1
|
Thomas J, Goldberg DP. Factors controlling the reactivity of synthetic compound-I Analogs. J PORPHYR PHTHALOCYA 2023; 27:1489-1501. [PMID: 39132380 PMCID: PMC11308481 DOI: 10.1142/s1088424623300136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
A high-valent iron(IV)-oxo porphyrin radical cation (FeIV(O)(porph+•) serves as a key, reactive intermediate for a range of heme enzymes, including cytochrome P450 (CYP), horseradish peroxidase (HRP), and catalase (CAT). Synthetic analogs of this intermediate, known as Compound-I (Cpd-I) in the heme enzyme literature, have been generated with different tetrapyrrolic, macrocyclic ligands, including porphyrin derivatives, and the closely related ring-contracted macrocycles, corroles and corrolazines. These synthetic analogs have been useful for assigning and understanding structural and spectroscopic features and examining the reactivity of Cpd-I-like species in controlled and well-defined environments. This review focuses on summarizing recent developments in the synthesis and reactivity of high-valent iron-oxo porphyrinoid complexes in two main classes of reactions, proton-coupled electron transfer (PCET) and oxygen atom transfer (OAT). The relationship between the structure of the complexes and their reactivity is emphasized, including the influence of axial ligation and peripheral macrocyclic substitution, as well as the effects of solvent and secondary coordination spheres on the reactivity of the Cpd-I analogs. In bringing together the latest findings on Cpd-I analogs, this review intends to broaden our current understanding of the factors that control the stability and reactivity of Cpd-I species. This new knowledge should, in turn, point toward new synthetic strategies for constructing catalysts that rely on Cpd-I-like reactive intermediates.
Collapse
Affiliation(s)
- Jithin Thomas
- Department of Chemistry, The Johns Hopkins University, 3400N. Charles Street, Baltimore, Maryland 21218, USA
| | - David P. Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400N. Charles Street, Baltimore, Maryland 21218, USA
| |
Collapse
|
2
|
Morimoto Y, Shimaoka Y, Ishimizu Y, Fujii H, Itoh S. Direct Observation of Primary C−H Bond Oxidation by an Oxido‐Iron(IV) Porphyrin π‐Radical Cation Complex in a Fluorinated Carbon Solvent. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yuma Morimoto
- Department of Material and Life Science Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Yuki Shimaoka
- Department of Material and Life Science Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Yuri Ishimizu
- Department of Chemistry Graduate School of Humanities and Sciences Nara Women's University Kitauoyanishi Nara 630-8506 Japan
| | - Hiroshi Fujii
- Department of Chemistry Graduate School of Humanities and Sciences Nara Women's University Kitauoyanishi Nara 630-8506 Japan
| | - Shinobu Itoh
- Department of Material and Life Science Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| |
Collapse
|
3
|
Morimoto Y, Shimaoka Y, Ishimizu Y, Fujii H, Itoh S. Direct Observation of Primary C-H Bond Oxidation by an Oxido-Iron(IV) Porphyrin π-Radical Cation Complex in a Fluorinated Carbon Solvent. Angew Chem Int Ed Engl 2019; 58:10863-10866. [PMID: 31119841 DOI: 10.1002/anie.201901608] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/22/2019] [Indexed: 12/23/2022]
Abstract
Oxido-iron(IV) porphyrin π-radical cation species are involved in a variety of heme-containing enzymes and have characteristic oxidation states consisting of a high-valent iron center and a π-conjugated macrocyclic ligand. However, the short lifetime of the complex has hampered detailed reactivity studies. Reported herein is a remarkable increase in the lifetime (80 s at 10 °C) of FeIV (TMP+. )(O)(Cl) (2; TMP=5,10,15,20-tetramesitylporphyrin dianion), produced by the oxidation of FeIII (TMP)(Cl) (1) by ozone in α,α,α-trifluorotoluene (TFT). The lifetime is 720 times longer compared to that of the currently most stable species reported to date. The increase in the lifetime improves the reaction efficiency of 2 toward inert alkane substrates, and allowed observation of the reaction of 2 with a primary C-H bond (BDEC-H =ca. 100 kcal mol-1 ) directly. Activation parameters for cyclohexane hydroxylation were also obtained.
Collapse
Affiliation(s)
- Yuma Morimoto
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuki Shimaoka
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuri Ishimizu
- Department of Chemistry, Graduate School of Humanities and Sciences, Nara Women's University, Kitauoyanishi, Nara, 630-8506, Japan
| | - Hiroshi Fujii
- Department of Chemistry, Graduate School of Humanities and Sciences, Nara Women's University, Kitauoyanishi, Nara, 630-8506, Japan
| | - Shinobu Itoh
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
4
|
Wei X, Zhang C, Gao X, Gao Y, Yang Y, Guo K, Du X, Pu L, Wang Q. Enhanced Activity and Substrate Specificity by Site-Directed Mutagenesis for the P450 119 Peroxygenase Catalyzed Sulfoxidation of Thioanisole. ChemistryOpen 2019; 8:1076-1083. [PMID: 31406654 PMCID: PMC6682931 DOI: 10.1002/open.201900157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Indexed: 11/06/2022] Open
Abstract
P450 119 peroxygenase was found to catalyze the sulfoxidation of thioanisole and the sulfonation of sulfoxide in the presence of tert-butyl hydroperoxide (TBHP) for the first time with turnover rates of 1549 min-1 and 196 min-1 respectively. Several mutants were designed to improve the peroxygenation activity and thioanisole specificity by site-directed mutagenesis. The F153G/T213G mutant gave an increase of sulfoxide yield and a decrease of sulfone yield. Moreover the S148P/I161T/K199E/T214V mutant and the K199E mutant with acidic Glu residue contributed to improving the product ratio of sulfoxide to sulfone. Addition of short-alkyl-chain organic acids to the P450 119 peroxygenase-catalyzed sulfur oxidation of thioanisole was investigated. Octanoic acid was found to induce a preferred sulfoxidation of thioanisole catalyzed by the F153G/T213G mutant to give approximately 2.4-fold increase in turnover rate with a k cat value of 3687 min-1 relative to that of the wild-type, and by the F153G mutant to give the R-sulfoxide up to 30 % ee. The experimental control and the proposed mechanism for the P450 119 peroxygenase-catalyzed sulfoxidation of thioanisole in the presence of octanoic acid suggested that octanoic acid could partially occupy the substrate pocket; meanwhile the F153G mutation could enhance the substrate specificity, which could lead to efficiently regulate the spatial orientation of thioanisole and facilitate the formation of Compound I. This is the most effective catalytic system for the P450 119 peroxygenase-catalyzed sulfoxidation of thioanisole.
Collapse
Affiliation(s)
- Xiaoyao Wei
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou Sichuan 646000 P. R. China
| | - Chun Zhang
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou Sichuan 646000 P. R. China
| | - Xiaowei Gao
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou Sichuan 646000 P. R. China
| | - Yanping Gao
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou Sichuan 646000 P. R. China
| | - Ya Yang
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou Sichuan 646000 P. R. China
| | - Kai Guo
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou Sichuan 646000 P. R. China
| | - Xi Du
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou Sichuan 646000 P. R. China
| | - Lin Pu
- Department of Chemistry University of Virginia Charlottesville VA 22904-4319 USA
| | - Qin Wang
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou Sichuan 646000 P. R. China
| |
Collapse
|
5
|
Huang X, Groves JT. Oxygen Activation and Radical Transformations in Heme Proteins and Metalloporphyrins. Chem Rev 2018; 118:2491-2553. [PMID: 29286645 PMCID: PMC5855008 DOI: 10.1021/acs.chemrev.7b00373] [Citation(s) in RCA: 591] [Impact Index Per Article: 98.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Indexed: 12/20/2022]
Abstract
As a result of the adaptation of life to an aerobic environment, nature has evolved a panoply of metalloproteins for oxidative metabolism and protection against reactive oxygen species. Despite the diverse structures and functions of these proteins, they share common mechanistic grounds. An open-shell transition metal like iron or copper is employed to interact with O2 and its derived intermediates such as hydrogen peroxide to afford a variety of metal-oxygen intermediates. These reactive intermediates, including metal-superoxo, -(hydro)peroxo, and high-valent metal-oxo species, are the basis for the various biological functions of O2-utilizing metalloproteins. Collectively, these processes are called oxygen activation. Much of our understanding of the reactivity of these reactive intermediates has come from the study of heme-containing proteins and related metalloporphyrin compounds. These studies not only have deepened our understanding of various functions of heme proteins, such as O2 storage and transport, degradation of reactive oxygen species, redox signaling, and biological oxygenation, etc., but also have driven the development of bioinorganic chemistry and biomimetic catalysis. In this review, we survey the range of O2 activation processes mediated by heme proteins and model compounds with a focus on recent progress in the characterization and reactivity of important iron-oxygen intermediates. Representative reactions initiated by these reactive intermediates as well as some context from prior decades will also be presented. We will discuss the fundamental mechanistic features of these transformations and delineate the underlying structural and electronic factors that contribute to the spectrum of reactivities that has been observed in nature as well as those that have been invented using these paradigms. Given the recent developments in biocatalysis for non-natural chemistries and the renaissance of radical chemistry in organic synthesis, we envision that new enzymatic and synthetic transformations will emerge based on the radical processes mediated by metalloproteins and their synthetic analogs.
