to Vacant Codon Creation in Bacterial In Vitro Translation. Angew Chem Int Ed Engl 2020; 59:21870-21874. [PMID: 32840944 PMCID: PMC7756408 DOI: 10.1002/anie.202003779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/04/2020] [Indexed: 11/22/2022]
Abstract
Genetic code reprogramming is a powerful approach to controlled protein modification. A remaining challenge, however, is the generation of vacant codons. We targeted the initiation machinery of E. coli, showing that restriction of the formyl donor or inhibition of the formyl transferase during in vitro translation is sufficient to prevent formylation of the acylated initiating tRNA and thereby create a vacant initiation codon that can be reprogrammed by exogenously charged tRNA. Our approach conveniently generates peptides and proteins tagged N‐terminally with non‐canonical functional groups at up to 99 % reprogramming efficiency, in combination with decoding the AUG elongation codons either with native methionine or with further reprogramming with azide‐ and alkyne‐containing cognates. We further show macrocyclization and intermolecular modifications with these click handles, thus emphasizing the applicability of our method to current challenges in peptide and protein chemistry.
Collapse
Affiliation(s)
- Minglong Liu
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Vito Thijssen
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Seino A K Jongkees
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| |
Collapse
|
21
|
Liu M, Thijssen V, Jongkees SAK. Suppression of Formylation Provides an Alternative Approach to Vacant Codon Creation in Bacterial In Vitro Translation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Minglong Liu
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences Utrecht University Universiteitsweg 99 3584CG Utrecht The Netherlands
| | - Vito Thijssen
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences Utrecht University Universiteitsweg 99 3584CG Utrecht The Netherlands
| | - Seino A. K. Jongkees
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences Utrecht University Universiteitsweg 99 3584CG Utrecht The Netherlands
| |
Collapse
|
22
|
Zhang Z, Gao R, Hu Q, Peacock H, Peacock DM, Dai S, Shokat KM, Suga H. GTP-State-Selective Cyclic Peptide Ligands of K-Ras(G12D) Block Its Interaction with Raf. ACS CENTRAL SCIENCE 2020; 6:1753-1761. [PMID: 33145412 PMCID: PMC7596874 DOI: 10.1021/acscentsci.0c00514] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Indexed: 05/08/2023]
Abstract
We report the identification of three cyclic peptide ligands of K-Ras(G12D) using an integrated in vitro translation-mRNA display selection platform. These cyclic peptides show preferential binding to the GTP-bound state of K-Ras(G12D) over the GDP-bound state and block Ras-Raf interaction. A co-crystal structure of peptide KD2 with K-Ras(G12D)·GppNHp reveals that this peptide binds in the Switch II groove region with concomitant opening of the Switch II loop and a 40° rotation of the α2 helix, and that a threonine residue (Thr10) on KD2 has direct access to the mutant aspartate (Asp12) on K-Ras. Replacing this threonine with non-natural amino acids afforded peptides with improved potency at inhibiting the interaction between Raf1-RBD and K-Ras(G12D) but not wildtype K-Ras. The union of G12D over wildtype selectivity and GTP state/GDP state selectivity is particularly desirable, considering that oncogenic K-Ras(G12D) exists predominantly in the GTP state in cancer cells, and wildtype K-Ras signaling is important for the maintenance of healthy cells.
Collapse
Affiliation(s)
- Ziyang Zhang
- Department of Cellular
and Molecular Pharmacology, Howard Hughes Medical Institute, University of California—San Francisco, San Francisco, California 94158, United States
| | - Rong Gao
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Qi Hu
- Department of Cellular
and Molecular Pharmacology, Howard Hughes Medical Institute, University of California—San Francisco, San Francisco, California 94158, United States
| | - Hayden Peacock
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - D. Matthew Peacock
- Department of Cellular
and Molecular Pharmacology, Howard Hughes Medical Institute, University of California—San Francisco, San Francisco, California 94158, United States
| | - Shizhong Dai
- Department of Cellular
and Molecular Pharmacology, Howard Hughes Medical Institute, University of California—San Francisco, San Francisco, California 94158, United States
| | - Kevan M. Shokat
- Department of Cellular
and Molecular Pharmacology, Howard Hughes Medical Institute, University of California—San Francisco, San Francisco, California 94158, United States
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
23
|
Wen J, Liao H, Stachowski K, Hempfling JP, Qian Z, Yuan C, Foster MP, Pei D. Rational design of cell-permeable cyclic peptides containing a d-Pro-l-Pro motif. Bioorg Med Chem 2020; 28:115711. [PMID: 33069067 DOI: 10.1016/j.bmc.2020.115711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/01/2022]
Abstract
Cyclic peptides are capable of binding to challenging targets (e.g., proteins involved in protein-protein interactions) with high affinity and specificity, but generally cannot gain access to intracellular targets because of poor membrane permeability. In this work, we discovered a conformationally constrained cyclic cell-penetrating peptide (CPP) containing a d-Pro-l-Pro motif, cyclo(AFΦrpPRRFQ) (where Φ is l-naphthylalanine, r is d-arginine, and p is d-proline). The structural constraints provided by cyclization and the d-Pro-l-Pro motif permitted the rational design of cell-permeable cyclic peptides of large ring sizes (up to 16 amino acids). This strategy was applied to design a potent, cell-permeable, and biologically active cyclic peptidyl inhibitor, cyclo(YpVNFΦrpPRR) (where Yp is l-phosphotyrosine), against the Grb2 SH2 domain. Multidimensional NMR spectroscopic and circular dichroism analyses revealed that the cyclic CPP as well as the Grb2 SH2 inhibitor assume a predominantly random coil structure but have significant β-hairpin character surrounding the d-Pro-l-Pro motif. These results demonstrate cyclo(AFΦrpPRRFQ) as an effective CPP for endocyclic (insertion of cargo into the CPP ring) or exocyclic delivery of biological cargos (attachment of cargo to the Gln side chain).
