1
|
Zhang Y, Han M, Guo Q. Understanding of formation, gastrointestinal breakdown, and application of whey protein emulsion gels: Insights from intermolecular interactions. Compr Rev Food Sci Food Saf 2024; 23:e70034. [PMID: 39379312 DOI: 10.1111/1541-4337.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024]
Abstract
Whey protein emulsion gel is an ideal model food for revealing how the multilength scale food structures affect food digestion, as their structure and mechanical properties can be precisely manipulated by controlling the type and intensity of intermolecular interactions between protein molecules. However, there are still significant understanding gaps among intermolecular interactions, protein aggregation and gelation, emulsion gel formation, gel breakdown in the gastrointestinal tract (GIT), and the practical use of whey protein emulsion gels, which limits their GIT-targeted applications. In this regard, the relationship between the structure and digestion behavior of heat-set whey protein emulsion gels is reviewed and discussed mainly from the following aspects: (1) structural characteristics of whey protein molecules; (2) how different types of intermolecular interactions influence heat-induced aggregation and gelation of whey protein in the aqueous solutions and the oil-in-water emulsions, and the mechanical properties of the final gels; (3) functions of the mouth, the stomach, and the small intestine in processing of solid foods, and how different types of intermolecular interactions influence the breakdown properties of heat-set whey protein emulsion gels in GIT (i.e., their respective role in controlling gel digestion). Finally, the implications of knowledge derived from the formation and gastrointestinal breakdown of heat-set whey protein emulsion gels for developing controlled delivery vehicles, human satiety enhancers, and sensory modifiers are highlighted.
Collapse
Affiliation(s)
- Yihan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- China Agricultural University, Beijing Key Laboratory of Food Non-Thermal Processing, Beijing, China
| | - Menghan Han
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- China Agricultural University, Beijing Key Laboratory of Food Non-Thermal Processing, Beijing, China
| | - Qing Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- China Agricultural University, Beijing Key Laboratory of Food Non-Thermal Processing, Beijing, China
| |
Collapse
|
2
|
Shen H, Chen L, Yang H. The critical role of aromatic residues in the binding of the SARS-CoV-2 fusion peptide to phospholipid bilayer membranes. Phys Chem Chem Phys 2024; 26:26342-26354. [PMID: 39385589 DOI: 10.1039/d4cp03045a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Based on the SARS-CoV-2 fusion peptide (FP) structure determined from the NMR experiment, we created six FP models under different environmental conditions to explore the effects of salt and cholesterol on FP-membrane binding. The all-atom molecular dynamics (MD) simulation results indicated that ionic environments notably impact the FP structure as well as the stability of the helical elements within the peptide. Our findings highlighted the unpredictable influence of ions on the secondary structures and dynamics of the FP, emphasizing the complexity and sensitivity of the peptide's conformations to ionic conditions. When exploring the peptide's interaction with a cholesterol-free phospholipid bilayer membrane, we found that the helical elements of the FP remain stable irrespective of the salt type (Na+ or Ca2+). This result emphasizes the crucial role of phospholipid bilayer membranes in supporting the secondary structures of the FP. The MD simulation results showed that Ca2+ ions facilitated deeper membrane penetration than Na+ ions, highlighting the critical role of calcium ions in the FP-membrane binding. Our study indicates the essential role of the aromatic residues (such as Phe833 and Tyr837) in the FP-membrane binding process. Finally, we investigated the FP-membrane binding patterns in the presence of cholesterol. The MD simulation results demonstrated that the coupling of Ca2+ ions and cholesterol would also benefit the FP-membrane binding. Furthermore, our findings reveal that while the type of ion and cholesterol content exert varied and unpredictable influences on FP-membrane binding patterns, aromatic residues like tyrosine (Tyr) and phenylalanine (Phe) play an essential role in FP-membrane binding. In particular, deep mutational scanning (DMS) experiments have confirmed that mutating phenylalanine in the FP significantly decreases viral mutational fitness, emphasizing the pivotal role of phenylalanine residues in membrane fusion. This knowledge can aid in developing more effective therapeutic strategies targeting the viral fusion peptide and its key amino acids, ultimately contributing to developing treatments and vaccines against the virus.
Collapse
Affiliation(s)
- Hujun Shen
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China.
| | - Ling Chen
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China.
| | - Hengxiu Yang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China.
| |
Collapse
|
3
|
Archapraditkul C, Janon K, Japrung D, Pongprayoon P. Structural and dynamic properties of urinary human serum albumin fragments: a molecular dynamics study. J Biomol Struct Dyn 2024; 42:7532-7540. [PMID: 37526205 DOI: 10.1080/07391102.2023.2240426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
A microalbuminuria level acts as a good index to screen and monitor diabetes and renal failure. However, the urinary albumin loss after sample preservation and storage is the major bottleneck to obtain the accurate microalbuminuria test. Such loss is due to the rapid albumin fragmentation by urinary proteases. Some fragments were suggested to be bioactive biomarkers of diabetes and renal disease, but no structural and dynamical properties of albumin fragments are available. Thus, in this work, the structural and dynamical properties of reported albumin fragments are revealed using molecular dynamics simulations. The properties of nine fragments (F1-F9) discovered recently were studied at the real pH conditions of urine samples (pH 4.5, 7 and 8). The complete loss of secondary structure is found in short fragments (F1-F6), while large-sized polypeptides (F7-F9) can somehow maintain their folds. Especially, F8 (subdomain IIIB) is the most stable fragment. The difference in histidine protonation states has no impact on the structural stability of albumin fragments. The ability of F8 (subdomain IIIB) to maintain its stability and folds suggests it as an alternative albumin biomarker in urine. An insight obtained here will become the fundamental importance for understanding clinical assays for albumin detection, sample stability and peptidomics analysis of urine.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Chanya Archapraditkul
- Faculty of Science, Department of Chemistry, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Kanokwan Janon
- Faculty of Science, Department of Chemistry, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Deanpen Japrung
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Prapasiri Pongprayoon
- Faculty of Science, Department of Chemistry, Kasetsart University, Chatuchak, Bangkok, Thailand
- Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
4
|
Darvazi M, Ghorbani M, Ramazi S, Allahverdi A, Abdolmaleki P. A computational study of the R120G mutation in human αB-crystallin: implications for structural stability and functionality. J Biomol Struct Dyn 2024; 42:5788-5798. [PMID: 37354135 DOI: 10.1080/07391102.2023.2229434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
The eye is a vital organ in the visual system, which is composed of transparent vascular tissue. αB-crystallin, a significant protein found in the lens, plays a crucial role in our understanding of lens diseases. Mutations in the αB-crystallin protein can cause lens diseases, such as cataracts and myopathy. However, the molecular mechanism underlying the R120G mutation is not fully understood. In this study, we utilized molecular dynamics simulations to illustrate, in atomic detail, how the R120G mutation leads to the aggregation of αB-crystallin and scattering of light in the lens. Our findings show that the R120G mutation alters the dynamic and structural properties of the αB-crystallin protein. Specifically, this mutation causes the angle of the hairpin at the C-terminal to increase from 80° to 150°, while reducing the distance between the hydrophobic patches around residues 10 and 44-55 from 1.5 nm to 1 nm. In addition, our results showed that the mutation could disrupt the IPI motif - β4/β8 interaction. The disruption of this interaction could affect the αB-crystallin oligomerization and the chaperone activity of αB-crystallin protein. The exposed hydrophobic area at the IPI motif - β4/β8 could become the primary site for interprotein interactions, which are responsible for large-scale aggregation. We have demonstrated that, in wild-type αB-crystallin protein, salt bridges R120 and D109, R107 and D80 are formed. However, in the case of the R120G mutation, the salt bridges R120 and R109 are disrupted, and a new salt bridge with a different pattern is formed. In our study, it has been found that all of the changes associated with the R120G mutation are located at the interface of chains A and B, which could impact the multimerization of the αB-crystallin. Previous research on the K92-E99 residue has shown that a salt bridge in the dimer I can reduce the chaperone activity of the protein. Furthermore, the salt bridges R120 and D109, as well as R107 and D80 in dimer II, induce changes in the hydrophobic envelope of β-sheets in the α-crystallin domain (ACD). These changes could have an impact on the multimerization of the αB-crystallin, leading to disruption of the oligomer structure and aggregation. Moreover, the changes in the αB-crystallin resulting from the R120G mutation can lead to faulty interactions with other proteins, which can cause the aggregation of αB-crystallin with other proteins, such as desmin. These findings may provide new insights into the development of treatments for lens diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mona Darvazi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Shahin Ramazi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdollah Allahverdi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Parviz Abdolmaleki
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Dinic J, Tirrell MV. Effects of Charge Sequence Pattern and Lysine-to-Arginine Substitution on the Structural Stability of Bioinspired Polyampholytes. Biomacromolecules 2024; 25:2838-2851. [PMID: 38567844 PMCID: PMC11094733 DOI: 10.1021/acs.biomac.4c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 05/14/2024]
Abstract
A comprehensive study focusing on the combined influence of the charge sequence pattern and the type of positively charged amino acids on the formation of secondary structures in sequence-specific polyampholytes is presented. The sequences of interest consisting exclusively of ionizable amino acids (lysine, K; arginine, R; and glutamic acid, E) are (EKEK)5, (EKKE)5, (ERER)5, (ERRE)5, and (EKER)5. The stability of the secondary structure was examined at three pH values in the presence of urea and NaCl. The results presented here underscore the combined prominent effects of the charge sequence pattern and the type of positively charged monomers on secondary structure formation. Additionally, (ERRE)5 readily aggregated across a wide range of pH. In contrast, sequences with the same charge pattern, (EKKE)5, as well as the sequences with the equivalent amino acid content, (ERER)5, exhibited no aggregate formation under equivalent pH and concentration conditions.
