1
|
Qi C, Mankinen O, Telkki VV, Hilty C. Measuring Protein-Ligand Binding by Hyperpolarized Ultrafast NMR. J Am Chem Soc 2024; 146:5063-5066. [PMID: 38373110 PMCID: PMC10910566 DOI: 10.1021/jacs.3c14359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
Protein-ligand interactions can be detected by observing changes in the transverse relaxation rates of the ligand upon binding. The ultrafast NMR technique, which correlates the chemical shift with the transverse relaxation rate, allows for the simultaneous acquisition of R2 for carbon spins at different positions. In combination with dissolution dynamic nuclear polarization (D-DNP), where the signal intensity is enhanced by thousands of times, the R2 values of several carbon signals from unlabeled benzylamine are observable within a single scan. The hyperpolarized ultrafast chemical shift-R2 correlated experiment separates chemical shift encoding from the readout phase in the NMR pulse sequence, which allows it to beat the fundamental limit on the spectral resolution otherwise imposed by the sampling theorem. Applications enabled by the ability to measure multiple relaxation rates in a single scan include the study of structural properties of protein-ligand interactions.
Collapse
Affiliation(s)
- Chang Qi
- Chemistry
Department, Texas A&M University, College Station, Texas 77843-3255, United
States
| | - Otto Mankinen
- NMR
Research Unit, Faculty of Science, University
of Oulu, 90014 Oulu, Finland
| | - Ville-Veikko Telkki
- NMR
Research Unit, Faculty of Science, University
of Oulu, 90014 Oulu, Finland
| | - Christian Hilty
- Chemistry
Department, Texas A&M University, College Station, Texas 77843-3255, United
States
| |
Collapse
|
2
|
Koehler Leman J, Künze G. Recent Advances in NMR Protein Structure Prediction with ROSETTA. Int J Mol Sci 2023; 24:ijms24097835. [PMID: 37175539 PMCID: PMC10178863 DOI: 10.3390/ijms24097835] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful method for studying the structure and dynamics of proteins in their native state. For high-resolution NMR structure determination, the collection of a rich restraint dataset is necessary. This can be difficult to achieve for proteins with high molecular weight or a complex architecture. Computational modeling techniques can complement sparse NMR datasets (<1 restraint per residue) with additional structural information to elucidate protein structures in these difficult cases. The Rosetta software for protein structure modeling and design is used by structural biologists for structure determination tasks in which limited experimental data is available. This review gives an overview of the computational protocols available in the Rosetta framework for modeling protein structures from NMR data. We explain the computational algorithms used for the integration of different NMR data types in Rosetta. We also highlight new developments, including modeling tools for data from paramagnetic NMR and hydrogen-deuterium exchange, as well as chemical shifts in CS-Rosetta. Furthermore, strategies are discussed to complement and improve structure predictions made by the current state-of-the-art AlphaFold2 program using NMR-guided Rosetta modeling.
Collapse
Affiliation(s)
- Julia Koehler Leman
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Georg Künze
- Institute for Drug Discovery, Medical Faculty, University of Leipzig, Brüderstr. 34, D-04103 Leipzig, Germany
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| |
Collapse
|
3
|
Kunth M, Schröder L. Binding site exchange kinetics revealed through efficient spin-spin dephasing of hyperpolarized 129Xe. Chem Sci 2020; 12:158-169. [PMID: 34163587 PMCID: PMC8178811 DOI: 10.1039/d0sc04835f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Spin exchange between different chemical environments is an important observable for characterizing chemical exchange kinetics in various contexts, including protein folding, chelation chemistry, and host-guest interactions. Such spins experience effective spin-spin relaxation rate, R 2,eff, that typically shows a dispersive behavior which requires detailed analysis. Here, we describe a class of highly simplified R 2,eff behavior by relying on hyperpolarized 129Xe as a freely exchanging ligand reporter. It provides large chemical shift separations that yield reduced expressions of both the Swift-Connick and the Carver-Richards treatment of exchange-induced relaxation. Despite observing a diamagnetic system, R 2,eff is dominated by large Larmor frequency jumps and thus allows detection of otherwise inaccessible analyte concentrations with a single spin echo train (only 0.01% of the overall hyperpolarized spins need to be transiently bound to the molecule). The two Xe hosts cryptophane-A monoacid (CrA-ma) and cucurbit[6]uril (CB6) represent two exemplary families of container molecules (the latter one also serving as drug delivery vehicles) that act as highly efficient phase shifters for which we observed unprecedented exchange-induced relaxivity r 2 (up to 866 s-1 mM-1). By including methods of spatial encoding, multiple data points can be collected simultaneously to isolate the exchange contribution and determine the effective exchange rate in partially occupied binding sites with a single delivery of hyperpolarized nuclei. The relaxivity is directly related to the guest turnover in these systems and temperature-dependent measurements yield an activation energy of E A = 41 kJ mol-1 for Xe@CrA-ma from simple relaxometry analysis. The concept is transferable to many applications where Xe is known to exhibit large chemical shifts.