Collapse
Affiliation(s)
- Jin Wen
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210, USA
| | - Hui Liao
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210, USA
| | - Kye Stachowski
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210, USA
| | - Jordan P Hempfling
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210, USA
| | - Ziqing Qian
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210, USA
| | - Chunhua Yuan
- Campus Chemical Instrument Center, The Ohio State University, 460 West 12(th) Avenue, Columbus, OH 43210, USA
| | - Mark P Foster
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210, USA.
| | - Dehua Pei
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
24
|
Cui Z, Johnston WA, Alexandrov K. Cell-Free Approach for Non-canonical Amino Acids Incorporation Into Polypeptides. Front Bioeng Biotechnol 2020; 8:1031. [PMID: 33117774 PMCID: PMC7550873 DOI: 10.3389/fbioe.2020.01031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Synthetic biology holds promise to revolutionize the life sciences and biomedicine via expansion of macromolecular diversity outside the natural chemical space. Use of non-canonical amino acids (ncAAs) via codon reassignment has found diverse applications in protein structure and interaction analysis, introduction of post-translational modifications, production of constrained peptides, antibody-drug conjugates, and novel enzymes. However, simultaneously encoding multiple ncAAs in vivo requires complex engineering and is sometimes restricted by the cell's poor uptake of ncAAs. In contrast the open nature of cell-free protein synthesis systems offers much greater freedom for manipulation and repurposing of the biosynthetic machinery by controlling the level and identity of translational components and reagents, and allows simultaneous incorporation of multiple ncAAs with non-canonical side chains and even backbones (N-methyl, D-, β-amino acids, α-hydroxy acids etc.). This review focuses on the two most used Escherichia coli-based cell-free protein synthesis systems; cell extract- and PURE-based systems. The former is a biological mixture with >500 proteins, while the latter consists of 38 individually purified biomolecules. We delineate compositions of these two systems and discuss their respective advantages and applications. Also, we dissect the translational components required for ncAA incorporation and compile lists of ncAAs that can be incorporated into polypeptides via different acylation approaches. We highlight the recent progress in using unnatural nucleobase pairs to increase the repertoire of orthogonal codons, as well as using tRNA-specific ribozymes for in situ acylation. We summarize advances in engineering of translational machinery such as tRNAs, aminoacyl-tRNA synthetases, elongation factors, and ribosomes to achieve efficient incorporation of structurally challenging ncAAs. We note that, many engineered components of biosynthetic machinery are developed for the use in vivo but are equally applicable to the in vitro systems. These are included in the review to provide a comprehensive overview for ncAA incorporation and offer new insights for the future development in cell-free systems. Finally, we highlight the exciting progress in the genomic engineering, resulting in E. coli strains free of amber and some redundant sense codons. These strains can be used for preparation of cell extracts offering multiple reassignment options.
Collapse
Affiliation(s)
- Zhenling Cui
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Wayne A Johnston
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kirill Alexandrov
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
25
|
Okuma R, Kuwahara T, Yoshikane T, Watanabe M, Dranchak P, Inglese J, Shuto S, Goto Y, Suga H. A Macrocyclic Peptide Library with a Structurally Constrained Cyclopropane-containing Building Block Leads to Thiol-independent Inhibitors of Phosphoglycerate Mutase. Chem Asian J 2020; 15:2631-2636. [PMID: 32633882 PMCID: PMC9547493 DOI: 10.1002/asia.202000700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/04/2020] [Indexed: 01/20/2023]
Abstract
Here we report the construction of an mRNA-encoded library of thioether-closed macrocyclic peptides by using an N-chloroacetyl-cyclopropane-containing exotic initiator whose structure is more constrained than the ordinary N-chloroacetyl-α-amino acid initiators. The use of such an initiator has led to a macrocycle library with significantly suppressed population of lariat-shaped species compared with the conventional libraries. We previously used a conventional library and identified a small lariat thioether-macrocycle with a tail peptide with a C-terminal free Cys whose sidechain plays an essential role in potent inhibitory activity against a parasitic model enzyme, phosphoglycerate mutase. On the other hand, the cyclopropane-containing macrocycle library has yielded a larger thioether-macrocycle lacking a free Cys residue, which exhibits potent inhibitory activity to the same enzyme with a different mode of action. This result indicates that such a cyclopropane-containing macrocycle library would allow us to access mechanistically distinct macrocycles.