Collapse
Affiliation(s)
- Xiongyi Huang
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department
of Chemistry, California Institute of Technology, Pasadena, California 91125, United States
| | - John T. Groves
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
6
|
Wang L, Wei S, Pan X, Liu P, Du X, Zhang C, Pu L, Wang Q. Enhanced Turnover for the P450 119 Peroxygenase-Catalyzed Asymmetric Epoxidation of Styrenes by Random Mutagenesis. Chemistry 2018; 24:2741-2749. [DOI: 10.1002/chem.201705460] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Li Wang
- Center for Pharmaceutical Research and Development, School of Pharmacy; Southwest Medical University, Luzhou; Sichuan 646000 P.R. China
- Department of Medicinal Chemistry, School of Pharmacy; Southwest Medical University, Luzhou; Sichuan 646000 P.R. China
| | - Siping Wei
- Center for Pharmaceutical Research and Development, School of Pharmacy; Southwest Medical University, Luzhou; Sichuan 646000 P.R. China
- Department of Medicinal Chemistry, School of Pharmacy; Southwest Medical University, Luzhou; Sichuan 646000 P.R. China
| | - Xianchao Pan
- Center for Pharmaceutical Research and Development, School of Pharmacy; Southwest Medical University, Luzhou; Sichuan 646000 P.R. China
- Department of Medicinal Chemistry, School of Pharmacy; Southwest Medical University, Luzhou; Sichuan 646000 P.R. China
| | - Pingxian Liu
- Center for Pharmaceutical Research and Development, School of Pharmacy; Southwest Medical University, Luzhou; Sichuan 646000 P.R. China
- Department of Medicinal Chemistry, School of Pharmacy; Southwest Medical University, Luzhou; Sichuan 646000 P.R. China
| | - Xi Du
- Center for Pharmaceutical Research and Development, School of Pharmacy; Southwest Medical University, Luzhou; Sichuan 646000 P.R. China
| | - Chun Zhang
- Center for Pharmaceutical Research and Development, School of Pharmacy; Southwest Medical University, Luzhou; Sichuan 646000 P.R. China
| | - Lin Pu
- Center for Pharmaceutical Research and Development, School of Pharmacy; Southwest Medical University, Luzhou; Sichuan 646000 P.R. China
- Department of Chemistry; University of Virginia; Charlottesville VA 22904-4319 USA
| | - Qin Wang
- Center for Pharmaceutical Research and Development, School of Pharmacy; Southwest Medical University, Luzhou; Sichuan 646000 P.R. China
- Department of Medicinal Chemistry, School of Pharmacy; Southwest Medical University, Luzhou; Sichuan 646000 P.R. China
- Department of Chemistry; University of Virginia; Charlottesville VA 22904-4319 USA
| |
Collapse
|
7
|
Lang J, Maréchal A, Couture M, Santolini J. Reaction Intermediates and Molecular Mechanism of Peroxynitrite Activation by NO Synthases. Biophys J 2017; 111:2099-2109. [PMID: 27851935 DOI: 10.1016/j.bpj.2016.05.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 11/26/2022] Open
Abstract
The activation of the peroxynitrite anion (PN) by hemoproteins, which leads to its detoxification or, on the contrary to the enhancement of its cytotoxic activity, is a reaction of physiological importance that is still poorly understood. It has been known for some years that the reaction of hemoproteins, notably cytochrome P450, with PN leads to the buildup of an intermediate species with a Soret band at ∼435 nm (I435). The nature of this intermediate is, however, debated. On the one hand, I435 has been presented as a compound II species that can be photoactivated to compound I. A competing alternative involves the assignment of I435 to a ferric-nitrosyl species. Similar to cytochromes P450, the buildup of I435 occurs in nitric oxide synthases (NOSs) upon their reaction with excess PN. Interestingly, the NOS isoforms vary in their capacity to detoxify/activate PN, although they all show the buildup of I435. To better understand PN activation/detoxification by heme proteins, a definitive assignment of I435 is needed. Here we used a combination of fine kinetic analysis under specific conditions (pH, PN concentrations, and PN/NOSs ratios) to probe the formation of I435. These studies revealed that I435 is not formed upon homolytic cleavage of the O-O bond of PN, but instead arises from side reactions associated with excess PN. Characterization of I435 by resonance Raman spectroscopy allowed its identification as a ferric iron-nitrosyl complex. Our study indicates that the model used so far to depict PN interactions with hemo-thiolate proteins, i.e., leading to the formation and accumulation of compound II, needs to be reconsidered.
Collapse
Affiliation(s)
- Jérôme Lang
- Laboratory of Oxidative Stress and Detoxification, iBiTec-S/I2BC, UMR 9198, CEA-Centre National de la Recherche Scientifique Université Paris Sud, CEA Saclay, Gif-sur-Yvette Cedex, France; Department of Biochemistry, Université Laval, Laval, Québec, Canada
| | - Amandine Maréchal
- Laboratory of Oxidative Stress and Detoxification, iBiTec-S/I2BC, UMR 9198, CEA-Centre National de la Recherche Scientifique Université Paris Sud, CEA Saclay, Gif-sur-Yvette Cedex, France
| | - Manon Couture
- Department of Biochemistry, Université Laval, Laval, Québec, Canada
| | - Jérôme Santolini
- Laboratory of Oxidative Stress and Detoxification, iBiTec-S/I2BC, UMR 9198, CEA-Centre National de la Recherche Scientifique Université Paris Sud, CEA Saclay, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
8
|
Oszajca M, Brindell M, Orzeł Ł, Dąbrowski JM, Śpiewak K, Łabuz P, Pacia M, Stochel-Gaudyn A, Macyk W, van Eldik R, Stochel G. Mechanistic studies on versatile metal-assisted hydrogen peroxide activation processes for biomedical and environmental incentives. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.05.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Zhang C, Liu PX, Huang LY, Wei SP, Wang L, Yang SY, Yu XQ, Pu L, Wang Q. Engineering P450 Peroxygenase to Catalyze Highly Enantioselective Epoxidation of cis
-β-Methylstyrenes. Chemistry 2016; 22:10969-75. [PMID: 27362319 DOI: 10.1002/chem.201601176] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/25/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Chun Zhang
- Department of Medicinal Chemistry; Southwest Medical University; No. 319, Zhongshan Road Luzhou Sichuan 646000 P. R. China
| | - Ping-Xian Liu
- Department of Medicinal Chemistry; Southwest Medical University; No. 319, Zhongshan Road Luzhou Sichuan 646000 P. R. China
| | - Lu-Yi Huang
- State Key Laboratory of Biotherapy; West China Hospital; Sichuan University; No.17 People's South Road Chengdu Sichuan 610041 P. R. China
| | - Si-Ping Wei
- Department of Medicinal Chemistry; Southwest Medical University; No. 319, Zhongshan Road Luzhou Sichuan 646000 P. R. China
| | - Li Wang
- Department of Medicinal Chemistry; Southwest Medical University; No. 319, Zhongshan Road Luzhou Sichuan 646000 P. R. China
| | - Sheng-Yong Yang
- State Key Laboratory of Biotherapy; West China Hospital; Sichuan University; No.17 People's South Road Chengdu Sichuan 610041 P. R. China
| | - Xiao-Qi Yu
- College of Chemistry; Sichuan University; No. 29 Wangjiang Road Chengdu Sichuan 610064 P. R. China
| | - Lin Pu
- Department of Medicinal Chemistry; Southwest Medical University; No. 319, Zhongshan Road Luzhou Sichuan 646000 P. R. China
- Department of Chemistry; University of Virginia; Charlottesville Virginia 22903 USA
| | - Qin Wang
- Department of Medicinal Chemistry; Southwest Medical University; No. 319, Zhongshan Road Luzhou Sichuan 646000 P. R. China
| |
Collapse
|
10
|
Cook SA, Hill EA, Borovik AS. Lessons from Nature: A Bio-Inspired Approach to Molecular Design. Biochemistry 2015; 54:4167-80. [PMID: 26079379 DOI: 10.1021/acs.biochem.5b00249] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metalloproteins contain actives sites with intricate structures that perform specific functions with high selectivity and efficiency. The complexity of these systems complicates the study of their function and the understanding of the properties that give rise to their reactivity. One approach that has contributed to the current level of understanding of their biological function is the study of synthetic constructs that mimic one or more aspects of the native metalloproteins. These systems allow individual contributions to the structure and function to be analyzed and also permit spectroscopic characterization of the metal cofactors without complications from the protein environment. This Current Topic is a review of synthetic constructs as probes for understanding the biological activation of small molecules. These topics are developed from the perspective of seminal molecular design breakthroughs from the past that provide the foundation for the systems used today.
