1
|
Shekh S, Dhannura S, Dhurjad P, Ravali C, M M S, Kakkat S, Vishwajyothi, Vijayasarathy M, Sonti R, Gowd KH. Structure-aided function assignment to the transcriptomic conopeptide Am931. Toxicon 2024; 250:108087. [PMID: 39237042 DOI: 10.1016/j.toxicon.2024.108087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Implementation of the next-generation technologies for gene sequencing of venom duct transcriptome has provided a large number of peptide sequences of marine cone snails. Emerging technologies on computational platforms are now rapidly evolving for the accurate predictions of the 3D structure of the polypeptide using the primary sequence. The current report aims to integrate the information derived from these two technologies to develop the concept of structure-aided function assignment of Conus peptides. The proof of the concept was demonstrated using the transcriptomic peptide Am931 of C. amadis. The 3D structure of Am931 was computed using Density Functional Theory (DFT) and the quality of the predicted structure was confirmed using 2D NMR spectroscopy of the corresponding synthetic peptide. The computed structure of Am931 aligns with the active site motif of thioredoxins, possess catalytic disulfide conformation of (+, -)AntiRHHook and selectively modulate the N-terminal Cys3 thiol. These structural features indicate that Am931 may act as a disulfide isomerase and modulate the oxidative folding of conotoxins. Synthetic peptide Am931 provides proof-of-function by exhibiting catalytic activity on the oxidative folding of α-conotoxin ImI and improving the yield of native globular fold. The approach of integration of new technologies in the Conus peptide research may help to accelerate the discovery pipeline of new/improved conotoxin functional.
Collapse
Affiliation(s)
- Shamasoddin Shekh
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India.
| | - Shweta Dhannura
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India
| | - Pooja Dhurjad
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Challa Ravali
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India
| | - Spoorti M M
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India
| | - Sreepriya Kakkat
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India
| | - Vishwajyothi
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India
| | - Marimuthu Vijayasarathy
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, Karnataka, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Konkallu Hanumae Gowd
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India.
| |
Collapse
|
2
|
Pei S, Wang N, Mei Z, Zhangsun D, Craik DJ, McIntosh JM, Zhu X, Luo S. Conotoxins Targeting Voltage-Gated Sodium Ion Channels. Pharmacol Rev 2024; 76:828-845. [PMID: 38914468 PMCID: PMC11331937 DOI: 10.1124/pharmrev.123.000923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
Voltage-gated sodium (NaV) channels are intimately involved in the generation and transmission of action potentials, and dysfunction of these channels may contribute to nervous system diseases, such as epilepsy, neuropathic pain, psychosis, autism, and cardiac arrhythmia. Many venom peptides selectively act on NaV channels. These include conotoxins, which are neurotoxins secreted by cone snails for prey capture or self-defense but which are also valuable pharmacological tools for the identification and/or treatment of human diseases. Typically, conotoxins contain two or three disulfide bonds, and these internal crossbraces contribute to conotoxins having compact, well defined structures and high stability. Of the conotoxins containing three disulfide bonds, some selectively target mammalian NaV channels and can block, stimulate, or modulate these channels. Such conotoxins have great potential to serve as pharmacological tools for studying the functions and characteristics of NaV channels or as drug leads for neurologic diseases related to NaV channels. Accordingly, discovering or designing conotoxins targeting NaV channels with high potency and selectivity is important. The amino acid sequences, disulfide bond connectivity, and three-dimensional structures are key factors that affect the biological activity of conotoxins, and targeted synthetic modifications of conotoxins can greatly improve their activity and selectivity. This review examines NaV channel-targeted conotoxins, focusing on their structures, activities, and designed modifications, with a view toward expanding their applications. SIGNIFICANCE STATEMENT: NaV channels are crucial in various neurologic diseases. Some conotoxins selectively target NaV channels, causing either blockade or activation, thus enabling their use as pharmacological tools for studying the channels' characteristics and functions. Conotoxins also have promising potential to be developed as drug leads. The disulfide bonds in these peptides are important for stabilizing their structures, thus leading to enhanced specificity and potency. Together, conotoxins targeting NaV channels have both immediate research value and promising future application prospects.
Collapse
Affiliation(s)
- Shengrong Pei
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia (D.J.C.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M.); and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Nan Wang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia (D.J.C.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M.); and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Zaoli Mei
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia (D.J.C.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M.); and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Dongting Zhangsun
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia (D.J.C.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M.); and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - David J Craik
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia (D.J.C.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M.); and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - J Michael McIntosh
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia (D.J.C.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M.); and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Xiaopeng Zhu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia (D.J.C.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M.); and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Sulan Luo
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia (D.J.C.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M.); and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| |
Collapse
|
3
|
Zou X, Zhang Z, Lu H, Zhao W, Pan L, Chen Y. Functional effects of drugs and toxins interacting with Na V1.4. Front Pharmacol 2024; 15:1378315. [PMID: 38725668 PMCID: PMC11079311 DOI: 10.3389/fphar.2024.1378315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
NaV1.4 is a voltage-gated sodium channel subtype that is predominantly expressed in skeletal muscle cells. It is essential for producing action potentials and stimulating muscle contraction, and mutations in NaV1.4 can cause various muscle disorders. The discovery of the cryo-EM structure of NaV1.4 in complex with β1 has opened new possibilities for designing drugs and toxins that target NaV1.4. In this review, we summarize the current understanding of channelopathies, the binding sites and functions of chemicals including medicine and toxins that interact with NaV1.4. These substances could be considered novel candidate compounds or tools to develop more potent and selective drugs targeting NaV1.4. Therefore, studying NaV1.4 pharmacology is both theoretically and practically meaningful.
Collapse
Affiliation(s)
- Xinyi Zou
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Zixuan Zhang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Hui Lu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Wei Zhao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Lanying Pan
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yuan Chen
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
4
|
McMahon KL, Vetter I, Schroeder CI. Voltage-Gated Sodium Channel Inhibition by µ-Conotoxins. Toxins (Basel) 2024; 16:55. [PMID: 38251271 PMCID: PMC10819908 DOI: 10.3390/toxins16010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
µ-Conotoxins are small, potent pore-blocker inhibitors of voltage-gated sodium (NaV) channels, which have been identified as pharmacological probes and putative leads for analgesic development. A limiting factor in their therapeutic development has been their promiscuity for different NaV channel subtypes, which can lead to undesirable side-effects. This review will focus on four areas of µ-conotoxin research: (1) mapping the interactions of µ-conotoxins with different NaV channel subtypes, (2) µ-conotoxin structure-activity relationship studies, (3) observed species selectivity of µ-conotoxins and (4) the effects of µ-conotoxin disulfide connectivity on activity. Our aim is to provide a clear overview of the current status of µ-conotoxin research.
Collapse
Affiliation(s)
- Kirsten L. McMahon
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Irina Vetter
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- The School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Christina I. Schroeder
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
5
|
Groome JR. Historical Perspective of the Characterization of Conotoxins Targeting Voltage-Gated Sodium Channels. Mar Drugs 2023; 21:md21040209. [PMID: 37103349 PMCID: PMC10142487 DOI: 10.3390/md21040209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Marine toxins have potent actions on diverse sodium ion channels regulated by transmembrane voltage (voltage-gated ion channels) or by neurotransmitters (nicotinic acetylcholine receptor channels). Studies of these toxins have focused on varied aspects of venom peptides ranging from evolutionary relationships of predator and prey, biological actions on excitable tissues, potential application as pharmacological intervention in disease therapy, and as part of multiple experimental approaches towards an understanding of the atomistic characterization of ion channel structure. This review examines the historical perspective of the study of conotoxin peptides active on sodium channels gated by transmembrane voltage, which has led to recent advances in ion channel research made possible with the exploitation of the diversity of these marine toxins.
