• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4604935)   Today's Articles (4503)   Subscriber (49371)
For: Taatjes CA, Meloni G, Selby TM, Trevitt AJ, Osborn DL, Percival CJ, Shallcross DE. Direct Observation of the Gas-Phase Criegee Intermediate (CH2OO). J Am Chem Soc 2008;130:11883-5. [DOI: 10.1021/ja804165q] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Number Cited by Other Article(s)
1
Enami S, Numadate N, Hama T. Atmospheric Intermediates at the Air-Water Interface. J Phys Chem A 2024. [PMID: 38968003 DOI: 10.1021/acs.jpca.4c02889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
2
Geng X, Li Y, Yang J, Liu F. How Do the Position and Number of Methyl Substituents Affect the Photochemical Process of Criegee Intermediate? Trajectory Surface-Hopping Dynamics of Four-Carbon CIs. J Phys Chem A 2024. [PMID: 38961838 DOI: 10.1021/acs.jpca.4c02112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
3
Hockey EK, McLane N, Martí C, Duckett L, Osborn DL, Dodson LG. Direct Observation of Gas-Phase Hydroxymethylene: Photoionization and Kinetics Resulting from Methanol Photodissociation. J Am Chem Soc 2024;146:14416-14421. [PMID: 38744681 DOI: 10.1021/jacs.4c03090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
4
Debnath A, Rajakumar B. Experimental and theoretical study of Criegee intermediate (CH2OO) reactions with n-butyraldehyde and isobutyraldehyde: kinetics, implications and atmospheric fate. Phys Chem Chem Phys 2024;26:6872-6884. [PMID: 38332729 DOI: 10.1039/d3cp05482a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
5
Rynjah S, Baro B, Sarkar B. Oxepin Derivatives Formation from Gas-Phase Catechol Ozonolysis. J Phys Chem A 2024;128:251-260. [PMID: 38158557 DOI: 10.1021/acs.jpca.3c04582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
6
He J, Zhang H, Liu Y, Ju Y, He Y, Jiang Y, Jiang J. Interfacial Extraction to Trap and Characterize the Criegee Intermediates from Phospholipid Ozonolysis. Anal Chem 2023;95:5018-5023. [PMID: 36840931 DOI: 10.1021/acs.analchem.2c05472] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
7
Sit MK, Das S, Samanta K. Semiclassical Dynamics on Machine-Learned Coupled Multireference Potential Energy Surfaces: Application to the Photodissociation of the Simplest Criegee Intermediate. J Phys Chem A 2023;127:2376-2387. [PMID: 36856588 DOI: 10.1021/acs.jpca.2c07229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
8
Begley JM, Aroeira GJR, Turney JM, Douberly GE, Schaefer HF. Enthalpies of formation for Criegee intermediates: A correlation energy convergence study. J Chem Phys 2023;158:034302. [PMID: 36681629 DOI: 10.1063/5.0127588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]  Open
9
Nikoobakht B, Köppel H. Correlated quantum treatment of the photodissociation dynamics of formaldehyde oxide CH2OO. Phys Chem Chem Phys 2022;24:12433-12441. [PMID: 35575032 DOI: 10.1039/d2cp01007k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
10
Kakeshpour T, Bax A. Simultaneous Quantification of H2O2 and Organic Hydroperoxides by 1H NMR Spectroscopy. Anal Chem 2022;94:5729-5733. [PMID: 35394743 PMCID: PMC9022074 DOI: 10.1021/acs.analchem.2c00264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
11
Rösch D, Almeida R, Sztáray B, Osborn DL. High-Resolution Double Velocity Map Imaging Photoelectron Photoion Coincidence Spectrometer for Gas-Phase Reaction Kinetics. J Phys Chem A 2022;126:1761-1774. [PMID: 35258948 DOI: 10.1021/acs.jpca.1c10293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
12
Mazarei E, Barker JR. CH2 + O2: reaction mechanism, biradical and zwitterionic character, and formation of CH2OO, the simplest Criegee intermediate. Phys Chem Chem Phys 2022;24:914-927. [PMID: 34913447 DOI: 10.1039/d1cp04372b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
13
Wang CC, Chang Y, Chung C. Infrared detection of Criegee intermediates. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
14
Cabezas C, Daly AM, Endo Y. Reactivity and internal dynamics in the Criegee intermediate CH2OOCO2 system: A rotational study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021;260:119945. [PMID: 34020382 DOI: 10.1016/j.saa.2021.119945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/24/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
15
Nikoobakht B, Köppel H. UV absorption spectrum and photodissociation dynamics of CH2OO following excitation to the B1 A′ state. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1958019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
16
Hassan Z, Stahlberger M, Rosenbaum N, Bräse S. Criegee‐Intermediate über die Ozonolyse hinaus: Ein Einblick in Synthesen und Mechanismen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