Collapse
Affiliation(s)
- Sarah A Cook
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Ethan A Hill
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - A S Borovik
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| |
Collapse
|
11
|
Zhang Y, Biggs JD, Mukamel S. Characterizing the Intermediates Compound I and II in the Cytochrome P450 Catalytic Cycle with Nonlinear X-ray Spectroscopy: A Simulation Study. Chemphyschem 2015; 16:2006-14. [PMID: 25873009 DOI: 10.1002/cphc.201500064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/24/2015] [Indexed: 11/06/2022]
Abstract
Cytochrome P450 enzymes are an important family of biocatalysts that oxidize chemically inert CH bonds. There are many unresolved questions regarding the catalytic reaction intermediates, in particular P450 Compound I (Cpd-I) and II (Cpd-II). By using simple molecular models, we simulate various X-ray spectroscopy signals, including X-ray absorption near-edge structure (XANES), resonant inelastic X-ray scattering (RIXS), and stimulated X-ray Raman spectroscopy (SXRS) of the low- and high-spin states of Cpd-I and II. Characteristic peak patterns are presented and connected to the corresponding electronic structures. These X-ray spectroscopy techniques are complementary to more conventional infrared and optical spectroscopy and they help to elucidate the evolving electronic structures of transient species along the reaction path.
Collapse
Affiliation(s)
- Yu Zhang
- Dept. of Chemistry, University of California, 450 Rowland Hall, Irvine, California 92697 (USA).
| | - Jason D Biggs
- Dept. of Chemistry, University of California, 450 Rowland Hall, Irvine, California 92697 (USA)
| | - Shaul Mukamel
- Dept. of Chemistry, University of California, 450 Rowland Hall, Irvine, California 92697 (USA).
| |
Collapse
|
12
|
Viciano I, Castillo R, Martí S. QM/MM modeling of the hydroxylation of the androstenedione substrate catalyzed by cytochrome P450 aromatase (CYP19A1). J Comput Chem 2015; 36:1736-47. [DOI: 10.1002/jcc.23967] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/07/2015] [Accepted: 05/16/2015] [Indexed: 01/30/2023]
Affiliation(s)
- Ignacio Viciano
- Departament de Química Física i Analítica; Universitat Jaume I; Castelló 12071 Spain
| | - Raquel Castillo
- Departament de Química Física i Analítica; Universitat Jaume I; Castelló 12071 Spain
| | - Sergio Martí
- Departament de Química Física i Analítica; Universitat Jaume I; Castelló 12071 Spain
| |
Collapse
|
13
|
Hofrichter M, Kellner H, Pecyna MJ, Ullrich R. Fungal Unspecific Peroxygenases: Heme-Thiolate Proteins That Combine Peroxidase and Cytochrome P450 Properties. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 851:341-68. [DOI: 10.1007/978-3-319-16009-2_13] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Monooxygenase, peroxidase and peroxygenase properties and reaction mechanisms of cytochrome P450 enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 851:1-61. [PMID: 26002730 DOI: 10.1007/978-3-319-16009-2_1] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review examines the monooxygenase, peroxidase and peroxygenase properties and reaction mechanisms of cytochrome P450 (CYP) enzymes in bacterial, archaeal and mammalian systems. CYP enzymes catalyze monooxygenation reactions by inserting one oxygen atom from O2 into an enormous number and variety of substrates. The catalytic versatility of CYP stems from its ability to functionalize unactivated carbon-hydrogen (C-H) bonds of substrates through monooxygenation. The oxidative prowess of CYP in catalyzing monooxygenation reactions is attributed primarily to a porphyrin π radical ferryl intermediate known as Compound I (CpdI) (Por•+FeIV=O), or its ferryl radical resonance form (FeIV-O•). CYP-mediated hydroxylations occur via a consensus H atom abstraction/oxygen rebound mechanism involving an initial abstraction by CpdI of a H atom from the substrate, generating a highly-reactive protonated Compound II (CpdII) intermediate (FeIV-OH) and a carbon-centered alkyl radical that rebounds onto the ferryl hydroxyl moiety to yield the hydroxylated substrate. CYP enzymes utilize hydroperoxides, peracids, perborate, percarbonate, periodate, chlorite, iodosobenzene and N-oxides as surrogate oxygen atom donors to oxygenate substrates via the shunt pathway in the absence of NAD(P)H/O2 and reduction-oxidation (redox) auxiliary proteins. It has been difficult to isolate the historically elusive CpdI intermediate in the native NAD(P)H/O2-supported monooxygenase pathway and to determine its precise electronic structure and kinetic and physicochemical properties because of its high reactivity, unstable nature (t½~2 ms) and short life cycle, prompting suggestions for participation in monooxygenation reactions of alternative CYP iron-oxygen intermediates such as the ferric-peroxo anion species (FeIII-OO-), ferric-hydroperoxo species (FeIII-OOH) and FeIII-(H2O2) complex.