Collapse
Affiliation(s)
- Martin Kunth
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP) Campus Berlin-Buch, Robert-Roessle-Str. 10 13125 Berlin Germany +49 30 94793 121
| | - Leif Schröder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP) Campus Berlin-Buch, Robert-Roessle-Str. 10 13125 Berlin Germany +49 30 94793 121
| |
Collapse
|
4
|
Stoffel S, Zhang QW, Li DH, Smith BD, Peng JW. NMR Relaxation Dispersion Reveals Macrocycle Breathing Dynamics in a Cyclodextrin-based Rotaxane. J Am Chem Soc 2020; 142:7413-7424. [PMID: 32212648 DOI: 10.1021/jacs.9b12524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A distinctive feature of mechanically interlocked molecules (MIMs) is the relative motion between the mechanically bonded components, and often it is the functional basis for artificial molecular machines and new functional materials. Optimization of machine or materials performance requires knowledge of the underlying atomic-level mechanisms that control the motion. The field of biomolecular NMR spectroscopy has developed a diverse set of pulse schemes that can characterize molecular dynamics over a broad time scale, but these techniques have not yet been used to characterize the motion within MIMs. This study reports the first observation of NMR relaxation dispersion related to MIM motion. The rotary (pirouette) motion of α-cyclodextrin (αCD) wheels was characterized in a complementary pair of rotaxanes with pirouetting switched ON or OFF. 13C and 1H NMR relaxation dispersion measurements reveal previously unknown exchange dynamics for the αCD wheels in the pirouette-ON rotaxane with a rate constant of 2200 s-1 at 298 K and an activation barrier of ΔF‡ = 43 ± 3 kJ/mol. The exchange dynamics disappear in the pirouette-OFF rotaxane, demonstrating their switchable nature. The 13C and 1H sites exhibiting relaxation dispersion suggest that the exchange involves "macrocycle breathing", in which the αCD wheel fluctuates between a contracted or expanded state, the latter enabling diffusive rotary motion about the axle. The substantial insight from these NMR relaxation dispersion methods suggests similar dynamic NMR methods can illuminate the fast time scale (microsecond to millisecond) mechanisms of intercomponent motion in a wide range of MIMs.
Collapse
Affiliation(s)
| | - Qi-Wei Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | | | | | | |
Collapse
|
5
|
Spotlight on the Ballet of Proteins: The Structural Dynamic Properties of Proteins Illuminated by Solution NMR. Int J Mol Sci 2020; 21:ijms21051829. [PMID: 32155847 PMCID: PMC7084655 DOI: 10.3390/ijms21051829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 12/22/2022] Open
Abstract
Solution NMR spectroscopy is a unique and powerful technique that has the ability to directly connect the structural dynamics of proteins in physiological conditions to their activity and function. Here, we summarize recent studies in which solution NMR contributed to the discovery of relationships between key dynamic properties of proteins and functional mechanisms in important biological systems. The capacity of NMR to quantify the dynamics of proteins over a range of time scales and to detect lowly populated protein conformations plays a critical role in its power to unveil functional protein dynamics. This analysis of dynamics is not only important for the understanding of biological function, but also in the design of specific ligands for pharmacologically important proteins. Thus, the dynamic view of structure provided by NMR is of importance in both basic and applied biology.