Collapse
Affiliation(s)
- Jelena Dinic
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Center
for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Matthew V. Tirrell
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Center
for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
6
|
Nguyen HK, Minato T, Teramoto T, Ogo S, Kakuta Y, Yoon KS. Disassembly and reassembly of the non-conventional thermophilic C-phycocyanin. J Biosci Bioeng 2024; 137:179-186. [PMID: 38238241 DOI: 10.1016/j.jbiosc.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 03/03/2024]
Abstract
C-phycocyanin (CPC), which contains open-chain tetrapyrroles, is a major light-harvesting red-fluorescent protein with an important role in aquatic photosynthesis. Recently, we reported a non-conventional CPC from Thermoleptolyngbya sp. O-77 (CPCO77) that contains two different structures, i.e., a hexameric structure and a non-conventional octameric structure. However, the assembly and disassembly mechanisms of the non-conventional octameric form of CPC remain unclear. To understand this assembly mechanism, we performed an in vitro experiment to study the disassembly and reassembly behaviors of CPC using isolated CPC subunits. The dissociation of the CPCO77 subunit was performed using a Phenyl-Sepharose column in 20 mM potassium phosphate buffer (pH 6.0) containing 7.0 M urea. For the first time, crystals of isolated CPC subunits were obtained and analyzed after separation. After the removal of urea from the purified α and β subunits, we performed an in vitro reassembly experiment for CPC and analyzed the reconstructed CPC using spectrophotometric and X-ray crystal structure analyses. The crystal structure of the reassembled CPC was nearly identical to that of the original CPCO77. The findings of this study indicate that the octameric CPCO77 is a naturally occurring form in the thermophilic cyanobacterium Thermoleptolyngbya sp. O-77.
Collapse
Affiliation(s)
- Hung Khac Nguyen
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takuo Minato
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan; International Institute for Carbon-Neutral Energy Research (WPI-I(2)CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Takamasa Teramoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Seiji Ogo
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan; International Institute for Carbon-Neutral Energy Research (WPI-I(2)CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshimitsu Kakuta
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan; Laboratory of Structural Biology, Graduate School of System Life Sciences, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ki-Seok Yoon
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan; International Institute for Carbon-Neutral Energy Research (WPI-I(2)CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
7
|
Peng B, Xu S, Liang Y, Dong X, Sun Y. Effect of Bacterial Amyloid Protein Phenol-Soluble Modulin Alpha 3 on the Aggregation of Amyloid Beta Protein Associated with Alzheimer's Disease. Biomimetics (Basel) 2023; 8:459. [PMID: 37887589 PMCID: PMC10604207 DOI: 10.3390/biomimetics8060459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Since the proposal of the brainstem axis theory, increasing research attention has been paid to the interactions between bacterial amyloids produced by intestinal flora and the amyloid β-protein (Aβ) related to Alzheimer's disease (AD), and it has been considered as the possible cause of AD. Therefore, phenol-soluble modulin (PSM) α3, the most virulent protein secreted by Staphylococcus aureus, has attracted much attention. In this work, the effect of PSMα3 with a unique cross-α fibril architecture on the aggregation of pathogenic Aβ40 of AD was studied by extensive biophysical characterizations. The results proposed that the PSMα3 monomer inhibited the aggregation of Aβ40 in a concentration-dependent manner and changed the aggregation pathway to form granular aggregates. However, PSMα3 oligomers promoted the generation of the β-sheet structure, thus shortening the lag phase of Aβ40 aggregation. Moreover, the higher the cross-α content of PSMα3, the stronger the effect of the promotion, indicating that the cross-α structure of PSMα3 plays a crucial role in the aggregation of Aβ40. Further molecular dynamics (MD) simulations have shown that the Met1-Gly20 region in the PSMα3 monomer can be combined with the Asp1-Ala2 and His13-Val36 regions in the Aβ40 monomer by hydrophobic and electrostatic interactions, which prevents the conformational conversion of Aβ40 from the α-helix to β-sheet structure. By contrast, PSMα3 oligomers mainly combined with the central hydrophobic core (CHC) and the C-terminal region of the Aβ40 monomer by weak H-bonding and hydrophobic interactions, which could not inhibit the transition to the β-sheet structure in the aggregation pathway. Thus, the research has unraveled molecular interactions between Aβ40 and PSMα3 of different structures and provided a deeper understanding of the complex interactions between bacterial amyloids and AD-related pathogenic Aβ.
Collapse
Affiliation(s)
| | | | | | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China; (B.P.); (S.X.); (Y.L.)
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China; (B.P.); (S.X.); (Y.L.)
| |
Collapse
|
8
|
El Harrar T, Gohlke H. Cumulative Millisecond-Long Sampling for a Comprehensive Energetic Evaluation of Aqueous Ionic Liquid Effects on Amino Acid Interactions. J Chem Inf Model 2023; 63:281-298. [PMID: 36520535 DOI: 10.1021/acs.jcim.2c01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The interactions of amino acid side-chains confer diverse energetic contributions and physical properties to a protein's stability and function. Various computational tools estimate the effect of changing a given amino acid on the protein's stability based on parametrized (free) energy functions. When parametrized for the prediction of protein stability in water, such energy functions can lead to suboptimal results for other solvents, such as ionic liquids (IL), aqueous ionic liquids (aIL), or salt solutions. However, to our knowledge, no comprehensive data are available describing the energetic effects of aIL on intramolecular protein interactions. Here, we present the most comprehensive set of potential of mean force (PMF) profiles of pairwise protein-residue interactions to date, covering 50 relevant interactions in water, the two biotechnologically relevant aIL [BMIM/Cl] and [BMIM/TfO], and [Na/Cl]. These results are based on a cumulated simulation time of >1 ms. aIL and salt ions can weaken, but also strengthen, specific residue interactions by more than 3 kcal mol-1, depending on the residue pair, residue-residue configuration, participating ions, and concentration, necessitating considering such interactions specifically. These changes originate from a complex interplay of competitive or cooperative noncovalent ion-residue interactions, changes in solvent structural dynamics, or unspecific charge screening effects and occur at the contact distance but also at larger, solvent-separated distances. This data provide explanations at the atomistic and energetic levels for complex IL effects on protein stability and should help improve the prediction accuracies of computational tools that estimate protein stability based on (free) energy functions.
Collapse
Affiliation(s)
- Till El Harrar
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Holger Gohlke
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.,Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
9
|
Longauer B, Bódis E, Lukács A, Barkó S, Nyitrai M. Solubility and Thermal Stability of Thermotoga maritima MreB. Int J Mol Sci 2022; 23:ijms232416044. [PMID: 36555681 PMCID: PMC9785925 DOI: 10.3390/ijms232416044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The basis of MreB research is the study of the MreB protein from the Thermotoga maritima species, since it was the first one whose crystal structure was described. Since MreB proteins from different bacterial species show different polymerisation properties in terms of nucleotide and salt dependence, we conducted our research in this direction. For this, we performed measurements based on tryptophan emission, which were supplemented with temperature-dependent and chemical denaturation experiments. The role of nucleotide binding was studied through the fluorescent analogue TNP-ATP. These experiments show that Thermotoga maritima MreB is stabilised in the presence of low salt buffer and ATP. In the course of our work, we developed a new expression and purification procedure that allows us to obtain a large amount of pure, functional protein.
Collapse
Affiliation(s)
- Beáta Longauer
- Department of Biophysics, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary
| | - Emőke Bódis
- Department of Biophysics, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary
| | - András Lukács
- Department of Biophysics, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary
| | - Szilvia Barkó
- Department of Biophysics, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary
- MTA-PTE Nuclear-Mitochondrial Interactions Research Group, Szigeti Str. 12, H-7624 Pécs, Hungary
- Szentágothai Research Center, University of Pécs, H-7622 Pécs, Hungary
- Correspondence:
| | - Miklós Nyitrai
- Department of Biophysics, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary
- MTA-PTE Nuclear-Mitochondrial Interactions Research Group, Szigeti Str. 12, H-7624 Pécs, Hungary
- Szentágothai Research Center, University of Pécs, H-7622 Pécs, Hungary
| |
Collapse
|
10
|
Dinic J, Schnorenberg MR, Tirrell MV. Sequence-Controlled Secondary Structures and Stimuli Responsiveness of Bioinspired Polyampholytes. Biomacromolecules 2022; 23:3798-3809. [PMID: 35969881 DOI: 10.1021/acs.biomac.2c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A comprehensive study focusing on the influence of the sequence charge pattern on the secondary structure preferences of annealed polyampholytes and their responsiveness to external stimuli is presented. Two sequences are designed composed entirely of ionizable amino acids (charge fraction, f = 1) and an equal number of positive and negative charges (f+ = f- = 0.5) with distinct charge patterns consisting of lysine and glutamic acid monomers. The study reveals that the sequence charge pattern has a significant influence on the secondary structure preferences of polyampholytes at physiological pH. Furthermore, it shows that external stimuli such as pH, ionic strength, and solvent dielectric constant can be used to modulate the secondary structure of the two studied sequences. The observed secondary structure transformations for the two sequences are also substantially different from those determined for uniformly charged homo-polypeptides under matching conditions.