Collapse
|
15
|
Colomban C, Kudrik EV, Briois V, Shwarbrick JC, Sorokin AB, Afanasiev P. X-ray Absorption and Emission Spectroscopies of X-Bridged Diiron Phthalocyanine Complexes (FePc)2X (X = C, N, O) Combined with DFT Study of (FePc)2X and Their High-Valent Diiron Oxo Complexes. Inorg Chem 2014; 53:11517-30. [DOI: 10.1021/ic501463q] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Cedric Colomban
- Institut de Recherches
sur la Catalyse et l’Environnement de Lyon, IRCELYON, UMR 5256, CNRS−Université Lyon 1, 2, Avenue Albert Einstein, 69626 Villeurbanne, France
| | - Evgenij V. Kudrik
- Institut de Recherches
sur la Catalyse et l’Environnement de Lyon, IRCELYON, UMR 5256, CNRS−Université Lyon 1, 2, Avenue Albert Einstein, 69626 Villeurbanne, France
- State University of Chemistry and Technology, Engels Street 7, 153000 Ivanovo, Russia
| | - Valerie Briois
- Synchrotron SOLEIL, L’Orme
des Merisiers, Saint Aubin BP48, Gif sur Yvette, FR 91192, France
| | | | - Alexander B. Sorokin
- Institut de Recherches
sur la Catalyse et l’Environnement de Lyon, IRCELYON, UMR 5256, CNRS−Université Lyon 1, 2, Avenue Albert Einstein, 69626 Villeurbanne, France
| | - Pavel Afanasiev
- Institut de Recherches
sur la Catalyse et l’Environnement de Lyon, IRCELYON, UMR 5256, CNRS−Université Lyon 1, 2, Avenue Albert Einstein, 69626 Villeurbanne, France
| |
Collapse
|
16
|
Yang Y, Wong SE, Lightstone FC. Understanding a substrate's product regioselectivity in a family of enzymes: a case study of acetaminophen binding in cytochrome P450s. PLoS One 2014; 9:e87058. [PMID: 24498291 PMCID: PMC3911926 DOI: 10.1371/journal.pone.0087058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/17/2013] [Indexed: 11/19/2022] Open
Abstract
Product regioselectivity as influenced by molecular recognition is a key aspect of enzyme catalysis. We applied large-scale two-dimensional (2D) umbrella sampling (USP) simulations to characterize acetaminophen (APAP) binding in the active sites of the family of Cytochrome P450 (CYP) enzymes as a case study to show the different regioselectivity exhibited by a single substrate in comparative enzymes. Our results successfully explain the experimentally observed product regioselectivity for all five human CYPs included in this study, demonstrating that binding events play an important role in determining regioselectivity. In CYP2C9 and CYP3A4, weak interactions in an overall large active site cavity result in a fairly small binding free energy difference between APAP reactive binding states, consistent with experimental results that show little preference for resulting metabolites. In contrast, in CYP1A2 and CYP2E1, APAP is strongly restrained by a compact binding pocket, leading to a preferred binding conformation. The calculated binding equilibrium of APAP within the compact active site of CYP2A6 is able to predict the experimentally documented product ratios and is also applied to explain APAP regioselectivity in CYP1A2 and CYP2C9. APAP regioselectivity seems to be related to the selectivity for one binding conformation over another binding conformation as dictated by the size and shape of the active site. Additionally, unlike docking and molecular dynamics (MD), our free energy calculations successfully reproduced a unique APAP pose in CYP3A4 that had been reported experimentally, suggesting this approach is well suited to find the realistic binding pose and the lowest-energy starting structure for studying the chemical reaction step in the future.
Collapse
Affiliation(s)
- Yue Yang
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Sergio E. Wong
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Felice C. Lightstone
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Krest CM, Onderko EL, Yosca TH, Calixto JC, Karp RF, Livada J, Rittle J, Green MT. Reactive intermediates in cytochrome p450 catalysis. J Biol Chem 2013; 288:17074-81. [PMID: 23632017 DOI: 10.1074/jbc.r113.473108] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, we reported the spectroscopic and kinetic characterizations of cytochrome P450 compound I in CYP119A1, effectively closing the catalytic cycle of cytochrome P450-mediated hydroxylations. In this minireview, we focus on the developments that made this breakthrough possible. We examine the importance of enzyme purification in the quest for reactive intermediates and report the preparation of compound I in a second P450 (P450ST). In an effort to bring clarity to the field, we also examine the validity of controversial reports claiming the production of P450 compound I through the use of peroxynitrite and laser flash photolysis.
Collapse
Affiliation(s)
- Courtney M Krest
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Lyakin OY, Shteinman AA. Oxo complexes of high-valence iron in oxidation catalysis. KINETICS AND CATALYSIS 2012. [DOI: 10.1134/s0023158412050084] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Bose M, Saha R, Sen Santara S, Mukherjee S, Roy J, Adak S. Protection against peroxynitrite by pseudoperoxidase from Leishmania major. Free Radic Biol Med 2012; 53:1819-28. [PMID: 22985938 DOI: 10.1016/j.freeradbiomed.2012.08.583] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 08/23/2012] [Accepted: 08/23/2012] [Indexed: 11/22/2022]
Abstract
Heme proteins share the ability to detoxify reactive nitrogen intermediates (NO and peroxynitrite). But, to date, no heme-containing enzymatic defense against toxic reactive nitrogen intermediates has been discovered in Leishmania species. We have cloned, expressed, and characterized a pseudoperoxidase from Leishmania major (LmPP) that is capable of detoxifying peroxynitrite (ONOO(-)). Optical, EPR, and resonance Raman spectral studies demonstrate that ONOO(-) can rapidly convert the six-coordinate ferric low-spin to a ferric high-spin form at neutral pH. Western blotting and immunofluorescence studies with anti-LmPP antibody show that the mature enzyme is located at the plasma membrane of amastigotes and is expressed eightfold higher in amastigotes compared to promastigotes. Moreover, to further investigate its exact physiological role in Leishmania, we have created LmPP-knockout mutants by gene replacement in L. major strains. IC(50) values for exogenously added H(2)O(2) or 3-morpholinosydnonimine (SIN1) show that deletion of LmPP in L. major renders the cell more susceptible to SIN1. The null mutant cells exhibit a marked decrease in virulence on infection with activated macrophages as well as inoculation into BALB/c mice. Collectively, these data provide strong evidence that LmPP plays an important role in the enzymatic defense against ONOO(-) within macrophages.
Collapse
Affiliation(s)
- Moumita Bose
- Division of Structural Biology and Bio-informatics, Indian Institute of Chemical Biology, Kolkata, India
| | | | | | | | | | | |
Collapse
|
20
|
Abu Tarboush N, Shin S, Geng J, Liu A, Davidson VL. Effects of the loss of the axial tyrosine ligand of the low-spin heme of MauG on its physical properties and reactivity. FEBS Lett 2012; 586:4339-43. [PMID: 23127557 DOI: 10.1016/j.febslet.2012.10.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 10/27/2022]
Abstract
MauG catalyzes posttranslational modifications of methylamine dehydrogenase to complete the biosynthesis of its protein-derived tryptophan tryptophylquinone (TTQ) cofactor. MauG possesses a five-coordinate high-spin and a six-coordinate low-spin ferric heme, the latter with His-Tyr ligation. Replacement of this tyrosine with lysine generates a MauG variant with only high-spin ferric heme and altered spectroscopic and redox properties. Y294K MauG cannot stabilize the bis-Fe(IV) redox state required for TTQ biosynthesis but instead forms a compound I-like species on reaction with peroxide. The results clarify the role of Tyr ligation of the five-coordinate heme in determining the physical and redox properties and reactivity of MauG.