Collapse
|
6
|
Polshakov VI, Batuev EA, Mantsyzov AB. NMR screening and studies of target–ligand interactions. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Khirich G, Holliday MJ, Lin JC, Nandy A. Measurement and Characterization of Hydrogen-Deuterium Exchange Chemistry Using Relaxation Dispersion NMR Spectroscopy. J Phys Chem B 2018; 122:2368-2378. [PMID: 29376350 DOI: 10.1021/acs.jpcb.7b10849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One-dimensional heteronuclear relaxation dispersion NMR spectroscopy at 13C natural abundance successfully characterized the dynamics of the hydrogen-deuterium exchange reaction occurring at the Nε position in l-arginine by monitoring Cδ in varying amounts of D2O. A small equilibrium isotope effect was observed and quantified, corresponding to ΔG = -0.14 kcal mol-1. A bimolecular rate constant of kD = 5.1 × 109 s-1 M-1 was determined from the pH*-dependence of kex (where pH* is the direct electrode reading of pH in 10% D2O and kex is the nuclear spin exchange rate constant), consistent with diffusion-controlled kinetics. The measurement of ΔG serves to bridge the millisecond time scale lifetimes of the detectable positively charged arginine species with the nanosecond time scale lifetime of the nonobservable low-populated neutral arginine intermediate species, thus allowing for characterization of the equilibrium lifetimes of the various arginine species in solution as a function of fractional solvent deuterium content. Despite the system being in fast exchange on the chemical shift time scale, the magnitude of the secondary isotope shift due to the exchange reaction at Nε was accurately measured to be 0.12 ppm directly from curve-fitting D2O-dependent dispersion data collected at a single static field strength. These results indicate that relaxation dispersion NMR spectroscopy is a robust and general method for studying base-catalyzed hydrogen-deuterium exchange chemistry at equilibrium.
Collapse
Affiliation(s)
- Gennady Khirich
- Protein Analytical Chemistry, ‡Early Discovery Biochemistry, and §Late Stage Pharmaceutical Development, Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Michael J Holliday
- Protein Analytical Chemistry, ‡Early Discovery Biochemistry, and §Late Stage Pharmaceutical Development, Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Jasper C Lin
- Protein Analytical Chemistry, ‡Early Discovery Biochemistry, and §Late Stage Pharmaceutical Development, Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Aditya Nandy
- Protein Analytical Chemistry, ‡Early Discovery Biochemistry, and §Late Stage Pharmaceutical Development, Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
8
|
Reddy JG, Pratihar S, Ban D, Frischkorn S, Becker S, Griesinger C, Lee D. Simultaneous determination of fast and slow dynamics in molecules using extreme CPMG relaxation dispersion experiments. JOURNAL OF BIOMOLECULAR NMR 2018; 70:1-9. [PMID: 29188417 DOI: 10.1007/s10858-017-0155-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/20/2017] [Indexed: 06/07/2023]
Abstract
Molecular dynamics play a significant role in how molecules perform their function. A critical method that provides information on dynamics, at the atomic level, is NMR-based relaxation dispersion (RD) experiments. RD experiments have been utilized for understanding multiple biological processes occurring at micro-to-millisecond time, such as enzyme catalysis, molecular recognition, ligand binding and protein folding. Here, we applied the recently developed high-power RD concept to the Carr-Purcell-Meiboom-Gill sequence (extreme CPMG; E-CPMG) for the simultaneous detection of fast and slow dynamics. Using a fast folding protein, gpW, we have shown that previously inaccessible kinetics can be accessed with the improved precision and efficiency of the measurement by using this experiment.
