1
|
Irie K, Jeelani G, Nozaki T, Iwasaki A. Pemuchiamides A and B, Proline-Rich Linear Lipopeptides, Isolated from a Marine Hormoscilla sp. Cyanobacterium. JOURNAL OF NATURAL PRODUCTS 2024; 87:2292-2301. [PMID: 39145689 DOI: 10.1021/acs.jnatprod.4c00733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Pemuchiamides A and B (1 and 2) were isolated from a marine Hormoscilla sp. cyanobacterium collected from Pemuchi Beach on Hateruma Island, Japan. Although 1 and 2 existed as a complex mixture of rotamers in chloroform-d, detailed analyses of their 2D NMR and tandem mass spectra revealed their planar structures, respectively. The absolute configurations of 1 and 2 were established via the degradation and derivatization reactions. Pemuchiamide A (1) exhibited potent growth-inhibitory activity against Trypanosoma brucei rhodesiense, the causative organism of African sleeping sickness, while 2 showed 10-fold weaker activity than 1. This result indicates that the presence of a hydroxy group at the C-3 position of the 4-aminobutanoic acid moiety negatively affects antitrypanosomal activity.
Collapse
Affiliation(s)
- Kensuke Irie
- Department of Applied Chemistry, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Ghulam Jeelani
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Arihiro Iwasaki
- Department of Applied Chemistry, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
2
|
Xu M, Hou Y, Li N, Yu W, Chen L. Targeting histone deacetylases in head and neck squamous cell carcinoma: molecular mechanisms and therapeutic targets. J Transl Med 2024; 22:418. [PMID: 38702756 PMCID: PMC11067317 DOI: 10.1186/s12967-024-05169-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/05/2024] [Indexed: 05/06/2024] Open
Abstract
The onerous health and economic burden associated with head and neck squamous cell carcinoma (HNSCC) is a global predicament. Despite the advent of novel surgical techniques and therapeutic protocols, there is an incessant need for efficacious diagnostic and therapeutic targets to monitor the invasion, metastasis and recurrence of HNSCC due to its substantial morbidity and mortality. The differential expression patterns of histone deacetylases (HDACs), a group of enzymes responsible for modifying histones and regulating gene expression, have been demonstrated in neoplastic tissues. However, there is limited knowledge regarding the role of HDACs in HNSCC. Consequently, this review aims to summarize the existing research findings and explore the potential association between HDACs and HNSCC, offering fresh perspectives on therapeutic approaches targeting HDACs that could potentially enhance the efficacy of HNSCC treatment. Additionally, the Cancer Genome Atlas (TCGA) dataset, CPTAC, HPA, OmicShare, GeneMANIA and STRING databases are utilized to provide supplementary evidence on the differential expression of HDACs, their prognostic significance and predicting functions in HNSCC patients.
Collapse
Affiliation(s)
- Mengchen Xu
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Shandong Provincial Clinical Research Center for Oral Diseases, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yiming Hou
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Shandong Provincial Clinical Research Center for Oral Diseases, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Na Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, Shandong, China
- Center of Clinical Laboratory, Shandong Second Provincial General Hospital, Jinan, 250022, Shandong, China
| | - Wenqian Yu
- Research Center of Translational Medicine, Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Lei Chen
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Shandong Provincial Clinical Research Center for Oral Diseases, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
3
|
Kallifidas D, Dhakal D, Chen M, Chen QY, Kokkaliari S, Colon Rosa NA, Ratnayake R, Bruner SD, Paul VJ, Ding Y, Luesch H. Biosynthesis of Dolastatin 10 in Marine Cyanobacteria, a Prototype for Multiple Approved Cancer Drugs. Org Lett 2024; 26:1321-1325. [PMID: 38330916 PMCID: PMC10915760 DOI: 10.1021/acs.orglett.3c04083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Dolastatin 10, a potent tubulin-targeting marine anticancer natural product, provided the basis for the development of six FDA-approved antibody-drug conjugates. Through the screening of cyanobacterial Caldora penicillata environmental DNA libraries and metagenome sequencing, we identified its biosynthetic gene cluster. Functional prediction of 10 enzymes encoded in the 39 kb cluster supports the dolastatin 10 biosynthesis. The nonheme diiron monooxygenase DolJ was biochemically characterized to mediate the terminal thiazole formation in dolastatin 10.
Collapse
Affiliation(s)
- Dimitris Kallifidas
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, United States
| | - Dipesh Dhakal
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, United States
| | - Manyun Chen
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, United States
| | - Qi-Yin Chen
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, United States
| | - Sofia Kokkaliari
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, United States
| | - Nicole A. Colon Rosa
- Department of Chemistry, University of Florida, Gainesville, FL 32611, United States
| | - Ranjala Ratnayake
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, United States
| | - Steven D. Bruner
- Department of Chemistry, University of Florida, Gainesville, FL 32611, United States
| | - Valerie J. Paul
- Smithsonian Marine Station, Fort Pierce, FL 34949, United States
| | - Yousong Ding
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, United States
| |
Collapse
|
4
|
Wahi A, Jain P, Sinhari A, Jadhav HR. Progress in discovery and development of natural inhibitors of histone deacetylases (HDACs) as anti-cancer agents. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:675-702. [PMID: 37615708 DOI: 10.1007/s00210-023-02674-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
The study of epigenetic translational modifications had drawn great interest for the last few decades. These processes play a vital role in many diseases and cancer is one of them. Histone acetyltransferase (HAT) and histone deacetylases (HDACs) are key enzymes involved in the acetylation and deacetylation of histones and ultimately in post-translational modifications. Cancer frequently exhibits epigenetic changes, particularly disruption in the expression and activity of HDACs. It includes the capacity to regulate proliferative signalling, circumvent growth inhibitors, escape cell death, enable replicative immortality, promote angiogenesis, stimulate invasion and metastasis, prevent immunological destruction, and genomic instability. The majority of tumours develop and spread as a result of HDAC dysregulation. As a result, HDAC inhibitors (HDACis) were developed, and they today stand as a very promising therapeutic approach. One of the most well-known and efficient therapies for practically all cancer types is chemotherapy. However, the efficiency and safety of treatment are constrained by higher toxicity. The same has been observed with the synthetic HDACi. Natural products, owing to many advantages over synthetic compounds for cancer treatment have always been a choice for therapy. Hence, naturally available molecules are of particular interest for HDAC inhibition and HDAC has drawn the attention of the research fraternity due to their potential to offer a diverse array of chemical structures and bioactive compounds. This diversity opens up new avenues for exploring less toxic HDAC inhibitors to reduce side effects associated with conventional synthetic inhibitors. The review presents comprehensive details on natural product HDACi, their mechanism of action and their biological effects. Moreover, this review provides a brief discussion on the structure activity relationship of selected natural HDAC inhibitors and their analogues which can guide future research to discover selective, more potent HDACi with minimal toxicity.
Collapse
Affiliation(s)
- Abhishek Wahi
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, DPSRU, New Delhi, 110017, India
| | - Priti Jain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, DPSRU, New Delhi, 110017, India.
| | - Apurba Sinhari
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, 333031, India
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, 333031, India
| |
Collapse
|
5
|
Kumar S, Arora A, Sapra S, Kumar R, Singh BK, Singh SK. Recent advances in the synthesis and utility of thiazoline and its derivatives. RSC Adv 2024; 14:902-953. [PMID: 38174252 PMCID: PMC10759189 DOI: 10.1039/d3ra06444a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
Thiazolines and their derivatives hold significant importance in the field of medicinal chemistry due to their promising potential as pharmaceutical agents. These molecular entities serve as critical scaffolds within numerous natural products, including curacin A, thiangazole, and mirabazole, and play a vital role in a wide array of physiological reactions. Their pharmacological versatility encompasses anti-HIV, neurological, anti-cancer, and antibiotic activities. Over the course of recent decades, researchers have extensively explored and developed analogs of these compounds, uncovering compelling therapeutic properties such as antioxidant, anti-tumor, anti-microbial, and anti-inflammatory effects. Consequently, thiazoline-based compounds have emerged as noteworthy targets for synthetic endeavors. In this review, we provide a comprehensive summary of recent advancements in the synthesis of thiazolines and thiazoline-based derivatives, along with an exploration of their diverse potential applications across various scientific domains.
Collapse
Affiliation(s)
- Sumit Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Aditi Arora
- Bioorganic Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Shivani Sapra
- Bioorganic Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Rajesh Kumar
- Department of Chemistry, R. D. S College, B. R. A. Bihar University Muzaffarpur 842002 India
| | - Brajendra K Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Sunil K Singh
- Department of Chemistry, Kirori Mal College, University of Delhi Delhi-110007 India
| |
Collapse
|
6
|
Watson PR, Gupta S, Hosseinzadeh P, Brown BP, Baker D, Christianson DW. Macrocyclic Octapeptide Binding and Inferences on Protein Substrate Binding to Histone Deacetylase 6. ACS Chem Biol 2023; 18:959-968. [PMID: 37027789 PMCID: PMC10130746 DOI: 10.1021/acschembio.3c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Histone deacetylases (HDACs) are essential for the regulation of myriad biological processes, and their aberrant function is implicated in cancer, neurodegeneration, and other diseases. The cytosolic isozyme HDAC6 is unique among the greater family of deacetylases in that it contains two catalytic domains, CD1 and CD2. HDAC6 CD2 is responsible for tubulin deacetylase and tau deacetylase activities, inhibition of which is a key goal as new therapeutic approaches are explored. Of particular interest as HDAC inhibitors are naturally occurring cyclic tetrapeptides such as Trapoxin A or HC Toxin, or the cyclic depsipeptides Largazole and Romidepsin. Even more intriguing are larger, computationally designed macrocyclic peptide inhibitors. Here, we report the 2.0 Å resolution crystal structure of HDAC6 CD2 complexed with macrocyclic octapeptide 1. Comparison with the previously reported structure of the complex with macrocyclic octapeptide 2 reveals that a potent thiolate-zinc interaction made by the unnatural amino acid (S)-2-amino-7-sulfanylheptanoic acid contributes to nanomolar inhibitory potency for each inhibitor. Apart from this zinc-binding residue, octapeptides adopt strikingly different overall conformations and make few direct hydrogen bonds with the protein. Intermolecular interactions are dominated by water-mediated hydrogen bonds; in essence, water molecules appear to cushion the enzyme-octapeptide interface. In view of the broad specificity observed for protein substrates of HDAC6 CD2, we suggest that the binding of macrocyclic octapeptides may mimic certain features of the binding of macromolecular protein substrates.