Collapse
Affiliation(s)
- Nafez Abu Tarboush
- Biochemistry and Physiology Department, College of Medicine, The University of Jordan, Amman 11942, Jordan
| | | | | | | | | |
Collapse
|
21
|
Hrycay EG, Bandiera SM. The monooxygenase, peroxidase, and peroxygenase properties of cytochrome P450. Arch Biochem Biophys 2012; 522:71-89. [DOI: 10.1016/j.abb.2012.01.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/22/2011] [Accepted: 01/04/2012] [Indexed: 12/30/2022]
|
22
|
Isobe H, Yamaguchi K, Okumura M, Shimada J. Role of Perferryl–Oxo Oxidant in Alkane Hydroxylation Catalyzed by Cytochrome P450: A Hybrid Density Functional Study. J Phys Chem B 2012; 116:4713-30. [DOI: 10.1021/jp211184y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroshi Isobe
- Department of Chemistry, Graduate
School of Science, Osaka University, Toyonaka,
Osaka 560-0043, Japan
| | - Kizashi Yamaguchi
- Department of Chemistry, Graduate
School of Science, Osaka University, Toyonaka,
Osaka 560-0043, Japan
| | - Mitsutaka Okumura
- Department of Chemistry, Graduate
School of Science, Osaka University, Toyonaka,
Osaka 560-0043, Japan
| | - Jiro Shimada
- Green
Innovation Research Laboratories, NEC Corporation, 34, Miyukigaoka, Tsukuba, Ibaraki
305-8501, Japan
| |
Collapse
|
23
|
Su Z, Chen X, Horner JH, Newcomb M. Rate-Controlling Isomerizations in Fatty Acid Oxidations by a Cytochrome P450 Compound I. Chemistry 2012; 18:2472-6. [DOI: 10.1002/chem.201103170] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/14/2011] [Indexed: 11/11/2022]
|
24
|
Wang X, Liu D, Song S, Zeng L, Zhang Y. Water-soluble Au–CeO2 hybrid nanosheets with high catalytic activity and recyclability. Dalton Trans 2012; 41:7193-5. [DOI: 10.1039/c2dt30766a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
|
26
|
Isobe H, Yamanaka S, Okumura M, Yamaguchi K, Shimada J. Unique Structural and Electronic Features of Perferryl–Oxo Oxidant in Cytochrome P450. J Phys Chem B 2011; 115:10730-8. [DOI: 10.1021/jp206004y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hiroshi Isobe
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Syusuke Yamanaka
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Mitsutaka Okumura
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Kizashi Yamaguchi
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Jiro Shimada
- Green Innovation Research Laboratories, NEC Corporation, 34, Miyukigaoka, Tsukuba, Ibaraki 305-8501, Japan
| |
Collapse
|
27
|
Chen H, Lai W, Shaik S. Multireference and multiconfiguration ab initio methods in heme-related systems: what have we learned so far? J Phys Chem B 2011; 115:1727-42. [PMID: 21344948 DOI: 10.1021/jp110016u] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This work reviews the recent applications of ab initio multireference/multiconfiguration (MR/MC) electronic structure methods to heme-related systems, involving tetra-, penta-, and hexa-coordinate species, as well as the high-valent iron-oxo species. The current accuracy of these methods in the various systems is discussed, with special attention to potential sources of systematic errors. Thus, the review summarizes and tries to rationalize the key elements of MR/MC calculations, namely, the choice of the employed active space, especially the so-called double-shell effect that has already been recognized to be important in transition-metal-containing systems, and the impact of these elements on the spin-state energetics of heme species, as well as on the bonding mechanism of small molecules to the heme. It is shown that expansion of the MC wave function into one based on localized orbitals provides a compact and insightful view on some otherwise complex electronic structures. The effects of protein environment on the MR/MC results are summarized for the few available quantum mechanical/molecular mechanical (QM/MM) studies. Comparisons with corresponding DFT results are also made wherever available. Potential future directions are proposed.
Collapse
Affiliation(s)
- Hui Chen
- Institute of Chemistry, Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel.
| | | | | |
Collapse
|
28
|
Radoń M, Broclawik E, Pierloot K. DFT and Ab Initio Study of Iron-Oxo Porphyrins: May They Have a Low-Lying Iron(V)-Oxo Electromer? J Chem Theory Comput 2011; 7:898-908. [DOI: 10.1021/ct1006168] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mariusz Radoń
- Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Kraków, Poland
| | - Ewa Broclawik
- Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków, Poland
| | - Kristine Pierloot
- Department of Chemistry, University of Leuven, Celestijnenlaan 200F, B-3001 Heverlee-Leuven, Belgium
| |
Collapse
|
29
|
Jung C, Vries SD, Schünemann V. Spectroscopic characterization of cytochrome P450 Compound I. Arch Biochem Biophys 2011; 507:44-55. [DOI: 10.1016/j.abb.2010.12.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 12/22/2010] [Accepted: 12/23/2010] [Indexed: 11/25/2022]
|
30
|
Jung C. The mystery of cytochrome P450 Compound I. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:46-57. [DOI: 10.1016/j.bbapap.2010.06.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 05/31/2010] [Accepted: 06/04/2010] [Indexed: 10/19/2022]
|
31
|
Afanasiev P, Kudrik EV, Millet JMM, Bouchu D, Sorokin AB. High-valent diiron species generated from N-bridged diiron phthalocyanine and H2O2. Dalton Trans 2011; 40:701-10. [DOI: 10.1039/c0dt00958j] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Schopfer MP, Wang J, Karlin KD. Bioinspired heme, heme/nonheme diiron, heme/copper, and inorganic NOx chemistry: *NO((g)) oxidation, peroxynitrite-metal chemistry, and *NO((g)) reductive coupling. Inorg Chem 2010; 49:6267-82. [PMID: 20666386 DOI: 10.1021/ic100033y] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The focus of this Forum Article highlights work from our own laboratories and those of others in the area of biochemical and biologically inspired inorganic chemistry dealing with nitric oxide [nitrogen monoxide, *NO((g))] and its biological roles and reactions. The latter focus is on (i) oxidation of *NO((g)) to nitrate by nitric oxide dioxygenases (NODs) and (ii) reductive coupling of two molecules of *NO((g)) to give N(2)O(g). In the former case, NODs are described, and the highlighting of possible peroxynitrite/heme intermediates and the consequences of this are given by a discussion of recent works with myoglobin and a synthetic heme model system for NOD action. Summaries of recent copper complex chemistries with *NO((g)) and O(2)(g), leading to peroxynitrite species, are given. The coverage of biological reductive coupling of *NO((g)) deals with bacterial nitric oxide reductases (NORs) with heme/nonheme diiron active sites and on heme/copper oxidases such as cytochrome c oxidase, which can mediate the same chemistry. Recently designed protein and synthetic model compounds (heme/nonheme/diiron or heme/copper) as functional mimics are discussed in some detail. We also highlight examples from the chemical literature, not necessarily involving biologically relevant metal ions, that describe the oxidation of *NO((g)) to nitrate (or nitrite) and possible peroxynitrite intermediates or reductive coupling of *NO((g)) to give nitrous oxide.
Collapse
Affiliation(s)
- Mark P Schopfer
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
33
|
Abstract
Oxygenated heme proteins are known to react rapidly with nitric oxide (NO) to produce peroxynitrite (PN) at the heme site. This process could lead either to attenuation of the effects of NO or to nitrosative protein damage. PN is a powerful nitrating and oxidizing agent that has been implicated in a variety of cell injuries. Accordingly, it is important to delineate the nature and variety of reaction mechanisms of PN interactions with heme proteins. In this Forum, we survey the range of reactions of PN with heme proteins, with particular attention to myoglobin and cytochrome c. While these two proteins are textbook paradigms for oxygen binding and electron transfer, respectively, both have recently been shown to have other important functions that involve NO and PN. We have recently described direct evidence that ferrylmyolgobin (ferrylMb) and nitrogen dioxide (NO(2)) are both produced during the reaction of PN and metmyolgobin (metMb) (Su, J.; Groves, J. T. J. Am. Chem. Soc. 2009, 131, 12979-12988). Kinetic evidence indicates that these products evolve from the initial formation of a caged radical intermediate [Fe(IV) horizontal lineO.NO(2)]. This caged pair reacts mainly via internal return with a rate constant k(r) to form metMb and nitrate in an oxygen-rebound scenario. Detectable amounts of ferrylMb are observed by stopped-flow spectrophotometry, appearing at a rate consistent with the rate, k(obs), of heme-mediated PN decomposition. Freely diffusing NO(2), which is liberated concomitantly from the radical pair (k(e)), preferentially nitrates myoglobin Tyr103 and added fluorescein. For cytochrome c, Raman spectroscopy has revealed that a substantial fraction of cytochrome c converts to a beta-sheet structure, at the expense of turns and helices at low pH (Balakrishnan, G.; Hu, Y.; Oyerinde, O. F.; Su, J.; Groves, J. T.; Spiro, T. G. J. Am. Chem. Soc., 2007, 129, 504-505). It is proposed that a short beta-sheet segment, comprising residues 37-39 and 58-61, extends itself into the large 37-61 loop when the latter is destabilized by protonation of H26, which forms an anchoring hydrogen bond to loop residue P44. This conformation change ruptures the Met80-Fe bond, as revealed by changes in ligation-sensitive Raman bands. It also induces peroxidase activity with the same temperature profile. This process is suggested to model the apoptotic peroxidation of cardiolipin by cytochrome c.