Collapse
Affiliation(s)
- Rika Okuma
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Tomoki Kuwahara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takafumi Yoshikane
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Mizuki Watanabe
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Patricia Dranchak
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - James Inglese
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
26
|
Hacker DE, Abrigo NA, Hoinka J, Richardson SL, Przytycka TM, Hartman MCT. Direct, Competitive Comparison of Linear, Monocyclic, and Bicyclic Libraries Using mRNA Display. ACS COMBINATORIAL SCIENCE 2020; 22:306-310. [PMID: 32418423 PMCID: PMC7284801 DOI: 10.1021/acscombsci.0c00016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Peptide
macrocyclization is typically associated with the development of higher
affinity and more protease stable protein ligands, and, as such, is
an important tool in peptide drug discovery. Yet, within the context
of a diverse library, does cyclization give inherent advantages over
linear peptides? Here, we used mRNA display to create a peptide library
of diverse ring sizes and topologies (monocyclic, bicyclic, and
linear). Several rounds of in vitro selection against streptavidin
were performed and the winning peptide sequences were analyzed for
their binding affinities and overall topologies. The effect of adding
a protease challenge on the enrichment of various peptides was also
investigated. Taken together, the selection output yields insights
about the relative abundance of binders of various topologies within
a structurally diverse library.
Collapse
Affiliation(s)
- David E. Hacker
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, 23284, Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, 23219, Virginia, United States
| | - Nicolas A. Abrigo
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, 23284, Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, 23219, Virginia, United States
| | - Jan Hoinka
- National Center for Biotechnology Information, 8600 Rockville Pike, Bethesda, 20894, Maryland, United States
| | - Stacie L. Richardson
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, 23284, Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, 23219, Virginia, United States
| | - Teresa M. Przytycka
- National Center for Biotechnology Information, 8600 Rockville Pike, Bethesda, 20894, Maryland, United States
| | - Matthew C. T. Hartman
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, 23284, Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, 23219, Virginia, United States
| |
Collapse
|
27
|
Salim H, Song J, Sahni A, Pei D. Development of a Cell-Permeable Cyclic Peptidyl Inhibitor against the Keap1-Nrf2 Interaction. J Org Chem 2019; 85:1416-1424. [PMID: 31609620 DOI: 10.1021/acs.joc.9b02367] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Macrocyclic peptides have proven to be highly effective inhibitors of protein-protein interactions but generally lack cell permeability to access intracellular targets. We show herein that macrocyclic peptides may be rendered highly cell-permeable and biologically active by conjugating them with a cyclic cell-penetrating peptide (CPP). A previously reported cyclic peptidyl inhibitor against the Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid-2 (Nrf2) interaction (KD = 18 nM) was covalently attached to a cyclic CPP through a flexible linker. The resulting bicyclic peptide retained the Keap1-binding activity, resisted proteolytic degradation, readily entered mammalian cells, and activated the transcriptional activity of Nrf2 at nanomolar to low micromolar concentrations in cell culture. The inhibitor provides a useful tool for investigating the biological function of Keap1-Nrf2 and a potential lead for further development into a novel class of anti-inflammatory and anticancer agents. Our data suggest that other membrane-impermeable cyclic peptides may be similarly rendered cell-permeable by conjugation with a cyclic CPP.
Collapse
Affiliation(s)
- Heba Salim
- Department of Chemistry and Biochemistry , The Ohio State University , 484 West 12th Avenue , Columbus , Ohio 43210 , United States
| | - Jian Song
- Department of Chemistry and Biochemistry , The Ohio State University , 484 West 12th Avenue , Columbus , Ohio 43210 , United States.,School of Pharmacy , Guangdong Pharmaceutical University , Guangzhou , Guangdong Province 510006 , P.R. China
| | - Ashweta Sahni
- Department of Chemistry and Biochemistry , The Ohio State University , 484 West 12th Avenue , Columbus , Ohio 43210 , United States
| | - Dehua Pei
- Department of Chemistry and Biochemistry , The Ohio State University , 484 West 12th Avenue , Columbus , Ohio 43210 , United States
| |
Collapse
|
28
|
Abstract
This Review is devoted to the chemistry of macrocyclic peptides having heterocyclic fragments in their structure. These motifs are present in many natural products and synthetic macrocycles designed against a particular biochemical target. Thiazole and oxazole are particularly common constituents of naturally occurring macrocyclic peptide molecules. This frequency of occurrence is because the thiazole and oxazole rings originate from cysteine, serine, and threonine residues. Whereas other heteroaryl groups are found less frequently, they offer many insightful lessons that range from conformational control to receptor/ligand interactions. Many options to develop new and improved technologies to prepare natural products have appeared in recent years, and the synthetic community has been pursuing synthetic macrocycles that have no precedent in nature. This Review attempts to summarize progress in this area.
Collapse
Affiliation(s)
- Ivan V Smolyar
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Valentine G Nenajdenko
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| |
Collapse
|
29
|
Ahangarzadeh S, Kanafi MM, Hosseinzadeh S, Mokhtarzadeh A, Barati M, Ranjbari J, Tayebi L. Bicyclic peptides: types, synthesis and applications. Drug Discov Today 2019; 24:1311-1319. [PMID: 31102732 DOI: 10.1016/j.drudis.2019.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/19/2019] [Accepted: 05/08/2019] [Indexed: 01/14/2023]
Abstract
Bicyclic peptides form one of the most promising platforms for drug development owing to their biocompatibility, similarity and chemical diversity to proteins, and they are considered as a possible practical tool in various therapeutic and diagnostic applications. Bicyclic peptides are known to have the capability of being employed as an effective alternative to complex molecules, such as antibodies, or small molecules. This review provides a summary of the recent progress on the types, synthesis and applications of bicyclic peptides. More specifically, natural and synthetic bicyclic peptides are introduced with their different production methods and relevant applications, including drug targeting, imaging and diagnosis. Their uses as antimicrobial agents, as well as the therapeutic functions of different bicyclic peptides, are also discussed.