Collapse
Affiliation(s)
- James R Groome
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
| |
Collapse
|
6
|
Wei B, Zenaidee MA, Lantz C, Williams BJ, Totten S, Ogorzalek Loo RR, Loo JA. Top-down mass spectrometry and assigning internal fragments for determining disulfide bond positions in proteins. Analyst 2022; 148:26-37. [PMID: 36399030 PMCID: PMC9772244 DOI: 10.1039/d2an01517j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Disulfide bonds in proteins have a substantial impact on protein structure, stability, and biological activity. Localizing disulfide bonds is critical for understanding protein folding and higher-order structure. Conventional top-down mass spectrometry (TD-MS), where only terminal fragments are assigned for disulfide-intact proteins, can access disulfide information, but suffers from low fragmentation efficiency, thereby limiting sequence coverage. Here, we show that assigning internal fragments generated from TD-MS enhances the sequence coverage of disulfide-intact proteins by 20-60% by returning information from the interior of the protein sequence, which cannot be obtained by terminal fragments alone. The inclusion of internal fragments can extend the sequence information of disulfide-intact proteins to near complete sequence coverage. Importantly, the enhanced sequence information that arise from the assignment of internal fragments can be used to determine the relative position of disulfide bonds and the exact disulfide connectivity between cysteines. The data presented here demonstrates the benefits of incorporating internal fragment analysis into the TD-MS workflow for analyzing disulfide-intact proteins, which would be valuable for characterizing biotherapeutic proteins such as monoclonal antibodies and antibody-drug conjugates.
Collapse
Affiliation(s)
- Benqian Wei
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.
| | - Muhammad A Zenaidee
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.
- Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW, Australia
| | - Carter Lantz
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.
| | | | | | - Rachel R Ogorzalek Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
7
|
Hipper E, Blech M, Hinderberger D, Garidel P, Kaiser W. Photo-Oxidation of Therapeutic Protein Formulations: From Radical Formation to Analytical Techniques. Pharmaceutics 2021; 14:72. [PMID: 35056968 PMCID: PMC8779573 DOI: 10.3390/pharmaceutics14010072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022] Open
Abstract
UV and ambient light-induced modifications and related degradation of therapeutic proteins are observed during manufacturing and storage. Therefore, to ensure product quality, protein formulations need to be analyzed with respect to photo-degradation processes and eventually protected from light exposure. This task usually demands the application and combination of various analytical methods. This review addresses analytical aspects of investigating photo-oxidation products and related mediators such as reactive oxygen species generated via UV and ambient light with well-established and novel techniques.
Collapse
Affiliation(s)
- Elena Hipper
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany; (E.H.); (D.H.)
| | - Michaela Blech
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| | - Dariush Hinderberger
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany; (E.H.); (D.H.)
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| | - Wolfgang Kaiser
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| |
Collapse
|
8
|
McMahon KL, Tran HN, Deuis JR, Lewis RJ, Vetter I, Schroeder CI. Discovery, Pharmacological Characterisation and NMR Structure of the Novel µ-Conotoxin SxIIIC, a Potent and Irreversible Na V Channel Inhibitor. Biomedicines 2020; 8:biomedicines8100391. [PMID: 33023152 PMCID: PMC7599555 DOI: 10.3390/biomedicines8100391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium (NaV) channel subtypes, including NaV1.7, are promising targets for the treatment of neurological diseases, such as chronic pain. Cone snail-derived µ-conotoxins are small, potent NaV channel inhibitors which represent potential drug leads. Of the 22 µ-conotoxins characterised so far, only a small number, including KIIIA and CnIIIC, have shown inhibition against human NaV1.7. We have recently identified a novel µ-conotoxin, SxIIIC, from Conus striolatus. Here we present the isolation of native peptide, chemical synthesis, characterisation of human NaV channel activity by whole-cell patch-clamp electrophysiology and analysis of the NMR solution structure. SxIIIC displays a unique NaV channel selectivity profile (1.4 > 1.3 > 1.1 ≈ 1.6 ≈ 1.7 > 1.2 >> 1.5 ≈ 1.8) when compared to other µ-conotoxins and represents one of the most potent human NaV1.7 putative pore blockers (IC50 152.2 ± 21.8 nM) to date. NMR analysis reveals the structure of SxIIIC includes the characteristic α-helix seen in other µ-conotoxins. Future investigations into structure-activity relationships of SxIIIC are expected to provide insights into residues important for NaV channel pore blocker selectivity and subsequently important for chronic pain drug development.
Collapse
Affiliation(s)
- Kirsten L. McMahon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (K.L.M.); (H.N.T.T.); (J.R.D.); (R.J.L.)
| | - Hue N.T. Tran
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (K.L.M.); (H.N.T.T.); (J.R.D.); (R.J.L.)
| | - Jennifer R. Deuis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (K.L.M.); (H.N.T.T.); (J.R.D.); (R.J.L.)
| | - Richard J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (K.L.M.); (H.N.T.T.); (J.R.D.); (R.J.L.)
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (K.L.M.); (H.N.T.T.); (J.R.D.); (R.J.L.)
- The School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Correspondence: (I.V.); (C.I.S.)
| | - Christina I. Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (K.L.M.); (H.N.T.T.); (J.R.D.); (R.J.L.)
- National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
- Correspondence: (I.V.); (C.I.S.)
| |
Collapse
|
9
|
Gallo A, Boni R, Tosti E. Neurobiological activity of conotoxins via sodium channel modulation. Toxicon 2020; 187:47-56. [PMID: 32877656 DOI: 10.1016/j.toxicon.2020.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/20/2020] [Accepted: 08/22/2020] [Indexed: 01/02/2023]
Abstract
Conotoxins (CnTX) are bioactive peptides produced by marine molluscs belonging to Conus genus. The biochemical structure of these venomous peptides is characterized by a low number of amino acids linked with disulfide bonds formed by a high degree of post-translational modifications and glycosylation steps which increase the diversity and rate of evolution of these molecules. CnTX different isoforms are known to target ion channels and, in particular, voltage-gated sodium (Na+) channels (Nav channels). These are transmembrane proteins fundamental in excitable cells for generating the depolarization of plasma membrane potential known as action potential which propagates electrical signals in muscles and nerves for physiological functions. Disorders in Nav channel activity have been shown to induce neurological pathologies and pain states. Here, we describe the current knowledge of CnTX isoform modulation of the Nav channel activity, the mechanism of action and the potential therapeutic use of these toxins in counteracting neurological dysfunctions.
Collapse
Affiliation(s)
- Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Raffele Boni
- Department of Sciences, University of Basilicata, 85100, Potenza, Italy.
| | - Elisabetta Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| |
Collapse
|
10
|
Himaya SWA, Rai SK, Pamfili G, Jin AH, Alewood PF, Lewis RJ. Venomic Interrogation Reveals the Complexity of Conus striolatus Venom. Aust J Chem 2020. [DOI: 10.1071/ch19588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Given the complexity of cone snail venoms, high throughput venomics approaches are required to fully investigate venom composition, envenomation strategies, and evolutionary trajectories. This study describes 158 conotoxins in the venom transcriptome of the little studied C. striolatus from the fish hunting clade Pionoconus. Despite similar gene superfamily distributions along the venom duct, only 18 common transcripts were identified between distal, central, and proximal venom duct transcriptomes. Proteomic analysis of the injected predatory venom collected from the same individual revealed an ~18-fold enhanced complexity at the proteomic level, consistent with complex post-translational modifications and variable venom peptide processing occurring in the venom duct. Overall, C. striolatus venom was dominated by M, O1, O2, and A gene superfamily conotoxins and conkunitzins, which are potential modulators of sodium, calcium, and potassium channels. Conkunitzins and gene superfamily A peptides dominated the proximal over the distal duct, the M and O1 gene superfamily peptides were distributed along the full length of the duct, while the O2 gene superfamily peptides dominated the distal duct. Interestingly, the predatory injected venom of C. striolatus was dominated by peptides from gene superfamilies M, O1, O2, A, and conkunitzins, suggesting the predatory venom of C. striolatus may arise at multiple sites along the venom duct.