Collapse
Affiliation(s)
- Jithender G Reddy
- Department for NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
- NMR & Structural Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Supriya Pratihar
- Department for NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - David Ban
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St, Louisville, KY, 40202, USA
| | - Sebastian Frischkorn
- Department for NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Stefan Becker
- Department for NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Christian Griesinger
- Department for NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Donghan Lee
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St, Louisville, KY, 40202, USA.
| |
Collapse
|
9
|
Trigo-Mouriño P, Griesinger C, Lee D. Label-free NMR-based dissociation kinetics determination. JOURNAL OF BIOMOLECULAR NMR 2017; 69:229-235. [PMID: 29143948 DOI: 10.1007/s10858-017-0150-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/03/2017] [Indexed: 06/07/2023]
Abstract
Understanding the dissociation of molecules is the basis to modulate interactions of biomedical interest. Optimizing drugs for dissociation rates is found to be important for their efficacy, selectivity, and safety. Here, we show an application of the high-power relaxation dispersion (RD) method to the determination of the dissociation rates of weak binding ligands from receptors. The experiment probes proton RD on the ligand and, therefore, avoids the need for any isotopic labeling. The large ligand excess eases the detection significantly. Importantly, the use of large spin-lock fields allows the detection of faster dissociation rates than other relaxation approaches. Moreover, this experimental approach allows to access directly the off-rate of the binding process without the need for analyzing a series of samples with increasing ligand saturation. The validity of the method is shown with small molecule interactions using two macromolecules, bovine serum albumin and tubulin heterodimers.
Collapse
Affiliation(s)
- Pablo Trigo-Mouriño
- Department of NMR-Based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Christian Griesinger
- Department of NMR-Based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Donghan Lee
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
10
|
Liu M, Kim Y, Hilty C. Characterization of Chemical Exchange Using Relaxation Dispersion of Hyperpolarized Nuclear Spins. Anal Chem 2017; 89:9154-9158. [PMID: 28714674 DOI: 10.1021/acs.analchem.7b01896] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chemical exchange phenomena are ubiquitous in macromolecules, which undergo conformational change or ligand complexation. NMR relaxation dispersion (RD) spectroscopy based on a Carr-Purcell-Meiboom-Gill pulse sequence is widely applied to identify the exchange and measure the lifetime of intermediate states on the millisecond time scale. Advances in hyperpolarization methods improve the applicability of NMR spectroscopy when rapid acquisitions or low concentrations are required, through an increase in signal strength by several orders of magnitude. Here, we demonstrate the measurement of chemical exchange from a single aliquot of a ligand hyperpolarized by dissolution dynamic nuclear polarization (D-DNP). Transverse relaxation rates are measured simultaneously at different pulsing delays by dual-channel 19F NMR spectroscopy. This two-point measurement is shown to allow the determination of the exchange term in the relaxation rate expression. For the ligand 4-(trifluoromethyl)benzene-1-carboximidamide binding to the protein trypsin, the exchange term is found to be equal within error limits in neutral and acidic environments from D-DNP NMR spectroscopy, corresponding to a pre-equilibrium of trypsin deprotonation. This finding illustrates the capability for determination of binding mechanisms using D-DNP RD. Taking advantage of hyperpolarization, the ligand concentration in the exchange measurements can reach on the order of tens of μM and protein concentration can be below 1 μM, i.e., conditions typically accessible in drug discovery.
Collapse
Affiliation(s)
- Mengxiao Liu
- Department of Chemistry, Texas A&M University , 3255 TAMU, College Station, Texas 77843, United States
| | - Yaewon Kim
- Department of Chemistry, Texas A&M University , 3255 TAMU, College Station, Texas 77843, United States
| | - Christian Hilty
- Department of Chemistry, Texas A&M University , 3255 TAMU, College Station, Texas 77843, United States
| |
Collapse
|
11
|
Moschen T, Grutsch S, Juen MA, Wunderlich CH, Kreutz C, Tollinger M. Measurement of Ligand-Target Residence Times by 1H Relaxation Dispersion NMR Spectroscopy. J Med Chem 2016; 59:10788-10793. [PMID: 27933946 PMCID: PMC5150660 DOI: 10.1021/acs.jmedchem.6b01110] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
A ligand-observed 1H NMR
relaxation experiment is introduced
for measuring the binding kinetics of low-molecular-weight compounds
to their biomolecular targets. We show that this approach, which does
not require any isotope labeling, is applicable to ligand–target
systems involving proteins and nucleic acids of variable molecular
size. The experiment is particularly useful for the systematic investigation
of low affinity molecules with residence times in the micro- to millisecond
time regime.