Collapse
Affiliation(s)
- Jia Su
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
34
|
Abu Tarboush N, Jensen LMR, Feng M, Tachikawa H, Wilmot CM, Davidson VL. Functional importance of tyrosine 294 and the catalytic selectivity for the bis-Fe(IV) state of MauG revealed by replacement of this axial heme ligand with histidine . Biochemistry 2010; 49:9783-91. [PMID: 20929212 DOI: 10.1021/bi101254p] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The diheme enzyme MauG catalyzes the posttranslational modification of a precursor protein of methylamine dehydrogenase (preMADH) to complete the biosynthesis of its protein-derived tryptophan tryptophylquinone (TTQ) cofactor. It catalyzes three sequential two-electron oxidation reactions which proceed through a high-valent bis-Fe(IV) redox state. Tyr294, the unusual distal axial ligand of one c-type heme, was mutated to His, and the crystal structure of Y294H MauG in complex with preMADH reveals that this heme now has His-His axial ligation. Y294H MauG is able to interact with preMADH and participate in interprotein electron transfer, but it is unable to catalyze the TTQ biosynthesis reactions that require the bis-Fe(IV) state. This mutation affects not only the redox properties of the six-coordinate heme but also the redox and CO-binding properties of the five-coordinate heme, despite the 21 Å separation of the heme iron centers. This highlights the communication between the hemes which in wild-type MauG behave as a single diheme unit. Spectroscopic data suggest that Y294H MauG can stabilize a high-valent redox state equivalent to Fe(V), but it appears to be an Fe(IV)═O/π radical at the five-coordinate heme rather than the bis-Fe(IV) state. This compound I-like intermediate does not catalyze TTQ biosynthesis, demonstrating that the bis-Fe(IV) state, which is stabilized by Tyr294, is specifically required for this reaction. The TTQ biosynthetic reactions catalyzed by wild-type MauG do not occur via direct contact with the Fe(IV)═O heme but via long-range electron transfer through the six-coordinate heme. Thus, a critical feature of the bis-Fe(IV) species may be that it shortens the electron transfer distance from preMADH to a high-valent heme iron.
Collapse
Affiliation(s)
- Nafez Abu Tarboush
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216, United States
| | | | | | | | | | | |
Collapse
|
35
|
Kells PM, Ouellet H, Santos-Aberturas J, Aparicio JF, Podust LM. Structure of cytochrome P450 PimD suggests epoxidation of the polyene macrolide pimaricin occurs via a hydroperoxoferric intermediate. CHEMISTRY & BIOLOGY 2010; 17:841-51. [PMID: 20797613 PMCID: PMC2932657 DOI: 10.1016/j.chembiol.2010.05.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 05/12/2010] [Accepted: 05/25/2010] [Indexed: 11/22/2022]
Abstract
We present the X-ray structure of PimD, both substrate-free and in complex with 4,5-desepoxypimaricin. PimD is a cytochrome P450 monooxygenase with native epoxidase activity that is critical in the biosynthesis of the polyene macrolide antibiotic pimaricin. Intervention in this secondary metabolic pathway could advance the development of drugs with improved pharmacologic properties. Epoxidation by P450 typically includes formation of a charge-transfer complex between an oxoferryl pi-cation radical species (Compound I) and the olefin pi-bond as the initial intermediate. Catalytic and structural evidence presented here suggest that epoxidation of 4,5-desepoxypimaricin proceeds via a hydroperoxoferric intermediate (Compound 0). The oxygen atom of Compound 0 distal to the heme iron may insert into the double bond of the substrate to make an epoxide ring. Stereoelectronic features of the putative transition state suggest substrate-assisted proton delivery.
Collapse
Affiliation(s)
- Petrea M. Kells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, USA
| | - Hugues Ouellet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, USA
| | - Javier Santos-Aberturas
- Institute of Biotechnology INBIOTEC, 24006 and Department of Microbiology, Faculty of Biology, University of León, 24071, León, Spain
| | - Jesus F. Aparicio
- Institute of Biotechnology INBIOTEC, 24006 and Department of Microbiology, Faculty of Biology, University of León, 24071, León, Spain
| | - Larissa M. Podust
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, USA
| |
Collapse
|
36
|
Rabe KS, Erkelenz M, Kiko K, Niemeyer CM. Peroxidase activity of bacterial cytochrome P450 enzymes: Modulation by fatty acids and organic solvents. Biotechnol J 2010; 5:891-9. [DOI: 10.1002/biot.201000028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Yuan X, Sheng X, Horner JH, Bennett B, Fung LWM, Newcomb M. Low temperature photo-oxidation of chloroperoxidase Compound II. J Inorg Biochem 2010; 104:1156-63. [PMID: 20674981 DOI: 10.1016/j.jinorgbio.2010.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 07/08/2010] [Accepted: 07/09/2010] [Indexed: 10/19/2022]
Abstract
Oxidation of the heme-thiolate enzyme chloroperoxidase (CPO) from Caldariomyces fumago with peroxynitrite (PN) gave the Compound II intermediate, which was photo-oxidized with 365 nm light to give a reactive oxidizing species. Cryo-solvents at pH ≈ 6 were employed, and reactions were conducted at temperatures as low as -50° C. The activity of CPO as evaluated by the chlorodimedone assay was unaltered by treatment with PN or by production of the oxidizing transient and subsequent reaction with styrene. EPR spectra at 77K gave the amount of ferric protein at each stage in the reaction sequence. The PN oxidation step gave a 6:1 mixture of Compound II and ferric CPO, the photolysis step gave an approximate 1:1 mixture of active oxidant and ferric CPO, and the final mixture after reaction with excess styrene contained ferric CPO in 80% yield. In single turnover reactions at -50°C, styrene was oxidized to styrene oxide in high yield. Kinetic studies of styrene oxidation at -50°C displayed saturation kinetics with an equilibrium constant for formation of the complex of K(bind)=3.8 x 10(4)M(-1) and an oxidation rate constant of k(ox)=0.30s(-1). UV-Visible spectra of mixtures formed in the photo-oxidation sequence at ca. -50° C did not contain the signature Q-band absorbance at 690 nm ascribed to CPO Compound I prepared by chemical oxidation of the enzyme, indicating that different species were formed in the chemical oxidation and the photo-oxidation sequence.
Collapse
Affiliation(s)
- Xinting Yuan
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor St, Chicago, Illinois 60607, USA
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Coordination to transition-metal complexes changes both the thermodynamics and kinetics of oxygen reduction. Some of the intermediates (superoxo, hydroperoxo, and oxo species) are close analogues of organic oxygen-centered radicals and peroxides (ROO(*), ROOH, and RO(*)). Metal-based intermediates are typically less reactive, but more persistent, than organic radicals, which makes the two types of intermediates similarly effective in their reactions with various substrates. The self-exchange rate constant for hydrogen-atom transfer for the couples Cr(aq)OO(2+)/Cr(aq)OOH(2+) and L(1)(H(2)O)RhOO(2+)/L(1)(H(2)O)RhOOH(2+) was estimated to be 10(1+/-1) M(-1) s(-1). The use of this value in the simplified Marcus equation for the Cr(aq)O(2+)/Cr(aq)OOH(2+) cross reaction provided an upper limit k(CrO,CrOH) <or= 10((-2+/-1)) M(-1) s(-1) for Cr(aq)O(2+)/Cr(aq)OH(2+) self-exchange. Even though superoxo complexes react very slowly in bimolecular self-reactions, extremely fast cross reactions with organic counterparts, i.e., acylperoxyl radicals, have been observed. Many of the intermediates generated by the interaction of O(2) with reduced metal complexes can also be accessed by alternative routes, both thermal and photochemical.