Collapse
|
11
|
|
12
|
Peigneur S, Cheneval O, Maiti M, Leipold E, Heinemann SH, Lescrinier E, Herdewijn P, De Lima ME, Craik DJ, Schroeder CI, Tytgat J. Where cone snails and spiders meet: design of small cyclic sodium-channel inhibitors. FASEB J 2018; 33:3693-3703. [PMID: 30509130 DOI: 10.1096/fj.201801909r] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A 13 aa residue voltage-gated sodium (NaV) channel inhibitor peptide, Pn, containing 2 disulfide bridges was designed by using a chimeric approach. This approach was based on a common pharmacophore deduced from sequence and secondary structural homology of 2 NaV inhibitors: Conus kinoshitai toxin IIIA, a 14 residue cone snail peptide with 3 disulfide bonds, and Phoneutria nigriventer toxin 1, a 78 residue spider toxin with 7 disulfide bonds. As with the parent peptides, this novel NaV channel inhibitor was active on NaV1.2. Through the generation of 3 series of peptide mutants, we investigated the role of key residues and cyclization and their influence on NaV inhibition and subtype selectivity. Cyclic PnCS1, a 10 residue peptide cyclized via a disulfide bond, exhibited increased inhibitory activity toward therapeutically relevant NaV channel subtypes, including NaV1.7 and NaV1.9, while displaying remarkable serum stability. These peptides represent the first and the smallest cyclic peptide NaV modulators to date and are promising templates for the development of toxin-based therapeutic agents.-Peigneur, S., Cheneval, O., Maiti, M., Leipold, E., Heinemann, S. H., Lescrinier, E., Herdewijn, P., De Lima, M. E., Craik, D. J., Schroeder, C. I., Tytgat, J. Where cone snails and spiders meet: design of small cyclic sodium-channel inhibitors.
Collapse
Affiliation(s)
- Steve Peigneur
- Toxicology and Pharmacology, Katholieke Universiteit (KU) Leuven, Campus Gasthuisberg, Leuven, Belgium.,Department de Bioquímica e Imunologia, Laboratório de Venenos e Toxinas Animais, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo-Horizonte, Brazil
| | - Olivier Cheneval
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Mohitosh Maiti
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Enrico Leipold
- Department of Biophysics, Center for Molecular Biomedicine, Jena University Hospital, Friedrich Schiller University Jena, Germany
| | - Stefan H Heinemann
- Department of Biophysics, Center for Molecular Biomedicine, Jena University Hospital, Friedrich Schiller University Jena, Germany
| | - Eveline Lescrinier
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Piet Herdewijn
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Maria Elena De Lima
- Department de Bioquímica e Imunologia, Laboratório de Venenos e Toxinas Animais, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo-Horizonte, Brazil.,Programa de Pós-Graduação em Ciências da Saúde, Biomedicina e Medicina, Instituto de Ensino e Pesquisa da Santa Casa de Belo Horizonte, Grupo Santa Casa de Belo Horizonte, Belo Horizonte, Brazil
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Jan Tytgat
- Toxicology and Pharmacology, Katholieke Universiteit (KU) Leuven, Campus Gasthuisberg, Leuven, Belgium
| |
Collapse
|
13
|
Paul George AA, Heimer P, Maaß A, Hamaekers J, Hofmann-Apitius M, Biswas A, Imhof D. Insights into the Folding of Disulfide-Rich μ-Conotoxins. ACS OMEGA 2018; 3:12330-12340. [PMID: 30411002 PMCID: PMC6217517 DOI: 10.1021/acsomega.8b01465] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
The study of protein conformations using molecular dynamics (MD) simulations has been in place for decades. A major contribution to the structural stability and native conformation of a protein is made by the primary sequence and disulfide bonds formed during the folding process. Here, we investigated μ-conotoxins GIIIA, KIIIA, PIIIA, SIIIA, and SmIIIA as model peptides possessing three disulfide bonds. Their NMR structures were used for MD simulations in a novel approach studying the conformations between the folded and the unfolded states by systematically breaking the distinct disulfide bonds and monitoring the conformational stability of the peptides. As an outcome, the use of a combination of the existing knowledge and results from the simulations to classify the studied peptides within the extreme models of disulfide folding pathways, namely the bovine pancreatic trypsin inhibitor pathway and the hirudin pathway, is demonstrated. Recommendations for the design and synthesis of cysteine-rich peptides with a reduced number of disulfide bonds conclude the study.
Collapse
Affiliation(s)
- Ajay Abisheck Paul George
- Pharmaceutical
Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Pascal Heimer
- Pharmaceutical
Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Astrid Maaß
- Department
of Virtual Material Design and Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific
Computing, Schloss Birlinghoven, D-53754 Sankt Augustin, Germany
| | - Jan Hamaekers
- Department
of Virtual Material Design and Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific
Computing, Schloss Birlinghoven, D-53754 Sankt Augustin, Germany
| | - Martin Hofmann-Apitius
- Department
of Virtual Material Design and Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific
Computing, Schloss Birlinghoven, D-53754 Sankt Augustin, Germany
- Bonn-Aachen
International Center for Information Technology, University of Bonn, Endenicher Allee 19 C, D-53115 Bonn, Germany
| | - Arijit Biswas
- Institute
for Experimental Hematology, University
Hospital Bonn, Sigmund-Freud-Straße
25, D-53127 Bonn, Germany
| | - Diana Imhof
- Pharmaceutical
Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
14
|
Massonnet P, Haler JRN, Upert G, Smargiasso N, Mourier G, Gilles N, Quinton L, De Pauw E. Disulfide Connectivity Analysis of Peptides Bearing Two Intramolecular Disulfide Bonds Using MALDI In-Source Decay. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1995-2002. [PMID: 29987664 DOI: 10.1007/s13361-018-2022-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/07/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
Disulfide connectivity in peptides bearing at least two intramolecular disulfide bonds is highly important for the structure and the biological activity of the peptides. In that context, analytical strategies allowing a characterization of the cysteine pairing are of prime interest for chemists, biochemists, and biologists. For that purpose, this study evaluates the potential of MALDI in-source decay (ISD) for characterizing cysteine pairs through the systematic analysis of identical peptides bearing two disulfide bonds, but not the same cysteine connectivity. Three different matrices have been tested in positive and/or in negative mode (1,5-DAN, 2-AB and 2-AA). As MALDI-ISD is known to partially reduce disulfide bonds, the data analysis of this study rests firstly on the deconvolution of the isotope pattern of the parent ions. Moreover, data analysis is also based on the formed fragment ions and their signal intensities. Results from MS/MS-experiments (MALDI-ISD-MS/MS) constitute the last reference for data interpretation. Owing to the combined use of different ISD-promoting matrices, cysteine connectivity identification could be performed on the considered peptides. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Philippe Massonnet
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Quartier Agora, Allée du six Aout 11, B-4000, Liege, Belgium.
| | - Jean R N Haler
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Quartier Agora, Allée du six Aout 11, B-4000, Liege, Belgium
| | - Gregory Upert
- Commissariat à l'Energie Atomique, DRF/SIMOPRO, 91191, Gif sur Yvette, France
| | - Nicolas Smargiasso
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Quartier Agora, Allée du six Aout 11, B-4000, Liege, Belgium
| | - Gilles Mourier
- Commissariat à l'Energie Atomique, DRF/SIMOPRO, 91191, Gif sur Yvette, France
| | - Nicolas Gilles
- Commissariat à l'Energie Atomique, DRF/SIMOPRO, 91191, Gif sur Yvette, France
| | - Loïc Quinton
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Quartier Agora, Allée du six Aout 11, B-4000, Liege, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Quartier Agora, Allée du six Aout 11, B-4000, Liege, Belgium
| |
Collapse
|
15
|
Quick MM, Crittenden CM, Rosenberg JA, Brodbelt JS. Characterization of Disulfide Linkages in Proteins by 193 nm Ultraviolet Photodissociation (UVPD) Mass Spectrometry. Anal Chem 2018; 90:8523-8530. [PMID: 29902373 PMCID: PMC6050148 DOI: 10.1021/acs.analchem.8b01556] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Deciphering disulfide bond patterns in proteins remains a significant challenge. In the present study, interlinked disulfide bonds connecting peptide chains are homolytically cleaved with 193 nm ultraviolet photodissociation (UVPD). Analysis of insulin showcased the ability of UVPD to cleave multiple disulfide bonds and provide sequence coverage of the peptide chains in the same MS/MS event. For proteins containing more complex disulfide bonding patterns, an approach combining partial reduction and alkylation mitigated disulfide scrambling and allowed assignment of the array of disulfide bonds. The 4 disulfide bonds of lysozyme and the 19 disulfide bonds of serotransferrin were characterized through LC/UVPD-MS analysis of nonreduced and partially reduced protein digests.