Collapse
Affiliation(s)
- Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad M Kanafi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmood Barati
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Ranjbari
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA.
| |
Collapse
|
30
|
Dong H, Meng X, Zheng X, Cheng X, Zheng Y, Zhao Y, Wu C. Design and Synthesis of Cross-Link-Dense Peptides by Manipulating Regioselective Bisthioether Cross-Linking and Orthogonal Disulfide Pairing. J Org Chem 2019; 84:5187-5194. [PMID: 30895794 DOI: 10.1021/acs.joc.9b00164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Existing disulfide-rich peptides, both naturally occurring and de novo designed, only represent a tiny amount of the possible sequence space because natural evolution and de novo design only keep sequences that are structurally approachable by correct disulfide pairings. To bypass this limitation for designing new peptide scaffolds beyond the natural sequence space, we dedicate to developing novel disulfide-rich peptides with predefined disulfide pairing patterns irrelevant to primary sequences. However, most of these designed peptides still suffer from disulfide rearrangements to at least one to three possible isomers. Here, we report a general and reliable strategy for the design and synthesis of a range of structurally diverse cross-link-dense peptide (CDP) scaffolds with two orthogonal disulfide bonds and a bisthioether bridge that are not subject to disulfide isomerizations. Altering the pattern of cysteine and penicillamine generates hundreds of different CDP scaffolds tolerant to extensive sequence manipulations. This work thus provides many useful scaffolds for the design of functional molecules such as protein binders with improved proteolytic stability (e.g., designed by epitope grafting).
Collapse
Affiliation(s)
- Huilei Dong
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , Xiamen University , Xiamen 361005 , P.R. China
| | - Xiaoting Meng
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , Xiamen University , Xiamen 361005 , P.R. China
| | - Xiaoli Zheng
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , Xiamen University , Xiamen 361005 , P.R. China
| | - Xueting Cheng
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , Xiamen University , Xiamen 361005 , P.R. China
| | - Yiwu Zheng
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , Xiamen University , Xiamen 361005 , P.R. China
| | - Yibing Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , Xiamen University , Xiamen 361005 , P.R. China
| | - Chuanliu Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , Xiamen University , Xiamen 361005 , P.R. China
| |
Collapse
|
31
|
Yin Y, Fei Q, Liu W, Li Z, Suga H, Wu C. Chemical and Ribosomal Synthesis of Topologically Controlled Bicyclic and Tricyclic Peptide Scaffolds Primed by Selenoether Formation. Angew Chem Int Ed Engl 2019; 58:4880-4885. [PMID: 30762292 DOI: 10.1002/anie.201813827] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/11/2019] [Indexed: 12/31/2022]
Abstract
Bicyclic and tricyclic peptides have emerged as promising candidates for the development of protein binders and new therapeutics. However, convenient and efficient strategies that can generate topologically controlled bicyclic and tricyclic peptide scaffolds from fully-unprotected peptides are still much in demand, particularly for those amenable to the design of biosynthetic libraries. In this work, we report a reliable chemical and ribosomal synthesis of topologically controlled bicyclic and tricyclic peptide scaffolds. Our strategy involves the combination of selenoether cyclization followed by disulfide or thioether cyclization, yielding desirable bicyclic and tricyclic peptides. This work thus lays the foundation for developing peptide libraries with controlled topology of multicyclic scaffolds for in vitro display techniques.
Collapse
Affiliation(s)
- Yizhen Yin
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Qianran Fei
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen, 361005, P. R. China
| | - Weidong Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhuoru Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen, 361005, P. R. China
| | - Hiroaki Suga
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Chuanliu Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
32
|
Yin Y, Fei Q, Liu W, Li Z, Suga H, Wu C. Chemical and Ribosomal Synthesis of Topologically Controlled Bicyclic and Tricyclic Peptide Scaffolds Primed by Selenoether Formation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yizhen Yin
- Department of ChemistrySchool of ScienceThe University of Tokyo 7-3-1 Hongo Bunkyo Tokyo 113-0033 Japan
| | - Qianran Fei
- Department of ChemistryCollege of Chemistry and Chemical EngineeringThe MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid SurfaceXiamen University Xiamen 361005 P. R. China
| | - Weidong Liu
- Department of ChemistryCollege of Chemistry and Chemical EngineeringThe MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid SurfaceXiamen University Xiamen 361005 P. R. China
| | - Zhuoru Li
- Department of ChemistryCollege of Chemistry and Chemical EngineeringThe MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid SurfaceXiamen University Xiamen 361005 P. R. China
| | - Hiroaki Suga
- Department of ChemistrySchool of ScienceThe University of Tokyo 7-3-1 Hongo Bunkyo Tokyo 113-0033 Japan
| | - Chuanliu Wu
- Department of ChemistryCollege of Chemistry and Chemical EngineeringThe MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid SurfaceXiamen University Xiamen 361005 P. R. China
| |
Collapse
|
33
|
Tsiamantas C, Otero-Ramirez ME, Suga H. Discovery of Functional Macrocyclic Peptides by Means of the RaPID System. Methods Mol Biol 2019; 2001:299-315. [PMID: 31134577 DOI: 10.1007/978-1-4939-9504-2_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Flexizymes, highly flexible tRNA aminoacylation ribozymes, have enabled charging of virtually any amino acid (including non-proteogenic ones) onto tRNA molecules. Coupling to a custom-made in vitro translation system, namely the flexible in vitro translation (FIT) system, has unveiled the remarkable tolerance of the ribosome toward molecules, remote from what nature has selected to carry out its elaborate functions. Among the very diverse molecules and chemistries that have been ribosomally incorporated, a plethora of entities capable of mediating intramolecular cyclization have revolutionized the design and discovery of macrocyclic peptides. These macrocyclization reactions (which can be spontaneous, chemical, or enzymatic) have all served as tools for the discovery of peptides with natural-like structures and properties. Coupling of the FIT system and mRNA display techniques, known as the random non-standard peptide integrated discovery (RaPID) system, has in turn allowed for the simultaneous screening of trillions of macrocyclic peptides against challenging biological targets. The macrocyclization methodologies are chosen depending on the structural and functional characteristics of the desired molecule. Thus, they can emanate from the peptide's N-terminus or its side chains, attributing flexibility or rigidity, or even result in the installation of fluorescent probes.