Collapse
Affiliation(s)
- Andreja Bakac
- Ames Laboratory and Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
39
|
Rittle J, Younker JM, Green MT. Cytochrome P450: The Active Oxidant and Its Spectrum. Inorg Chem 2010; 49:3610-7. [DOI: 10.1021/ic902062d] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jonathan Rittle
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Jarod M. Younker
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Michael T. Green
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
40
|
Nigro AP, Goodin DB. Reaction of N-hydroxyguanidine with the ferrous-oxy state of a heme peroxidase cavity mutant: a model for the reactions of nitric oxide synthase. Arch Biochem Biophys 2010; 500:66-73. [PMID: 20346907 DOI: 10.1016/j.abb.2010.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/19/2010] [Accepted: 03/20/2010] [Indexed: 12/01/2022]
Abstract
Yeast cytochrome c peroxidase was used to construct a model for the reactions catalyzed by the second cycle of nitric oxide synthase. The R48A/W191F mutant introduced a binding site for N-hydroxyguanidine near the distal heme face and removed the redox active Trp-191 radical site. Both the R48A and R48A/W191F mutants catalyzed the H2O2 dependent conversion of N-hydroxyguanidine to N-nitrosoguanidine. It is proposed that these reactions proceed by direct one-electron oxidation of NHG by the Fe(+4)O center of either Compound I (Fe(+4)=O, porph+(.)) or Compound ES (Fe(+4)=O, Trp+(.)). R48A/W191F formed a Fe(+2)O2 complex upon photolysis of Fe(+2)CO in the presence of O2, and N-hydroxyguanidine was observed to react with this species to produce products, distinct from N-nitrosoguanidine, that gave a positive Griess reaction for nitrate+nitrite, a positive Berthelot reaction for urea, and no evidence for formation of NO(.). It is proposed that HNO and urea are produced in analogy with reactions of nitric oxide synthase in the pterin-free state.
Collapse
Affiliation(s)
- Alycen Pond Nigro
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | |
Collapse
|
41
|
NO synthase: structures and mechanisms. Nitric Oxide 2010; 23:1-11. [PMID: 20303412 DOI: 10.1016/j.niox.2010.03.001] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 02/24/2010] [Accepted: 03/12/2010] [Indexed: 11/20/2022]
Abstract
Production of NO from arginine and molecular oxygen is a complex chemical reaction unique to biology. Our understanding of the chemical and regulation mechanisms of the NO synthases has developed over the past two decades, uncovering some extraordinary features. This article reviews recent progress and highlights current issues and controversies. The structure of the enzyme has now been determined almost in entirety, although it is as a selection of fragments, which are difficult to assemble unambiguously. NO synthesis is driven by electron transfer through FAD and FMN cofactors, which is controlled by calmodulin binding in the constitutive mammalian enzymes. Many of the unique structural features involved have been characterised, but the mechanics of calmodulin-dependent activation are largely unresolved. Ultimately, NO is produced in the active site by the reaction of arginine with activated heme-bound oxygen in two distinct cycles. The unique role of the tetrahydrobiopterin cofactor as an electron donor in this process has now been established, but the subsequent chemical events are currently a matter of intense speculation and debate.
Collapse
|
42
|
Chen H, Song J, Lai W, Wu W, Shaik S. Multiple Low-Lying States for Compound I of P450cam and Chloroperoxidase Revealed from Multireference Ab Initio QM/MM Calculations. J Chem Theory Comput 2010; 6:940-53. [DOI: 10.1021/ct9006234] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hui Chen
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel, State Key Laboratory of Physical Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, P. R. China
| | - Jinshuai Song
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel, State Key Laboratory of Physical Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, P. R. China
| | - Wenzhen Lai
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel, State Key Laboratory of Physical Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, P. R. China
| | - Wei Wu
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel, State Key Laboratory of Physical Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, P. R. China
| | - Sason Shaik
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel, State Key Laboratory of Physical Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, P. R. China
| |
Collapse
|
43
|
Affiliation(s)
- Paul R. Ortiz de Montellano
- Department of Pharmaceutical Chemistry, University of California, 600 16 Street, San Francisco, California 94158-2517
| |
Collapse
|
44
|
Su J, Groves JT. Direct detection of the oxygen rebound intermediates, ferryl Mb and NO2, in the reaction of metmyoglobin with peroxynitrite. J Am Chem Soc 2010; 131:12979-88. [PMID: 19705829 DOI: 10.1021/ja902473r] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxygenated hemoproteins are known to react rapidly with nitric oxide (NO) to produce peroxynitrite (PN) at the heme site. This process could lead either to attenuation of the effects of NO or to nitrosative protein damage. Peroxynitrite is a powerful nitrating and oxidizing agent that has been implicated in a variety of cell injuries. Accordingly, it is important to delineate the nature and variety of reaction mechanisms of PN reactions with heme proteins. Here, we present direct evidence that ferrylMb and NO(2) are both produced during the reaction of PN and metmyoglobin (metMb). Kinetic evidence indicates that these products evolve from initial formation of a caged radical intermediate [Fe(IV)=O *NO(2)]. This caged pair reacts mainly via internal return with a rate constant k(r) to form metMb and nitrate in an oxygen rebound scenario. Detectable amounts of ferrylMb are observed by stopped-flow spectrophotometry, appearing at a rate consistent with the rate, k(obs), of heme-mediated PN decomposition. Freely diffusing NO(2), which is liberated concomitantly from the radical pair (k(e)), preferentially nitrates Tyr103 in horse heart myoglobin. The ratio of the rates of in-cage rebound and cage escape, k(r)/k(e), was found to be approximately 10 by examining the nitration yields of fluorescein, an external NO(2) trap. This rebound/escape model for the metMb/PN interaction is analogous to the behavior of alkyl hyponitrites and the well-studied geminate recombination processes of deoxymyoglobin with O(2), CO, and NO. The scenario is also similar to the stepwise events of substrate hydroxylation by cytochrome P450 and other oxygenases. It is likely, therefore, that the reaction of metMb with ONOO(-) and that of oxyMb with NO proceed through the same [Fe(IV)=O *NO(2)] caged radical intermediate and lead to similar outcomes. The results indicate that while oxyMb may reduce the concentration of intracellular NO, it would not eliminate the formation of NO(2) as a decomposition product of peroxynitrite.
Collapse
Affiliation(s)
- Jia Su
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
45
|
Wang Q, Sheng X, Horner JH, Newcomb M. Quantitative production of compound I from a cytochrome P450 enzyme at low temperatures. Kinetics, activation parameters, and kinetic isotope effects for oxidation of benzyl alcohol. J Am Chem Soc 2009; 131:10629-36. [PMID: 19572732 DOI: 10.1021/ja9031105] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome P450 enzymes are commonly thought to oxidize substrates via an iron(IV)-oxo porphyrin radical cation transient termed Compound I, but kinetic studies of P450 Compounds I are essentially nonexistent. We report production of Compound I from cytochrome P450 119 (CYP119) in high conversion from the corresponding Compound II species at low temperatures in buffer mixtures containing 50% glycerol by photolysis with 365 nm light from a pulsed lamp. Compound I was studied as a reagent in oxidations of benzyl alcohol and its benzylic mono- and dideuterio isotopomers. Pseudo-first-order rate constants obtained at -50 degrees C with concentrations of substrates between 1.0 and 6.0 mM displayed saturation kinetics that gave binding constants for the substrate in the Compound I species (K(bind)) and first-order rate constants for the oxidation reactions (k(ox)). Representative results are K(bind) = 214 M(-1) and k(ox) = 0.48 s(-1) for oxidation of benzyl alcohol. For the dideuterated substrate C(6)H(5)CD(2)OH, kinetics were studied between -50 and -25 degrees C, and a van't Hoff plot for complexation and an Arrhenius plot for the oxidation reaction were constructed. The H/D kinetic isotope effects (KIEs) at -50 degrees C were resolved into a large primary KIE (P = 11.9) and a small, inverse secondary KIE (S = 0.96). Comparison of values extrapolated to 22 degrees C of both the rate constant for oxidation of C(6)H(5)CD(2)OH and the KIE for the nondeuterated and dideuterated substrates to values obtained previously in laser flash photolysis experiments suggested that tunneling could be a significant component of the total rate constant at -50 degrees C.