Collapse
|
16
|
Chen C, Hong M, Guo X, Wu F, Tian C, Wang Y, Xu Z. Facile synthesis of macrocyclic peptide toxins of GpTx-1 and its analogue. Org Chem Front 2018. [DOI: 10.1039/c8qo00415c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
GpTx-1 and its analogue GpTx-71-1 were synthesized by a flexible and highly practical strategy via converging three segments based on C-terminal proline residues.
Collapse
Affiliation(s)
- Chao Chen
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research
- School of Chemical Biology & Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen 518055
- China
| | - Mei Hong
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research
- School of Chemical Biology & Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen 518055
- China
| | - Xiaoqi Guo
- School of Life Sciences
- University of Science and Technology of China
- Hefei 230027
- China
- High Magnetic Field Laboratory
| | - Fangming Wu
- High Magnetic Field Laboratory
- Chinese Academy of Sciences
- Hefei 230031
- China
| | - Changlin Tian
- School of Life Sciences
- University of Science and Technology of China
- Hefei 230027
- China
- High Magnetic Field Laboratory
| | - Yangding Wang
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research
- School of Chemical Biology & Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen 518055
- China
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- School of Basic Medical Science
- Lanzhou University
- 199 West Donggang Road
- Lanzhou 730000
| |
Collapse
|
17
|
Tosti E, Boni R, Gallo A. µ-Conotoxins Modulating Sodium Currents in Pain Perception and Transmission: A Therapeutic Potential. Mar Drugs 2017; 15:E295. [PMID: 28937587 PMCID: PMC5666403 DOI: 10.3390/md15100295] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/12/2017] [Accepted: 09/20/2017] [Indexed: 12/27/2022] Open
Abstract
The Conus genus includes around 500 species of marine mollusks with a peculiar production of venomous peptides known as conotoxins (CTX). Each species is able to produce up to 200 different biological active peptides. Common structure of CTX is the low number of amino acids stabilized by disulfide bridges and post-translational modifications that give rise to different isoforms. µ and µO-CTX are two isoforms that specifically target voltage-gated sodium channels. These, by inducing the entrance of sodium ions in the cell, modulate the neuronal excitability by depolarizing plasma membrane and propagating the action potential. Hyperexcitability and mutations of sodium channels are responsible for perception and transmission of inflammatory and neuropathic pain states. In this review, we describe the current knowledge of µ-CTX interacting with the different sodium channels subtypes, the mechanism of action and their potential therapeutic use as analgesic compounds in the clinical management of pain conditions.
Collapse
Affiliation(s)
- Elisabetta Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| | - Raffaele Boni
- Department of Sciences, University of Basilicata, 75100 Potenza, Italy.
| | - Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| |
Collapse
|
18
|
A novel μ-conotoxin from worm-hunting Conus tessulatus that selectively inhibit rat TTX-resistant sodium currents. Toxicon 2017; 130:11-18. [DOI: 10.1016/j.toxicon.2017.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 02/01/2017] [Accepted: 02/16/2017] [Indexed: 12/13/2022]
|
19
|
Massonnet P, Haler JRN, Upert G, Degueldre M, Morsa D, Smargiasso N, Mourier G, Gilles N, Quinton L, De Pauw E. Ion Mobility-Mass Spectrometry as a Tool for the Structural Characterization of Peptides Bearing Intramolecular Disulfide Bond(s). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1637-1646. [PMID: 27488317 DOI: 10.1007/s13361-016-1443-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/19/2016] [Accepted: 06/24/2016] [Indexed: 06/06/2023]
Abstract
Disulfide bonds are post-translationnal modifications that can be crucial for the stability and the biological activities of natural peptides. Considering the importance of these disulfide bond-containing peptides, the development of new techniques in order to characterize these modifications is of great interest. For this purpose, collision cross cections (CCS) of a large data set of 118 peptides (displaying various sequences) bearing zero, one, two, or three disulfide bond(s) have been measured in this study at different charge states using ion mobility-mass spectrometry. From an experimental point of view, CCS differences (ΔCCS) between peptides bearing various numbers of disulfide bonds and peptides having no disulfide bonds have been calculated. The ΔCCS calculations have also been applied to peptides bearing two disulfide bonds but different cysteine connectivities (Cys1-Cys2/Cys3-Cys4; Cys1-Cys3/Cys2-Cys4; Cys1-Cys4/Cys2-Cys3). The effect of the replacement of a proton by a potassium adduct on a peptidic structure has also been investigated. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Philippe Massonnet
- Laboratory of Mass Spectrometry, University of Liege, Quartier Agora, Allée du six Aout 11, B-4000, Liege, Belgium
| | - Jean R N Haler
- Laboratory of Mass Spectrometry, University of Liege, Quartier Agora, Allée du six Aout 11, B-4000, Liege, Belgium
| | - Gregory Upert
- Commissariat à l'Energie Atomique, DRF/iBiTec-S/SIMOPRO, CE Saclay, 91191, Gif-sur-Yvette, France
| | - Michel Degueldre
- Laboratory of Mass Spectrometry, University of Liege, Quartier Agora, Allée du six Aout 11, B-4000, Liege, Belgium
| | - Denis Morsa
- Laboratory of Mass Spectrometry, University of Liege, Quartier Agora, Allée du six Aout 11, B-4000, Liege, Belgium
| | - Nicolas Smargiasso
- Laboratory of Mass Spectrometry, University of Liege, Quartier Agora, Allée du six Aout 11, B-4000, Liege, Belgium
| | - Gilles Mourier
- Commissariat à l'Energie Atomique, DRF/iBiTec-S/SIMOPRO, CE Saclay, 91191, Gif-sur-Yvette, France
| | - Nicolas Gilles
- Commissariat à l'Energie Atomique, DRF/iBiTec-S/SIMOPRO, CE Saclay, 91191, Gif-sur-Yvette, France
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, University of Liege, Quartier Agora, Allée du six Aout 11, B-4000, Liege, Belgium
| | - Edwin De Pauw
- Laboratory of Mass Spectrometry, University of Liege, Quartier Agora, Allée du six Aout 11, B-4000, Liege, Belgium.
| |
Collapse
|
20
|
Himaya SWA, Jin AH, Dutertre S, Giacomotto J, Mohialdeen H, Vetter I, Alewood PF, Lewis RJ. Comparative Venomics Reveals the Complex Prey Capture Strategy of the Piscivorous Cone Snail Conus catus. J Proteome Res 2015; 14:4372-81. [PMID: 26322961 DOI: 10.1021/acs.jproteome.5b00630] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Venomous marine cone snails produce a unique and remarkably diverse range of venom peptides (conotoxins and conopeptides) that have proven to be invaluable as pharmacological probes and leads to new therapies. Conus catus is a hook-and-line fish hunter from clade I, with ∼20 conotoxins identified, including the analgesic ω-conotoxin CVID (AM336). The current study unravels the venom composition of C. catus with tandem mass spectrometry and 454 sequencing data. From the venom gland transcriptome, 104 precursors were recovered from 11 superfamilies, with superfamily A (especially κA-) conotoxins dominating (77%) their venom. Proteomic analysis confirmed that κA-conotoxins dominated the predation-evoked milked venom of each of six C. catus analyzed and revealed remarkable intraspecific variation in both the intensity and type of conotoxins. High-throughput FLIPR assays revealed that the predation-evoked venom contained a range of conotoxins targeting the nAChR, Cav, and Nav ion channels, consistent with α- and ω-conotoxins being used for predation by C. catus. However, the κA-conotoxins did not act at these targets but induced potent and rapid immobilization followed by bursts of activity and finally paralysis when injected intramuscularly in zebrafish. Our venomics approach revealed the complexity of the envenomation strategy used by C. catus, which contains a mix of both excitatory and inhibitory venom peptides.