Collapse
Affiliation(s)
- Christos Tsiamantas
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Manuel E Otero-Ramirez
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan.
| |
Collapse
|
34
|
Huang Y, Wiedmann MM, Suga H. RNA Display Methods for the Discovery of Bioactive Macrocycles. Chem Rev 2018; 119:10360-10391. [PMID: 30395448 DOI: 10.1021/acs.chemrev.8b00430] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The past two decades have witnessed the emergence of macrocycles, including macrocyclic peptides, as a promising yet underexploited class of de novo drug candidates. Both rational/computational design and in vitro display systems have contributed tremendously to the development of cyclic peptide binders of either traditional targets such as cell-surface receptors and enzymes or challenging targets such as protein-protein interaction surfaces. mRNA display, a key platform technology for the discovery of cyclic peptide ligands, has become one of the leading strategies that can generate natural-product-like macrocyclic peptide binders with antibody-like affinities. On the basis of the original cell-free transcription/translation system, mRNA display is highly evolvable to realize its full potential by applying genetic reprogramming and chemical/enzymatic modifications. In addition, mRNA display also allows the follow-up hit-to-lead development using high-throughput focused affinity maturation. Finally, mRNA-displayed peptides can be readily engineered to create chemical conjugates based on known small molecules or biologics. This review covers the birth and growth of mRNA display and discusses the above features of mRNA display with success stories and future perspectives and is up to date as of August 2018.
Collapse
Affiliation(s)
- Yichao Huang
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Mareike Margarete Wiedmann
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| |
Collapse
|
35
|
Decoene KW, Vannecke W, Passioura T, Suga H, Madder A. Pyrrole-Mediated Peptide Cyclization Identified through Genetically Reprogrammed Peptide Synthesis. Biomedicines 2018; 6:biomedicines6040099. [PMID: 30380792 PMCID: PMC6315747 DOI: 10.3390/biomedicines6040099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022] Open
Abstract
Flexible in vitro translation (FIT) was used as a screening method to uncover a new methodology for peptide constraining based on the attack of a nucleophilic side-chain functionality onto an oxidized furylalanine side chain. A set of template peptides, each containing furylalanine as furan-modified amino acid and a nucleophilic residue (Cys, His, Lys, Arg, Ser, or Tyr), was produced through FIT. The translation mixtures were treated with N-bromosuccinimide (NBS) to achieve selective furan oxidation and subsequent MALDI analysis demonstrated Lys and Ser as promising residues for cyclisation. Solid-phase peptide synthesis (SPPS) was used to synthesize suitable amounts of material for further in-depth analysis and characterisation. It was found that in the case of the peptide containing lysine next to a furylalanine residue, a one-pot oxidation and reduction reaction leads to the generation of a cyclic peptide featuring a pyrrole moiety as cyclisation motif, resulting from the attack of the lysine side chain onto the oxidized furylalanine side chain. Structural evidence was provided via NMR and the generality of the methodology was explored. We hereby expand the scope of our previously developed furan-based peptide labeling and crosslinking strategy.
Collapse
Affiliation(s)
- Klaas W Decoene
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium.
| | - Willem Vannecke
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium.
| | - Toby Passioura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Annemieke Madder
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium.
| |
Collapse
|
36
|
Rhodes CA, Dougherty PG, Cooper JK, Qian Z, Lindert S, Wang QE, Pei D. Cell-Permeable Bicyclic Peptidyl Inhibitors against NEMO-IκB Kinase Interaction Directly from a Combinatorial Library. J Am Chem Soc 2018; 140:12102-12110. [PMID: 30176143 PMCID: PMC6231237 DOI: 10.1021/jacs.8b06738] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Macrocyclic peptides are capable of binding to flat protein surfaces such as the interfaces of protein-protein interactions with antibody-like affinity and specificity, but generally lack cell permeability in order to access intracellular targets. In this work, we designed and synthesized a large combinatorial library of cell-permeable bicyclic peptides, in which the first ring consisted of randomized peptide sequences for potential binding to a target of interest, while the second ring featured a family of different cell-penetrating motifs, for both cell penetration and target binding. The library was screened against the IκB kinase α/β (IKKα/β)-binding domain of NF-κB essential modulator (NEMO), resulting in the discovery of several cell-permeable bicyclic peptides, which inhibited the NEMO-IKKβ interaction with low μM IC50 values. Further optimization of one of the hits led to a relatively potent and cell-permeable NEMO inhibitor (IC50 = 1.0 μM), which selectively inhibited canonical NF-κB signaling in mammalian cells and the proliferation of cisplatin-resistant ovarian cancer cells. The inhibitor provides a useful tool for investigating the biological functions of NEMO/NF-κB and a potential lead for further development of a novel class of anti-inflammatory and anticancer drugs.