Collapse
Affiliation(s)
- Jelena Dinic
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Mathew R Schnorenberg
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew V Tirrell
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
11
|
Oka Y, Ushiba S, Miyakawa N, Nishio M, Ono T, Kanai Y, Watanabe Y, Tani S, Kimura M, Matsumoto K. Ionic strength-sensitive and pH-insensitive interactions between C-reactive protein (CRP) and an anti-CRP antibody. Biophys Physicobiol 2022; 19:e190003. [PMID: 35958119 PMCID: PMC8926308 DOI: 10.2142/biophysico.bppb-v19.0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/04/2022] [Indexed: 12/01/2022] Open
Abstract
C-reactive protein (CRP) is an important biomarker of infection and inflammation, as CRP is one of the most prominent acute-phase proteins. CRP is usually detected using anti-CRP antibodies (Abs), where the intermolecular interactions between CRP and the anti-CRP Ab are largely affected by the pH and ionic strength of environmental solutions. Therefore, it is important to understand the environmental effects of CRP–anti-CRP Ab interactions when designing highly sensitive biosensors. Here, we investigated the efficiency of fluorescently labeled CRP–anti-CRP monoclonal antibody (mAb) interactions at different pHs and ionic strengths. Our results indicate that the affinity was insensitive to pH changes in the range of 5.9 to 8.1, while it was significantly sensitive to ionic strength changes. The binding affinity decreased by 55% at an ionic strength of 1.6 mM, when compared to that under a physiological condition (~150 mM). Based on the isoelectric focusing results, both the labeled CRP and anti-CRP mAb were negatively charged in the studied pH range, which rendered the system insensitive to pH changes, but sensitive to ionic strength changes. The decreased ionic strength led to a significant enhancement of the repulsive force between CRP and the anti-CRP mAb. Although the versality of the findings is not fully studied yet, the results provide insights into designing highly sensitive CRP sensors, especially field-effect transistor-based sensors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yohei Watanabe
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | | | | | | |
Collapse
|
12
|
Jiménez-Barrios P, Jaén-Cano CM, Malumbres R, Cilveti-Vidaurreta F, Bellanco-Sevilla A, Miralles B, Recio I, Martínez-Sanz M. Thermal stability of bovine lactoferrin prepared by cation exchange chromatography and its blends with authorized additives for infant formulas. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Pal S, Banerjee S, Prabhakaran EN. α-Helices propagating from stable nucleators exhibit unconventional thermal folding. FEBS Lett 2021; 595:2942-2949. [PMID: 34716991 DOI: 10.1002/1873-3468.14216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/07/2022]
Abstract
Although the effect of thermal perturbations on protein structure has long been modeled in helical peptides, several details, such as the relation between the thermal stabilities of the propagating and nucleating segments of helices, remain elusive. We had earlier reported on the helix-nucleating propensities of covalent H-bond surrogate-constrained α-turns. Here, we analyze the thermal stabilities of helices that propagate along peptides appended to these α-helix nucleators using their NMR and far-UV CD spectra. Unconventional thermal folding of these helix models reveals that the helical fold in propagating backbones resists thermal perturbations as long as their nucleating template is intact. The threshold temperature of such resistance is also influenced by the extent of similarity between the natures of helical folds in the nucleating and propagating segments. Correlations between helicities and rigidities of helix-nucleating and helix-propagating segments reveal subtle interdependence, which explains cooperativity and residual helix formation during protein folding.
Collapse
Affiliation(s)
- Sunit Pal
- Department of Chemistry, Indian Institute of Science, Bangalore, India
| | - Shreya Banerjee
- Department of Chemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
14
|
Tiwari MK, Murarka RK. Interaction strength of osmolytes with the anion of a salt-bridge determines its stability. Phys Chem Chem Phys 2021; 23:5527-5539. [PMID: 33651069 DOI: 10.1039/d0cp05378c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In order to understand the role of osmolytes in regulating physicochemical behavior of proteins, we investigated the influence of protein destabilizing (urea and guanidinium chloride) and stabilizing osmolytes (TMAO, glycerol, and betaine) on a model salt-bridge (SB) formed between structural analogues of arginine and glutamate/aspartate sidechains in a solvent continuum using first-principles quantum chemical calculations based on DFT and MP2 methods. The binding strength of the osmolyte with the SB is found to be in the order of betaine > TMAO > Gdm+ > glycerol > urea. The osmolytes (TMAO and betaine) that preferentially bind to the SB cation have a marginal influence on SB stability. Also, pure π-π stacking interaction between Gdm+ and the SB cation plays an insignificant role in destabilizing the SB. In fact, the interaction strength of osmolytes with the SB anion mainly determines the stability of SB. For instance, a competition between Gdm+ and the SB cation to bind with the SB anion is responsible for instability and subsequent dissociation of the SB. The competition provided by other osmolytes is too weak to break the SB. Exploiting this information, we designed three structural derivatives of Gdm+, all having a stronger interaction with SB anion, and thereby show a stronger SB dissociation potential. Furthermore, we find an excellent linear anti-correlation between SB interaction energy and the energy of interaction between osmolyte and the SB anion, which suggests that by knowing only the strength of osmolyteacetate interaction, one can predict the influence of osmolytes on the salt-bridge instability. This information is useful in fine-tuning the SB dissociation power of Gdm+, which has a practical significance in obtaining the mechanistic insight into the influence of GdmCl on protein stability. Our results also provide a basis for understanding the chemistry of other ion-pairs formed between a cationic hydrogen donor and an anionic acceptor.
Collapse
Affiliation(s)
- Mrityunjay K Tiwari
- A Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri, Bhopal, MP 462066, India.
| | - Rajesh K Murarka
- A Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri, Bhopal, MP 462066, India.
| |
Collapse
|
15
|
Alıcı H, Demir K. Investigation of the stability and the helix-tail interaction of sCT and its various charged mutants based on comparative molecular dynamics simulations. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2020.111057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Xu S, Wang W, Dong X, Sun Y. Molecular Insight into Cu 2+-Induced Conformational Transitions of Amyloid β-Protein from Fast Kinetic Analysis and Molecular Dynamics Simulations. ACS Chem Neurosci 2021; 12:300-310. [PMID: 33401892 DOI: 10.1021/acschemneuro.0c00502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cu2+-mediated amyloid β-protein (Aβ) aggregation is implicated in the pathogenesis of Alzheimer's disease, so it is of significance to understand Cu2+-mediated conformational transitions of Aβ. Herein, four Aβ mutants were created by using the environment-sensitive cyanophenylalanine to respectively substitute F4, Y10, F19, and F20 residues of Aβ40. By using stopped-flow fluorescence spectroscopy and molecular dynamics (MD) simulations, the early stage conformational transitions of the mutants mediated by Cu2+ binding were investigated. The fast kinetics unveils that Cu2+ has more significant influence on the conformational changes of N-terminal (F4 and Y10) than on the central hydrophobic core (CHC, F19, and F20) under different pH conditions (pH 6.6-8.0), especially Y10. Interestingly, lag periods of the conformational transitions are observed for the F19 and F20 mutants at pH 8.0, indicating the slow response of the two mutation sites on the conformational transitions. More importantly, significantly longer lag periods for F20 than for F19 indicate the conduction of the transition from F19 to F20. The conduction time (difference in lag period) decreases from 4.5 s at Cu2+ = 0 to undetectable (<1 ms) at Cu2+ = 10 μM. The significant difference in the response time of F19 and F20 and the fast local conformational changes of Y10 imply that the conformational transitions of Aβ start around Y10. MD simulations support the observation of hydrophobicity increase at N-terminal during the conformational transitions of Aβ-Cu2+. It also reveals that Y10 is immediately approached by Cu2+, supporting the speculation that the starting point of conformational transitions of Aβ is near Y10. The work has provided molecular insight into the early stage conformational transitions of Aβ40 mediated by Cu2+.