Collapse
Affiliation(s)
- Paris R. Watson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323, United States
| | - Suchetana Gupta
- Department of Bioengineering, Knight Campus, University of Oregon, Eugene, OR 97403 United States
| | - Parisa Hosseinzadeh
- Department of Bioengineering, Knight Campus, University of Oregon, Eugene, OR 97403 United States
| | - Benjamin P. Brown
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37235 United States
| | - David Baker
- Department of Biochemistry, Institute for Protein Design, University of Washington, Seattle, WA 98195 United States
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323, United States
| |
Collapse
|
7
|
Xu Z, Eichler B, Klausner EA, Duffy-Matzner J, Zheng W. Lead/Drug Discovery from Natural Resources. Molecules 2022; 27:8280. [PMID: 36500375 PMCID: PMC9736696 DOI: 10.3390/molecules27238280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Natural products and their derivatives have been shown to be effective drug candidates against various diseases for many years. Over a long period of time, nature has produced an abundant and prosperous source pool for novel therapeutic agents with distinctive structures. Major natural-product-based drugs approved for clinical use include anti-infectives and anticancer agents. This paper will review some natural-product-related potent anticancer, anti-HIV, antibacterial and antimalarial drugs or lead compounds mainly discovered from 2016 to 2022. Structurally typical marine bioactive products are also included. Molecular modeling, machine learning, bioinformatics and other computer-assisted techniques that are very important in narrowing down bioactive core structural scaffolds and helping to design new structures to fight against key disease-associated molecular targets based on available natural products are considered and briefly reviewed.
Collapse
Affiliation(s)
- Zhihong Xu
- Department of Chemistry and Biochemistry, Augustana University, 2001 S Summit Ave., Sioux Falls, SD 57197, USA
- Institute of Interventional & Vascular Surgery, Tongji University, Shanghai 200072, China
- Department of Pharmaceutical Sciences, South College School of Pharmacy, 400 Goody’s Lane, Knoxville, TN 37922, USA
| | - Barrett Eichler
- Department of Chemistry and Biochemistry, Augustana University, 2001 S Summit Ave., Sioux Falls, SD 57197, USA
| | - Eytan A. Klausner
- Department of Pharmaceutical Sciences, South College School of Pharmacy, 400 Goody’s Lane, Knoxville, TN 37922, USA
| | - Jetty Duffy-Matzner
- Department of Chemistry and Biochemistry, Augustana University, 2001 S Summit Ave., Sioux Falls, SD 57197, USA
| | - Weifan Zheng
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, 1801 Fayetteville St., Durham, NC 27707, USA
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
El-Desoky AHH, Tsukamoto S. Marine natural products that inhibit osteoclastogenesis and promote osteoblast differentiation. J Nat Med 2022; 76:575-583. [PMID: 35397769 PMCID: PMC9165232 DOI: 10.1007/s11418-022-01622-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 10/25/2022]
Abstract
Osteoporosis is a disease that affects the quality of life of elderly people. The balance between bone formation mediated by osteoblasts and bone resorption by osteoclasts is important to maintain the normal bone condition. Therefore, the promotion of osteoblast differentiation and the suppression of osteoclastogenesis are effective strategies for osteoporosis treatment. Marine organisms are a promising source of biologically active and structurally diverse secondary metabolites, and have been providing drug leads for the treatment of numerous diseases. We describe the marine-derived secondary metabolites that can inhibit receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis and promote osteoblast differentiation.
Collapse
Affiliation(s)
- Ahmed H H El-Desoky
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
- Pharmaceutical Industries Research Division, Pharmacognosy Department, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Sachiko Tsukamoto
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan.
| |
Collapse
|
9
|
Diamond JR, Pitts TM, Ungermannova D, Nasveschuk CG, Zhang G, Phillips AJ, Bagby SM, Pafford J, Yacob BW, Newton TP, Tentler JJ, Gittleman B, Hartman SJ, DeMattei JA, Winkler JD, Wendt MK, Schiemann WP, Eckhardt SG, Liu X, Piscopio AD. Preclinical Development of the Class-I-Selective Histone Deacetylase Inhibitor OKI-179 for the Treatment of Solid Tumors. Mol Cancer Ther 2022; 21:397-406. [PMID: 34965958 PMCID: PMC9600708 DOI: 10.1158/1535-7163.mct-21-0455] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/19/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
Histone deacetylases (HDACs) play critical roles in epigenomic regulation, and histone acetylation is dysregulated in many human cancers. Although HDAC inhibitors are active in T-cell lymphomas, poor isoform selectivity, narrow therapeutic indices, and a deficiency of reliable biomarkers may contribute to the lack of efficacy in solid tumors. In this article, we report the discovery and preclinical development of the novel, orally bioavailable, class-I-selective HDAC inhibitor, OKI-179. OKI-179 and its cell active predecessor OKI-005 are thioester prodrugs of the active metabolite OKI-006, a unique congener of the natural product HDAC inhibitor largazole. OKI-006, OKI-005, and subsequently OKI-179, were developed through a lead candidate optimization program designed to enhance physiochemical properties without eroding potency and selectivity relative to largazole. OKI-005 displays antiproliferative activity in vitro with induction of apoptosis and increased histone acetylation, consistent with target engagement. OKI-179 showed antitumor activity in preclinical cancer models with a favorable pharmacokinetic profile and on-target pharmacodynamic effects. Based on its potency, desirable class I HDAC inhibition profile, oral bioavailability, and efficacy against a broad range of solid tumors, OKI-179 is currently being evaluated in a first-in-human phase I clinical trial with plans for continued clinical development in solid tumor and hematologic malignancies.
Collapse
Affiliation(s)
- Jennifer R. Diamond
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Todd M. Pitts
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | | | - Gan Zhang
- University of Colorado at Boulder, Boulder, CO
| | | | - Stacey M. Bagby
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jessica Pafford
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Betelehem W. Yacob
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Timothy P. Newton
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - John J. Tentler
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Brian Gittleman
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Sarah J. Hartman
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | | | | | | | - S. Gail Eckhardt
- University of Texas at Austin, Dell Medical School, Department of Oncology, Austin, TX
| | - Xuedong Liu
- University of Colorado at Boulder, Boulder, CO
| | | |
Collapse
|
10
|
Bhatia S, Makkar R, Behl T, Sehgal A, Singh S, Rachamalla M, Mani V, Iqbal MS, Bungau SG. Biotechnological Innovations from Ocean: Transpiring Role of Marine Drugs in Management of Chronic Disorders. Molecules 2022; 27:1539. [PMID: 35268639 PMCID: PMC8911953 DOI: 10.3390/molecules27051539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Marine drugs are abundant in number, comprise of a diverse range of structures with corresponding mechanisms of action, and hold promise for the discovery of new and better treatment approaches for the management of several chronic diseases. There are huge reserves of natural marine biological compounds, as 70 percent of the Earth is covered with oceans, indicating a diversity of chemical entities on the planet. The marine ecosystems are a rich source of bioactive products and have been explored for lead drug molecules that have proven to be novel therapeutic targets. Over the last 70 years, many structurally diverse drug products and their secondary metabolites have been isolated from marine sources. The drugs obtained from marine sources have displayed an exceptional potential in the management of a wide array of diseases, ranging from acute to chronic conditions. A beneficial role of marine drugs in human health has been recently proposed. The current review highlights various marine drugs and their compounds and role in the management of chronic diseases such as cancer, diabetes, neurodegenerative diseases, and cardiovascular disorders, which has led to the development of new drug treatment approaches.
Collapse
Affiliation(s)
- Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz 616, Nizwa P.O. Box 33, Oman;
- School of Health Science, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Rashita Makkar
- Chitkara College of Pharmacy, Chitkara University, Patiala 140401, India; (R.M.); (A.S.); (S.S.)
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Patiala 140401, India; (R.M.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Patiala 140401, India; (R.M.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Patiala 140401, India; (R.M.); (A.S.); (S.S.)