Collapse
Affiliation(s)
- Curran A. Rhodes
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Patrick G. Dougherty
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Jahan K. Cooper
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Ziqing Qian
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Qi-En Wang
- Department of Radiology, James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, United States
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
37
|
d'Aquino AE, Kim DS, Jewett MC. Engineered Ribosomes for Basic Science and Synthetic Biology. Annu Rev Chem Biomol Eng 2018; 9:311-340. [DOI: 10.1146/annurev-chembioeng-060817-084129] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ribosome is the cell's factory for protein synthesis. With protein synthesis rates of up to 20 amino acids per second and at an accuracy of 99.99%, the extraordinary catalytic capacity of the bacterial translation machinery has attracted extensive efforts to engineer, reconstruct, and repurpose it for biochemical studies and novel functions. Despite these efforts, the potential for harnessing the translation apparatus to manufacture bio-based products beyond natural limits remains underexploited, and fundamental constraints on the chemistry that the ribosome's RNA-based active site can carry out are unknown. This review aims to cover the past and present advances in ribosome design and engineering to understand the fundamental biology of the ribosome to facilitate the construction of synthetic manufacturing machines. The prospects for the development of engineered, or designer, ribosomes for novel polymer synthesis are reviewed, future challenges are considered, and promising advances in a variety of applications are discussed.
Collapse
Affiliation(s)
- Anne E. d'Aquino
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
| | - Do Soon Kim
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Michael C. Jewett
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
38
|
Cyclization of peptides with two chemical bridges affords large scaffold diversities. Nat Chem 2018; 10:715-723. [DOI: 10.1038/s41557-018-0042-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 03/08/2018] [Indexed: 11/08/2022]
|
39
|
Wolfe JM, Fadzen CM, Holden RL, Yao M, Hanson GJ, Pentelute* BL. Perfluoroaryl Bicyclic Cell-Penetrating Peptides for Delivery of Antisense Oligonucleotides. Angew Chem Int Ed Engl 2018; 57:4756-4759. [PMID: 29479836 PMCID: PMC6248909 DOI: 10.1002/anie.201801167] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Indexed: 12/12/2022]
Abstract
Exon-skipping antisense oligonucleotides are effective treatments for genetic diseases, yet exon-skipping activity requires that these macromolecules reach the nucleus. While cell-penetrating peptides can improve delivery, proteolytic instability often limits efficacy. It is hypothesized that the bicyclization of arginine-rich peptides would improve their stability and their ability to deliver oligonucleotides into the nucleus. Two methods were introduced for the synthesis of arginine-rich bicyclic peptides using cysteine perfluoroarylation chemistry. Then, the bicyclic peptides were covalently linked to a phosphorodiamidate morpholino oligonucleotide (PMO) and assayed for exon skipping activity. The perfluoroaryl cyclic and bicyclic peptides improved PMO activity roughly 14-fold over the unconjugated PMO. The bicyclic peptides exhibited increased proteolytic stability relative to the monocycle, demonstrating that perfluoroaryl bicyclic peptides are potent and stable delivery agents.
Collapse
Affiliation(s)
- Justin M. Wolfe
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (USA),
| | - Colin M. Fadzen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (USA),
| | - Rebecca L. Holden
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (USA),
| | - Monica Yao
- Research Chemistry, Sarepta Therapeutics, Inc., 215 First Street, Cambridge, MA 02142 (USA)
| | - Gunnar J. Hanson
- Research Chemistry, Sarepta Therapeutics, Inc., 215 First Street, Cambridge, MA 02142 (USA)
| | - Bradley L. Pentelute*
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (USA),
| |
Collapse
|
40
|
Passioura T, Suga H. A RaPID way to discover nonstandard macrocyclic peptide modulators of drug targets. Chem Commun (Camb) 2018; 53:1931-1940. [PMID: 28091672 DOI: 10.1039/c6cc06951g] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Studies of the fundamental nature of RNA catalysis and the potential mechanism of a shift from the "RNA world" to proteinaceous life lead us to identify a set of ribozymes (flexizymes) capable of promiscuous tRNA acylation. Whilst theoretically and mechanistically interesting in their own right, flexizymes have turned out to have immense practical value for the simple synthesis of tRNAs acylated with unusual amino acids, which in turn can be used for the ribosomal synthesis of peptides containing non-canonical residues. Using this technique, it is possible to synthesise peptides containing a range of structural features (macrocyclic backbones, backbone N-methylation, d-stereochemistry, etc.) commonly observed in natural product secondary metabolites, a chemical class that has historically been a rich source of drug-like molecules. Moreover, when combined with biochemical display screening technologies, this synthetic approach can be used to generate (and screen for target affinity) extremely diverse (in excess of 1012 compound) chemical libraries, making it an extraordinary tool for drug discovery. The current review charts the history of flexizyme technology and its use for non-canonical peptide synthesis and screening.