Collapse
Affiliation(s)
- Shaoying Xu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Wenjuan Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
17
|
Fries MR, Conzelmann NF, Günter L, Matsarskaia O, Skoda MWA, Jacobs RMJ, Zhang F, Schreiber F. Bulk Phase Behavior vs Interface Adsorption: Specific Multivalent Cation and Anion Effects on BSA Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:139-150. [PMID: 33393312 DOI: 10.1021/acs.langmuir.0c02618] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Proteins are ubiquitous and play a critical role in many areas from living organisms to protein microchips. In humans, serum albumin has a prominent role in the foreign body response since it is the first protein which will interact with, e.g., an implant or stent. In this study, we focused on the influence of salts (i.e., different cations (Y3+, La3+) and anions (Cl-, I-) on bovine serum albumin (BSA) in terms of its bulk behavior as well as the role of charges for protein adsorption at the solid-liquid interface in order to understand and control the underlying molecular mechanisms and interactions. This is part of our group's effort to gain a deeper understanding of protein-protein and protein-surface interactions in the presence of multivalent ions. In the bulk, we established two new phase diagrams and found not only multivalent cation-triggered phase transitions, but also a dependence of the protein behavior on the type of anion. The attractive interactions between proteins were observed to increase from Cl- < NO3- < I-, resulting in iodide preventing re-entrant condensation and promoting liquid-liquid phase separation in bulk. Using ellipsometry and a quartz-crystal microbalance with dissipation (QCM-D), we obtained insight into the growth of the protein adsorption layer. Importantly, we found that phase transitions at the substrate can be triggered by certain interface properties, whether they exist in the bulk solution or not. Through the use of a hydrophilic, negatively charged surface (native silica), the direct binding of anions to the interface was prevented. Interestingly, this led to re-entrant adsorption even in the absence of re-entrant condensation in bulk. However, the overall amount of adsorbed protein was enhanced through stronger attractive protein-protein interactions in the presence of iodide salts. These findings illustrate how carefully chosen surface properties and salts can directly steer the binding of anions and cations, which guide protein behavior, thus paving the way for specific/triggered protein-protein, protein-salt, and protein-surface interactions.
Collapse
Affiliation(s)
- Madeleine R Fries
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany
| | - Nina F Conzelmann
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany
| | - Luzie Günter
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany
| | - Olga Matsarskaia
- Institut Max von Laue - Paul Langevin (ILL), CS20156, F-38042 Grenoble, France
| | - Maximilian W A Skoda
- ISIS Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX, United Kingdom
| | - Robert M J Jacobs
- Department for Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Fajun Zhang
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany
| | - Frank Schreiber
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany
- Center for Light-Matter Interaction, Sensors & Analytics LISA+, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
18
|
Waajen AC, Heinz J, Airo A, Schulze-Makuch D. Physicochemical Salt Solution Parameters Limit the Survival of Planococcus halocryophilus in Martian Cryobrines. Front Microbiol 2020; 11:1284. [PMID: 32733393 PMCID: PMC7358355 DOI: 10.3389/fmicb.2020.01284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 05/20/2020] [Indexed: 11/13/2022] Open
Abstract
Microorganisms living in sub-zero environments can benefit from the presence of dissolved salts, as they significantly increase the temperature range of liquid water by lowering the freezing point. However, high concentrations of salts can reduce microbial growth and survival, and can evoke a physiological stress response. It remains poorly understood how the physicochemical parameters of brines (e.g. water activity, ionic strength, solubility and hydration shell strength between the ions and the surrounding water molecules) influence the survival of microorganisms. We used the cryo- and halotolerant bacterial strain Planococcus halocryophilus as a model organism to evaluate the degree of stress different salts assert. Cells were incubated in liquid media at -15°C containing single salts at eutectic concentrations (CaCl2, LiCl, LiI, MgBr2, MgCl2, NaBr, NaCl, NaClO4 and NaI). Four of these salts (LiCl, LiI, MgBr2 and NaClO4) were also investigated at concentrations with a low water activity (0.635) and, separately, with a high ionic strength (8 mol/L). Water activity of all solutions was measured at -15°C. This is the first time that water activity has been measured for such a large number of liquid salt solutions at constant sub-zero temperatures (-15°C). Colony-Forming Unit (CFU) counts show that the survival of P. halocryophilus has a negative correlation with the salt concentration, molecular weight of the anion and anion radius; and a positive correlation with the water activity and anions' hydration shell strength. The survival of P. halocryophilus did not show a significant correlation with the ionic strength, the molecular weight of the cation, the hydrated and unhydrated cation and hydrated anion radius, and the cations' hydration bond length. Thus, the water activity, salt concentration and anion parameters play the largest role in the survival of P. halocryophilus in concentrated brines. These findings improve our understanding of the limitations of microbial life in saline environments, which provides a basis for better evaluation of the habitability of extraterrestrial environments such as Martian cryobrines.
Collapse
Affiliation(s)
- Annemiek C Waajen
- UK Centre for Astrobiology, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, United Kingdom.,Astrobiology Research Group, Center of Astronomy and Astrophysics, Technische Universität Berlin, Berlin, Germany
| | - Jacob Heinz
- Astrobiology Research Group, Center of Astronomy and Astrophysics, Technische Universität Berlin, Berlin, Germany
| | - Alessandro Airo
- Astrobiology Research Group, Center of Astronomy and Astrophysics, Technische Universität Berlin, Berlin, Germany
| | - Dirk Schulze-Makuch
- Astrobiology Research Group, Center of Astronomy and Astrophysics, Technische Universität Berlin, Berlin, Germany.,School of the Environment, Washington State University, Pullman, WA, United States.,Section Geomicrobiology, GFZ German Research Centre for Geosciences, Potsdam, Germany.,Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany
| |
Collapse
|
19
|
Schneeberger EM, Breuker K. Replacing H + by Na + or K + in phosphopeptide anions and cations prevents electron capture dissociation. Chem Sci 2018; 9:7338-7353. [PMID: 30542537 PMCID: PMC6237128 DOI: 10.1039/c8sc02470g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/07/2018] [Indexed: 01/29/2023] Open
Abstract
By successively replacing H+ by Na+ or K+ in phosphopeptide anions and cations, we show that the efficiency of fragmentation into c and z˙ or c˙ and z fragments from N-Cα backbone bond cleavage by negative ion electron capture dissociation (niECD) and electron capture dissociation (ECD) substantially decreases with increasing number of alkali ions attached. In proton-deficient phosphopeptide ions with a net charge of 2-, we observed an exponential decrease in electron capture efficiency with increasing number of Na+ or K+ ions attached, suggesting that electrons are preferentially captured at protonated sites. In proton-abundant phosphopeptide ions with a net charge of 3+, the electron capture efficiency was not affected by replacing up to four H+ ions with Na+ or K+ ions, but the yield of c, z˙ and c˙, z fragments from N-Cα backbone bond cleavage generally decreased next to Na+ or K+ binding sites. We interpret the site-specific decrease in fragmentation efficiency as Na+ or K+ binding to backbone amide oxygen in competition with interactions of protonated sites that would otherwise lead to backbone cleavage into c, z˙ or c˙, z fragments. Our findings seriously challenge the hypothesis that the positive charge responsible for ECD into c, z˙ or c˙, z fragments can generally be a sodium or other metal ion instead of a proton.
Collapse
Affiliation(s)
- Eva-Maria Schneeberger
- Institute of Organic Chemistry , Center for Molecular Biosciences Innsbruck (CMBI) , University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria . ; http://www.bioms-breuker.at/
| | - Kathrin Breuker
- Institute of Organic Chemistry , Center for Molecular Biosciences Innsbruck (CMBI) , University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria . ; http://www.bioms-breuker.at/
| |
Collapse
|
20
|
Abstract
Salts differ in their ability to stabilize protein conformations, thereby affecting the thermodynamics and kinetics of protein folding. We developed a coarse-grained protein model that can predict salt-induced changes in protein properties by using the transfer free-energy data of various chemical groups from water to salt solutions. Using this model and molecular dynamics simulations, we probed the effect of seven different salts on the folding thermodynamics of the DNA binding domain of lac repressor protein ( lac-DBD) and N-terminal domain of ribosomal protein (NTL9). We show that a salt can act as a protein stabilizing or destabilizing agent depending on the protein sequence and folded state topology. The computed thermodynamic properties, especially the m values for various salts, which reveal the relative ability of a salt to stabilize the protein folded state, are in quantitative agreement with the experimentally measured values. The computations show that the degree of protein compaction in the denatured ensemble strongly depends on the salt identity, and for the same variation in salt concentration, the compaction in the protein dimensions varies from ∼4% to ∼30% depending on the salt. The transition-state ensemble (TSE) of lac-DBD is homogeneous and polarized, while the TSE of NTL9 is heterogeneous and diffusive. Salts induce subtle structural changes in the TSE that are in agreement with Hammond's postulate. The barrier to protein folding tends to disappear in the presence of moderate concentrations (∼3-4 m) of strongly stabilizing salts.
Collapse
Affiliation(s)
- Hiranmay Maity
- Solid State and Structural Chemistry Unit , Indian Institute of Science , Bengaluru , Karnataka , India 560012
| | - Aswathy N Muttathukattil
- Solid State and Structural Chemistry Unit , Indian Institute of Science , Bengaluru , Karnataka , India 560012
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit , Indian Institute of Science , Bengaluru , Karnataka , India 560012
| |
Collapse
|
21
|
Sullivan MR, Yao W, Tang D, Ashbaugh HS, Gibb BC. The Thermodynamics of Anion Complexation to Nonpolar Pockets. J Phys Chem B 2018; 122:1702-1713. [PMID: 29373793 PMCID: PMC10668596 DOI: 10.1021/acs.jpcb.7b12259] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The interactions between nonpolar surfaces and polarizable anions lie in a gray area between the hydrophobic and Hofmeister effects. To assess the affinity of these interactions, NMR and ITC were used to probe the thermodynamics of eight anions binding to four different hosts whose pockets each consist primarily of hydrocarbon. Two classes of host were examined: cavitands and cyclodextrins. For all hosts, anion affinity was found to follow the Hofmeister series, with associations ranging from 1.6-5.7 kcal mol-1. Despite the fact that cavitand hosts 1 and 2 possess intrinsic negative electrostatic fields, it was determined that these more enveloping hosts generally bound anions more strongly. The observation that the four hosts each possess specific anion affinities that cannot be readily explained by their structures, points to the importance of counter cations and the solvation of the "empty" hosts, free guests, and host-guest complexes, in defining the affinity.