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada;
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
11
|
Qiu X, Zhu L, Wang H, Tan Y, Yang Z, Yang L, Wan L. From natural products to HDAC inhibitors: An overview of drug discovery and design strategy. Bioorg Med Chem 2021; 52:116510. [PMID: 34826681 DOI: 10.1016/j.bmc.2021.116510] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 02/08/2023]
Abstract
Histone deacetylases (HDACs) play a key role in the homeostasis of protein acetylation in histones and have recently emerged as a therapeutic target for numerous diseases. The inhibition of HDACs may block angiogenesis, arrest cell growth, and lead to differentiation and apoptosis in tumour cells. Thus, HDAC inhibitors (HDACi) have received increasing attention and many of which are developed from natural sources. In the past few decades, naturally occurring HDACi have been identified to have potent anticancer activities, some of which have demonstrated promising therapeutic effects on haematological malignancies. In this review, we summarized the discovery and modification of HDAC inhibitors from natural sources, novel drug design that uses natural products as parent nuclei, and dual target design strategies that combine HDAC with non-HDAC targets.
Collapse
Affiliation(s)
- Xiang Qiu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lv Zhu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Tan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhuang Yang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Linyu Yang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Li Wan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
12
|
Hai Y, Wei MY, Wang CY, Gu YC, Shao CL. The intriguing chemistry and biology of sulfur-containing natural products from marine microorganisms (1987-2020). MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:488-518. [PMID: 37073258 PMCID: PMC10077240 DOI: 10.1007/s42995-021-00101-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/18/2021] [Indexed: 05/03/2023]
Abstract
Natural products derived from marine microorganisms have received great attention as a potential resource of new compound entities for drug discovery. The unique marine environment brings us a large group of sulfur-containing natural products with abundant biological functionality including antitumor, antibiotic, anti-inflammatory and antiviral activities. We reviewed all the 484 sulfur-containing natural products (non-sulfated) isolated from marine microorganisms, of which 59.9% are thioethers, 29.8% are thiazole/thiazoline-containing compounds and 10.3% are sulfoxides, sulfones, thioesters and many others. A selection of 133 compounds was further discussed on their structure-activity relationships, mechanisms of action, biosynthesis, and druggability. This is the first systematic review on sulfur-containing natural products from marine microorganisms conducted from January 1987, when the first one was reported, to December 2020. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00101-2.
Collapse
Affiliation(s)
- Yang Hai
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Yu-Cheng Gu
- Syngenta Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY UK
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| |
Collapse
|
13
|
Bhamboo P, Bera S, Mondal D. TiCl
4
‐Promoted Asymmetric Aldol Reaction of Oxazolidinones and its Sulphur‐Congeners for Natural Product Synthesis. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Prateek Bhamboo
- School of Chemical Sciences Central University of Gujarat Gandhinagar 382030 Gujarat India
| | - Smritilekha Bera
- School of Chemical Sciences Central University of Gujarat Gandhinagar 382030 Gujarat India
| | - Dhananjoy Mondal
- School of Chemical Sciences Central University of Gujarat Gandhinagar 382030 Gujarat India
| |
Collapse
|
14
|
Kurisawa N, Otomo K, Iwasaki A, Jeelani G, Nozaki T, Suenaga K. Isolation and Total Synthesis of Kinenzoline, an Antitrypanosomal Linear Depsipeptide Isolated from a Marine Salileptolyngbya sp. Cyanobacterium. J Org Chem 2021; 86:12528-12536. [PMID: 34463094 DOI: 10.1021/acs.joc.1c00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kinenzoline (1), a new linear depsipeptide, was isolated from a marine Salileptolyngbya sp. cyanobacterium. Its structure was elucidated by spectroscopic analyses and degradation reactions. In addition, we achieved a total synthesis of 1 and confirmed its structure. Kinenzoline (1) showed highly selective antiproliferative activity against the causative organism of sleeping sickness, Trypanosoma brucei rhodesiense (IC50 4.5 μM), compared to normal human cells (WI-38, IC50 > 100 μM). Kinenzoline (1) is a promising lead compound for the development of new antitrypanosomal drugs.
Collapse
Affiliation(s)
- Naoaki Kurisawa
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Keisuke Otomo
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Arihiro Iwasaki
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Ghulam Jeelani
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kiyotake Suenaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
15
|
Wu L, Ye K, Jiang S, Zhou G. Marine Power on Cancer: Drugs, Lead Compounds, and Mechanisms. Mar Drugs 2021; 19:md19090488. [PMID: 34564150 PMCID: PMC8472172 DOI: 10.3390/md19090488] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Worldwide, 19.3 million new cancer cases and almost 10.0 million cancer deaths occur each year. Recently, much attention has been paid to the ocean, the largest biosphere of the earth that harbors a great many different organisms and natural products, to identify novel drugs and drug candidates to fight against malignant neoplasms. The marine compounds show potent anticancer activity in vitro and in vivo, and relatively few drugs have been approved by the U.S. Food and Drug Administration for the treatment of metastatic malignant lymphoma, breast cancer, or Hodgkin's disease. This review provides a summary of the anticancer effects and mechanisms of action of selected marine compounds, including cytarabine, eribulin, marizomib, plitidepsin, trabectedin, zalypsis, adcetris, and OKI-179. The future development of anticancer marine drugs requires innovative biochemical biology approaches and introduction of novel therapeutic targets, as well as efficient isolation and synthesis of marine-derived natural compounds and derivatives.
Collapse
Affiliation(s)
- Lichuan Wu
- Medical College, Guangxi University, Nanning 530004, China;
| | - Ke Ye
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
| | - Sheng Jiang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
- Correspondence: (S.J.); (G.Z.)
| | - Guangbiao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Correspondence: (S.J.); (G.Z.)
| |
Collapse
|
16
|
Qiu B, Tan A, Tan YZ, Chen QY, Luesch H, Wang X. Largazole Inhibits Ocular Angiogenesis by Modulating the Expression of VEGFR2 and p21. Mar Drugs 2021; 19:471. [PMID: 34436310 PMCID: PMC8401058 DOI: 10.3390/md19080471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Ocular angiogenic diseases, characterized by abnormal blood vessel formation in the eye, are the leading cause of blindness. Although Anti-VEGF therapy is the first-line treatment in the market, a substantial number of patients are refractory to it or may develop resistance over time. As uncontrolled proliferation of vascular endothelial cells is one of the characteristic features of pathological neovascularization, we aimed to investigate the role of the class I histone deacetylase (HDAC) inhibitor Largazole, a cyclodepsipeptide from a marine cyanobacterium, in ocular angiogenesis. Our study showed that Largazole strongly inhibits retinal vascular endothelial cell viability, proliferation, and the ability to form tube-like structures. Largazole strongly inhibits the vessel outgrowth from choroidal explants in choroid sprouting assay while it does not affect the quiescent choroidal vasculature. Largazole also inhibits vessel outgrowth from metatarsal bones in metatarsal sprouting assay without affecting pericytes coverage. We further demonstrated a cooperative effect between Largazole and an approved anti-VEGF drug, Alflibercept. Mechanistically, Largazole strongly inhibits the expression of VEGFR2 and leads to an increased expression of cell cycle inhibitor, p21. Taken together, our study provides compelling evidence on the anti-angiogenic role of Largazole that exerts its function through mediating different signaling pathways.
Collapse
Affiliation(s)
- Beiying Qiu
- Centre for Vision Research, Duke NUS Medical School, 8 College Road, Singapore 169857, Singapore; (B.Q.); (A.T.)
- Singapore Eye Research Institute (SERI), The Academia, 20 College Road, Level 6 Discovery Tower, Singapore 169856, Singapore
| | - Alison Tan
- Centre for Vision Research, Duke NUS Medical School, 8 College Road, Singapore 169857, Singapore; (B.Q.); (A.T.)
- Singapore Eye Research Institute (SERI), The Academia, 20 College Road, Level 6 Discovery Tower, Singapore 169856, Singapore
| | - Yu Zhi Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore;
| | - Qi-Yin Chen
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA;
| | - Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA;
| | - Xiaomeng Wang
- Centre for Vision Research, Duke NUS Medical School, 8 College Road, Singapore 169857, Singapore; (B.Q.); (A.T.)
- Singapore Eye Research Institute (SERI), The Academia, 20 College Road, Level 6 Discovery Tower, Singapore 169856, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Dr, Singapore 138673, Singapore
| |
Collapse
|
17
|
Ai HJ, Lu W, Wu XF. Ligand-Controlled Regiodivergent Thiocarbonylation of Alkynes toward Linear and Branched α,β-Unsaturated Thioesters. Angew Chem Int Ed Engl 2021; 60:17178-17184. [PMID: 34058046 DOI: 10.1002/anie.202106079] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Indexed: 11/05/2022]
Abstract
Thiocarbonylation of alkynes offers an ideal procedure for the synthesis of unsaturated thioesters. A robust ligand-controlled regioselective thiocarbonylation of alkynes is developed. Utilizing boronic acid and 5-chlorosalicylic acid as the acid additive to in situ form 5-chloroborosalicylic acid (5-Cl-BSA), and bis(2-diphenylphosphinophenyl)ether (DPEphos) as the ligand, linear α,β-unsaturated thioesters were produced in a straightforward manner. Switching the ligand to tri(2-furyl)phosphine can turn the reaction selectivity to give branched products. Remarkably, this approach also represents the first example on thiocarbonylation of internal alkynes.