Collapse
Affiliation(s)
- Toby Passioura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-0033, Japan. and Japan Science and Technology Agency (JST), Core Research for Evolutionary Science and Technology (CREST), Saitama 332-0012, Japan
| |
Collapse
|
41
|
Wolfe JM, Fadzen CM, Holden RL, Yao M, Hanson GJ, Pentelute BL. Perfluoroaryl Bicyclic Cell‐Penetrating Peptides for Delivery of Antisense Oligonucleotides. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Justin M. Wolfe
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Colin M. Fadzen
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Rebecca L. Holden
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Monica Yao
- Research Chemistry Sarepta Therapeutics, Inc. 215 First Street Cambridge MA 02142 USA
| | - Gunnar J. Hanson
- Research Chemistry Sarepta Therapeutics, Inc. 215 First Street Cambridge MA 02142 USA
| | - Bradley L. Pentelute
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
42
|
Affiliation(s)
- Varsha J. Thombare
- School of ChemistryThe University of MelbourneVictoria3010 Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of MelbourneVictoria3010 Australia
| | - Craig A. Hutton
- School of ChemistryThe University of MelbourneVictoria3010 Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of MelbourneVictoria3010 Australia
| |
Collapse
|
43
|
Zaretsky S, Yudin AK. Recent advances in the synthesis of cyclic pseudopeptides. DRUG DISCOVERY TODAY. TECHNOLOGIES 2017; 26:3-10. [PMID: 29249240 DOI: 10.1016/j.ddtec.2017.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
Constrained peptides pose tremendous value in drug discovery. For example, owing to their large surface areas, they offer novel ways at inhibiting protein-protein interactions. As this field has grown, it has become desirable to introduce non-peptidic functionality into these rings to enable differentiated structure activity relationships and improved pharmacokinetic properties. Recent advances in the synthesis of cyclic pseudopeptides include macrocyclization through cysteine alkylation, multicomponent reactions, decarboxylative couplings, and novel stapling chemistry.
Collapse
Affiliation(s)
- Serge Zaretsky
- University of Toronto, Lash Miller Chemical Labs, 80 St. George Street, Toronto, ON M5S 3H6, Canada.
| | - Andrei K Yudin
- University of Toronto, Lash Miller Chemical Labs, 80 St. George Street, Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
44
|
Rhodes CA, Pei D. Bicyclic Peptides as Next-Generation Therapeutics. Chemistry 2017; 23:12690-12703. [PMID: 28590540 DOI: 10.1002/chem.201702117] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Indexed: 12/21/2022]
Abstract
Bicyclic peptides have greater conformational rigidity and metabolic stability than linear and monocyclic peptides and are capable of binding to challenging drug targets with antibody-like affinity and specificity. Powerful combinatorial library technologies have recently been developed to rapidly synthesize and screen large bicyclic peptide libraries for ligands against enzymes, receptors, and protein-protein interaction targets. Bicyclic peptides have been developed as potential therapeutics against a wide range of diseases, drug targeting agents, imaging/diagnostic probes, and research tools. In this Minireview, we provide a summary of the recent progresses on the synthesis and applications of bicyclic peptides.
Collapse
Affiliation(s)
- Curran A Rhodes
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio, 43210, USA
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio, 43210, USA
| |
Collapse
|
45
|
Valeur E, Guéret SM, Adihou H, Gopalakrishnan R, Lemurell M, Waldmann H, Grossmann TN, Plowright AT. New Modalities for Challenging Targets in Drug Discovery. Angew Chem Int Ed Engl 2017; 56:10294-10323. [PMID: 28186380 DOI: 10.1002/anie.201611914] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/31/2017] [Indexed: 12/11/2022]
Abstract
Our ever-increasing understanding of biological systems is providing a range of exciting novel biological targets, whose modulation may enable novel therapeutic options for many diseases. These targets include protein-protein and protein-nucleic acid interactions, which are, however, often refractory to classical small-molecule approaches. Other types of molecules, or modalities, are therefore required to address these targets, which has led several academic research groups and pharmaceutical companies to increasingly use the concept of so-called "new modalities". This Review defines for the first time the scope of this term, which includes novel peptidic scaffolds, oligonucleotides, hybrids, molecular conjugates, as well as new uses of classical small molecules. We provide the most representative examples of these modalities to target large binding surface areas such as those found in protein-protein interactions and for biological processes at the center of cell regulation.
Collapse
Affiliation(s)
- Eric Valeur
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Stéphanie M Guéret
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Hélène Adihou
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Ranganath Gopalakrishnan
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Malin Lemurell
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Herbert Waldmann
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany.,Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Germany
| | - Tom N Grossmann
- Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany.,Department of Chemistry & Pharmaceutical Sciences, VU University Amsterdam, The Netherlands
| | - Alleyn T Plowright
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| |
Collapse
|
46
|
Valeur E, Guéret SM, Adihou H, Gopalakrishnan R, Lemurell M, Waldmann H, Grossmann TN, Plowright AT. Neue Modalitäten für schwierige Zielstrukturen in der Wirkstoffentwicklung. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611914] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Eric Valeur
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| | - Stéphanie M. Guéret
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Hélène Adihou
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Ranganath Gopalakrishnan
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Malin Lemurell
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| | - Herbert Waldmann
- Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
- Fakultät für Chemie and Chemische Biologie; Technische Universität Dortmund; Deutschland
| | - Tom N. Grossmann
- Chemical Genomics Centre der Max-Planck-Gesellschaft; Dortmund Deutschland
- Department of Chemistry & Pharmaceutical Sciences; VU University Amsterdam; Niederlande
| | - Alleyn T. Plowright
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| |
Collapse
|
47
|
Hilimire TA, Chamberlain JM, Anokhina V, Bennett RP, Swart O, Myers JR, Ashton JM, Stewart RA, Featherston AL, Gates K, Helms ED, Smith HC, Dewhurst S, Miller BL. HIV-1 Frameshift RNA-Targeted Triazoles Inhibit Propagation of Replication-Competent and Multi-Drug-Resistant HIV in Human Cells. ACS Chem Biol 2017; 12:1674-1682. [PMID: 28448121 PMCID: PMC5477779 DOI: 10.1021/acschembio.7b00052] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
![]()
The
HIV-1 frameshift-stimulating (FSS) RNA, a regulatory RNA of
critical importance in the virus’ life cycle, has been posited
as a novel target for anti-HIV drug development. We report the synthesis
and evaluation of triazole-containing compounds able to bind the FSS
with high affinity and selectivity. Readily accessible synthetically,
these compounds are less toxic than previously reported olefin congeners.