Collapse
Affiliation(s)
- Matthew R. Sullivan
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Wei Yao
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Du Tang
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Henry S Ashbaugh
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Bruce C. Gibb
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
22
|
Batys P, Luukkonen S, Sammalkorpi M. Ability of the Poisson-Boltzmann equation to capture molecular dynamics predicted ion distribution around polyelectrolytes. Phys Chem Chem Phys 2018; 19:24583-24593. [PMID: 28853454 DOI: 10.1039/c7cp02547e] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here, we examine polyelectrolyte (PE) and ion chemistry specificity in ion condensation via all-atom molecular dynamics (MD) simulations and assess the ability of the Poisson-Boltzmann (PB) equation to describe the ion distribution predicted by the MD simulations. The PB model enables the extraction of parameters characterizing ion condensation. We find that the modified PB equation which contains the effective PE radius and the energy of the ion-specific interaction as empirical fitting parameters describes ion distribution accurately at large distances but close to the PE, especially when strongly localized charge or specific ion binding sites are present, the mean field description of PB fails. However, the PB model captures the MD predicted ion condensation in terms of the Manning radius and fraction of condensed counterions for all the examined PEs and ion species. We show that the condensed ion layer thickness in our MD simulations collapses on a single master curve for all the examined simple, monovalent ions (Na+, Br+, Cs+, Cl-, and Br-) and PEs when plotted against the Manning parameter (and consequently the PE line charge density). The significance of this finding is that, contrary to the Manning radius extracted from the mean field PB model, the condensed layer thickness in the all atom detail MD modelling does not depend on the PE chemistry or counterion type. Furthermore, the fraction of condensed counterions in the MD simulations exceeds the PB theory prediction. The findings contribute toward understanding and modelling ion distribution around PEs and other charged macromolecules in aqueous solutions, such as DNA, functionalized nanotubes, and viruses.
Collapse
Affiliation(s)
- Piotr Batys
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
| | | | | |
Collapse
|
23
|
Li RZ, Deng SHM, Hou GL, Valiev M, Wang XB. Photoelectron spectroscopy of solvated dicarboxylate and alkali metal ion clusters, M+[O2C(CH2)2CO2]2− [H2O]n (M = Na, K; n = 1–6). Phys Chem Chem Phys 2018; 20:29051-29060. [DOI: 10.1039/c8cp03896a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present results of combined experimental photoelectron spectroscopy and theoretical modeling studies of solvated dicarboxylate species (−O2C(CH2)2CO2−) in complex with Na+ and K+ metal cations.
Collapse
Affiliation(s)
- Ren-Zhong Li
- College of Environmental and Chemical Engineering
- Xi’an Polytechnic University
- Xi’an
- China
- Physical Sciences Division
| | - Shihu H. M. Deng
- Physical Sciences Division
- Pacific Northwest National Laboratory
- Washington 99352
- USA
| | - Gao-Lei Hou
- Physical Sciences Division
- Pacific Northwest National Laboratory
- Washington 99352
- USA
| | - Marat Valiev
- Environmental Molecular Sciences Laboratory
- Pacific Northwest National Laboratory
- Washington 99352
- USA
| | - Xue-Bin Wang
- Physical Sciences Division
- Pacific Northwest National Laboratory
- Washington 99352
- USA
| |
Collapse
|
24
|
Ion-induced alterations of the local hydration environment elucidate Hofmeister effect in a simple classical model of Trp-cage miniprotein. J Mol Model 2017; 23:298. [PMID: 28956172 DOI: 10.1007/s00894-017-3471-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 09/10/2017] [Indexed: 10/18/2022]
Abstract
Protein stability is known to be influenced by the presence of Hofmeister active ions in the solution. In addition to direct ion-protein interactions, this influence manifests through the local alterations of the interfacial water structure induced by the anions and cations present in this region. In our earlier works it was pointed out that the effects of Hofmeister active salts on the stability of Trp-cage miniprotein can be modeled qualitatively using non-polarizable force fields. These simulations reproduced the structure-stabilization and structure-destabilization effects of selected kosmotropic and chaotropic salts, respectively. In the present study we use the same model system to elucidate atomic processes behind the chaotropic destabilization and kosmotropic stabilization of the miniprotein. We focus on changes of the local hydration environment of the miniprotein upon addition of NaClO4 and NaF salts to the solution. The process is separated into two parts. In the first, 'promotion' phase, the protein structure is fixed, and the local hydration properties induced by the simultaneous presence of protein and ions are investigated, with a special focus on the interaction of Hofmeister active anions with the charged and polar sites. In the second, 'rearrangement' phase we follow changes of the hydration of ions and the protein, accompanying the conformational relaxation of the protein. We identify significant factors of an enthalpic and entropic nature behind the ion-induced free energy changes of the protein-water system, and also propose a possible atomic mechanism consistent with the Collins's rule, for the chaotropic destabilization and kosmotropic stabilization of protein conformation.
Collapse
|
25
|
Tu L, Deutsch C. Determinants of Helix Formation for a Kv1.3 Transmembrane Segment inside the Ribosome Exit Tunnel. J Mol Biol 2017; 429:1722-1732. [PMID: 28478285 DOI: 10.1016/j.jmb.2017.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/26/2017] [Accepted: 04/30/2017] [Indexed: 11/17/2022]
Abstract
Proteins begin to fold in the ribosome, and misfolding has pathological consequences. Among the earliest folding events in biogenesis is the formation of a helix, an elementary structure that is ubiquitously present and required for correct protein folding in all proteomes. The determinants underlying helix formation in the confined space of the ribosome exit tunnel are relatively unknown. We chose the second transmembrane segment, S2, of a voltage-gated potassium channel, Kv1.3, as a model to probe this issue. Since the N terminus of S2 is initially in an extended conformation in the folding vestibule of the ribosome yet ultimately emerges at the exit port as a helix, S2 is ideally suited for delineating sequential events and folding determinants of helix formation inside the ribosome. We show that S2's extended N terminus inside the tunnel is converted into a helix by a single, distant mutation in the nascent peptide. This transition depends on nascent peptide sequence at specific tunnel locations. Co-translational secondary folding of nascent chains inside the ribosome has profound physiological consequences that bear on correct membrane insertion, tertiary folding, oligomerization, and biochemical modification of the newborn protein during biogenesis.
Collapse
Affiliation(s)
- LiWei Tu
- Department of Physiology, University of Pennsylvania, PA 19104-6085, Philadelphia, USA
| | - Carol Deutsch
- Department of Physiology, University of Pennsylvania, PA 19104-6085, Philadelphia, USA.
| |
Collapse
|
26
|
Wolny M, Batchelor M, Bartlett GJ, Baker EG, Kurzawa M, Knight PJ, Dougan L, Woolfson DN, Paci E, Peckham M. Characterization of long and stable de novo single alpha-helix domains provides novel insight into their stability. Sci Rep 2017; 7:44341. [PMID: 28287151 PMCID: PMC5347031 DOI: 10.1038/srep44341] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/07/2017] [Indexed: 12/22/2022] Open
Abstract
Naturally-occurring single α-helices (SAHs), are rich in Arg (R), Glu (E) and Lys (K) residues, and stabilized by multiple salt bridges. Understanding how salt bridges promote their stability is challenging as SAHs are long and their sequences highly variable. Thus, we designed and tested simple de novo 98-residue polypeptides containing 7-residue repeats (AEEEXXX, where X is K or R) expected to promote salt-bridge formation between Glu and Lys/Arg. Lys-rich sequences (EK3 (AEEEKKK) and EK2R1 (AEEEKRK)) both form SAHs, of which EK2R1 is more helical and thermo-stable suggesting Arg increases stability. Substituting Lys with Arg (or vice versa) in the naturally-occurring myosin-6 SAH similarly increased (or decreased) its stability. However, Arg-rich de novo sequences (ER3 (AEEERRR) and EK1R2 (AEEEKRR)) aggregated. Combining a PDB analysis with molecular modelling provides a rational explanation, demonstrating that Glu and Arg form salt bridges more commonly, utilize a wider range of rotamer conformations, and are more dynamic than Glu-Lys. This promiscuous nature of Arg helps explain the increased propensity of de novo Arg-rich SAHs to aggregate. Importantly, the specific K:R ratio is likely to be important in determining helical stability in de novo and naturally-occurring polypeptides, giving new insight into how single α-helices are stabilized.