Collapse
Affiliation(s)
- Qin Wang
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, USA
| | | | | | | |
Collapse
|
46
|
Yuan X, Wang Q, Horner JH, Sheng X, Newcomb M. Kinetics and activation parameters for oxidations of styrene by Compounds I from the cytochrome P450(BM-3) (CYP102A1) heme domain and from CYP119. Biochemistry 2009; 48:9140-6. [PMID: 19708688 DOI: 10.1021/bi901258m] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome P450 (CYP or P450) enzymes are ubiquitous in nature where they catalyze a vast array of oxidation reactions. The active oxidants in P450s have long been assumed to be iron(IV)-oxo porphyrin radical cations termed Compounds I, but P450 Compounds I have proven to be difficult to prepare. The recent development of an entry to these transients by photo-oxidation of the corresponding iron(IV)-oxo neutral porphyrin species (Compounds II) permits spectroscopic and kinetic studies. We report here application of the photo-oxidation method for production of Compound I from the heme domain of CYP102A1 (cytochrome P450(BM-3)), and product and kinetic studies of reactions of styrene with this Compound I transient and also Compound I from CYP119. The studies were performed at low temperatures in 1:1 (v:v) mixtures of glycerol and phosphate buffer. Single-turnover reactions at 0 degrees C gave styrene oxide in good yields. In kinetic studies conducted between -10 and -50 degrees C, both Compounds I displayed saturation kinetics permitting determinations of binding constants and first-order oxidation rate constants. Temperature-dependent functions for the binding constants and rate constants were determined for both Compounds I. In the temperature range studied, the Compound I transient from the CYP102A1 heme domain bound styrene more strongly than Compound I from CYP119, but the rate constants for oxidations of styrene by the latter were somewhat larger than those for the former. The temperature-dependent functions for the first-order oxidation reactions are as follows: log k = 13.2-15.2/2.303RT and log k = 13.3-14.6/2.303RT (kilocalories per mole) for Compounds I from the CYP102A1 heme domain and CYP119, respectively.
Collapse
Affiliation(s)
- Xinting Yuan
- Department of Chemistry, University of Illinois, 845 West Taylor Street, Chicago, Illinois 60607, USA
| | | | | | | | | |
Collapse
|
47
|
Shaik S, Cohen S, Wang Y, Chen H, Kumar D, Thiel W. P450 Enzymes: Their Structure, Reactivity, and Selectivity—Modeled by QM/MM Calculations. Chem Rev 2009; 110:949-1017. [DOI: 10.1021/cr900121s] [Citation(s) in RCA: 791] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sason Shaik
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Shimrit Cohen
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Yong Wang
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Hui Chen
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Devesh Kumar
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Walter Thiel
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
48
|
Celano L, Gil M, Carballal S, Durán R, Denicola A, Banerjee R, Alvarez B. Inactivation of cystathionine beta-synthase with peroxynitrite. Arch Biochem Biophys 2009; 491:96-105. [PMID: 19733148 DOI: 10.1016/j.abb.2009.08.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 08/26/2009] [Accepted: 08/28/2009] [Indexed: 11/19/2022]
Abstract
Cystathionine beta-synthase (CBS) is a homocysteine metabolizing enzyme that contains pyridoxal phosphate (PLP) and a six-coordinate heme cofactor of unknown function. CBS was inactivated by peroxynitrite, the product of nitric oxide and superoxide radicals. The IC(50) was approximately 150microM for 5microM ferric CBS. Stopped-flow kinetics and competition experiments showed a direct reaction with a second-order rate constant of (2.4-5.0)x10(4)M(-1)s(-1) (pH 7.4, 37 degrees C). The radicals derived from peroxynitrite, nitrogen dioxide and carbonate radical, also inactivated CBS. Exposure to peroxynitrite did not modify bound PLP but led to nitration of Trp208, Trp43 and Tyr223 and alterations in the heme environment including loss of thiolate coordination, conversion to high-spin and bleaching, with no detectable formation of oxo-ferryl compounds nor promotion of one-electron processes. This study demonstrates the susceptibility of CBS to reactive oxygen/nitrogen species, with potential relevance to hyperhomocysteinemia, a risk factor for cardiovascular diseases.
Collapse
Affiliation(s)
- Laura Celano
- Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The detection and kinetic characterization of a cytochrome P450 model compound I, [OFe(IV)-4-TMPyP](+) (1), in aqueous solution shows extraordinary reaction rates for C-H hydroxylations. Stopped-flow spectrophotometric monitoring of the oxidation of Fe(III)-4-TMPyP with mCPBA revealed the intermediate 1, which displays a weak, blue-shifted Soret band at 402 nm and an absorbance at 673 nm, typical of a porphyrin pi-radical cation. This intermediate was subsequently transformed into the well-characterized OFe(IV)-4-TMPyP. Global analysis afforded a second-order rate constant k(1) = (1.59 +/- 0.06) x 10(7) M(-1) s(-1) for the formation of 1 followed by a first-order decay with k(2) = 8.8 +/- 0.1 s(-1). (1)H and (13)C NMR determined 9-xanthydrol to be the major product (approximately 90% yield) of xanthene oxidation by 1. Electrospray ionization mass spectrometry carried out in 47.5% (18)OH(2) indicated 21% (18)O incorporation, consistent with an oxygen-rebound reaction scenario. Xanthene/xanthene-d(2) revealed a modest kinetic isotope effect, k(H)/k(D) = 2.1. Xanthene hydroxylation by 1 occurred with a very large second-order rate constant k(3) = (3.6 +/- 0.3) x 10(6) M(-1) s(-1). Similar reactions of fluorene-4-carboxylic acid and 4-isopropyl- and 4-ethylbenzoic acid also gave high rates for C-H hydroxylation that correlated well with the scissile C-H bond energy, indicating a homolytic hydrogen abstraction transition state. Mapping the observed rate constants for C-H bond cleavage onto the Brønsted-Evans-Polanyi relationship for similar substrates determined the H-OFe(IV)-4-TMPyP bond dissociation energy to be approximately 100 kcal/mol. The high kinetic reactivity observed for 1 is suggested to result from a high porphyrin redox potential and spin-state-crossing phenomena. More generally, subtle charge modulation at the active site may result in high reactivity of a cytochrome P450 compound I.
Collapse
Affiliation(s)
- Seth R. Bell
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - John T. Groves
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| |
Collapse
|
50
|
Sheng X, Zhang H, Hollenberg PF, Newcomb M. Kinetic isotope effects in hydroxylation reactions effected by cytochrome P450 compounds I implicate multiple electrophilic oxidants for P450-catalyzed oxidations. Biochemistry 2009; 48:1620-7. [PMID: 19182902 DOI: 10.1021/bi802279d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Kinetic isotope effects were measured for oxidations of (S,S)-2-(p-trifluoromethylphenyl)cyclopropylmethane containing zero, two, and three deuterium atoms on the methyl group by Compounds I from the cytochrome P450 enzymes CYP119 and CYP2B4 at 22 degrees C. The oxidations displayed saturation kinetics, which permitted solution of both binding constants (K(bind)) and first-order oxidation rate constants (k(ox)) for both enzymes with the three substrates. The binding constant for CYP2B4 Compound I was about 1 order of magnitude greater than that for CYP119 Compound I, but the oxidation rate constants were similar for the two. In oxidations of 1-d(0), k(ox) = 10.4 s(-1) for CYP119 Compound I, and k(ox) = 12.4 s(-1) for CYP2B4 Compound I. Primary kinetic isotope effects (P) and secondary kinetic isotope effects (S) were obtained from the results with the three isotopomers. The primary KIEs were large, P = 9.8 and P = 8.9 for CYP119 and CYP2B4 Compounds I, respectively, and the secondary KIEs were small and normal, S = 1.07 and S = 1.05, respectively. Large intermolecular KIEs for 1-d(0) and 1-d(3) of k(H)/k(D) = 11.2 and 9.8 found for the two Compounds I contrast with small intermolecular KIEs obtained previously for the same substrate in P450-catalyzed oxidations; these differences suggest that a second electrophilic oxidant, presumably iron-complexed hydrogen peroxide, is important in cytochrome P450 oxidations under turnover conditions.
Collapse
Affiliation(s)
- Xin Sheng
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | | | |
Collapse
|