We show for the first time that FSS-targeting compounds have antiviral
activity against replication-competent HIV in human cells, including
a highly cytopathic, multidrug-resistant strain. These results support
the viability of the HIV-1 FSS RNA as a therapeutic target and more
generally highlight opportunities for synthetic molecule-mediated
interference with protein recoding in a wide range of organisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Eric D. Helms
- Department of Chemistry, SUNY Geneseo, Geneseo, New York 14454, United States
| | | | | | | |
Collapse
|
48
|
Exploring sequence space: harnessing chemical and biological diversity towards new peptide leads. Curr Opin Chem Biol 2017; 38:52-61. [DOI: 10.1016/j.cbpa.2017.02.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/18/2017] [Accepted: 02/20/2017] [Indexed: 12/29/2022]
|
49
|
Hacker DE, Hoinka J, Iqbal ES, Przytycka TM, Hartman MCT. Highly Constrained Bicyclic Scaffolds for the Discovery of Protease-Stable Peptides via mRNA Display. ACS Chem Biol 2017; 12:795-804. [PMID: 28146347 DOI: 10.1021/acschembio.6b01006] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Highly constrained peptides such as the knotted peptide natural products are promising medicinal agents because of their impressive biostability and potent activity. Yet, libraries of highly constrained peptides are challenging to prepare. Here, we present a method which utilizes two robust, orthogonal chemical steps to create highly constrained bicyclic peptide libraries. This technology was optimized to be compatible with in vitro selections by mRNA display. We performed side-by-side monocyclic and bicyclic selections against a model protein (streptavidin). Both selections resulted in peptides with mid-nanomolar affinity, and the bicyclic selection yielded a peptide with remarkable protease resistance.
Collapse
Affiliation(s)
- David E. Hacker
- Virginia Commonwealth University, Department of Chemistry, 1001 West Main Street, Richmond, Virginia 23284-2006, United States
- National Center for Biotechnology Information, 8600 Rockville Pike, Bethesda, Maryland 20894, United States
| | - Jan Hoinka
- Virginia Commonwealth University, Department of Chemistry, 1001 West Main Street, Richmond, Virginia 23284-2006, United States
- National Center for Biotechnology Information, 8600 Rockville Pike, Bethesda, Maryland 20894, United States
| | - Emil S. Iqbal
- Virginia Commonwealth University, Department of Chemistry, 1001 West Main Street, Richmond, Virginia 23284-2006, United States
- National Center for Biotechnology Information, 8600 Rockville Pike, Bethesda, Maryland 20894, United States
| | - Teresa M. Przytycka
- Virginia Commonwealth University, Department of Chemistry, 1001 West Main Street, Richmond, Virginia 23284-2006, United States
- National Center for Biotechnology Information, 8600 Rockville Pike, Bethesda, Maryland 20894, United States
| | - Matthew C. T. Hartman
- Virginia Commonwealth University, Department of Chemistry, 1001 West Main Street, Richmond, Virginia 23284-2006, United States
- National Center for Biotechnology Information, 8600 Rockville Pike, Bethesda, Maryland 20894, United States
| |
Collapse
|
50
|
van de Langemheen H, Korotkovs V, Bijl J, Wilson C, Kale SS, Heinis C, Liskamp RMJ. Polar Hinges as Functionalized Conformational Constraints in (Bi)cyclic Peptides. Chembiochem 2017; 18:387-395. [DOI: 10.1002/cbic.201600612] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Helmus van de Langemheen
- School of Chemistry; University of Glasgow; Joseph Black Building University Avenue Glasgow G12 8QQ UK
| | - Valerijs Korotkovs
- School of Chemistry; University of Glasgow; Joseph Black Building University Avenue Glasgow G12 8QQ UK
| | - Joachim Bijl
- School of Chemistry; University of Glasgow; Joseph Black Building University Avenue Glasgow G12 8QQ UK
| | - Claire Wilson
- School of Chemistry; University of Glasgow; Joseph Black Building University Avenue Glasgow G12 8QQ UK
| | - Sangram S. Kale
- Institute of Chemical Sciences and Engineering; Ecole Polytechnique Fédérale de Lausanne; 1015 Lausanne Switzerland
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering; Ecole Polytechnique Fédérale de Lausanne; 1015 Lausanne Switzerland
| | - Rob M. J. Liskamp
- School of Chemistry; University of Glasgow; Joseph Black Building University Avenue Glasgow G12 8QQ UK
| |
Collapse
|