Collapse
Affiliation(s)
- S W A Himaya
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, 4072 Queensland, Australia
| | - Ai-Hua Jin
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, 4072 Queensland, Australia
| | - Sébastien Dutertre
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, 4072 Queensland, Australia.,Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier-CNRS , Place Eugène Bataillon, Montpellier Cedex 5 34095, France
| | - Jean Giacomotto
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, 4072 Queensland, Australia
| | - Hoshyar Mohialdeen
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, 4072 Queensland, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, 4072 Queensland, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, 4072 Queensland, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, 4072 Queensland, Australia
| |
Collapse
|
21
|
Structure and function of μ-conotoxins, peptide-based sodium channel blockers with analgesic activity. Future Med Chem 2015; 6:1677-98. [PMID: 25406007 DOI: 10.4155/fmc.14.107] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
μ-Conotoxins block voltage-gated sodium channels (VGSCs) and compete with tetrodotoxin for binding to the sodium conductance pore. Early efforts identified µ-conotoxins that preferentially blocked the skeletal muscle subtype (NaV1.4). However, the last decade witnessed a significant increase in the number of µ-conotoxins and the range of VGSC subtypes inhibited (NaV1.2, NaV1.3 or NaV1.7). Twenty µ-conotoxin sequences have been identified to date and structure-activity relationship studies of several of these identified key residues responsible for interactions with VGSC subtypes. Efforts to engineer-in subtype specificity are driven by in vivo analgesic and neuromuscular blocking activities. This review summarizes structural and pharmacological studies of µ-conotoxins, which show promise for development of selective blockers of NaV1.2, and perhaps also NaV1.1,1.3 or 1.7.
Collapse
|
22
|
Nguyen B, Caer JPL, Mourier G, Thai R, Lamthanh H, Servent D, Benoit E, Molgó J. Characterization of a novel Conus bandanus conopeptide belonging to the M-superfamily containing bromotryptophan. Mar Drugs 2014; 12:3449-65. [PMID: 24905483 PMCID: PMC4071585 DOI: 10.3390/md12063449] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/07/2014] [Accepted: 05/22/2014] [Indexed: 01/29/2023] Open
Abstract
A novel conotoxin (conopeptide) was biochemically characterized from the crude venom of the molluscivorous marine snail, Conus bandanus (Hwass in Bruguière, 1792), collected in the south-central coast of Vietnam. The peptide was identified by screening bromotryptophan from chromatographic fractions of the crude venom. Tandem mass spectrometry techniques were used to detect and localize different post-translational modifications (PTMs) present in the BnIIID conopeptide. The sequence was confirmed by Edman’s degradation and mass spectrometry revealing that the purified BnIIID conopeptide had 15 amino acid residues, with six cysteines at positions 1, 2, 7, 11, 13, and 14, and three PTMs: bromotryptophan, γ-carboxy glutamate, and amidated aspartic acid, at positions “4”, “5”, and “15”, respectively. The BnIIID peptide was synthesized for comparison with the native peptide. Homology comparison with conopeptides having the III-cysteine framework (–CCx1x2x3x4Cx1x2x3Cx1CC–) revealed that BnIIID belongs to the M-1 family of conotoxins. This is the first report of a member of the M-superfamily containing bromotryptophan as PTM.
Collapse
Affiliation(s)
- Bao Nguyen
- Neurobiology and Development Laboratory, Research Unit # 3294, Institute of Neurobiology Alfred Fessard # 2118, National Center for Scientific Research, Gif sur Yvette Cedex 91198, France.
| | - Jean-Pierre Le Caer
- Research Unit # 2301, Natural Product Chemistry Institute, National Center for Scientific Research, Gif sur Yvette Cedex 91198, France.
| | - Gilles Mourier
- Molecular Engineering of Proteins, Institute of Biology and Technology Saclay, Atomic Energy Commission, Gif sur Yvette Cedex 91191, France.
| | - Robert Thai
- Molecular Engineering of Proteins, Institute of Biology and Technology Saclay, Atomic Energy Commission, Gif sur Yvette Cedex 91191, France.
| | - Hung Lamthanh
- Neurobiology and Development Laboratory, Research Unit # 3294, Institute of Neurobiology Alfred Fessard # 2118, National Center for Scientific Research, Gif sur Yvette Cedex 91198, France.
| | - Denis Servent
- Molecular Engineering of Proteins, Institute of Biology and Technology Saclay, Atomic Energy Commission, Gif sur Yvette Cedex 91191, France.
| | - Evelyne Benoit
- Neurobiology and Development Laboratory, Research Unit # 3294, Institute of Neurobiology Alfred Fessard # 2118, National Center for Scientific Research, Gif sur Yvette Cedex 91198, France.
| | - Jordi Molgó
- Neurobiology and Development Laboratory, Research Unit # 3294, Institute of Neurobiology Alfred Fessard # 2118, National Center for Scientific Research, Gif sur Yvette Cedex 91198, France.
| |
Collapse
|
23
|
Abstract
Voltage-gated sodium (Nav) channels are essential contributors to neuronal excitability, making them the most commonly targeted ion channel family by toxins found in animal venoms. These molecules can be used to probe the functional aspects of Nav channels on a molecular level and to explore their physiological role in normal and diseased tissues. This chapter summarizes our existing knowledge of the mechanisms by which animal toxins influence Nav channels as well as their potential application in designing therapeutic drugs.
Collapse
|
24
|
Cochrane SA, Huang Z, Vederas JC. Investigation of the ring-closing metathesis of peptides in water. Org Biomol Chem 2012; 11:630-9. [PMID: 23212663 DOI: 10.1039/c2ob26938d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A systematic study of the ring-closing metathesis (RCM) of unprotected oxytocin and crotalphine peptide analogues in water is reported. The replacement of cysteine with S-allyl cysteine enables RCM to proceed readily in water containing excess MgCl(2) with 30% t-BuOH as a co-solvent. The presence of the sulfur atom is vital for efficient aqueous RCM to occur, with non-sulfur containing analogues undergoing RCM in low yields.
Collapse
Affiliation(s)
- Stephen A Cochrane
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | | | | |
Collapse
|
25
|
Khoo KK, Gupta K, Green BR, Zhang MM, Watkins M, Olivera BM, Balaram P, Yoshikami D, Bulaj G, Norton RS. Distinct disulfide isomers of μ-conotoxins KIIIA and KIIIB block voltage-gated sodium channels. Biochemistry 2012; 51:9826-35. [PMID: 23167564 DOI: 10.1021/bi301256s] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the preparation of synthetic conotoxins containing multiple disulfide bonds, oxidative folding can produce numerous permutations of disulfide bond connectivities. Establishing the native disulfide connectivities thus presents a significant challenge when the venom-derived peptide is not available, as is increasingly the case when conotoxins are identified from cDNA sequences. Here, we investigate the disulfide connectivity of μ-conotoxin KIIIA, which was predicted originally to have a [C1-C9,C2-C15,C4-C16] disulfide pattern based on homology with closely related μ-conotoxins. The two major isomers of synthetic μ-KIIIA formed during oxidative folding were purified and their disulfide connectivities mapped by direct mass spectrometric collision-induced dissociation fragmentation of the disulfide-bonded polypeptides. Our results show that the major oxidative folding product adopts a [C1-C15,C2-C9,C4-C16] disulfide connectivity, while the minor product adopts a [C1-C16,C2-C9,C4-C15] connectivity. Both of these peptides were potent blockers of Na(V)1.2 (K(d) values of 5 and 230 nM, respectively). The solution structure for μ-KIIIA based on nuclear magnetic resonance data was recalculated with the [C1-C15,C2-C9,C4-C16] disulfide pattern; its structure was very similar to the μ-KIIIA structure calculated with the incorrect [C1-C9,C2-C15,C4-C16] disulfide pattern, with an α-helix spanning residues 7-12. In addition, the major folding isomers of μ-KIIIB, an N-terminally extended isoform of μ-KIIIA identified from its cDNA sequence, were isolated. These folding products had the same disulfide connectivities as μ-KIIIA, and both blocked Na(V)1.2 (K(d) values of 470 and 26 nM, respectively). Our results establish that the preferred disulfide pattern of synthetic μ-KIIIA and μ-KIIIB folded in vitro is 1-5/2-4/3-6 but that other disulfide isomers are also potent sodium channel blockers. These findings raise questions about the disulfide pattern(s) of μ-KIIIA in the venom of Conus kinoshitai; indeed, the presence of multiple disulfide isomers in the venom could provide a means of further expanding the snail's repertoire of active peptides.