Collapse
Affiliation(s)
- Marcin Wolny
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Matthew Batchelor
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Gail J. Bartlett
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, UK
| | - Emily G. Baker
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, UK
| | - Marta Kurzawa
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter J. Knight
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Lorna Dougan
- Astbury Centre for Structural Molecular Biology and School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Derek N. Woolfson
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, UK
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol, BS8 1TD, UK
- BrisSynBio, University of Bristol, Life Sciences Building, Bristol, BS8 1TQ, UK
| | - Emanuele Paci
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Michelle Peckham
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
27
|
Okur HI, Hladílková J, Rembert KB, Cho Y, Heyda J, Dzubiella J, Cremer PS, Jungwirth P. Beyond the Hofmeister Series: Ion-Specific Effects on Proteins and Their Biological Functions. J Phys Chem B 2017; 121:1997-2014. [PMID: 28094985 DOI: 10.1021/acs.jpcb.6b10797] [Citation(s) in RCA: 428] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ions differ in their ability to salt out proteins from solution as expressed in the lyotropic or Hofmeister series of cations and anions. Since its first formulation in 1888, this series has been invoked in a plethora of effects, going beyond the original salting out/salting in idea to include enzyme activities and the crystallization of proteins, as well as to processes not involving proteins like ion exchange, the surface tension of electrolytes, or bubble coalescence. Although it has been clear that the Hofmeister series is intimately connected to ion hydration in homogeneous and heterogeneous environments and to ion pairing, its molecular origin has not been fully understood. This situation could have been summarized as follows: Many chemists used the Hofmeister series as a mantra to put a label on ion-specific behavior in various environments, rather than to reach a molecular level understanding and, consequently, an ability to predict a particular effect of a given salt ion on proteins in solutions. In this Feature Article we show that the cationic and anionic Hofmeister series can now be rationalized primarily in terms of specific interactions of salt ions with the backbone and charged side chain groups at the protein surface in solution. At the same time, we demonstrate the limitations of separating Hofmeister effects into independent cationic and anionic contributions due to the electroneutrality condition, as well as specific ion pairing, leading to interactions of ions of opposite polarity. Finally, we outline the route beyond Hofmeister chemistry in the direction of understanding specific roles of ions in various biological functionalities, where generic Hofmeister-type interactions can be complemented or even overruled by particular steric arrangements in various ion binding sites.
Collapse
Affiliation(s)
- Halil I Okur
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Jana Hladílková
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences , Flemingovo nam. 2, 16610 Prague 6, Czech Republic.,Division of Theoretical Chemistry, Lund University , P.O.B. 124, SE-22100 Lund, Sweden
| | | | - Younhee Cho
- Department of Chemistry, Texas A&M University , College Station 77843, Texas, United States
| | - Jan Heyda
- Institut für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin für Materialien und Energie , Hahn-Meitner Platz 1, 14109 Berlin, Germany.,Department of Physical Chemistry, University of Chemistry and Technology, Prague , Technická 5, 16628 Prague 6, Czech Republic
| | - Joachim Dzubiella
- Institut für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin für Materialien und Energie , Hahn-Meitner Platz 1, 14109 Berlin, Germany.,Institut für Physik, Humboldt-Universität zu Berlin , Newtonstrasse 15, 12489 Berlin, Germany
| | | | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences , Flemingovo nam. 2, 16610 Prague 6, Czech Republic
| |
Collapse
|
28
|
Yu S, Schuchardt M, Tölle M, van der Giet M, Zidek W, Dzubiella J, Ballauff M. Interaction of human serum albumin with uremic toxins: a thermodynamic study. RSC Adv 2017. [DOI: 10.1039/c7ra02838e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Interaction of uremic toxins with HSA is studied by ITC and understood in terms of thermodynamic driving forces.
Collapse
Affiliation(s)
- Shun Yu
- Soft Matter and Functional Materials
- Helmholtz-Zentrum Berlin
- 14109 Berlin
- Germany
- Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine”
| | - Mirjam Schuchardt
- Medizinische Klinik für Nephrologie
- Universitätsmedizin Berlin
- Campus Benjamin Franklin
- 12203 Berlin
- Germany
| | - Markus Tölle
- Medizinische Klinik für Nephrologie
- Universitätsmedizin Berlin
- Campus Benjamin Franklin
- 12203 Berlin
- Germany
| | - Markus van der Giet
- Medizinische Klinik für Nephrologie
- Universitätsmedizin Berlin
- Campus Benjamin Franklin
- 12203 Berlin
- Germany
| | - Walter Zidek
- Medizinische Klinik für Nephrologie
- Universitätsmedizin Berlin
- Campus Benjamin Franklin
- 12203 Berlin
- Germany
| | - Joachim Dzubiella
- Soft Matter and Functional Materials
- Helmholtz-Zentrum Berlin
- 14109 Berlin
- Germany
- Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine”
| | - Matthias Ballauff
- Soft Matter and Functional Materials
- Helmholtz-Zentrum Berlin
- 14109 Berlin
- Germany
- Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine”
| |
Collapse
|
29
|
Goyal B, Srivastava KR, Durani S. Examination of the Effect of N-terminal Diproline and Charged Side Chains on the Stabilization of Helical Conformation in Alanine-based Short Peptides: A Molecular Dynamics Study. ChemistrySelect 2016. [DOI: 10.1002/slct.201601381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Bhupesh Goyal
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai-400076 India
- Department of Chemistry; School of Basic and Applied Sciences; Sri Guru Granth Sahib World University, Fatehgarh; Sahib-140406, Punjab India
| | - Kinshuk Raj Srivastava
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai-400076 India
- Life Sciences Institute; University of Michigan; Ann Arbor, MI USA 48105
| | - Susheel Durani
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai-400076 India
| |
Collapse
|
30
|
Du H, Liu Z, Jennings R, Qian X. The effects of salt ions on the dynamics and thermodynamics of lysozyme unfolding. SEP SCI TECHNOL 2016. [DOI: 10.1080/01496395.2016.1229336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Hongbo Du
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Zizhao Liu
- Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Renee Jennings
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Xianghong Qian
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
31
|
Tych KM, Batchelor M, Hoffmann T, Wilson MC, Hughes ML, Paci E, Brockwell DJ, Dougan L. Differential Effects of Hydrophobic Core Packing Residues for Thermodynamic and Mechanical Stability of a Hyperthermophilic Protein. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7392-7402. [PMID: 27338140 DOI: 10.1021/acs.langmuir.6b01550] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Proteins from organisms that have adapted to environmental extremes provide attractive systems to explore and determine the origins of protein stability. Improved hydrophobic core packing and decreased loop-length flexibility can increase the thermodynamic stability of proteins from hyperthermophilic organisms. However, their impact on protein mechanical stability is not known. Here, we use protein engineering, biophysical characterization, single-molecule force spectroscopy (SMFS), and molecular dynamics (MD) simulations to measure the effect of altering hydrophobic core packing on the stability of the cold shock protein TmCSP from the hyperthermophilic bacterium Thermotoga maritima. We make two variants of TmCSP in which a mutation is made to reduce the size of aliphatic groups from buried hydrophobic side chains. In the first, a mutation is introduced in a long loop (TmCSP L40A); in the other, the mutation is introduced on the C-terminal β-strand (TmCSP V62A). We use MD simulations to confirm that the mutant TmCSP L40A shows the most significant increase in loop flexibility, and mutant TmCSP V62A shows greater disruption to the core packing. We measure the thermodynamic stability (ΔGD-N) of the mutated proteins and show that there is a more significant reduction for TmCSP L40A (ΔΔG = 63%) than TmCSP V62A (ΔΔG = 47%), as might be expected on the basis of the relative reduction in the size of the side chain. By contrast, SMFS measures the mechanical stability (ΔG*) and shows a greater reduction for TmCSP V62A (ΔΔG* = 8.4%) than TmCSP L40A (ΔΔG* = 2.5%). While the impact on the mechanical stability is subtle, the results demonstrate the power of tuning noncovalent interactions to modulate both the thermodynamic and mechanical stability of a protein. Such understanding and control provide the opportunity to design proteins with optimized thermodynamic and mechanical properties.
Collapse
Affiliation(s)
- Katarzyna M Tych
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Matthew Batchelor
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Toni Hoffmann
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Michael C Wilson
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Megan L Hughes
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Emanuele Paci
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - David J Brockwell
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Lorna Dougan
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
32
|
Tych KM, Batchelor M, Hoffmann T, Wilson MC, Paci E, Brockwell DJ, Dougan L. Tuning protein mechanics through an ionic cluster graft from an extremophilic protein. SOFT MATTER 2016; 12:2688-2699. [PMID: 26809452 DOI: 10.1039/c5sm02938d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Proteins from extremophilic organisms provide excellent model systems to determine the role of non-covalent interactions in defining protein stability and dynamics as well as being attractive targets for the development of robust biomaterials. Hyperthermophilic proteins have a prevalence of salt bridges, relative to their mesophilic homologues, which are thought to be important for enhanced thermal stability. However, the impact of salt bridges on the mechanical properties of proteins is far from understood. Here, a combination of protein engineering, biophysical characterisation, single molecule force spectroscopy (SMFS) and molecular dynamics (MD) simulations directly investigates the role of salt bridges in the mechanical stability of two cold shock proteins; BsCSP from the mesophilic organism Bacillus subtilis and TmCSP from the hyperthermophilic organism Thermotoga maritima. Single molecule force spectroscopy shows that at ambient temperatures TmCSP is mechanically stronger yet, counter-intuitively, its native state can withstand greater deformation before unfolding (i.e. it is mechanically soft) compared with BsCSP. MD simulations were used to identify the location and quantify the population of salt bridges, and reveal that TmCSP contains a larger number of highly occupied salt bridges than BsCSP. To test the hypothesis that salt-bridges endow these mechanical properties on the hyperthermophilic CSP, a charged triple mutant (CTM) variant of BsCSP was generated by grafting an ionic cluster from TmCSP into the BsCSP scaffold. As expected CTM is thermodynamically more stable and mechanically softer than BsCSP. We show that a grafted ionic cluster can increase the mechanical softness of a protein and speculate that it could provide a mechanical recovery mechanism and that it may be a design feature applicable to other proteins.