Collapse
Affiliation(s)
- Thomas Moschen
- Institute of Organic Chemistry and Centre for Molecular Biosciences (CMBI), University of Innsbruck , Innsbruck 6020, Austria
| | - Sarina Grutsch
- Institute of Organic Chemistry and Centre for Molecular Biosciences (CMBI), University of Innsbruck , Innsbruck 6020, Austria
| | - Michael A Juen
- Institute of Organic Chemistry and Centre for Molecular Biosciences (CMBI), University of Innsbruck , Innsbruck 6020, Austria
| | - Christoph H Wunderlich
- Institute of Organic Chemistry and Centre for Molecular Biosciences (CMBI), University of Innsbruck , Innsbruck 6020, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Centre for Molecular Biosciences (CMBI), University of Innsbruck , Innsbruck 6020, Austria
| | - Martin Tollinger
- Institute of Organic Chemistry and Centre for Molecular Biosciences (CMBI), University of Innsbruck , Innsbruck 6020, Austria
| |
Collapse
|
12
|
Moschen T, Wunderlich CH, Spitzer R, Levic J, Micura R, Tollinger M, Kreutz C. Ligand-detected relaxation dispersion NMR spectroscopy: dynamics of preQ1-RNA binding. Angew Chem Int Ed Engl 2015; 54:560-3. [PMID: 25403518 PMCID: PMC4353840 DOI: 10.1002/anie.201409779] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Indexed: 12/21/2022]
Abstract
An NMR-based approach to characterizing the binding kinetics of ligand molecules to biomolecules, like RNA or proteins, by ligand-detected Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments is described. A (15)N-modified preQ1 ligand is used to acquire relaxation dispersion experiments in the presence of low amounts of the Fsu class I preQ1 aptamer RNA, and increasing ligand concentrations to probe the RNA small molecule interaction. Our experimental data strongly support the conformational selection mechanism postulated. The approach gives direct access to two parameters of a ligand-receptor interaction: the off rate and the population of the small molecule-receptor complex. A detailed description of the kinetics underlying the ligand binding process is of crucial importance to fully understanding a riboswitch's function and to evaluate potential new antibiotics candidates targeting the noncoding RNA species. Ligand-detected NMR relaxation dispersion experiments represent a valuable diagnostic tool for the characterization of binding mechanisms.
Collapse
Affiliation(s)
- Thomas Moschen
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck (Austria)
| | - Christoph Hermann Wunderlich
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck (Austria)
| | - Romana Spitzer
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck (Austria)
| | - Jasmin Levic
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck (Austria)
| | - Ronald Micura
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck (Austria)
| | - Martin Tollinger
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck (Austria)
| | - Christoph Kreutz
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck (Austria)
| |
Collapse
|
13
|
Abstract
Solution-state NMR has been widely applied to determine the three-dimensional structure, dynamics, and molecular interactions of proteins. The designs of experiments used in protein NMR differ from those used for small-molecule NMR, primarily because the information available prior to an experiment, such as molecular mass and knowledge of the primary structure, is unique for proteins compared to small molecules. In this review article, protein NMR for structural biology is introduced with comparisons to small-molecule NMR, such as descriptions of labeling strategies and the effects of molecular dynamics on relaxation. Next, applications for protein NMR are reviewed, especially practical aspects for protein-observed ligand-protein interaction studies. Overall, the following topics are described: (1) characteristics of protein NMR, (2) methods to detect protein-ligand interactions by NMR, and (3) practical aspects of carrying out protein-observed inhibitor-protein interaction studies.