Collapse
Affiliation(s)
- Han-Jun Ai
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Wangyang Lu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany.,Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China
| |
Collapse
|
18
|
Ai H, Lu W, Wu X. Ligand‐Controlled Regiodivergent Thiocarbonylation of Alkynes toward Linear and Branched α,β‐Unsaturated Thioesters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Han‐Jun Ai
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Wangyang Lu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang) Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Xiao‐Feng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian Liaoning China
| |
Collapse
|
19
|
Adhikari N, Jha T, Ghosh B. Dissecting Histone Deacetylase 3 in Multiple Disease Conditions: Selective Inhibition as a Promising Therapeutic Strategy. J Med Chem 2021; 64:8827-8869. [PMID: 34161101 DOI: 10.1021/acs.jmedchem.0c01676] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The acetylation of histone and non-histone proteins has been implicated in several disease states. Modulation of such epigenetic modifications has therefore made histone deacetylases (HDACs) important drug targets. HDAC3, among various class I HDACs, has been signified as a potentially validated target in multiple diseases, namely, cancer, neurodegenerative diseases, diabetes, obesity, cardiovascular disorders, autoimmune diseases, inflammatory diseases, parasitic infections, and HIV. However, only a handful of HDAC3-selective inhibitors have been reported in spite of continuous efforts in design and development of HDAC3-selective inhibitors. In this Perspective, the roles of HDAC3 in various diseases as well as numerous potent and HDAC3-selective inhibitors have been discussed in detail. It will surely open up a new vista in the discovery of newer, more effective, and more selective HDAC3 inhibitors.
Collapse
Affiliation(s)
- Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, 700032 West Bengal, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, 700032 West Bengal, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| |
Collapse
|
20
|
Kajetanowicz A, Grela K. Nitro and Other Electron Withdrawing Group Activated Ruthenium Catalysts for Olefin Metathesis Reactions. Angew Chem Int Ed Engl 2021; 60:13738-13756. [PMID: 32808704 PMCID: PMC8246989 DOI: 10.1002/anie.202008150] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 01/05/2023]
Abstract
Advanced applications of the Nobel Prize winning olefin metathesis reaction require user-friendly and highly universal catalysts. From many successful metathesis catalysts, which belong to the two distinct classes of Schrock and Grubbs-type catalysts, the subclass of chelating-benzylidene ruthenium complexes (so-called Hoveyda-Grubbs catalysts) additionally activated by electron-withdrawing groups (EWGs) provides a highly tunable platform. In the Review, the origin of the EWG-activation concept and selected applications of the resulting catalysts in target-oriented synthesis, medicinal chemistry, as well as in the preparation of fine-chemicals and in materials chemistry is discussed. Based on the examples, some suggestions for end-users regarding minimization of catalyst loading, selectivity control, and general optimization of the olefin metathesis reaction are provided.
Collapse
Affiliation(s)
- Anna Kajetanowicz
- Laboratory of Organometallic SynthesisFaculty of ChemistryBiological and Chemical Research CentreUniversity of WarsawŻwirki i Wigury 10102-089WarsawPoland
| | - Karol Grela
- Laboratory of Organometallic SynthesisFaculty of ChemistryBiological and Chemical Research CentreUniversity of WarsawŻwirki i Wigury 10102-089WarsawPoland
- Institute of Organic ChemistryPolish Academy of SciencesKasprzaka 44/5201-224WarsawPoland
| |
Collapse
|
21
|
Kajetanowicz A, Grela K. Durch Nitro‐ und andere elektronenziehende Gruppen aktivierte Ruthenium‐Katalysatoren für die Olefinmetathese. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202008150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Anna Kajetanowicz
- Labor für Organometall-Synthese Fakultät für Chemie Biological and Chemical Research Centre Universität Warschau Żwirki i Wigury 101 02-089 Warschau Polen
| | - Karol Grela
- Labor für Organometall-Synthese Fakultät für Chemie Biological and Chemical Research Centre Universität Warschau Żwirki i Wigury 101 02-089 Warschau Polen
- Institut für Organische Chemie Polish Academy of Sciences Kasprzaka 44/52 01-224 Warschau Polen
| |
Collapse
|
22
|
Pojani E, Barlocco D. Romidepsin (FK228), A Histone Deacetylase Inhibitor and its Analogues in Cancer Chemotherapy. Curr Med Chem 2021; 28:1290-1303. [PMID: 32013816 DOI: 10.2174/0929867327666200203113926] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/24/2019] [Accepted: 12/17/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Human HDACs represent a group of enzymes able to modify histone and non-histone proteins, which interact with DNA to generate chromatin. The correlation between irregular covalent modification of histones and tumor development has been proved over the last decades. Therefore, HDAC inhibitors are considered as potential drugs in cancer treatment. Romidepsin (FK228), Belinostat (PXD-101), Vorinostat (SAHA), Panobinostat (LBH-589) and Chidamide were approved by FDA as novel antitumor agents. OBJECTIVE The aim of this review article is to highlight the structure-activity relationships of several FK228 analogues as HDAC inhibitors. In addition, the synergistic effects of a dual HDAC/PI3K inhibition by some derivatives have been investigated. MATERIALS AND METHODS PubMed, MEDLINE, CAPLUS, SciFinder Scholar database were considered by selecting articles which fulfilled the objectives of this review, dating from 2015 till present time. RESULTS HDAC inhibitors have a significant role in cancer pathogenesis and evolution. Class I HDAC isoforms are expressed in many tumor types, therefore, potent and selective Class I HDAC inhibitors are of great interest as candidate therapeutic agents with limited side effects. By structurebased optimization, several FK228 analogues [15 (FK-A5), 22, 23 and 26 (FK-A11)] were identified, provided with significant activity against Class I HDAC enzymes and dose dependent antitumor activity. Compound 26 was recognized as an interesting HDAC/PI3K dual inhibitor (IC50 against p110α of 6.7 μM while for HDAC1 inhibitory activity IC50 was 0.64 nM). CONCLUSION Romidepsin analogues HDAC inhibitors have been confirmed as useful anticancer agents. In addition, dual HDAC/PI3K inhibition showed by some of them exhibited synergistic effects in inducing apoptosis in human cancer cells. Further studies on FK228 analogues may positively contribute to the availability of potent agents in tumor treatment.
Collapse
Affiliation(s)
- Eftiola Pojani
- Department of the Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, Catholic University "Our Lady of Good Counsel", Tirana, Albania
| | - Daniela Barlocco
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Milan, L. Mangiagalli 25, Milan 20133, Italy
| |
Collapse
|
23
|
Bijlmakers MJ. Ubiquitination and the Proteasome as Drug Targets in Trypanosomatid Diseases. Front Chem 2021; 8:630888. [PMID: 33732684 PMCID: PMC7958763 DOI: 10.3389/fchem.2020.630888] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/29/2020] [Indexed: 11/13/2022] Open
Abstract
The eukaryotic pathogens Trypanosoma brucei, Trypanosoma cruzi and Leishmania are responsible for debilitating diseases that affect millions of people worldwide. The numbers of drugs available to treat these diseases, Human African Trypanosomiasis, Chagas' disease and Leishmaniasis are very limited and existing treatments have substantial shortcomings in delivery method, efficacy and safety. The identification and validation of novel drug targets opens up new opportunities for the discovery of therapeutic drugs with better efficacy and safety profiles. Here, the potential of targeting the ubiquitin-proteasome system in these parasites is reviewed. Ubiquitination is the posttranslational attachment of one or more ubiquitin proteins to substrates, an essential eukaryotic mechanism that regulates a wide variety of cellular processes in many different ways. The best studied of these is the delivery of ubiquitinated substrates for degradation to the proteasome, the major cellular protease. However, ubiquitination can also regulate substrates in proteasome-independent ways, and proteasomes can degrade proteins to some extent in ubiquitin-independent ways. Because of these widespread roles, both ubiquitination and proteasomal degradation are essential for the viability of eukaryotes and the proteins that mediate these processes are therefore attractive drug targets in trypanosomatids. Here, the current understanding of these processes in trypanosomatids is reviewed. Furthermore, significant recent progress in the development of trypanosomatid-selective proteasome inhibitors that cure mouse models of trypanosomatid infections is presented. In addition, the targeting of the key enzyme in ubiquitination, the ubiquitin E1 UBA1, is discussed as an alternative strategy. Important differences between human and trypanosomatid UBA1s in susceptibility to inhibitors predicts that the selective targeting of these enzymes in trypanosomatids may also be feasible. Finally, it is proposed that activating enzymes of the ubiquitin-like proteins SUMO and NEDD8 may represent drug targets in these trypanosomatids as well.
Collapse
|
24
|
Zhang QT, Liu ZD, Wang Z, Wang T, Wang N, Wang N, Zhang B, Zhao YF. Recent Advances in Small Peptides of Marine Origin in Cancer Therapy. Mar Drugs 2021; 19:md19020115. [PMID: 33669851 PMCID: PMC7923226 DOI: 10.3390/md19020115] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death in the world, and antineoplastic drug research continues to be a major field in medicine development. The marine milieu has thousands of biological species that are a valuable source of novel functional proteins and peptides, which have been used in the treatment of many diseases, including cancer. In contrast with proteins and polypeptides, small peptides (with a molecular weight of less than 1000 Da) have overwhelming advantages, such as preferential and fast absorption, which can decrease the burden on human gastrointestinal function. Besides, these peptides are only connected by a few peptide bonds, and their small molecular weight makes it easy to modify and synthesize them. Specifically, small peptides can deliver nutrients and drugs to cells and tissues in the body. These characteristics make them stand out in relation to targeted drug therapy. Nowadays, the anticancer mechanisms of the small marine peptides are still largely not well understood; however, several marine peptides have been applied in preclinical treatment. This paper highlights the anticancer linear and cyclic small peptides in marine resources and presents a review of peptides and the derivatives and their mechanisms.