Collapse
Affiliation(s)
- Katarzyna M Tych
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | | | | | |
Collapse
|
33
|
Bhavaraju M, Hansmann UHE. Effect of single point mutations in a form of systemic amyloidosis. Protein Sci 2015; 24:1451-62. [PMID: 26105812 DOI: 10.1002/pro.2730] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/14/2015] [Accepted: 06/21/2015] [Indexed: 01/23/2023]
Abstract
Amyloid deposits of light-chain proteins are associated with the most common form of systemic amyloidosis. We have studied the effects of single point mutations on amyloid formation of these proteins using explicit solvent model molecular dynamics simulations. For this purpose, we compare the stability of the wild-type immunoglobulin light-chain protein REI in its native and amyloid forms with that of four mutants: R61N, G68D, D82I, and A84T. We argue that the experimentally observed differences in the propensity for amyloid formation result from two effects. First, the mutant dimers have a lower stability than the wild-type dimer due to increase exposure of certain hydrophobic residues. The second effect is a shift in equilibrium between monomers with amyloid-like structure and such with native structures. Hence, when developing drugs against light-chain associated systemic amyloidosis, one should look for components that either stabilize the dimer by binding to the dimer interface or reduce for the monomers the probability of the amyloid form.
Collapse
Affiliation(s)
- Manikanthan Bhavaraju
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, 73019
| | - Ulrich H E Hansmann
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, 73019
| |
Collapse
|
34
|
Schwierz N, Horinek D, Netz RR. Specific ion binding to carboxylic surface groups and the pH dependence of the Hofmeister series. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:215-225. [PMID: 25494656 DOI: 10.1021/la503813d] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ion binding to acidic groups is a central mechanism for ion-specificity of macromolecules and surfaces. Depending on pH, acidic groups are either protonated or deprotonated and thus change not only charge but also chemical structure with crucial implications for their interaction with ions. In a two-step modeling approach, we first determine single-ion surface interaction potentials for a few selected halide and alkali ions at uncharged carboxyl (COOH) and charged carboxylate (COO(-)) surface groups from atomistic MD simulations with explicit water. Care is taken to subtract the bare Coulomb contribution due to the net charge of the carboxylate group and thereby to extract the nonelectrostatic ion-surface potential. Even at this stage, pronounced ion-specific effects are observed and the ion surface affinity strongly depends on whether the carboxyl group is protonated or not. In the second step, the ion surface interaction potentials are used in a Poisson-Boltzmann model to calculate the surface charge and the potential distribution in the solution depending on salt type, salt concentration, and solution pH in a self-consistent manner. Hofmeister phase diagrams are derived on the basis of the long-ranged forces between two carboxyl-functionalized surfaces. For cations we predict direct, reversed, and altered Hofmeister series as a function of the pH, qualitatively similar to recent experimental results for silica surfaces. The Hofmeister series reversal for cations is rationalized by a reversal of the single-cation affinity to the carboxyl group depending on its protonation state: the deprotonated carboxylate (COO(-)) surface group interacts most favorably with small cations such as Li(+) and Na(+), whereas the protonated carboxyl (COOH) surface group interacts most favorably with large cations such as Cs(+) and thus acts similarly to a hydrophobic surface group. Our results provide a general mechanism for the pH-dependent reversal of the Hofmeister series due to the different specific ion binding to protonated and deprotonated surface groups.
Collapse
Affiliation(s)
- Nadine Schwierz
- Chemistry Department, University of California , Berkeley, California 94720, United States
| | | | | |
Collapse
|
35
|
Church AT, Hughes ZE, Walsh TR. Improving the description of interactions between Ca2+ and protein carboxylate groups, including γ-carboxyglutamic acid: revised CHARMM22* parameters. RSC Adv 2015. [DOI: 10.1039/c5ra11268k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We show that the CHARMM22* force-field over-binds the interaction between aqueous carboxylates and Ca2+, and introduce a modification that can recover experimentally-determined binding free energies for these systems.
Collapse
Affiliation(s)
- Andrew T. Church
- Institute for Frontier Materials
- Deakin University
- Geelong
- Australia
| | - Zak E. Hughes
- Institute for Frontier Materials
- Deakin University
- Geelong
- Australia
| | - Tiffany R. Walsh
- Institute for Frontier Materials
- Deakin University
- Geelong
- Australia
| |
Collapse
|
36
|
Hostnik G, Vlachy V, Bondarev D, Vohlídal J, Cerar J. Salt-specific effects observed in calorimetric studies of alkali and tetraalkylammonium salt solutions of poly(thiophen-3-ylacetic acid). Phys Chem Chem Phys 2015; 17:2475-83. [DOI: 10.1039/c4cp04710a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Differences in hydration of counterions are blamed for strong salt-specific effects produced upon dilution and mixing of poly(thiophene-3-ylacetic acid) salts with simple salts.
Collapse
Affiliation(s)
- Gregor Hostnik
- Faculty of Chemistry and Chemical Technology
- University of Ljubljana
- SI–1000 Ljubljana
- Slovenia
| | - Vojko Vlachy
- Faculty of Chemistry and Chemical Technology
- University of Ljubljana
- SI–1000 Ljubljana
- Slovenia
| | - Dmitrij Bondarev
- University Institute
- Tomas Bata University in Zlín
- Zlín
- Czech Republic
| | - Jir̆í Vohlídal
- Faculty of Science
- Charles University in Prague
- CZ-12840 Prague 2
- Czech Republic
| | - Janez Cerar
- Faculty of Chemistry and Chemical Technology
- University of Ljubljana
- SI–1000 Ljubljana
- Slovenia
| |
Collapse
|
37
|
Shen H, Cheng W, Zhang FS. Structural conservation of the short α-helix in modified higher and lower polarity water solutions. RSC Adv 2015. [DOI: 10.1039/c4ra14739a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Which conformation is preferred when the polarity of water molecules is scaled byEP=ELJ+S2EC?
Collapse
Affiliation(s)
- Hao Shen
- The Key Laboratory of Beam Technology and Material Modification of the Ministry of Education
- College of Nuclear Science and Technology
- Beijing Normal University
- Beijing 100875
- China
| | - Wei Cheng
- The Key Laboratory of Beam Technology and Material Modification of the Ministry of Education
- College of Nuclear Science and Technology
- Beijing Normal University
- Beijing 100875
- China
| | - Feng-Shou Zhang
- The Key Laboratory of Beam Technology and Material Modification of the Ministry of Education
- College of Nuclear Science and Technology
- Beijing Normal University
- Beijing 100875
- China
| |
Collapse
|
38
|
Roberts D, Keeling R, Tracka M, van der Walle CF, Uddin S, Warwicker J, Curtis R. Specific Ion and Buffer Effects on Protein–Protein Interactions of a Monoclonal Antibody. Mol Pharm 2014; 12:179-93. [DOI: 10.1021/mp500533c] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- D. Roberts
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester M13 9PL, U.K
| | - R. Keeling
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester M13 9PL, U.K
| | - M. Tracka
- Formulation
Sciences, MedImmune, Ltd., Aaron Klug Building, Granta Park, Cambridge CB21 6GH, U.K
| | - C. F. van der Walle
- Formulation
Sciences, MedImmune, Ltd., Aaron Klug Building, Granta Park, Cambridge CB21 6GH, U.K
| | - S. Uddin
- Formulation
Sciences, MedImmune, Ltd., Aaron Klug Building, Granta Park, Cambridge CB21 6GH, U.K
| | - J. Warwicker
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester M13 9PL, U.K
| | - R. Curtis
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester M13 9PL, U.K
| |
Collapse
|
39
|
On the influence of the mixture of denaturants on protein structure stability: A molecular dynamics study. Chem Phys 2014. [DOI: 10.1016/j.chemphys.2014.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Bogár F, Bartha F, Násztor Z, Fábián L, Leitgeb B, Dér A. On the Hofmeister Effect: Fluctuations at the Protein–Water Interface and the Surface Tension. J Phys Chem B 2014; 118:8496-504. [DOI: 10.1021/jp502505c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ferenc Bogár
- MTA-SZTE
Supramolecular and Nanostructured Materials Research Group of Hungarian
Academy of Sciences, University of Szeged, H-6720 Szeged, Hungary
| | - Ferenc Bartha
- Department
of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary
| | - Zoltán Násztor
- Department
of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary
- Institute
of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Hungary
| | - László Fábián
- Institute
of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Hungary
| | - Balázs Leitgeb
- Institute
of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Hungary
- Department
of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - András Dér
- Institute
of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Hungary
| |
Collapse
|
41
|
Astrakas LG, Gousias C, Tzaphlidou M. Electric field effects on alanine tripeptide in sodium halide solutions. Electromagn Biol Med 2014; 34:361-9. [PMID: 25006865 DOI: 10.3109/15368378.2014.936065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The electric field effects on conformational properties of trialanine in different halide solutions were explored with long-scale molecular dynamics simulations. NaF, NaCl, NaBr and NaI solutions of low (0.2 M) and high (2 M) concentrations were exposed to a constant electric field of 1000 V/m. Generally, the electric field does not disturb trialanine's structure. Large structural changes appear only in the case of the supersaturated 2.0 M NaF solution containing NaF crystals. Although the electric field affects in a complex way, all the ions-water-peptide interactions, it predominantly affects the electroselectivity effect, which describes specific interactions such as the ion-pair formation.