17
Hassan Z, Stahlberger M, Rosenbaum N, Bräse S. Criegee Intermediates Beyond Ozonolysis: Synthetic and Mechanistic Insights. Angew Chem Int Ed Engl 2021;60:15138-15152. [PMID: 33283439 PMCID: PMC8359312 DOI: 10.1002/anie.202014974] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Indexed: 12/20/2022]
18
Rousso AC, Jasper AW, Ju Y, Hansen N. Extreme Low-Temperature Combustion Chemistry: Ozone-Initiated Oxidation of Methyl Hexanoate. J Phys Chem A 2020;124:9897-9914. [PMID: 33174431 DOI: 10.1021/acs.jpca.0c07584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
19
Quanz H, Bernhardt B, Erb FR, Bartlett MA, Allen WD, Schreiner PR. Identification and Reactivity of s-cis,s-cis-Dihydroxycarbene, a New [CH2O2] Intermediate. J Am Chem Soc 2020;142:19457-19461. [PMID: 33166464 DOI: 10.1021/jacs.0c09317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
20
Tang B, Li Z. Molecular Mechanisms and Atmospheric Implications of Criegee Intermediate-Alcohol Chemistry in the Gas Phase and Aqueous Surface Environments. J Phys Chem A 2020;124:8585-8593. [PMID: 32946233 DOI: 10.1021/acs.jpca.0c06427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
21
Chhantyal-Pun R, Khan MAH, Taatjes CA, Percival CJ, Orr-Ewing AJ, Shallcross DE. Criegee intermediates: production, detection and reactivity. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1792104] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
22
Li Y, Gong Q, Yang J, Feng Q, Song T, Wang W, Liu F. Hydrogen bond, ring tension and π-conjugation effects: methyl and vinyl substitutions dramatically change the photodynamics of Criegee intermediates. Phys Chem Chem Phys 2020;22:15295-15302. [PMID: 32618986 DOI: 10.1039/d0cp01873b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
23
Cabezas C, Nakajima M, Endo Y. Criegee intermediates meet rotational spectroscopy. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1782651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
24
Endo Y, Witek HA, Chung CA, Lee YP. Detection of a Criegee Intermediate with an Unsaturated Hydrocarbon Substituent: Fourier-Transform Microwave Spectroscopy of Methyl Vinyl Ketone Oxide. J Phys Chem A 2020;124:6203-6206. [DOI: 10.1021/acs.jpca.0c05817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
25
Du B, Zhang W. Theoretical Insight into the Reaction Mechanism and Kinetics for the Criegee Intermediate of anti-PhCHOO with SO2. Molecules 2020;25:molecules25133041. [PMID: 32635243 PMCID: PMC7412395 DOI: 10.3390/molecules25133041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 11/16/2022]  Open
26
Peltola J, Seal P, Inkilä A, Eskola A. Time-resolved, broadband UV-absorption spectrometry measurements of Criegee intermediate kinetics using a new photolytic precursor: unimolecular decomposition of CH2OO and its reaction with formic acid. Phys Chem Chem Phys 2020;22:11797-11808. [PMID: 32347242 DOI: 10.1039/d0cp00302f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
27
Vansco MF, Caravan RL, Zuraski K, Winiberg FAF, Au K, Trongsiriwat N, Walsh PJ, Osborn DL, Percival CJ, Khan MAH, Shallcross DE, Taatjes CA, Lester MI. Experimental Evidence of Dioxole Unimolecular Decay Pathway for Isoprene-Derived Criegee Intermediates. J Phys Chem A 2020;124:3542-3554. [PMID: 32255634 DOI: 10.1021/acs.jpca.0c02138] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
28
Direct kinetic measurements and theoretical predictions of an isoprene-derived Criegee intermediate. Proc Natl Acad Sci U S A 2020;117:9733-9740. [PMID: 32321826 DOI: 10.1073/pnas.1916711117] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]  Open
29
Kortyna A, Doney K, Nesbitt DJ. High-resolution infrared spectroscopy of jet cooled CH2Br radicals: The symmetric CH stretch manifold and absence of nuclear spin cooling. J Chem Phys 2020;152:134305. [DOI: 10.1063/5.0002165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
30
Nguyen TL, Stanton JF. Pragmatic Solution for a Fully E,J-Resolved Master Equation. J Phys Chem A 2020;124:2907-2918. [DOI: 10.1021/acs.jpca.9b11379] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
31
Maranzana A, Tonachini G. Multireference Study of the H2COO (Criegee Intermediate) + O3 Addition: A Reaction of Possible Tropospheric Interest. J Phys Chem A 2020;124:1112-1120. [DOI: 10.1021/acs.jpca.9b11430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
32
The bimolecular catalytic transformation of methyl vinyl ketone oxide: A DFT study. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
33