Collapse
Affiliation(s)
- Qi-Ting Zhang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (Q.-T.Z.); (T.W.); (Y.-F.Z.)
| | - Ze-Dong Liu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China; (Z.-D.L.); (Z.W.)
| | - Ze Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China; (Z.-D.L.); (Z.W.)
| | - Tao Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (Q.-T.Z.); (T.W.); (Y.-F.Z.)
| | - Nan Wang
- Quality Assurance Department, Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen 518057, China;
| | - Ning Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (Q.-T.Z.); (T.W.); (Y.-F.Z.)
- Correspondence: (N.W.); (B.Z.)
| | - Bin Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China; (Z.-D.L.); (Z.W.)
- Correspondence: (N.W.); (B.Z.)
| | - Yu-Fen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (Q.-T.Z.); (T.W.); (Y.-F.Z.)
| |
Collapse
|
25
|
Akone SH, Ntie-Kang F, Stuhldreier F, Ewonkem MB, Noah AM, Mouelle SEM, Müller R. Natural Products Impacting DNA Methyltransferases and Histone Deacetylases. Front Pharmacol 2020; 11:992. [PMID: 32903500 PMCID: PMC7438611 DOI: 10.3389/fphar.2020.00992] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/19/2020] [Indexed: 12/24/2022] Open
Abstract
Epigenetics refers to heritable changes in gene expression and chromatin structure without change in a DNA sequence. Several epigenetic modifications and respective regulators have been reported. These include DNA methylation, chromatin remodeling, histone post-translational modifications, and non-coding RNAs. Emerging evidence has revealed that epigenetic dysregulations are involved in a wide range of diseases including cancers. Therefore, the reversible nature of epigenetic modifications concerning activation or inhibition of enzymes involved could be promising targets and useful tools for the elucidation of cellular and biological phenomena. In this review, emphasis is laid on natural products that inhibit DNA methyltransferases (DNMTs) and histone deacetylases (HDACs) making them promising candidates for the development of lead structures for anticancer-drugs targeting epigenetic modifications. However, most of the natural products targeting HDAC and/or DNMT lack isoform selectivity, which is important for determining their potential use as therapeutic agents. Nevertheless, the structures presented in this review offer the well-founded basis that screening and chemical modifications of natural products will in future provide not only leads to the identification of more specific inhibitors with fewer side effects, but also important features for the elucidation of HDAC and DNMT function with respect to cancer treatment.
Collapse
Affiliation(s)
- Sergi Herve Akone
- Department of Chemistry, Faculty of Science, University of Douala, Douala, Cameroon
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research and Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Fidele Ntie-Kang
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
- Institute for Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| | - Fabian Stuhldreier
- Medical Faculty, Institute of Molecular Medicine I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Alexandre Mboene Noah
- Department of Biochemistry, Faculty of Science, University of Douala, Douala, Cameroon
| | | | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research and Department of Pharmacy, Saarland University, Saarbrücken, Germany
| |
Collapse
|
26
|
Al-Awadhi FH, Salvador-Reyes LA, Elsadek LA, Ratnayake R, Chen QY, Luesch H. Largazole is a Brain-Penetrant Class I HDAC Inhibitor with Extended Applicability to Glioblastoma and CNS Diseases. ACS Chem Neurosci 2020; 11:1937-1943. [PMID: 32559056 PMCID: PMC7390227 DOI: 10.1021/acschemneuro.0c00093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Largazole is a potent class I selective histone deacetylase inhibitor prodrug with anticancer activity against solid tumors in preclinical models. Largazole possesses in vitro activity against glioblastoma multiforme (GBM) cells and sufficiently crosses the blood-brain barrier based on measurement of the active species, largazole thiol, to achieve therapeutically relevant concentrations in the mouse brain. The effective dose resulted in pronounced functional responses on the transcript level based on RNA sequencing and quantitative polymerase chain reaction after reverse transcription (RT-qPCR), revealing desirable expression changes of genes related to neuroprotection, including Bdnf and Pax6 upregulation, extending the applicability of largazole to the treatment of brain cancer and neurodegenerative disorders. The largazole-induced modulation of Pax6 unifies both activities, since Pax6 expression suppresses GBM proliferation and invasion and inversely correlates with GBM tumor grade, while it is also implicated in neurogenesis, neuronal plasticity, and cognitive ability. Our results suggest that largazole could be repurposed for diseases of the brain.
Collapse
Affiliation(s)
- Fatma H. Al-Awadhi
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Lilibeth A. Salvador-Reyes
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Marine Science Institute, College of Science, University of the Philippines, Diliman, Quezon City, 1100 Philippines
| | - Lobna A. Elsadek
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Ranjala Ratnayake
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Qi-Yin Chen
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| |
Collapse
|
27
|
Wang X, Waschke BC, Woolaver RA, Chen SMY, Chen Z, Wang JH. HDAC inhibitors overcome immunotherapy resistance in B-cell lymphoma. Protein Cell 2020; 11:472-482. [PMID: 32162275 PMCID: PMC7305292 DOI: 10.1007/s13238-020-00694-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy has been applied successfully to treat B-cell lymphomas in preclinical models or clinical settings. However, immunotherapy resistance is a major challenge for B-cell lymphoma treatment. To overcome this issue, combinatorial therapeutic strategies have been pursued to achieve a better efficacy for treating B-cell lymphomas. One of such strategies is to combine immunotherapy with histone deacetylase (HDAC) inhibitors. HDAC inhibitors can potentially increase tumor immunogenicity, promote anti-tumor immune responses, or reverse immunosuppressive tumor environments. Thus, the combination of HDAC inhibitors and immunotherapy has drawn much attention in current cancer treatment. However, not all HDAC inhibitors are created equal and their net effects are highly dependent on the specific inhibitors used and the HDACs they target. Hence, we suggest that optimal treatment efficacy requires personalized design and rational combination based on prognostic biomarkers and unique profiles of HDAC inhibitors. Here, we discuss the possible mechanisms by which B-cell lymphomas acquire immunotherapy resistance and the effects of HDAC inhibitors on tumor cells and immune cells that could help overcome immunotherapy resistance.
Collapse
Affiliation(s)
- Xiaoguang Wang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, 12800 E. 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA
| | - Brittany C Waschke
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, 12800 E. 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA
| | - Rachel A Woolaver
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, 12800 E. 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA
| | - Samantha M Y Chen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, 12800 E. 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA
| | - Zhangguo Chen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, 12800 E. 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA
| | - Jing H Wang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, 12800 E. 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA.
| |
Collapse
|
28
|
Zhang B, Ruan ZW, Luo D, Zhu Y, Ding T, Sui Q, Lei X. Unexpected Enhancement of HDACs Inhibition by MeS Substitution at C-2 Position of Fluoro Largazole. Mar Drugs 2020; 18:md18070344. [PMID: 32629787 PMCID: PMC7401273 DOI: 10.3390/md18070344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/23/2020] [Accepted: 06/28/2020] [Indexed: 12/21/2022] Open
Abstract
Given our previous finding that fluorination at the C18 position of largazole showed reasonably good tolerance towards inhibitory activity and selectivity of histone deacetylases (HDACs), further modification on the valine residue in the fluoro-largazole's macrocyclic moiety with S-Me l-Cysteine or Glycine residue was performed. While the Glycine-modified fluoro analog showed poor activity, the S-Me l-Cysteine-modified analog emerged to be a very potent HDAC inhibitor. Unlike all previously reported C2-modified compounds in the largazole family (including our recent fluoro-largazole analogs) where replacement of the Val residue has failed to provide any potency improvement, the S-Me l-Cysteine-modified analog displayed significantly enhanced (five-nine-fold) inhibition of all the tested HDACs while maintaining the selectivity of HDAC1 over HDAC6, as compared to largazole thiol. A molecular modeling study provided rational explanation and structural evidence for the enhanced inhibitory activity. This new finding will aid the design of novel potent HDAC inhibitors.
Collapse
Affiliation(s)
- Bingbing Zhang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China; (B.Z.); (Z.-W.R.); (Y.Z.); (T.D.)
| | - Zhu-Wei Ruan
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China; (B.Z.); (Z.-W.R.); (Y.Z.); (T.D.)
| | - Dongdong Luo
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China;
| | - Yueyue Zhu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China; (B.Z.); (Z.-W.R.); (Y.Z.); (T.D.)
| | - Tingbo Ding
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China; (B.Z.); (Z.-W.R.); (Y.Z.); (T.D.)
| | - Qiang Sui
- China State Institute of Pharmaceutical Industry, No. 285 Gebaini Road, Pudong Zone, Shanghai 201203, China;
| | - Xinsheng Lei
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China; (B.Z.); (Z.-W.R.); (Y.Z.); (T.D.)
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Correspondence: ; Tel.: +86-021-51980128
| |
Collapse
|
29
|
Verza FA, Das U, Fachin AL, Dimmock JR, Marins M. Roles of Histone Deacetylases and Inhibitors in Anticancer Therapy. Cancers (Basel) 2020; 12:cancers12061664. [PMID: 32585896 PMCID: PMC7352721 DOI: 10.3390/cancers12061664] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022] Open
Abstract
Histones are the main structural proteins of eukaryotic chromatin. Histone acetylation/ deacetylation are the epigenetic mechanisms of the regulation of gene expression and are catalyzed by histone acetyltransferases (HAT) and histone deacetylases (HDAC). These epigenetic alterations of DNA structure influence the action of transcription factors which can induce or repress gene transcription. The HATs catalyze acetylation and the events related to gene transcription and are also responsible for transporting newly synthesized histones from the cytoplasm to the nucleus. The activity of HDACs is mainly involved in silencing gene expression and according to their specialized functions are divided into classes I, II, III and IV. The disturbance of the expression and mutations of HDAC genes causes the aberrant transcription of key genes regulating important cancer pathways such as cell proliferation, cell-cycle regulation and apoptosis. In view of their role in cancer pathways, HDACs are considered promising therapeutic targets and the development of HDAC inhibitors is a hot topic in the search for new anticancer drugs. The present review will focus on HDACs I, II and IV, the best known inhibitors and potential alternative inhibitors derived from natural and synthetic products which can be used to influence HDAC activity and the development of new cancer therapies.