Collapse
Affiliation(s)
- Keith K Khoo
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Stevens M, Peigneur S, Dyubankova N, Lescrinier E, Herdewijn P, Tytgat J. Design of bioactive peptides from naturally occurring μ-conotoxin structures. J Biol Chem 2012; 287:31382-92. [PMID: 22773842 DOI: 10.1074/jbc.m112.375733] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To date, cone snail toxins ("conotoxins") are of great interest in the pursuit of novel subtype-selective modulators of voltage-gated sodium channels (Na(v)s). Na(v)s participate in a wide range of electrophysiological processes. Consequently, their malfunctioning has been associated with numerous diseases. The development of subtype-selective modulators of Na(v)s remains highly important in the treatment of such disorders. In current research, a series of novel, synthetic, and bioactive compounds were designed based on two naturally occurring μ-conotoxins that target Na(v)s. The initial designed peptide contains solely 13 amino acids and was therefore named "Mini peptide." It was derived from the μ-conotoxins KIIIA and BuIIIC. Based on this Mini peptide, 10 analogues were subsequently developed, comprising 12-16 amino acids with two disulfide bridges. Following appropriate folding and mass verification, blocking effects on Na(v)s were investigated. The most promising compound established an IC(50) of 34.1 ± 0.01 nM (R2-Midi on Na(v)1.2). An NMR structure of one of our most promising compounds was determined. Surprisingly, this structure does not reveal an α-helix. We prove that it is possible to design small peptides based on known pharmacophores of μ-conotoxins without losing their potency and selectivity. These data can provide crucial material for further development of conotoxin-based therapeutics.
Collapse
Affiliation(s)
- Marijke Stevens
- Laboratory of Toxicology, Katholieke Universiteit (KU) Leuven, Campus Gasthuisberg O and N2, Herestraat 49 Box 922, 3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
27
|
Lewis RJ, Dutertre S, Vetter I, Christie MJ. Conus Venom Peptide Pharmacology. Pharmacol Rev 2012; 64:259-98. [DOI: 10.1124/pr.111.005322] [Citation(s) in RCA: 323] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
28
|
Clark RJ, Akcan M, Kaas Q, Daly NL, Craik DJ. Cyclization of conotoxins to improve their biopharmaceutical properties. Toxicon 2012; 59:446-55. [DOI: 10.1016/j.toxicon.2010.12.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 12/01/2010] [Indexed: 10/18/2022]
|
29
|
Takeda M, Terauchi T, Kainosho M. Conformational analysis by quantitative NOE measurements of the β-proton pairs across individual disulfide bonds in proteins. JOURNAL OF BIOMOLECULAR NMR 2012; 52:127-139. [PMID: 22131165 DOI: 10.1007/s10858-011-9587-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 11/08/2011] [Indexed: 05/31/2023]
Abstract
NOEs between the β-protons of cysteine residues across disulfide bonds in proteins provide direct information on the connectivities and conformations of these important cross-links, which are otherwise difficult to investigate. With conventional [U-(13)C, (15)N]-proteins, however, fast spin diffusion processes mediated by strong dipolar interactions between geminal β-protons prohibit the quantitative measurements and thus the analyses of long-range NOEs across disulfide bonds. We describe a robust approach for alleviating such difficulties, by using proteins selectively labeled with an equimolar mixture of (2R, 3S)-[β-(13)C; α,β-(2)H(2)] Cys and (2R, 3R)-[β-(13)C; α,β-(2)H(2)] Cys, but otherwise fully deuterated. Since either one of the prochiral methylene protons, namely β2 (proS) or β3 (proR), is always replaced with a deuteron and no other protons remain in proteins prepared by this labeling scheme, all four of the expected NOEs for the β-protons across disulfide bonds could be measured without any spin diffusion interference, even with long mixing times. Therefore, the NOEs for the β2 and β3 pairs across each of the disulfide bonds could be observed at high sensitivity, even though they are 25% of the theoretical maximum for each pair. With the NOE information, the disulfide bond connectivities can be unambiguously established for proteins with multiple disulfide bonds. In addition, the conformations around disulfide bonds, namely χ(2) and χ(3), can be determined based on the precise proton distances of the four β-proton pairs, by quantitative measurements of the NOEs across the disulfide bonds. The feasibility of this method is demonstrated for bovine pancreatic trypsin inhibitor, which has three disulfide bonds.
Collapse
Affiliation(s)
- Mitsuhiro Takeda
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | | | | |
Collapse
|
30
|
Determination of Peptide and Protein Disulfide Linkages by MALDI Mass Spectrometry. Top Curr Chem (Cham) 2012; 331:79-116. [DOI: 10.1007/128_2012_384] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Poppe L, Hui JO, Ligutti J, Murray JK, Schnier PD. PADLOC: a powerful tool to assign disulfide bond connectivities in peptides and proteins by NMR spectroscopy. Anal Chem 2011; 84:262-6. [PMID: 22126836 DOI: 10.1021/ac203078x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The determination of the disulfide bond connectivity in a peptide or protein represents a significant challenge. It is notoriously difficult to use NMR spectroscopy to assign disulfide connectivities because NMR spectra lack direct evidence for disulfide bonds. These bonds are typically inferred from three-dimensional structure calculations, which can result in ambiguous disulfide assignment. Here, we present a new NMR based methodology, in which the disulfide connectivity is obtained by applying Bayesian rules of inference to the local topology of cysteine residues. We illustrate how this approach successfully predicts the disulfide connectivity in proteins for which crystal structures are available in the protein data bank (PDB). We also demonstrate how this methodology is used with experimental NMR data for peptides with complex disulfide topologies, including hepcidin, Kalata-B1, and μ-Conotoxin KIIIA. In the case of μ-Conotoxin KIIIA, the PADLOC connectivity (1-15,2-9,4-16) differs from previously published results; additional evidence is presented demonstrating unequivocally that this newly proposed connectivity is correct.
Collapse
Affiliation(s)
- Leszek Poppe
- Chemistry Research & Discovery and Protein Science, Amgen Inc., Thousand Oaks, California 91320, USA.
| | | | | | | | | |
Collapse
|
32
|
Mobli M, Morgenstern D, King GF, Alewood PF, Muttenthaler M. Site-Specific pKa Determination of Selenocysteine Residues in Selenovasopressin by Using 77Se NMR Spectroscopy. Angew Chem Int Ed Engl 2011; 50:11952-5. [DOI: 10.1002/anie.201104169] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/09/2011] [Indexed: 11/06/2022]
|
33
|
Mobli M, Morgenstern D, King GF, Alewood PF, Muttenthaler M. Site-Specific pKa Determination of Selenocysteine Residues in Selenovasopressin by Using 77Se NMR Spectroscopy. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201104169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
μ-Conotoxins that differentially block sodium channels NaV1.1 through 1.8 identify those responsible for action potentials in sciatic nerve. Proc Natl Acad Sci U S A 2011; 108:10302-7. [PMID: 21652775 DOI: 10.1073/pnas.1107027108] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs) are important for action potentials. There are seven major isoforms of the pore-forming and gate-bearing α-subunit (Na(V)1) of VGSCs in mammalian neurons, and a given neuron can express more than one isoform. Five of the neuronal isoforms, Na(V)1.1, 1.2, 1.3, 1.6, and 1.7, are exquisitely sensitive to tetrodotoxin (TTX), and a functional differentiation of these presents a serious challenge. Here, we examined a panel of 11 μ-conopeptides for their ability to block rodent Na(V)1.1 through 1.8 expressed in Xenopus oocytes. Although none blocked Na(V)1.8, a TTX-resistant isoform, the resulting "activity matrix" revealed that the panel could readily discriminate between the members of all pair-wise combinations of the tested isoforms. To examine the identities of endogenous VGSCs, a subset of the panel was tested on A- and C-compound action potentials recorded from isolated preparations of rat sciatic nerve. The results show that the major subtypes in the corresponding A- and C-fibers were Na(V)1.6 and 1.7, respectively. Ruled out as major players in both fiber types were Na(V)1.1, 1.2, and 1.3. These results are consistent with immunohistochemical findings of others. To our awareness this is the first report describing a qualitative pharmacological survey of TTX-sensitive Na(V)1 isoforms responsible for propagating action potentials in peripheral nerve. The panel of μ-conopeptides should be useful in identifying the functional contributions of Na(V)1 isoforms in other preparations.