Collapse
Affiliation(s)
- Rieko Ishima
- Address correspondence to Rieko Ishima: Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Tel: 412-648-9056; Fax: 412-648-9008;
| |
Collapse
|
14
|
Kurzbach D, Kontaxis G, Coudevylle N, Konrat R. NMR Spectroscopic Studies of the Conformational Ensembles of Intrinsically Disordered Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 870:149-85. [PMID: 26387102 DOI: 10.1007/978-3-319-20164-1_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intrinsically disordered proteins (IDPs) are characterized by substantial conformational flexibility and thus not amenable to conventional structural biology techniques. Given their inherent structural flexibility NMR spectroscopy offers unique opportunities for structural and dynamic studies of IDPs. The past two decades have witnessed significant development of NMR spectroscopy that couples advances in spin physics and chemistry with a broad range of applications. This chapter will summarize key advances in NMR methodology. Despite the availability of efficient (multi-dimensional) NMR experiments for signal assignment of IDPs it is discussed that NMR of larger and more complex IDPs demands spectral simplification strategies capitalizing on specific isotope-labeling strategies. Prototypical applications of isotope labeling-strategies are described. Since IDP-ligand association and dissociation processes frequently occur on time scales that are amenable to NMR spectroscopy we describe in detail the application of CPMG relaxation dispersion techniques to studies of IDP protein binding. Finally, we demonstrate that the complementary usage of NMR and EPR data provide a more comprehensive picture about the conformational states of IDPs and can be employed to analyze the conformational ensembles of IDPs.
Collapse
Affiliation(s)
- Dennis Kurzbach
- Department of Computational and Structural Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Georg Kontaxis
- Department of Computational and Structural Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Nicolas Coudevylle
- Department of Computational and Structural Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Robert Konrat
- Department of Computational and Structural Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria.
| |
Collapse
|
15
|
Moschen T, Wunderlich CH, Spitzer R, Levic J, Micura R, Tollinger M, Kreutz C. Ligand-Detected Relaxation Dispersion NMR Spectroscopy: Dynamics of preQ1-RNA Binding. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409779] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Ogura K, Okamura H. Conformational change of Sos-derived proline-rich peptide upon binding Grb2 N-terminal SH3 domain probed by NMR. Sci Rep 2013; 3:2913. [PMID: 24105423 PMCID: PMC6505672 DOI: 10.1038/srep02913] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 09/24/2013] [Indexed: 11/24/2022] Open
Abstract
Growth factor receptor-bound protein 2 (Grb2) is a small adapter protein composed of a single SH2 domain flanked by two SH3 domains. The N-terminal SH3 (nSH3) domain of Grb2 binds a proline-rich region present in the guanine nucleotide releasing factor, son of sevenless (Sos). Using NMR relaxation dispersion and chemical shift analysis methods, we investigated the conformational change of the Sos-derived proline-rich peptide during the transition between the free and Grb2 nSH3-bound states. The chemical shift analysis revealed that the peptide does not present a fully random conformation but has a relatively rigid structure. The relaxation dispersion analysis detected conformational exchange of several residues of the peptide upon binding to Grb2 nSH3.
Collapse
Affiliation(s)
- Kenji Ogura
- Department of Structural Biology, Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Kita-ku, Sapporo 001-0021, Japan
| | | |
Collapse
|
17
|
Soong R, Smith PES, Xu J, Yamamoto K, Im SC, Waskell L, Ramamoorthy A. Proton-evolved local-field solid-state NMR studies of cytochrome b5 embedded in bicelles, revealing both structural and dynamical information. J Am Chem Soc 2010; 132:5779-88. [PMID: 20334357 DOI: 10.1021/ja910807e] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structural biology of membrane proteins has rapidly evolved into a new frontier of science. Although solving the structure of a membrane protein with atomic-level resolution is still a major challenge, separated local field (SLF) NMR spectroscopy has become an invaluable tool in obtaining structural images of membrane proteins under physiological conditions. Recent studies have demonstrated the use of rotating-frame SLF techniques to accurately measure strong heteronuclear dipolar couplings between directly bonded nuclei. However, in these experiments, all weak dipolar couplings are suppressed. On the other hand, weak heteronuclear dipolar couplings can be measured using laboratory-frame SLF experiments, but only at the expense of spectral resolution for strongly dipolar coupled spins. In the present study, we implemented two-dimensional proton-evolved local-field (2D PELF) pulse sequences using either composite zero cross-polarization (COMPOZER-CP) or windowless isotropic mixing (WIM) for magnetization transfer. These PELF sequences can be used for the measurement of a broad range of heteronuclear dipolar couplings, allowing for a complete mapping of protein dynamics in a lipid bilayer environment. Experimental results from magnetically aligned bicelles containing uniformly (15)N-labeled cytochrome b(5) are presented and theoretical analyses of the new PELF sequences are reported. Our results suggest that the PELF-based experimental approaches will have a profound impact on solid-state NMR spectroscopy of membrane proteins and other membrane-associated molecules in magnetically aligned bicelles.