Collapse
Affiliation(s)
- Flávia Alves Verza
- Biotechnology Unit, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil; (F.A.V.); (A.L.F.)
| | - Umashankar Das
- College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada;
| | - Ana Lúcia Fachin
- Biotechnology Unit, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil; (F.A.V.); (A.L.F.)
- Medicine School, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil
| | - Jonathan R. Dimmock
- College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada;
- Correspondence: (J.R.D.); (M.M.); Tel.: +1-306-966-6331 (J.R.D.); +55-16-3603-6728 (M.M.)
| | - Mozart Marins
- Biotechnology Unit, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil; (F.A.V.); (A.L.F.)
- College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada;
- Medicine School, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil
- Pharmaceutical Sciences School, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil
- Correspondence: (J.R.D.); (M.M.); Tel.: +1-306-966-6331 (J.R.D.); +55-16-3603-6728 (M.M.)
| |
Collapse
|
30
|
Brumley DA, Gunasekera SP, Chen QY, Paul VJ, Luesch H. Discovery, Total Synthesis, and SAR of Anaenamides A and B: Anticancer Cyanobacterial Depsipeptides with a Chlorinated Pharmacophore. Org Lett 2020; 22:4235-4239. [PMID: 32418432 DOI: 10.1021/acs.orglett.0c01281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New modified depsipeptides and geometric isomers, termed anaenamides A (1a) and B (1b), along with the presumptive biosynthetic intermediate, anaenoic acid (2), were discovered from a marine cyanobacterium from Guam. Structures were confirmed by total synthesis. The alkylsalicylic acid fragment and the C-terminal α-chlorinated α,β-unsaturated ester are novelties in cyanobacterial natural products. Cancer cell viability assays indicated that the C-terminal unit serves as the pharmacophore and that the double-bond geometry impacts the cytotoxicity.
Collapse
Affiliation(s)
| | - Sarath P Gunasekera
- Smithsonian Marine Station, 701 Seaway Drive, Ft. Pierce, Florida 34949, United States
| | | | - Valerie J Paul
- Smithsonian Marine Station, 701 Seaway Drive, Ft. Pierce, Florida 34949, United States
| | | |
Collapse
|
31
|
Borgini M, Zamperini C, Poggialini F, Ferrante L, Summa V, Botta M, Fabio RD. Synthesis and Antiproliferative Activity of Nitric Oxide-Donor Largazole Prodrugs. ACS Med Chem Lett 2020; 11:846-851. [PMID: 32435394 PMCID: PMC7236235 DOI: 10.1021/acsmedchemlett.9b00643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
The marine natural product Largazole is the most potent Class I HDAC inhibitor identified to date. Since its discovery, many research groups have been attracted by the structural complexity and the peculiar anticancer activity, due to its capability to discriminate between tumor cells and normal cells. Herein, we discuss the synthesis and the in vitro biological profile of hybrid analogues of Largazole, as dual HDAC inhibitor and nitric oxide (NO) donors, potentially useful as anticancer agents. In particular, the metabolic stability of the modified thioester moiety of Largazole, bearing the NO-donor function/s, the in vitro release of NO, and the antiproliferative activity in tumor cell lines are presented.
Collapse
Affiliation(s)
- Matteo Borgini
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Claudio Zamperini
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
- Lead
Discovery Siena S.r.l., Castelnuovo Berardenga, 53019 Siena, Italy
| | - Federica Poggialini
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | | | - Vincenzo Summa
- IRBM
Science Park, Via Pontina Km 30.600, 00070 Pomezia, Italy
| | - Maurizio Botta
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
- Lead
Discovery Siena S.r.l., Castelnuovo Berardenga, 53019 Siena, Italy
- Biotechnology
College of Science and Technology, Temple
University, BioLife Science
Building, Suite 333, 1900 North 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - Romano Di Fabio
- Promidis, Via Olgettina 60, 20132 Milano, Italy
- IRBM
Science Park, Via Pontina Km 30.600, 00070 Pomezia, Italy
| |
Collapse
|
32
|
Tan LT, Phyo MY. Marine Cyanobacteria: A Source of Lead Compounds and their Clinically-Relevant Molecular Targets. Molecules 2020; 25:E2197. [PMID: 32397127 PMCID: PMC7249205 DOI: 10.3390/molecules25092197] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
The prokaryotic filamentous marine cyanobacteria are photosynthetic microbes that are found in diverse marine habitats, ranging from epiphytic to endolithic communities. Their successful colonization in nature is largely attributed to genetic diversity as well as the production of ecologically important natural products. These cyanobacterial natural products are also a source of potential drug leads for the development of therapeutic agents used in the treatment of diseases, such as cancer, parasitic infections and inflammation. Major sources of these biomedically important natural compounds are found predominately from marine cyanobacterial orders Oscillatoriales, Nostocales, Chroococcales and Synechococcales. Moreover, technological advances in genomic and metabolomics approaches, such as mass spectrometry and NMR spectroscopy, revealed that marine cyanobacteria are a treasure trove of structurally unique natural products. The high potency of a number of natural products are due to their specific interference with validated drug targets, such as proteasomes, proteases, histone deacetylases, microtubules, actin filaments and membrane receptors/channels. In this review, the chemistry and biology of selected potent cyanobacterial compounds as well as their synthetic analogues are presented based on their molecular targets. These molecules are discussed to reflect current research trends in drug discovery from marine cyanobacterial natural products.
Collapse
Affiliation(s)
- Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore;
| | | |
Collapse
|
33
|
Discovery of class I histone deacetylase inhibitors based on romidpesin with promising selectivity for cancer cells. Future Med Chem 2020; 12:311-323. [DOI: 10.4155/fmc-2019-0290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: Class I histone deacetylases (HDACs) are considered to be promising anticancer targets, but selective inhibition of class I HDAC isoforms remains a challenge. Methods & results: Previously, we obtained a selective class I HDAC inhibitor 9 based on a macrocyclic HDAC inhibitor Romidpesin. As our continuous efforts, a library of novel cyclicdepsipeptides based on 9 was established using a convergent synthesis strategy. The most active compounds 10, 16 and 19 selectively inhibit class I HDACs and exhibit promising nanomolar antiproliferative activities against several cancer cell lines with excellent selectivity toward cancer cells over normal cells. Besides, compound 10 demonstrates excellent antitumor effects in human prostate carcinoma PC3 xenograft models with no observed toxicity. Conclusion: These cyclicdepsipeptides show great therapeutic potential as novel anticancer agents for clinical translation.
Collapse
|
34
|
Zhao B, Fu Y, Shang R. Oxalic Acid Monothioester for Palladium-Catalyzed Decarboxylative Thiocarbonylation and Hydrothiocarbonylation. Org Lett 2019; 21:9521-9526. [PMID: 31746206 DOI: 10.1021/acs.orglett.9b03701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxalic acid monothioester (OAM), an easily accessible and storable reagent, was reported herein as a thioester synthetic equivalent for palladium-catalyzed decarboxylative thiocarbonylation of organohalides and hydrothiocarbonylation of unsaturated carbon-carbon bonds at room temperature with high chemo- and regioselectivity. The reaction is applicable to the synthesis of cysteine-derived thioesters, thus allowing chemical modification of cysteine-containing peptides. Decarboxylation of OAM proceeds through oxidative addition of Pd(0) to the acyl-S bond, which accounts for the very mild reaction conditions.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Yao Fu
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Rui Shang
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China.,Department of Chemistry, School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| |
Collapse
|
35
|
Zhang B, Liu J, Gao D, Yu X, Wang J, Lei X. A fluorine scan on the Zn2+-binding thiolate side chain of HDAC inhibitor largazole: Synthesis, biological evaluation, and molecular modeling. Eur J Med Chem 2019; 182:111672. [DOI: 10.1016/j.ejmech.2019.111672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/31/2019] [Accepted: 08/31/2019] [Indexed: 10/26/2022]
|
36
|
Liang X, Luo D, Luesch H. Advances in exploring the therapeutic potential of marine natural products. Pharmacol Res 2019; 147:104373. [PMID: 31351913 PMCID: PMC6839689 DOI: 10.1016/j.phrs.2019.104373] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/26/2022]
Abstract
Marine natural products represent novel and diverse chemotypes that serve as templates for the discovery and development of therapeutic agents with distinct mechanisms of action. These genetically encoded compounds produced by an evolutionary optimized biosynthetic machinery are usually quite complex and can be difficult to recreate in the laboratory. The isolation from the source organism results in limited amount of material; however, the development of advanced NMR technologies and dereplication strategies has enabled the structure elucidation on small scale. In order to rigorously explore the therapeutic potential of marine natural products and advance them further, the biological characterization has to keep pace with the chemical characterization. The limited marine natural product supply has been a serious challenge for thorough investigation of the biological targets. Several marine drugs have reached the markets or are in clinical trials, where those challenges have been overcome, including through the development of scalable syntheses. However, the identification of mechanisms of action of marine natural products early in the discovery process is potentially game changing, since effectively linking marine natural products to potential therapeutic applications in turn triggers motivation to tackle challenging syntheses and solve the supply problem. An increasing number of sensitive technologies and methods have been developed in recent years, some of which have been successfully applied to marine natural products, increasing the value of these compounds with respect to their biomedical utility. In this review, we discuss advances in overcoming the bottlenecks in marine natural product research, emphasizing on the development and advances of diverse target identification technologies applicable for marine natural product research.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida, 32610, United States
| | - Danmeng Luo
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida, 32610, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida, 32610, United States.
| |
Collapse
|
37
|
Wang X, Waschke BC, Woolaver RA, Chen Z, Zhang G, Piscopio AD, Liu X, Wang JH. Histone Deacetylase Inhibition Sensitizes PD1 Blockade-Resistant B-cell Lymphomas. Cancer Immunol Res 2019; 7:1318-1331. [PMID: 31235619 PMCID: PMC6679731 DOI: 10.1158/2326-6066.cir-18-0875] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/22/2019] [Accepted: 06/13/2019] [Indexed: 01/05/2023]
Abstract
PD1 blockade is effective in a subset of patients with B-cell lymphoma (e.g., classical-Hodgkin lymphomas); however, most patients do not respond to anti-PD1 therapy. To study PD1 resistance, we used an isoform-selective histone deacetylase inhibitor (HDACi; OKI-179), and a mouse mature B-cell lymphoma, G1XP lymphoma, immunosuppressive features of which resemble those of human B-cell lymphomas, including downregulation of MHC class I and II, exhaustion of CD8+ and CD4+ tumor-infiltrating lymphocytes (TIL), and PD1-blockade resistance. Using two lymphoma models, we show that treatment of B-cell lymphomas refractory to PD1 blockade with both OKI-179 and anti-PD1 inhibited growth; furthermore, sensitivity to single or combined treatment required tumor-derived MHC class I, and positively correlated with MHC class II expression level. We conclude that OKI-179 sensitizes lymphomas to PD1-blockade by enhancing tumor immunogenicity. In addition, we found that different HDACis exhibited distinct effects on tumors and T cells, yet the same HDACi could differentially affect HLA expression on different human B-cell lymphomas. Our study highlights the immunologic effects of HDACis on antitumor responses and suggests that optimal treatment efficacy requires personalized design and rational combination based on prognostic biomarkers (e.g., MHCs) and the individual profiles of HDACi.
Collapse
Affiliation(s)
- Xiaoguang Wang
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Brittany C Waschke
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Rachel A Woolaver
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Zhangguo Chen
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Gan Zhang
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado
| | | | - Xuedong Liu
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado
- OnKure Inc., Boulder, Colorado
| | - Jing H Wang
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
38
|
Zhang B, Shan G, Zheng Y, Yu X, Ruan ZW, Li Y, Lei X. Synthesis and Preliminary Biological Evaluation of Two Fluoroolefin Analogs of Largazole Inspired by the Structural Similarity of the Side Chain Unit in Psammaplin A. Mar Drugs 2019; 17:md17060333. [PMID: 31163697 PMCID: PMC6628159 DOI: 10.3390/md17060333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022] Open
Abstract
Largazole, isolated from a marine Cyanobacterium of the genus Symploca, is a potent and selective Class I HDAC (histone deacetylation enzymes) inhibitor. This natural 16-membered macrocyclic depsipeptide features an interesting side chain unit, namely 3-hydroxy-7-mercaptohept-4-enoic acid, which occurs in many other natural sulfur-containing HDAC inhibitors. Notably, one similar fragment, where the amide moiety replaces the trans alkene moiety, appears in Psammaplin A, another marine natural product with potent HDAC inhibitory activities. Inspired by such a structural similarity, we hypothesized the fluoroolefin moiety would mimic both the alkene moiety in Largazole and the amide moiety in Psammaplin A, and thus designed and synthesized two novel fluoro olefin analogs of Largazole. The preliminary biological assays showed that the fluoro analogs possessed comparable Class I HDAC inhibitory effects, indicating that this kind of modification on the side chain of Largazole was tolerable.
Collapse
Affiliation(s)
- Bingbing Zhang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| | - Guangsheng Shan
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| | - Yinying Zheng
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| | - Xiaolin Yu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhu-Wei Ruan
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| | - Yang Li
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| | - Xinsheng Lei
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
39
|
Abstract
This Review is devoted to the chemistry of macrocyclic peptides having heterocyclic fragments in their structure. These motifs are present in many natural products and synthetic macrocycles designed against a particular biochemical target. Thiazole and oxazole are particularly common constituents of naturally occurring macrocyclic peptide molecules. This frequency of occurrence is because the thiazole and oxazole rings originate from cysteine, serine, and threonine residues. Whereas other heteroaryl groups are found less frequently, they offer many insightful lessons that range from conformational control to receptor/ligand interactions. Many options to develop new and improved technologies to prepare natural products have appeared in recent years, and the synthetic community has been pursuing synthetic macrocycles that have no precedent in nature. This Review attempts to summarize progress in this area.
Collapse
Affiliation(s)
- Ivan V Smolyar
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Valentine G Nenajdenko
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| |
Collapse
|
40
|
Uba AI, Weako J, Keskin Ö, Gürsoy A, Yelekçi K. Examining the stability of binding modes of the co-crystallized inhibitors of human HDAC8 by molecular dynamics simulation. J Biomol Struct Dyn 2019; 38:1751-1760. [PMID: 31057077 DOI: 10.1080/07391102.2019.1615989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Histone deacetylase (HDAC) 8 has been implicated as a potential therapeutic target in a variety of cancers, neurodegenerative disorders, metabolic dysregulation and autoimmune and inflammatory diseases. Several nonselective HDAC inhibitors have been co-crystallized with HDAC8. Molecular dynamics (MD) studies may yield valuable information on the structural stabilities of the complexes over time as determined by various pharmacophore features of the co-crystallized inhibitors. Here, using 11 unmodified X-ray crystal structures of human HDAC8 (complexes) structure-based pharmacophore models were built and clustered based on distance - a function of the number of common pharmacophore features and the root-mean-squared displacement between the matching features. Based on this information, a total of seven complexes (1T64, 1W22, 3RQD, 3SFF, 3F0R, 5VI6 and 5FCW) were submitted to unrestrained 50 ns-MD simulations using nanoscale MD (NAMD) software. 1T64 (HDAC8 in complex with TSA) was found to show the highest stability over time, presumably because of the TSA's ability to span HDAC8 catalytic channel and form a strong ionic interaction with zinc metal ion. Other stable complexes were 1W22, 3SFF, 3F0R and 5FCW. However, 3RQD and 5VI6 showed relative instability over 50 ns time period. This may be attributed to bulkiness of the capping groups of both largazole thiol and trapoxin A, making them unable to fit well into the active site of HDAC8. They rather formed steric clashes with residues on loop regions near the entrance to the channel. Thus, 1T64 and similar crystal structures may be good candidates for HDAC8 structural dynamics studies and inhibitor design.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdullahi Ibrahim Uba
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Science, Kadir Has University, Istanbul, Turkey
| | - Jackson Weako
- Computational Biology and Bioinformatics Department, Faculty of Science and Engineering, Koç University, Sariyer/Istanbul, Turkey
| | - Özlem Keskin
- Computational Biology and Bioinformatics Department, Faculty of Science and Engineering, Koç University, Sariyer/Istanbul, Turkey
| | - Attila Gürsoy
- Computational Biology and Bioinformatics Department, Faculty of Science and Engineering, Koç University, Sariyer/Istanbul, Turkey
| | - Kemal Yelekçi
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Science, Kadir Has University, Istanbul, Turkey
| |
Collapse
|
41
|
Dewaker V, Srivastava PN, Verma S, Prabhakar YS. Molecular dynamics study of HDAC8-largazole analogues co-crystals for designing potential anticancer compounds. J Biomol Struct Dyn 2019; 38:1197-1213. [DOI: 10.1080/07391102.2019.1598497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Varun Dewaker
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| | - Pratik Narain Srivastava
- Parasitology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| | - Saroj Verma
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| | - Yenamandra S. Prabhakar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| |
Collapse
|
42
|
Rafehi H, Kaspi A, Ziemann M, Okabe J, Karagiannis TC, El-Osta A. Systems approach to the pharmacological actions of HDAC inhibitors reveals EP300 activities and convergent mechanisms of regulation in diabetes. Epigenetics 2018; 12:991-1003. [PMID: 28886276 DOI: 10.1080/15592294.2017.1371892] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Given the skyrocketing costs to develop new drugs, repositioning of approved drugs, such as histone deacetylase (HDAC) inhibitors, may be a promising strategy to develop novel therapies. However, a gap exists in the understanding and advancement of these agents to meaningful translation for which new indications may emerge. To address this, we performed systems-level analyses of 33 independent HDAC inhibitor microarray studies. Based on network analysis, we identified enrichment for pathways implicated in metabolic syndrome and diabetes (insulin receptor signaling, lipid metabolism, immunity and trafficking). Integration with ENCODE ChIP-seq datasets identified suppression of EP300 target genes implicated in diabetes. Experimental validation indicates reversal of diabetes-associated EP300 target genes in primary vascular endothelial cells derived from a diabetic individual following inhibition of HDACs (by SAHA), EP300, or EP300 knockdown. Our computational systems biology approach provides an adaptable framework for the prediction of novel therapeutics for existing disease.