Collapse
|
35
|
Gupta K, Kumar M, Balaram P. Disulfide Bond Assignments by Mass Spectrometry of Native Natural Peptides: Cysteine Pairing in Disulfide Bonded Conotoxins. Anal Chem 2010; 82:8313-9. [DOI: 10.1021/ac101867e] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Kallol Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India, and National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore-560065, India
| | - Mukesh Kumar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India, and National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore-560065, India
| | - Padmanabhan Balaram
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India, and National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore-560065, India
| |
Collapse
|
36
|
Diselenium, instead of disulfide, bonded analogs of conotoxins: novel synthesis and pharmacotherapeutic potential. Life Sci 2010; 87:451-6. [PMID: 20691706 DOI: 10.1016/j.lfs.2010.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/10/2010] [Accepted: 07/20/2010] [Indexed: 01/12/2023]
Abstract
The venoms of the cone snail (Conus) contain toxic peptides (conotoxins) that have remarkable selectivity for subtypes of a variety of mammalian voltage- and ligand-gated ion channels, G protein-coupled receptors, and neurotransmitter transporters. They thus have tremendous potential as pharmacologic tools. Less toxic analogs or mimetics could be highly-selective pharmacotherapeutic agents at their target sites. For this reason, conopeptides have been extensively studied and have progressed to clinical trials and even regulatory approval. However, the synthesis of the peptides remains difficult and stability and toxicity remain problems. A novel synthesis and testing of analogs incorporating diselenium bonds between selenocysteine residues in place of disulfide bonds between cysteine residues has recently been reported. The technique results in analogs that retain the folding of the native peptides, are more potent, and have the same or greater biological activity.
Collapse
|
37
|
Mobli M, King GF. NMR methods for determining disulfide-bond connectivities. Toxicon 2010; 56:849-54. [PMID: 20603141 DOI: 10.1016/j.toxicon.2010.06.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/13/2010] [Accepted: 06/28/2010] [Indexed: 11/18/2022]
Abstract
Animal toxins are the major class of secreted disulfide-rich proteins, with approximately 70% containing two or more disulfide bonds. Incorrect pairing of these disulfide bonds typically leads to a non-native three-dimensional fold accompanied by a loss of protein function. Determination of the native disulfide-bond framework is therefore a key component in the structural characterization of toxins. In this article, we review NMR approaches for elucidation of disulfide-bond connectivities. A major advantage of these NMR approaches is that they are non-invasive, leaving the sample intact at the end of the analysis for use in other studies.
Collapse
Affiliation(s)
- Mehdi Mobli
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD 4072, Australia
| | | |
Collapse
|
38
|
Han TS, Zhang MM, Gowd KH, Walewska A, Yoshikami D, Olivera BM, Bulaj G. Disulfide-Depleted Selenoconopeptides: a Minimalist Strategy to Oxidative Folding of Cysteine-Rich Peptides. ACS Med Chem Lett 2010; 1:140-144. [PMID: 20676359 DOI: 10.1021/ml900017q] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Despite the therapeutic promise of disulfide-rich, peptidic natural products, their discovery and structure/function studies have been hampered by inefficient oxidative folding methods for their synthesis. Here we report that converting the three disulfide-bridged mu-conopeptide KIIIA into a disulfide-depleted selenoconopeptide (by removal of a noncritical disulfide bridge and substitution of a disulfide- with a diselenide-bridge) dramatically simplified its oxidative folding while preserving the peptide's ability to block voltage-gated sodium channels. The simplicity of synthesizing disulfide-depleted selenopeptide analogs containing a single disulfide bridge allowed rapid positional scanning at Lys7 of mu-KIIIA, resulting in the identification of K7L as a mutation that improved the peptide's selectivity in blocking a neuronal (Na(v)1.2) over a muscle (Na(v)1.4) subtype of sodium channel. The disulfide-depleted selenopeptide strategy offers regioselective folding compatible with high throughput chemical synthesis and on-resin oxidation methods, and thus shows great promise to accelerate the use of disulfide-rich peptides as research tools and drugs.
Collapse
Affiliation(s)
- Tiffany S. Han
- Department of Biology, University of Utah, Salt Lake City, Utah, 84112
| | - Min-Min Zhang
- Department of Biology, University of Utah, Salt Lake City, Utah, 84112
| | | | - Aleksandra Walewska
- Department of Biology, University of Utah, Salt Lake City, Utah, 84112
- Faculty of Chemistry, University of Gdansk, 80-952 Gdansk, Poland
| | - Doju Yoshikami
- Department of Biology, University of Utah, Salt Lake City, Utah, 84112
| | | | - Grzegorz Bulaj
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, 84108
| |
Collapse
|
39
|
Gowd KH, Yarotskyy V, Elmslie KS, Skalicky JJ, Olivera BM, Bulaj G. Site-specific effects of diselenide bridges on the oxidative folding of a cystine knot peptide, omega-selenoconotoxin GVIA. Biochemistry 2010; 49:2741-52. [PMID: 20175537 DOI: 10.1021/bi902137c] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Structural and functional studies of small, disulfide-rich peptides depend on their efficient chemical synthesis and folding. A large group of peptides derived from animals and plants contains the Cys pattern C-C-CC-C-C that forms the inhibitory cystine knot (ICK) or knottin motif. Here we report the effect of site-specific incorporation of pairs of selenocysteine residues on oxidative folding and the functional activity of omega-conotoxin GVIA, a well-characterized ICK-motif peptidic antagonist of voltage-gated calcium channels. Three selenoconotoxin GVIA analogues were chemically synthesized; all three folded significantly faster in the glutathione-based buffer compared to wild-type GVIA. One analogue, GVIA[C8U,C19U], exhibited significantly higher folding yields. A recently described NMR-based method was used for mapping the disulfide connectivities in the three selenoconotoxin analogues. The diselenide-directed oxidative folding of selenoconotoxins was predominantly driven by amino acid residue loop sizes formed by the resulting diselenide and disulfide cross-links. Both in vivo and in vitro activities of the analogues were assessed; the block of N-type calcium channels was comparable among the analogues and wild-type GVIA, suggesting that the diselenide replacement did not affect the bioactive conformation. Thus, diselenide substitution may facilitate oxidative folding of pharmacologically diverse ICK peptides. The diselenide replacement has been successfully applied to a growing number of bioactive peptides, including alpha-, mu-, and omega-conotoxins, suggesting that the integrated oxidative folding of selenopeptides described here may prove to be a general approach for efficient synthesis of diverse classes of disulfide-rich peptides.
Collapse
|
40
|
Norton RS. Mu-conotoxins as leads in the development of new analgesics. Molecules 2010; 15:2825-44. [PMID: 20428082 PMCID: PMC6257286 DOI: 10.3390/molecules15042825] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/06/2010] [Accepted: 04/12/2010] [Indexed: 02/02/2023] Open
Abstract
Voltage-gated sodium channels (VGSCs) contain a specific binding site for a family of cone shell toxins known as mu-conotoxins. As some VGSCs are involved in pain perception and mu-conotoxins are able to block these channels, mu-conotoxins show considerable potential as analgesics. Recent studies have advanced our understanding of the three-dimensional structures and structure-function relationships of the mu-conotoxins, including their interaction with VGSCs. Truncated peptide analogues of the native toxins have been created in which secondary structure elements are stabilized by non-native linkers such as lactam bridges. Ultimately, it would be desirable to capture the favourable analgesic properties of the native toxins, in particular their potency and channel sub-type selectivity, in non-peptide mimetics. Such mimetics would constitute lead compounds in the development of new therapeutics for the treatment of pain.
Collapse
Affiliation(s)
- Raymond S Norton
- Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.
| |
Collapse
|
41
|
Jacob RB, McDougal OM. The M-superfamily of conotoxins: a review. Cell Mol Life Sci 2010; 67:17-27. [PMID: 19705062 PMCID: PMC3741454 DOI: 10.1007/s00018-009-0125-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/30/2009] [Accepted: 08/03/2009] [Indexed: 12/19/2022]
Abstract
The focus of this review is the M-superfamily of Conus venom peptides. Disulfide rich peptides belonging to the M-superfamily have three loop regions and the cysteine arrangement: CC-C-C-CC, where the dashes represent loops one, two, and three, respectively. Characterization of M-superfamily peptides has demonstrated that diversity in cystine connectivity occurs between different branches of peptides even though the cysteine pattern remains consistent. This superfamily is subdivided into five branches, M-1 through M-5, based on the number of residues in the third loop region, between the fourth and fifth cysteine residues. M-superfamily peptides appear to be ubiquitous in Conus venom. They are largely unexplained in indigenous biological function, and they represent an active area of research within the scientific community.
Collapse
Affiliation(s)
- Reed B. Jacob
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID 83725-1520 USA
| | - Owen M. McDougal
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID 83725-1520 USA
| |
Collapse
|
42
|
Yang H, Liu N, Qiu X, Liu S. A new method for analysis of disulfide-containing proteins by matrix-assisted laser desorption ionization (MALDI) mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:2284-93. [PMID: 19815426 DOI: 10.1016/j.jasms.2009.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 08/24/2009] [Accepted: 08/24/2009] [Indexed: 05/24/2023]
Abstract
A simple and high-throughput method for the identification of disulfide-containing peptides utilizing peptide-matrix adducts is described. Some commonly used matrices in MALDI mass spectrometry were found to specifically react with sulfhydryl groups within peptide, thus allowing the observation of the peptide-matrix adduct ion [M + n + n' matrix + H]+ or [M + n + n' matrix + Na]+ (n = the number of cysteine residues, n' = 1, 2, ... , n) in MALDI mass spectra after chemical reduction of disulfide-linked peptides. Among several matrices tested, alpha-cyano-4-hydroxycinnamic acid (CHCA, molecular mass 189 Da) and alpha-cyano-3-hydroxycinnamic acid (3-HCCA) were found to be more effective for MALDI analysis of disulfide-containing peptides/proteins. Two reduced cysteines involved in a disulfide bridge resulted in a mass shift of 189 Da per cysteine, so the number of disulfide bonds could then be determined, while for the other matrices (sinapinic acid, ferulic acid, and caffeic acid), a similar addition reaction could not occur unless the reaction was carried out under alkaline conditions. The underlying mechanism of the reaction of the matrix addition at sulfhydryl groups is proposed, and several factors that might affect the formation of the peptide-matrix adducts were investigated. In general, this method is fast, effective, and robust to identify disulfide bonds in proteins/peptides.
Collapse
Affiliation(s)
- Hongmei Yang
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
| | | | | | | |
Collapse
|
43
|
Mobli M, deâ
Araújo A, Lambert L, Pierens G, Windley M, Nicholson G, Alewood P, King G. Direct Visualization of Disulfide Bonds through Diselenide Proxies Using77Se NMR Spectroscopy. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200905206] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
44
|
Mobli M, de Araújo AD, Lambert LK, Pierens GK, Windley MJ, Nicholson GM, Alewood PF, King GF. Direct Visualization of Disulfide Bonds through Diselenide Proxies Using77Se NMR Spectroscopy. Angew Chem Int Ed Engl 2009; 48:9312-4. [PMID: 19890933 DOI: 10.1002/anie.200905206] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Mehdi Mobli
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD 4072, Australia
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Chan LY, Wang CKL, Major JM, Greenwood KP, Lewis RJ, Craik DJ, Daly NL. Isolation and characterization of peptides from Momordica cochinchinensis seeds. JOURNAL OF NATURAL PRODUCTS 2009; 72:1453-8. [PMID: 19711988 DOI: 10.1021/np900174n] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The plant Momordica cochinchinensis has traditionally been used in Chinese medicine to treat a variety of illnesses. A range of bioactive molecules have been isolated from this plant, including peptides, which are the focus of this study. Here we report the isolation and characterization of two novel peptides, MCoCC-1 and MCoCC-2, containing 33 and 32 amino acids, respectively, which are toxic against three cancer cell lines. The two peptides are highly homologous to one another, but show no sequence similarity to known peptides. Elucidation of the three-dimensional structure of MCoCC-1 suggests the presence of a cystine knot motif, also found in a family of trypsin inhibitor peptides from this plant. However, unlike its structural counterparts, MCoCC-1 does not inhibit trypsin. MCoCC-1 has a well-defined structure, characterized mainly by a triple-stranded antiparallel beta-sheet, but unlike the majority of cystine knot proteins MCoCC-1 contains a disordered loop presumably as a result of flexibility in a localized region of the molecule. Of the cell lines tested, MCoCC-1 is the most toxic against a human melanoma cell line (MM96L) and is nonhemolytic to human erythrocytes. The role of these peptides within the plant remains to be determined.
Collapse
MESH Headings
- Amino Acid Sequence
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/isolation & purification
- Antineoplastic Agents, Phytogenic/pharmacology
- Drug Screening Assays, Antitumor
- Erythrocytes/drug effects
- Hemolysis/drug effects
- Humans
- Momordica/chemistry
- Nuclear Magnetic Resonance, Biomolecular
- Peptides/chemistry
- Peptides/isolation & purification
- Peptides/pharmacology
- Peptides, Cyclic/chemistry
- Peptides, Cyclic/isolation & purification
- Peptides, Cyclic/pharmacology
- Plants, Medicinal/chemistry
- Seeds/chemistry
- Sequence Homology, Amino Acid
- Trypsin Inhibitors/chemistry
- Vietnam
Collapse
Affiliation(s)
- Lai Y Chan
- The University of Queensland, Institute for Molecular Bioscience, Brisbane QLD 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
46
|
Jordan JB, Poppe L, Haniu M, Arvedson T, Syed R, Li V, Kohno H, Kim H, Schnier PD, Harvey TS, Miranda LP, Cheetham J, Sasu BJ. Hepcidin revisited, disulfide connectivity, dynamics, and structure. J Biol Chem 2009; 284:24155-67. [PMID: 19553669 DOI: 10.1074/jbc.m109.017764] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepcidin is a tightly folded 25-residue peptide hormone containing four disulfide bonds, which has been shown to act as the principal regulator of iron homeostasis in vertebrates. We used multiple techniques to demonstrate a disulfide bonding pattern for hepcidin different from that previously published. All techniques confirmed the following disulfide bond connectivity: Cys(1)-Cys(8), Cys(3)-Cys(6), Cys(2)-Cys(4), and Cys(5)-Cys(7). NMR studies reveal a new model for hepcidin that, at ambient temperatures, interconverts between two different conformations, which could be individually resolved by temperature variation. Using these methods, the solution structure of hepcidin was determined at 325 and 253 K in supercooled water. X-ray analysis of a co-crystal with Fab appeared to stabilize a hepcidin conformation similar to the high temperature NMR structure.
Collapse
Affiliation(s)
- John B Jordan
- Department of Molecular Structure, Amgen, Inc., Thousand Oaks, California 91320, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Walewska A, Zhang MM, Skalicky JJ, Yoshikami D, Olivera BM, Bulaj G. Integrated oxidative folding of cysteine/selenocysteine containing peptides: improving chemical synthesis of conotoxins. Angew Chem Int Ed Engl 2009; 48:2221-4. [PMID: 19206132 DOI: 10.1002/anie.200806085] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Building bridges: The use of diselenide and selectively ((15)N/(13)C)-labeled disulfide bridges is combined to give improvements in oxidative folding and disulfide mapping. Conotoxin analogues, each with a pair of selenocysteines (Sec) and labeled cysteines (see scheme, red), exhibited significantly improved folding and the labeled cysteines allow correctly folded species to be rapidly identified by NMR spectroscopy.
Collapse
|
48
|
Walewska A, Zhang MM, Skalicky J, Yoshikami D, Olivera B, Bulaj G. Integrated Oxidative Folding of Cysteine/Selenocysteine Containing Peptides: Improving Chemical Synthesis of Conotoxins. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200806085] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|