Collapse
Affiliation(s)
- Ronald Soong
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Namanja AT, Wang XJ, Xu B, Mercedes-Camacho AY, Wilson BD, Wilson KA, Etzkorn FA, Peng JW. Toward flexibility-activity relationships by NMR spectroscopy: dynamics of Pin1 ligands. J Am Chem Soc 2010; 132:5607-9. [PMID: 20356313 PMCID: PMC3056322 DOI: 10.1021/ja9096779] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Drug design involves iterative ligand modifications. For flexible ligands, these modifications often entail restricting conformational flexibility. However, defining optimal restriction strategies can be challenging if the relationship between ligand flexibility and biological activity is unclear. Here, we describe an approach for ligand flexibility-activity studies using Nuclear Magnetic Resonance (NMR) spin relaxation. Specifically, we use (13)C relaxation dispersion measurements to compare site-specific changes in ligand flexibility for a series of related ligands that bind a common macromolecular receptor. The flexibility changes reflect conformational reorganization resulting from formation of the receptor-ligand complex. We demonstrate this approach on three structurally similar but flexibly differentiated ligands of human Pin1, a peptidyl-prolyl isomerase. The approach is able to map the ligand dynamics relevant for activity and expose changes in those dynamics caused by conformational locking. Thus, NMR flexibility-activity studies can provide information to guide strategic ligand rigidification. As such, they help establish an experimental basis for developing flexibility-activity relationships (FAR) to complement traditional structure-activity relationships (SAR) in molecular design.
Collapse
Affiliation(s)
- Andrew T. Namanja
- University of Notre Dame, Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556
| | - Xiaodong J. Wang
- Virginia Tech, Department of Chemistry, Blacksburg, Virginia 24061
| | - Bailing Xu
- Virginia Tech, Department of Chemistry, Blacksburg, Virginia 24061
| | | | - Brian D. Wilson
- University of Notre Dame, Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556
| | - Kimberly A. Wilson
- University of Notre Dame, Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556
| | | | - Jeffrey W. Peng
- University of Notre Dame, Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556
| |
Collapse
|
19
|
Bhunia A, Domadia PN, Torres J, Hallock KJ, Ramamoorthy A, Bhattacharjya S. NMR structure of pardaxin, a pore-forming antimicrobial peptide, in lipopolysaccharide micelles: mechanism of outer membrane permeabilization. J Biol Chem 2010; 285:3883-3895. [PMID: 19959835 PMCID: PMC2823531 DOI: 10.1074/jbc.m109.065672] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Revised: 11/02/2009] [Indexed: 11/06/2022] Open
Abstract
Lipopolysaccharide (LPS), the major constituent of the outer membrane of Gram-negative bacteria, is an important element against permeability of bactericidal agents, including antimicrobial peptides. However, structural determinants of antimicrobial peptides for LPS recognition are not clearly understood. Pardaxins (Pa1, Pa2, Pa3, and Pa4) are a group of pore-forming bactericidal peptides found in the mucous glands of sole fishes. Despite having a low net positive charge, pardaxins contain a broad spectrum of antibacterial activities. To elucidate the structural basis of LPS interactions of pardaxins, herein, we report the first three-dimensional structure of Pa4 bound to LPS micelles. The binding kinetics of Pa4 with LPS is estimated using [(15)N-Leu-19] relaxation dispersion NMR experiments. LPS/Pa4 interactions are further characterized by a number of biophysical methods, including isothermal titration calorimetry, (31)P NMR, saturation transfer difference NMR, dynamic light scattering, and IR spectroscopy. In the LPS-Pa4 complex, Pa4 adopts a unique helix-turn-helix conformation resembling a "horseshoe." Interestingly, the LPS-bound structure of Pa4 shows striking differences with the structures determined in lipid micelles or organic solvents. Saturation transfer difference NMR identifies residues of Pa4 that are intimately associated with LPS micelles. Collectively, our results provide mechanistic insights into the outer membrane permeabilization by pardaxin.
Collapse
Affiliation(s)
- Anirban Bhunia
- From the School of Biological Sciences, Division of Structural and Computational Biology, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 and
| | - Prerna N Domadia
- From the School of Biological Sciences, Division of Structural and Computational Biology, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 and
| | - Jaume Torres
- From the School of Biological Sciences, Division of Structural and Computational Biology, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 and
| | - Kevin J Hallock
- the Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055
| | - Ayyalusamy Ramamoorthy
- the Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055.
| | - Surajit Bhattacharjya
- From the School of Biological Sciences, Division of Structural and Computational Biology, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 and.
| |
Collapse
|
20
|
Abstract
BACKGROUND: Drug discovery is a complex and unpredictable endeavor with a high failure rate. Current trends in the pharmaceutical industry have exasperated these challenges and are contributing to the dramatic decline in productivity observed over the last decade. The industrialization of science by forcing the drug discovery process to adhere to assembly-line protocols is imposing unnecessary restrictions, such as short project time-lines. Recent advances in nuclear magnetic resonance are responding to these self-imposed limitations and are providing opportunities to increase the success rate of drug discovery. OBJECTIVE/METHOD: A review of recent advancements in NMR technology that have the potential of significantly impacting and benefiting the drug discovery process will be presented. These include fast NMR data collection protocols and high-throughput protein structure determination, rapid protein-ligand co-structure determination, lead discovery using fragment-based NMR affinity screens, NMR metabolomics to monitor in vivo efficacy and toxicity for lead compounds, and the identification of new therapeutic targets through the functional annotation of proteins by FAST-NMR. CONCLUSION: NMR is a critical component of the drug discovery process, where the versatility of the technique enables it to continually expand and evolve its role. NMR is expected to maintain this growth over the next decade with advancements in automation, speed of structure calculation, in-cell imaging techniques, and the expansion of NMR amenable targets.
Collapse
Affiliation(s)
- Robert Powers
- Department of Chemistry, University of Nebraska Lincoln, Lincoln, NE 68588
| |
Collapse
|
21
|
Peng JW, Wilson BD, Namanja AT. Mapping the dynamics of ligand reorganization via 13CH3 and 13CH2 relaxation dispersion at natural abundance. JOURNAL OF BIOMOLECULAR NMR 2009; 45:171-83. [PMID: 19639385 PMCID: PMC2846628 DOI: 10.1007/s10858-009-9349-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 06/26/2009] [Indexed: 05/12/2023]
Abstract
Flexible ligands pose challenges to standard structure-activity studies since they frequently reorganize their conformations upon protein binding and catalysis. Here, we demonstrate the utility of side chain (13)C relaxation dispersion measurements to identify and quantify the conformational dynamics that drive this reorganization. The dispersion measurements probe methylene (13)CH(2) and methyl (13)CH(3) groups; the latter are highly prevalent side chain moieties in known drugs. Combining these side chain studies with existing backbone dispersion studies enables a comprehensive investigation of mus-ms conformational dynamics related to binding and catalysis. We perform these measurements at natural (13)C abundance, in congruence with common pharmaceutical research settings. We illustrate these methods through a study of the interaction of a phosphopeptide ligand with the peptidyl-prolyl isomerase, Pin1. The results illuminate the side-chain moieties that undergo conformational readjustments upon complex formation. In particular, we find evidence that multiple exchange processes influence the side chain dispersion profiles. Collectively, our studies illustrate how side-chain relaxation dispersion can shed light on ligand conformational transitions required for activity, and thereby suggest strategies for its optimization.
Collapse
Affiliation(s)
- Jeffrey W Peng
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | |
Collapse
|
22
|
Abstract
Mauldin et al. (2009) use NMR to show that drug binding can break up collective protein motions necessary for function. We discuss their findings in the context of drug discovery in pharmaceutical research.
Collapse
|