Collapse
Affiliation(s)
- Haloom Rafehi
- a Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Faculty of Medicine, Monash University , Melbourne , Victoria , Australia
| | - Antony Kaspi
- a Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Faculty of Medicine, Monash University , Melbourne , Victoria , Australia
| | - Mark Ziemann
- a Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Faculty of Medicine, Monash University , Melbourne , Victoria , Australia
| | - Jun Okabe
- a Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Faculty of Medicine, Monash University , Melbourne , Victoria , Australia
| | - Tom C Karagiannis
- a Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Faculty of Medicine, Monash University , Melbourne , Victoria , Australia.,b Department of Pathology, The University of Melbourne , Parkville , Victoria , Australia
| | - Assam El-Osta
- a Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Faculty of Medicine, Monash University , Melbourne , Victoria , Australia.,b Department of Pathology, The University of Melbourne , Parkville , Victoria , Australia.,c Faculty of Medicine, Nursing and Health Sciences, Department of Diabetes, Monash University , Melbourne , Victoria , Australia.,d Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong , Hong Kong SAR
| |
Collapse
|
43
|
Lascano S, Lopez M, Arimondo PB. Natural Products and Chemical Biology Tools: Alternatives to Target Epigenetic Mechanisms in Cancers. CHEM REC 2018; 18:1854-1876. [PMID: 30537358 DOI: 10.1002/tcr.201800133] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022]
Abstract
DNA methylation and histone acetylation are widely studied epigenetic modifications. They are involved in numerous pathologies such as cancer, neurological disease, inflammation, obesity, etc. Since the discovery of the epigenome, numerous compounds have been developed to reverse DNA methylation and histone acetylation aberrant profile in diseases. Among them several were inspired by Nature and have a great interest as therapeutic molecules. In the quest of finding new ways to target epigenetic mechanisms, the use of chemical tools is a powerful strategy to better understand epigenetic mechanisms in biological systems. In this review we will present natural products reported as DNMT or HDAC inhibitors for anticancer treatments. We will then discuss the use of chemical tools that have been used in order to explore the epigenome.
Collapse
Affiliation(s)
- Santiago Lascano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université de Montpellier-ENSCM, 240 avenue du Prof. E. Jeanbrau, 34296, Montpellier cedex 5, France
| | - Marie Lopez
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université de Montpellier-ENSCM, 240 avenue du Prof. E. Jeanbrau, 34296, Montpellier cedex 5, France
| | - Paola B Arimondo
- Epigenetic Chemical Biology, Institut Pasteur, CNRS UMR3523, 28 rue du Docteur Roux, 75724, Paris cedex 15, France
| |
Collapse
|
44
|
Yu X, Zhang B, Shan G, Wu Y, Yang FL, Lei X. Synthesis of the molecular hybrid inspired by Largazole and Psammaplin A. Tetrahedron 2018. [DOI: 10.1016/j.tet.2017.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Chen QY, Chaturvedi PR, Luesch H. Process Development and Scale-up Total Synthesis of Largazole, a Potent Class I Histone Deacetylase Inhibitor. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.7b00352] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qi-Yin Chen
- Oceanyx
Pharmaceuticals, Inc., Sid Martin Biotechnology Incubator, 12085 Research
Drive, Alachua, Florida 32615, United States
| | - Pravin R. Chaturvedi
- Oceanyx
Pharmaceuticals, Inc., Sid Martin Biotechnology Incubator, 12085 Research
Drive, Alachua, Florida 32615, United States
| | - Hendrik Luesch
- Oceanyx
Pharmaceuticals, Inc., Sid Martin Biotechnology Incubator, 12085 Research
Drive, Alachua, Florida 32615, United States
| |
Collapse
|
46
|
Affiliation(s)
- I. W. Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| |
Collapse
|
47
|
Poli G, Di Fabio R, Ferrante L, Summa V, Botta M. Largazole Analogues as Histone Deacetylase Inhibitors and Anticancer Agents: An Overview of Structure-Activity Relationships. ChemMedChem 2017; 12:1917-1926. [PMID: 29117473 DOI: 10.1002/cmdc.201700563] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/31/2017] [Indexed: 12/18/2022]
Abstract
Since the time of its identification, the natural compound largazole rapidly caught the attention of the medicinal chemistry community for its impressive potency as an inhibitor of histone deacetylases (HDACs) and its strong antiproliferative activity against a broad panel of cancer cell lines. The design of largazole analogues is an expanding field of study, due to their remarkable potential as novel anticancer therapeutics. At present, a large ensemble of largazole analogues has been reported, allowing the identification of important structure-activity relationships (SAR) that can guide the design of novel compounds with improved HDAC inhibitory profiles, anticancer activity, and pharmacokinetic properties. The aim of this review is to concisely summarize the information obtained by biological evaluations of the various largazole analogues reported to date, with particular attention given to the latest analogues, as well as to analyze the various SAR obtained from this data, with the purpose of providing useful guidelines for the development of novel potent and selective HDAC inhibitors to be used as anticancer agents.
Collapse
Affiliation(s)
- Giulio Poli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Romano Di Fabio
- Promidis, Via Olgettina 60, 20132, Milano, Italy.,IRBM Science Park, Via Pontina Km 30 600, 00070, Pomezia, Italy
| | | | - Vincenzo Summa
- IRBM Science Park, Via Pontina Km 30 600, 00070, Pomezia, Italy
| | - Maurizio Botta
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| |
Collapse
|
48
|
Porter NJ, Christianson DW. Binding of the Microbial Cyclic Tetrapeptide Trapoxin A to the Class I Histone Deacetylase HDAC8. ACS Chem Biol 2017; 12:2281-2286. [PMID: 28846375 DOI: 10.1021/acschembio.7b00330] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Trapoxin A is a microbial cyclic tetrapeptide that is an essentially irreversible inhibitor of class I histone deacetylases (HDACs). The inhibitory warhead is the α,β-epoxyketone side-chain of (2S,9S)-2-amino-8-oxo-9,10-epoxydecanoic acid (l-Aoe), which mimics the side-chain of the HDAC substrate acetyl-l-lysine. We now report the crystal structure of the HDAC8-trapoxin A complex at 1.24 Å resolution, revealing that the ketone moiety of l-Aoe undergoes nucleophilic attack to form a zinc-bound tetrahedral gem-diolate that mimics the tetrahedral intermediate and its flanking transition states in catalysis. Mass spectrometry, activity measurements, and isothermal titration calorimetry confirm that trapoxin A binds tightly (Kd = 3 ± 1 nM) and does not covalently modify the enzyme, so the epoxide moiety of l-Aoe remains intact. Comparison of the HDAC8-trapoxin A complex with the HDAC6-HC toxin complex provides new insight regarding the inhibitory potency of l-Aoe-containing natural products against class I and class II HDACs.
Collapse
Affiliation(s)
- Nicholas J. Porter
- Roy and Diana Vagelos Laboratories,
Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories,
Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
49
|
Kitir B, Maolanon AR, Ohm RG, Colaço AR, Fristrup P, Madsen AS, Olsen CA. Chemical Editing of Macrocyclic Natural Products and Kinetic Profiling Reveal Slow, Tight-Binding Histone Deacetylase Inhibitors with Picomolar Affinities. Biochemistry 2017; 56:5134-5146. [DOI: 10.1021/acs.biochem.7b00725] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Betül Kitir
- Center
for Biopharmaceuticals and Department for Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Alex R. Maolanon
- Center
for Biopharmaceuticals and Department for Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Ragnhild G. Ohm
- Center
for Biopharmaceuticals and Department for Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Ana R. Colaço
- Department
of Chemistry, Technical University of Denmark, DK-2800 Kongens
Lyngby, Denmark
| | - Peter Fristrup
- Department
of Chemistry, Technical University of Denmark, DK-2800 Kongens
Lyngby, Denmark
| | - Andreas S. Madsen
- Center
for Biopharmaceuticals and Department for Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Christian A. Olsen
- Center
for Biopharmaceuticals and Department for Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
50
|
Combinations of isoform-targeted histone deacetylase inhibitors and bryostatin analogues display remarkable potency to activate latent HIV without global T-cell activation. Sci Rep 2017; 7:7456. [PMID: 28785069 PMCID: PMC5547048 DOI: 10.1038/s41598-017-07814-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/05/2017] [Indexed: 12/26/2022] Open
Abstract
Current antiretroviral therapy (ART) for HIV/AIDS slows disease progression by reducing viral loads and increasing CD4 counts. Yet ART is not curative due to the persistence of CD4+ T-cell proviral reservoirs that chronically resupply active virus. Elimination of these reservoirs through the administration of synergistic combinations of latency reversing agents (LRAs), such as histone deacetylase (HDAC) inhibitors and protein kinase C (PKC) modulators, provides a promising strategy to reduce if not eradicate the viral reservoir. Here, we demonstrate that largazole and its analogues are isoform-targeted histone deacetylase inhibitors and potent LRAs. Significantly, these isoform-targeted HDAC inhibitors synergize with PKC modulators, namely bryostatin-1 analogues (bryologs). Implementation of this unprecedented LRA combination induces HIV-1 reactivation to unparalleled levels and avoids global T-cell activation within resting CD4+ T-cells.
Collapse
|