Collapse
Affiliation(s)
- Loukas G Astrakas
- a Laboratories of Medical Physics , Medical School, University of Ioannina , Ioannina , Greece
| | - Christos Gousias
- a Laboratories of Medical Physics , Medical School, University of Ioannina , Ioannina , Greece
| | - Margaret Tzaphlidou
- a Laboratories of Medical Physics , Medical School, University of Ioannina , Ioannina , Greece
| |
Collapse
|
42
|
Shen H, Cheng W, Zhang FS. Mixed-salt effects on the conformation of a short salt-bridge-forming α helix: a simulation study. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:022717. [PMID: 25353518 DOI: 10.1103/physreve.89.022717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Indexed: 06/04/2023]
Abstract
The structure of a single alanine-based ACE-AEAAAKEAAAKA-NH2 peptide in explicit aqueous solutions with mixed inorganic salts (NaCl and KCl) is investigated by using molecular simulations. The concentration of Na(+), c(Na(+)), varies from 0.0M to 1.0M, whereas the concentration of K(+) is 1-c(Na(+)). The simulated peptide is very sensitive to the change of concentration ratio between Na(+) and K(+). When the concentration ratio between Na^{+} and K^{+} is changed from 0.5/0.5, the structure of the peptide becomes loose or disordered. This specific phenomenon is confirmed via checking the changes of helix parameters and mapping the free energy along different coordinates. The higher normalized probability of forming direct and indirect salt bridges between residues Glu7(+) and Lys11(+) and the smallest probability of forming ringlike structures should be responsible for the stabilized helix structure in the 0.5 Na(+)/0.5 K(+) solution. Furthermore, a noticeable conformational transition from an extended helix to an α helix is found in the 0.5 Na(+)/0.5 K(+) solution, where a local ion cloud shows that some Na(+) ions in the inner shells are still directly binding with the peptide, while K(+) in the outer shells are moving into the inner shells, keeping the peptide in the collapsed state.
Collapse
Affiliation(s)
- Hao Shen
- The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China and Beijing Radiation Center, Beijing 100875, China
| | - Wei Cheng
- The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China and Beijing Radiation Center, Beijing 100875, China
| | - Feng-Shou Zhang
- The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China and Beijing Radiation Center, Beijing 100875, China and Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000, China
| |
Collapse
|
43
|
The ion–lipid battle for hydration water and interfacial sites at soft-matter interfaces. Curr Opin Colloid Interface Sci 2014. [DOI: 10.1016/j.cocis.2014.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Zangi R. Side-chain-side-chain interactions and stability of the helical state. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:012723. [PMID: 24580273 DOI: 10.1103/physreve.89.012723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Indexed: 06/03/2023]
Abstract
Understanding the driving forces that lead to the stability of the secondary motifs found in proteins, namely α-helix and β-sheet, is a major goal in structural biology. The thermodynamic stability of these repetitive units is a result of a delicate balance between many factors, which in addition to the peptide chain involves also the solvent. Despite the fact that the backbones of all amino acids are the same (except of that of proline), there are large differences in the propensity of the different amino acids to promote the helical structure. In this paper, we investigate by explicit-solvent molecular dynamics simulations the role of the side chains (modeled as coarse-grained single sites) in stabilizing α helices in an aqueous solution. Our model systems include four (six-mer-nine-mer) peptide lengths in which the magnitude of the effective attraction between the side chains is systematically increased. We find that these interactions between the side chains can induce (for the nine-mer almost completely) a transition from a coil to a helical state. This transition is found to be characterized by three states in which the intermediate state is a partially folded α-helical conformation. In the absence of any interactions between the side chains the free energy change for helix formation has a small positive value indicating that favorable contributions from the side chains are necessary to stabilize the helical conformation. Thus, the helix-coil transition is controlled by the effective potentials between the side-chain residues and the magnitude of the required attraction per residue, which is on the order of the thermal energy, reduces with the length of the peptide. Surprisingly, the plots of the population of the helical state (or the change in the free energy for helix formation) as a function of the total effective interactions between the side chains in the helical state for all peptide lengths fall on the same curve.
Collapse
Affiliation(s)
- Ronen Zangi
- Department of Organic Chemistry I, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018, San Sebastian, Spain and IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
| |
Collapse
|
45
|
Boopathi S, Kolandaivel P. Role of zinc and copper metal ions in amyloid β-peptides Aβ1–40 and Aβ1–42 aggregation. RSC Adv 2014. [DOI: 10.1039/c4ra05390g] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Conformational structural changes of Aβ1–40 and Aβ1–42 monomers during the interaction of Cu2+ and Zn2+ metal ions.
Collapse
|
46
|
Yoda T, Sugita Y, Okamoto Y. Salt effects on hydrophobic-core formation in folding of a helical miniprotein studied by molecular dynamics simulations. Proteins 2013; 82:933-43. [PMID: 24214490 DOI: 10.1002/prot.24467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/26/2013] [Accepted: 10/29/2013] [Indexed: 11/07/2022]
Abstract
We have investigated effects of salt ions on folding events of a helical miniprotein chicken villin headpiece subdomain HP36. Low concentrations of ions alter electrostatic interactions between charged groups of a protein and can change the populations of conformers. Here, we compare two data sets of folding simulations of HP36 in explicit water solvent with or without ions. For efficient sampling of the conformational space of HP36, the multicanonical replica-exchange molecular dynamics method was employed. Our analyses suggest that salt alters salt-bridging nature of the protein at later stages of folding at room temperature. Especially, more nonnative, nonlocal salt bridges are formed at near-native conformations in pure water. Our analyses also show that such salt-bridge formation hinders the fully native hydrophobic-core packing at the final stages of folding.
Collapse
Affiliation(s)
- Takao Yoda
- Nagahama Institute of Bio-Science and Technology, Tamura, Nagahama, Shiga, 526-0829, Japan; RIKEN Advanced Institute for Computational Science, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | | | | |
Collapse
|
47
|
Xie W, Liu C, Yang L, Gao Y. On the molecular mechanism of ion specific Hofmeister series. Sci China Chem 2013. [DOI: 10.1007/s11426-013-5019-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
48
|
Ioannou F, Leontidis E, Archontis G. Helix Formation by Alanine-Based Peptides in Pure Water and Electrolyte Solutions: Insights from Molecular Dynamics Simulations. J Phys Chem B 2013; 117:9866-76. [DOI: 10.1021/jp406231g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Filippos Ioannou
- Department
of Chemistry, and ‡Deparment of Physics, University of Cyprus, PO20537, CY1678, Nicosia, Cyprus
| | - Epameinondas Leontidis
- Department
of Chemistry, and ‡Deparment of Physics, University of Cyprus, PO20537, CY1678, Nicosia, Cyprus
| | - Georgios Archontis
- Department
of Chemistry, and ‡Deparment of Physics, University of Cyprus, PO20537, CY1678, Nicosia, Cyprus
| |
Collapse
|
49
|
Baldauf C, Pagel K, Warnke S, von Helden G, Koksch B, Blum V, Scheffler M. How Cations Change Peptide Structure. Chemistry 2013; 19:11224-34. [DOI: 10.1002/chem.201204554] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Indexed: 12/12/2022]
|
50
|
Berhanu WM, Hansmann UHE. The stability of cylindrin β-barrel amyloid oligomer models-a molecular dynamics study. Proteins 2013; 81:1542-55. [PMID: 23606599 DOI: 10.1002/prot.24302] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 03/21/2013] [Accepted: 04/01/2013] [Indexed: 11/10/2022]
Abstract
Small-soluble amyloid oligomers are believed to play a significant role in the pathology of amyloid diseases. Recently, the atomic structure of a toxic oligomer formed by an 11 residue and its tandem repeat was found to have an out-off register antiparallel β-strands in the shape of a β-barrel. In the present article we investigate the effect of mutations in the hydrophobic cores on the structure and dynamic of the β-barrels using all atom multiple molecular dynamics simulations with an explicit solvent. Extending previous experiments with molecular dynamics simulations we systematically test how stability and formation of cylindrin depends on the interplay between hydrophobicity and steric effects of the core residues. We find that strong hydrophobic interactions between geometrically fitting residues keep the strands (both in register and out-off-register interface) in close proximity, which in turn stabilizes the side-chain and main-chain hydrogen bonds, and the salt bridges on the outer surface along the weak out-of-register interface. Our simulations also indicate presence of water molecules in the hydrophobic interior of the cylindrin β-barrel.Proteins 2013.
Collapse
Affiliation(s)
- Workalemahu M Berhanu
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma, 73019
| | | |
Collapse
|