Wagner JP. Gauging stability and reactivity of carbonyl O-oxide Criegee intermediates. Phys Chem Chem Phys 2019;21:21530-21540. [PMID: 31536065 DOI: 10.1039/c9cp03790j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
34
Nakajima M, Endo Y. Fourier-transform microwave spectroscopy on weakly bound complexes of CH2OO with Ar, CO, and N2. J Chem Phys 2019. [DOI: 10.1063/1.5116165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
35
Rapid unimolecular reaction of stabilized Criegee intermediates and implications for atmospheric chemistry. Nat Commun 2019;10:2003. [PMID: 31043594 PMCID: PMC6494847 DOI: 10.1038/s41467-019-09948-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/03/2019] [Indexed: 11/10/2022]  Open
36
Huang C, Yang B, Zhang F. Calculation of the absolute photoionization cross-sections for C1-C4 Criegee intermediates and vinyl hydroperoxides. J Chem Phys 2019;150:164305. [PMID: 31042918 DOI: 10.1063/1.5088408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
37
Lin X, Meng Q, Feng B, Zhai Y, Li Y, Yu Y, Li Z, Shan X, Liu F, Zhang L, Sheng L. Theoretical Study on Criegee Intermediate's Role in Ozonolysis of Acrylic Acid. J Phys Chem A 2019;123:1929-1936. [PMID: 30811197 DOI: 10.1021/acs.jpca.8b11671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
38
Cabezas C, Guillemin JC, Endo Y. Fourier transform microwave spectroscopy of Criegee intermediates: The conformational behaviour of butyraldehyde oxide. J Chem Phys 2019;150:104301. [DOI: 10.1063/1.5088566] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
39
Wei WM, Hong S, Fang WJ, Zheng RH, Qin YD. Formation of OH radicals from the simplest Criegee intermediate CH2OO and water. Theor Chem Acc 2019. [DOI: 10.1007/s00214-018-2401-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
40
Chicharro DV, Poullain SM, Bañares L, Hrodmarsson HR, García GA, Loison JC. Threshold photoelectron spectrum of the CH2OO Criegee intermediate. Phys Chem Chem Phys 2019;21:12763-12766. [DOI: 10.1039/c9cp02538c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
41
Aroeira GJR, Abbott AS, Elliott SN, Turney JM, Schaefer HF. The addition of methanol to Criegee intermediates. Phys Chem Chem Phys 2019;21:17760-17771. [DOI: 10.1039/c9cp03480c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
42
Cabezas C, Endo Y. The Criegee intermediate-formic acid reaction explored by rotational spectroscopy. Phys Chem Chem Phys 2019;21:18059-18064. [DOI: 10.1039/c9cp03001h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
43
Qiu J, Tonokura K. Detection of the simplest Criegee intermediate CH2OO in the ν4 band using a continuous wave quantum cascade laser and its kinetics with SO2 and NO2. Chem Phys Lett 2019. [DOI: 10.1016/j.cpletx.2019.100019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
44
Deb DK, Sarkar B. Formation of Criegee intermediates and peroxy acids: a computational study of gas-phase 1,3-cycloaddition of ozone with catechol. Phys Chem Chem Phys 2019;21:14589-14597. [PMID: 31140492 DOI: 10.1039/c9cp01312a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
45
Watson NAI, Black JA, Stonelake TM, Knowles PJ, Beames JM. An Extended Computational Study of Criegee Intermediate-Alcohol Reactions. J Phys Chem A 2018;123:218-229. [PMID: 30507197 DOI: 10.1021/acs.jpca.8b09349] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
46
Audran G, Marque SR, Santelli M. Ozone, chemical reactivity and biological functions. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.09.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
47
Cabezas C, Guillemin JC, Endo Y. Conformational preferences of Criegee intermediates: Isopropyl substituted carbonyl oxide. J Chem Phys 2018;149:084309. [DOI: 10.1063/1.5045768] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
48
Kortyna A, Lesko DMB, Nesbitt DJ. High-resolution sub-Doppler infrared spectroscopy of atmospherically relevant Criegee precursor CH2I radicals: CH2 stretch vibrations and "charge-sloshing" dynamics. J Chem Phys 2018;148:174308. [PMID: 29739209 DOI: 10.1063/1.5028287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
49
Ma Q, Lin X, Yang C, Long B, Gai Y, Zhang W. The influences of ammonia on aerosol formation in the ozonolysis of styrene: roles of Criegee intermediate reactions. ROYAL SOCIETY OPEN SCIENCE 2018;5:172171. [PMID: 29892406 PMCID: PMC5990818 DOI: 10.1098/rsos.172171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
50
Kumar M, Zhong J, Zeng XC, Francisco JS. Reaction of Criegee Intermediate with Nitric Acid at the Air-Water Interface. J Am Chem Soc 2018;140:4913-4921. [PMID: 29564890 DOI: 10.1021/jacs.8b01191] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
PrevPage 1 of 3 123Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA