1
|
Sun N, Bai S, Dai L, Jia Y. Super-Resolution Microscopy as a Versatile Tool in Probing Molecular Assembly. Int J Mol Sci 2024; 25:11497. [PMID: 39519049 PMCID: PMC11545975 DOI: 10.3390/ijms252111497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Molecular assembly is promising in the construction of advanced materials, obtaining structures with specific functions. In-depth investigation of the relationships between the formation, dynamics, structure, and functionality of the specific molecular assemblies is one of the greatest challenges in nanotechnology and chemistry, which is essential in the rational design and development of functional materials for a variety of applications. Super-resolution microscopy (SRM) has been used as a versatile tool for investigating and elucidating the structures of individual molecular assemblies with its nanometric resolution, multicolor ability, and minimal invasiveness, which are also complementary to conventional optical or electronic techniques that provide the direct observation. In this review, we will provide an overview of the representative studies that utilize SRM to probe molecular assemblies, mainly focusing on the imaging of biomolecular assemblies (lipid-based, peptide-based, protein-based, and DNA-based), organic-inorganic hybrid assemblies, and polymer assemblies. This review will provide guidelines for the evaluation of the dynamics of molecular assemblies, assembly and disassembly processes with distinct dynamic behaviors, and multicomponent assembly through the application of these advanced imaging techniques. We believe that this review will inspire new ideas and propel the development of structural analyses of molecular assemblies to promote the exploitation of new-generation functional materials.
Collapse
Affiliation(s)
- Nan Sun
- National Engineering Research Center for Colloidal Materials, Shandong University, Jinan 250100, China;
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China;
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luru Dai
- Wenzhou Key Laboratory of Biomedical Imaging, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China;
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China;
| |
Collapse
|
2
|
Lai JZ, Lin CY, Chen SJ, Cheng YM, Abe M, Lin TC, Chien FC. Temporal-Focusing Multiphoton Excitation Single-Molecule Localization Microscopy Using Spontaneously Blinking Fluorophores. Angew Chem Int Ed Engl 2024; 63:e202404942. [PMID: 38641901 DOI: 10.1002/anie.202404942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Single-molecule localization microscopy (SMLM) based on temporal-focusing multiphoton excitation (TFMPE) and single-wavelength excitation is used to visualize the three-dimensional (3D) distribution of spontaneously blinking fluorophore-labeled subcellular structures in a thick specimen with a nanoscale-level spatial resolution. To eliminate the photobleaching effect of unlocalized molecules in out-of-focus regions for improving the utilization rate of the photon budget in 3D SMLM imaging, SMLM with single-wavelength TFMPE achieves wide-field and axially confined two-photon excitation (TPE) of spontaneously blinking fluorophores. TPE spectral measurement of blinking fluorophores is then conducted through TFMPE imaging at a tunable excitation wavelength, yielding the optimal TPE wavelength for increasing the number of detected photons from a single blinking event during SMLM. Subsequently, the TPE fluorescence of blinking fluorophores is recorded to obtain a two-dimensional TFMPE-SMLM image of the microtubules in cancer cells with a localization precision of 18±6 nm and an overall imaging resolution of approximately 51 nm, which is estimated based on the contribution of Nyquist resolution and localization precision. Combined with astigmatic imaging, the system is capable of 3D TFMPE-SMLM imaging of brain tissue section of a 5XFAD transgenic mouse with the pathological features of Alzheimer's disease, revealing the distribution of neurotoxic amyloid-beta peptide deposits.
Collapse
Affiliation(s)
- Jian-Zong Lai
- Department of Optics and Photonics, National Central University, No. 300, Zhongda Rd., Zhongli Dist., Taoyuan City, 32001, Taiwan
| | - Chun-Yu Lin
- College of Photonics, National Yang Ming Chiao Tung University, No.301, Sec.2, Gaofa 3rd Rd., Guiren Dist., Tainan City, 71150, Taiwan
| | - Shean-Jen Chen
- College of Photonics, National Yang Ming Chiao Tung University, No.301, Sec.2, Gaofa 3rd Rd., Guiren Dist., Tainan City, 71150, Taiwan
| | - Yu-Min Cheng
- Department of Optics and Photonics, National Central University, No. 300, Zhongda Rd., Zhongli Dist., Taoyuan City, 32001, Taiwan
| | - Manabu Abe
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima City, Hiroshima, 739-8526, Japan
| | - Tzu-Chau Lin
- Department of Chemistry, National Central University, No. 300, Zhongda Rd., Zhongli Dist., Taoyuan City, 32001, Taiwan
| | - Fan-Ching Chien
- Department of Optics and Photonics, National Central University, No. 300, Zhongda Rd., Zhongli Dist., Taoyuan City, 32001, Taiwan
| |
Collapse
|
3
|
Basumatary J, Baro N, Zanacchi FC, Mondal PP. Temporally resolved SMLM (with large PAR shift) enabled visualization of dynamic HA cluster formation and migration in a live cell. Sci Rep 2023; 13:12561. [PMID: 37532749 PMCID: PMC10397235 DOI: 10.1038/s41598-023-39096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023] Open
Abstract
The blinking properties of a single molecule are critical for single-molecule localization microscopy (SMLM). Typically, SMLM techniques involve recording several frames of diffraction-limited bright spots of single-molecules with a detector exposure time close to the blinking period. This sets a limit on the temporal resolution of SMLM to a few tens of milliseconds. Realizing that a substantial fraction of single molecules emit photons for time scales much shorter than the average blinking period, we propose accelerating data collection to capture these fast emitters. Here, we put forward a short exposure-based SMLM (shortSMLM) method powered by sCMOS detector for understanding dynamical events (both at single molecule and ensemble level). The technique is demonstrated on an Influenza-A disease model, where NIH3T3 cells (both fixed and live cells) were transfected by Dendra2-HA plasmid DNA. Analysis shows a 2.76-fold improvement in the temporal resolution that comes with a sacrifice in spatial resolution, and a particle resolution shift PAR-shift (in terms of localization precision) of [Formula: see text] 11.82 nm compared to standard SMLM. We visualized dynamic HA cluster formation in transfected cells post 24 h of DNA transfection. It is noted that a reduction in spatial resolution does not substantially alter cluster characteristics (cluster density, [Formula: see text] molecules/cluster, cluster spread, etc.) and, indeed, preserves critical features. Moreover, the time-lapse imaging reveals the dynamic formation and migration of Hemagglutinin (HA) clusters in a live cell. This suggests that [Formula: see text] using a synchronized high QE sCMOS detector (operated at short exposure times) is excellent for studying temporal dynamics in cellular system.
Collapse
Affiliation(s)
- Jigmi Basumatary
- Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, India
| | - Neptune Baro
- Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, India
| | | | - Partha Pratim Mondal
- Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
4
|
Sun N, Jia Y, Bai S, Li Q, Dai L, Li J. The power of super-resolution microscopy in modern biomedical science. Adv Colloid Interface Sci 2023; 314:102880. [PMID: 36965225 DOI: 10.1016/j.cis.2023.102880] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Super-resolution microscopy (SRM) technology that breaks the diffraction limit has revolutionized the field of cell biology since its appearance, which enables researchers to visualize cellular structures with nanometric resolution, multiple colors and single-molecule sensitivity. With the flourishing development of hardware and the availability of novel fluorescent probes, the impact of SRM has already gone beyond cell biology and extended to nanomedicine, material science and nanotechnology, and remarkably boosted important breakthroughs in these fields. In this review, we will mainly highlight the power of SRM in modern biomedical science, discussing how these SRM techniques revolutionize the way we understand cell structures, biomaterials assembly and how assembled biomaterials interact with cellular organelles, and finally their promotion to the clinical pre-diagnosis. Moreover, we also provide an outlook on the current technical challenges and future improvement direction of SRM. We hope this review can provide useful information, inspire new ideas and propel the development both from the perspective of SRM techniques and from the perspective of SRM's applications.
Collapse
Affiliation(s)
- Nan Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049
| | - Qi Li
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, China
| | - Luru Dai
- Wenzhou Institute and Wenzhou Key Laboratory of Biophysics, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049.
| |
Collapse
|
5
|
Remmel M, Scheiderer L, Butkevich AN, Bossi ML, Hell SW. Accelerated MINFLUX Nanoscopy, through Spontaneously Fast-Blinking Fluorophores. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206026. [PMID: 36642798 DOI: 10.1002/smll.202206026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The introduction of MINFLUX nanoscopy allows single molecules to be localized with one nanometer precision in as little as one millisecond. However, current applications have so far focused on increasing this precision by optimizing photon collection, rather than minimizing the localization time. Concurrently, commonly used fluorescent switches are specifically designed for stochastic methods (e.g., STORM), optimized for a high photon yield and rather long on-times (tens of milliseconds). Here, accelerated MINFLUX nanoscopy with up to a 30-fold gain in localization speed is presented. The improvement is attained by designing spontaneously blinking fluorescent markers with remarkably fast on-times, down to 1-3 ms, matching the iterative localization process used in a MINFLUX microscope. This design utilizes a silicon rhodamine amide core, shifting the spirocyclization equilibrium toward an uncharged closed form at physiological conditions and imparting intact live cell permeability, modified with a fused (benzo)thiophene spirolactam fragment. The best candidate for MINFLUX microscopy (also suitable for STORM imaging) is selected through detailed characterization of the blinking behavior of single fluorophores, bound to different protein tags. Finally, optimization of the localization routines, customized to the fast blinking times, renders a significant speed improvement on a commercial MINFLUX microscope.
Collapse
Affiliation(s)
- Michael Remmel
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Lukas Scheiderer
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Alexey N Butkevich
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Mariano L Bossi
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Stefan W Hell
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| |
Collapse
|
6
|
Boukhatem H, Durel B, Raimbault M, Laurent A, Olivier N. Evaluation of Slowfade Diamond as a buffer for STORM microscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:550-558. [PMID: 36874488 PMCID: PMC9979685 DOI: 10.1364/boe.473463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
We study the potential of the commercial mounting medium Slowfade diamond as a buffer for STORM microscopy. We show that although it does not work with the popular far-red dyes typically used for STORM imaging, such as Alexa Fluor 647, it performs really well with a wide variety of green-excited dyes such as Alexa Fluor 532, Alexa Fluor 555 or CF 568. Moreover, imaging can be performed several months after the samples are mounted in this environment and kept in the fridge, providing a convenient way to preserve samples for STORM imaging, as well as to keep calibration samples, for example for metrology or teaching in particular in imaging facilities.
Collapse
Affiliation(s)
- Hadjer Boukhatem
- Laboratory for Optics and Biosciences (LOB), CNRS, INSERM, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Beatrice Durel
- Cell Imaging Platform, Structure Fédérative de Recherche Necker, INSERM US24, CNRS UMS3633, Paris, F-75015, France
| | - Manon Raimbault
- Cell Imaging Platform, Structure Fédérative de Recherche Necker, INSERM US24, CNRS UMS3633, Paris, F-75015, France
| | - Audrey Laurent
- Université de Paris, Institut-Necker-Enfants-Malades, Inserm, CNRS, Paris, France
- École Doctorale BioSPC 562, Université de Paris, Paris, France
| | - Nicolas Olivier
- Laboratory for Optics and Biosciences (LOB), CNRS, INSERM, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| |
Collapse
|
7
|
Herdly L, Tinning PW, Geiser A, Taylor H, Gould GW, van de Linde S. Benchmarking Thiolate-Driven Photoswitching of Cyanine Dyes. J Phys Chem B 2023; 127:732-741. [PMID: 36638265 PMCID: PMC9884076 DOI: 10.1021/acs.jpcb.2c06872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Carbocyanines are among the best performing dyes in single-molecule localization microscopy (SMLM), but their performance critically relies on optimized photoswitching buffers. Here, we study the versatile role of thiols in cyanine photoswitching at varying intensities generated in a single acquisition by a microelectromechanical systems (MEMS) mirror placed in the excitation path. The key metrics we have analyzed as a function of the thiolate concentration are photon budget, on-state and off-state lifetimes and the corresponding impact on image resolution. We show that thiolate acts as a concentration bandpass filter for the maximum achievable resolution and determine a minimum of ∼1 mM is necessary to facilitate SMLM measurements. We also identify a concentration bandwidth of 1-16 mM in which the photoswitching performance can be balanced between high molecular brightness and high off-time to on-time ratios. Furthermore, we monitor the performance of the popular oxygen scavenger system based on glucose and glucose oxidase over time and show simple measures to avoid acidification during prolonged measurements. Finally, the impact of buffer settings is quantitatively tested on the distribution of the glucose transporter protein 4 within the plasma membrane of adipocytes. Our work provides a general strategy for achieving optimal resolution in SMLM with relevance for the development of novel buffers and dyes.
Collapse
Affiliation(s)
- Lucas Herdly
- Department
of Physics, SUPA, University of Strathclyde, GlasgowG4 0NG, Scotland, United Kingdom
| | - Peter W. Tinning
- Department
of Physics, SUPA, University of Strathclyde, GlasgowG4 0NG, Scotland, United Kingdom
| | - Angéline Geiser
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, GlasgowG4 0RE, Scotland, United Kingdom
| | - Holly Taylor
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, GlasgowG4 0RE, Scotland, United Kingdom
| | - Gwyn W. Gould
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, GlasgowG4 0RE, Scotland, United Kingdom
| | - Sebastian van de Linde
- Department
of Physics, SUPA, University of Strathclyde, GlasgowG4 0NG, Scotland, United Kingdom,
| |
Collapse
|
8
|
Kikuchi K, Adair LD, Lin J, New EJ, Kaur A. Photochemical Mechanisms of Fluorophores Employed in Single-Molecule Localization Microscopy. Angew Chem Int Ed Engl 2023; 62:e202204745. [PMID: 36177530 PMCID: PMC10100239 DOI: 10.1002/anie.202204745] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 02/02/2023]
Abstract
Decoding cellular processes requires visualization of the spatial distribution and dynamic interactions of biomolecules. It is therefore not surprising that innovations in imaging technologies have facilitated advances in biomedical research. The advent of super-resolution imaging technologies has empowered biomedical researchers with the ability to answer long-standing questions about cellular processes at an entirely new level. Fluorescent probes greatly enhance the specificity and resolution of super-resolution imaging experiments. Here, we introduce key super-resolution imaging technologies, with a brief discussion on single-molecule localization microscopy (SMLM). We evaluate the chemistry and photochemical mechanisms of fluorescent probes employed in SMLM. This Review provides guidance on the identification and adoption of fluorescent probes in single molecule localization microscopy to inspire the design of next-generation fluorescent probes amenable to single-molecule imaging.
Collapse
Affiliation(s)
- Kai Kikuchi
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Melbourne, VIC 305, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Liam D Adair
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jiarun Lin
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Elizabeth J New
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Amandeep Kaur
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Melbourne, VIC 305, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
9
|
Schröder T, Bange S, Schedlbauer J, Steiner F, Lupton JM, Tinnefeld P, Vogelsang J. How Blinking Affects Photon Correlations in Multichromophoric Nanoparticles. ACS NANO 2021; 15:18037-18047. [PMID: 34735135 DOI: 10.1021/acsnano.1c06649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A single chromophore can only emit a maximum of one single photon per excitation cycle. This limitation results in a phenomenon commonly referred to as photon antibunching (pAB). When multiple chromophores contribute to the fluorescence measured, the degree of pAB has been used as a metric to "count" the number of chromophores. But the fact that chromophores can switch randomly between bright and dark states also impacts pAB and can lead to incorrect chromophore numbers being determined from pAB measurements. By both simulations and experiment, we demonstrate how pAB is affected by independent and collective chromophore blinking, enabling us to formulate universal guidelines for correct interpretation of pAB measurements. We use DNA-origami nanostructures to design multichromophoric model systems that exhibit either independent or collective chromophore blinking. Two approaches are presented that can distinguish experimentally between these two blinking mechanisms. The first one utilizes the different excitation intensity dependence on the blinking mechanisms. The second approach exploits the fact that collective blinking implies energy transfer to a quenching moiety, which is a time-dependent process. In pulsed-excitation experiments, the degree of collective blinking can therefore be altered by time gating the fluorescence photon stream, enabling us to extract the energy-transfer rate to a quencher. The ability to distinguish between different blinking mechanisms is valuable in materials science, such as for multichromophoric nanoparticles like conjugated-polymer chains as well as in biophysics, for example, for quantitative analysis of protein assemblies by counting chromophores.
Collapse
Affiliation(s)
- Tim Schröder
- Department Chemie and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Sebastian Bange
- Institut für Experimentelle und Angewandte Physik and Regensburg Center for Ultrafast Nanoscopy (RUN), Universität Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| | - Jakob Schedlbauer
- Institut für Experimentelle und Angewandte Physik and Regensburg Center for Ultrafast Nanoscopy (RUN), Universität Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| | - Florian Steiner
- Department Chemie and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - John M Lupton
- Institut für Experimentelle und Angewandte Physik and Regensburg Center for Ultrafast Nanoscopy (RUN), Universität Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| | - Philip Tinnefeld
- Department Chemie and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Jan Vogelsang
- Institut für Experimentelle und Angewandte Physik and Regensburg Center for Ultrafast Nanoscopy (RUN), Universität Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| |
Collapse
|
10
|
Lisovskaya A, Carmichael I, Harriman A. Pulse Radiolysis Investigation of Radicals Derived from Water-Soluble Cyanine Dyes: Implications for Super-resolution Microscopy. J Phys Chem A 2021; 125:5779-5793. [PMID: 34165985 DOI: 10.1021/acs.jpca.1c03776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Light-induced blinking, an inherent feature of many forms of super-resolution microscopy, has been linked to transient reduction of the fluorescent cyanine dye used as an imaging agent. There is, however, only scant literature information related to one-electron reduced cyanine dyes, especially in an aqueous environment. Here, we examine a small series of cyanine dyes, possessing disparate π-conjugation lengths, under selective reducing or oxidizing conditions. The experiment allows recording of both differential absorption spectra and decay kinetics of the resultant one-electron reduced or oxidized transient species in water. Relative to the ground state, absorption transitions for the various radicals are weak and somewhat broadened but do allow correlation with the π-conjugation length. In all cases, absorption maxima lie to the blue of the main ground-state transition. Under anaerobic conditions, the transient species decay on the microsecond to millisecond time scale, with the mean lifetime depending on molecular structure, radiation dose, and dye concentration. The experimental absorption spectra recorded for the one-electron reduced radicals and the presumed dimer cation radical compare well to spectra obtained from time-dependent density functional theory calculations. The results allow conclusions to be drawn regarding the plausibility of the reduced species being responsible for light-induced blinking in direct stochastic optical reconstruction microscopy.
Collapse
Affiliation(s)
- Alexandra Lisovskaya
- Notre Dame Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ian Carmichael
- Notre Dame Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Anthony Harriman
- Molecular Photonics Laboratory, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
11
|
Touizer E, Sieben C, Henriques R, Marsh M, Laine RF. Application of Super-Resolution and Advanced Quantitative Microscopy to the Spatio-Temporal Analysis of Influenza Virus Replication. Viruses 2021; 13:233. [PMID: 33540739 PMCID: PMC7912985 DOI: 10.3390/v13020233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
With an estimated three to five million human cases annually and the potential to infect domestic and wild animal populations, influenza viruses are one of the greatest health and economic burdens to our society, and pose an ongoing threat of large-scale pandemics. Despite our knowledge of many important aspects of influenza virus biology, there is still much to learn about how influenza viruses replicate in infected cells, for instance, how they use entry receptors or exploit host cell trafficking pathways. These gaps in our knowledge are due, in part, to the difficulty of directly observing viruses in living cells. In recent years, advances in light microscopy, including super-resolution microscopy and single-molecule imaging, have enabled many viral replication steps to be visualised dynamically in living cells. In particular, the ability to track single virions and their components, in real time, now allows specific pathways to be interrogated, providing new insights to various aspects of the virus-host cell interaction. In this review, we discuss how state-of-the-art imaging technologies, notably quantitative live-cell and super-resolution microscopy, are providing new nanoscale and molecular insights into influenza virus replication and revealing new opportunities for developing antiviral strategies.
Collapse
Affiliation(s)
- Emma Touizer
- Division of Infection and Immunity, University College London, London WC1E 6AE, UK;
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
| | - Christian Sieben
- Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Ricardo Henriques
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
- The Francis Crick Institute, London NW1 1AT, UK
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
| | - Romain F. Laine
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
- The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
12
|
Erstling JA, Hinckley JA, Bag N, Hersh J, Feuer GB, Lee R, Malarkey HF, Yu F, Ma K, Baird BA, Wiesner UB. Ultrasmall, Bright, and Photostable Fluorescent Core-Shell Aluminosilicate Nanoparticles for Live-Cell Optical Super-Resolution Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006829. [PMID: 33470471 PMCID: PMC7936654 DOI: 10.1002/adma.202006829] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Stochastic optical reconstruction microscopy (STORM) is an optical super-resolution microscopy (SRM) technique that traditionally requires toxic and non-physiological imaging buffers and setups that are not conducive to live-cell studies. It is observed that ultrasmall (<10 nm) fluorescent core-shell aluminosilicate nanoparticles (aC' dots) covalently encapsulating organic fluorophores enable STORM with a single excitation source and in a regular (non-toxic) imaging buffer. It is shown that fourfold coordinated aluminum is responsible for dye blinking, likely via photoinduced redox processes. It is demonstrated that this phenomenon is observed across different dye families leading to probes brighter and more photostable than the parent free dyes. Functionalization of aC' dots with antibodies allows targeted fixed cell STORM imaging. Finally, aC' dots enable live-cell STORM imaging providing quantitative measures of the size of intracellular vesicles and the number of particles per vesicle. The results suggest the emergence of a powerful ultrasmall, bright, and photostable optical SRM particle platform with characteristics relevant to clinical translation for the quantitative assessment of cellular structures and processes from live-cell imaging.
Collapse
Affiliation(s)
- Jacob A Erstling
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Joshua A Hinckley
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Nirmalya Bag
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jessica Hersh
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Grant B Feuer
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Rachel Lee
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Henry F Malarkey
- Department of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Fei Yu
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Kai Ma
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Ulrich B Wiesner
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
13
|
Xie M, Hua Y, Hong D, Wan S, Tian Y. Physical insights into protection effect of conjugated polymers by natural antioxidants. RSC Adv 2021; 11:1614-1622. [PMID: 35424094 PMCID: PMC8693752 DOI: 10.1039/d0ra09657a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/17/2020] [Indexed: 11/21/2022] Open
Abstract
Conjugated polymers (CPs) known as organic semiconductors have been broadly applied in photovoltaic and light emitting devices due to their easy fabrication and flexibility. However, one of the bottlenecks limiting the application of CPs is their poor photostability upon continuous excitation which is one of the crucial parameters of CPs. How to improve the photostability of CPs is always one of the key questions in this field. In this work, we found that the photostability of poly(3-hexylthiophene-2,5-diyl) (P3HT) molecules can be largely improved by addition of vitamin E (VE) in bulk solution, solid films and single molecules. In solution and films, VE can not only significantly retard the photodegradation of P3HT but also enhance the fluorescence intensity. For individual P3HT molecules, with increasing VE concentrations, the on-time duration increases and the off-time duration becomes shorter. VE as natural antioxidants can not only donate electrons to the long-lived charged species but also quench the triplet states of CPs via energy transfer accelerating the depopulation process back to the ground state. The short duration time of the charged species and the triplet states provides higher fluorescence intensity. Furthermore, VE can also directly react with singlet oxygen or other reactive oxygen species (ROS) preventing them from reacting with CPs. These results not only provide an efficient strategy for improving the photostability of conjugated polymers in solution and films, but also shed light on better understanding the photophysics of conjugated polymers at single-molecule level.
Collapse
Affiliation(s)
- Mingcai Xie
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University Nanjing China
| | - Yan Hua
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University Nanjing China
| | - Daocheng Hong
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University Nanjing China
| | - Sushu Wan
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University Nanjing China
| | - Yuxi Tian
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University Nanjing China
| |
Collapse
|
14
|
Abe M, Kobayashi T. Imaging Sphingomyelin- and Cholesterol-Enriched Domains in the Plasma Membrane Using a Novel Probe and Super-Resolution Microscopy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1310:81-90. [PMID: 33834433 DOI: 10.1007/978-981-33-6064-8_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this chapter, we show the visualization of lipid domains using a specific lipid-binding protein and super-resolution microscopy. Lipid rafts are plasma membrane domains enriched in both sphingolipids and sterols that play key roles in various physiological events. We identified a novel protein that specifically binds to a complex of sphingomyelin (SM) and cholesterol (Chol). The isolated protein, nakanori, labels the SM/Chol complex at the outer leaflet of the plasma membrane in mammalian cells. Structured illumination microscopic images suggested that the influenza virus buds from the edges of the SM/Chol domains in MDCK cells. Furthermore, a photoactivated localization microscopy analysis indicated that the SM/Chol complex forms domains in the outer leaflet, just above the phosphatidylinositol 4,5-bisphosphate domains in the inner leaflet. These observations provide significant insight into the structure and function of lipid rafts.
Collapse
Affiliation(s)
- Mitsuhiro Abe
- Cellular Informatics Laboratory, RIKEN, Wako, Saitama, Japan.
| | - Toshihide Kobayashi
- Cellular Informatics Laboratory, RIKEN, Wako, Saitama, Japan.,UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| |
Collapse
|
15
|
Samanta S, Gong W, Li W, Sharma A, Shim I, Zhang W, Das P, Pan W, Liu L, Yang Z, Qu J, Kim JS. Organic fluorescent probes for stochastic optical reconstruction microscopy (STORM): Recent highlights and future possibilities. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Sahl SJ, Schönle A, Hell SW. Fluorescence Microscopy with Nanometer Resolution. SPRINGER HANDBOOK OF MICROSCOPY 2019. [DOI: 10.1007/978-3-030-00069-1_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Haimerl JM, Ghosh I, König B, Lupton JM, Vogelsang J. Chemical Photocatalysis with Rhodamine 6G: Investigation of Photoreduction by Simultaneous Fluorescence Correlation Spectroscopy and Fluorescence Lifetime Measurements. J Phys Chem B 2018; 122:10728-10735. [DOI: 10.1021/acs.jpcb.8b08615] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Herten DP, Haderspeck A, Braun F, Wadepohl H. Copper(II)-induced Fluorescence Quenching of a BODIPY Fluorophore. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201800154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dirk-Peter Herten
- Institute of Physical Chemistry; Heidelberg University; Im Neuenheimer Feld 229 69120 Heidelberg Germany
| | - Andreas Haderspeck
- Institute of Physical Chemistry; Heidelberg University; Im Neuenheimer Feld 229 69120 Heidelberg Germany
| | - Felix Braun
- Institute of Physical Chemistry; Heidelberg University; Im Neuenheimer Feld 229 69120 Heidelberg Germany
| | - Hubert Wadepohl
- Institute of Inorganic Chemistry; Heidelberg University; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
19
|
Park G, Chakkarapani SK, Ju S, Ahn S, Kang SH. Super-resolution morphological dissemination of intercalating dye in single DNA molecules via binding activated localization microscopy. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Raab M, Jusuk I, Molle J, Buhr E, Bodermann B, Bergmann D, Bosse H, Tinnefeld P. Using DNA origami nanorulers as traceable distance measurement standards and nanoscopic benchmark structures. Sci Rep 2018; 8:1780. [PMID: 29379061 PMCID: PMC5789094 DOI: 10.1038/s41598-018-19905-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/21/2017] [Indexed: 11/09/2022] Open
Abstract
In recent years, DNA origami nanorulers for superresolution (SR) fluorescence microscopy have been developed from fundamental proof-of-principle experiments to commercially available test structures. The self-assembled nanostructures allow placing a defined number of fluorescent dye molecules in defined geometries in the nanometer range. Besides the unprecedented control over matter on the nanoscale, robust DNA origami nanorulers are reproducibly obtained in high yields. The distances between their fluorescent marks can be easily analysed yielding intermark distance histograms from many identical structures. Thus, DNA origami nanorulers have become excellent reference and training structures for superresolution microscopy. In this work, we go one step further and develop a calibration process for the measured distances between the fluorescent marks on DNA origami nanorulers. The superresolution technique DNA-PAINT is used to achieve nanometrological traceability of nanoruler distances following the guide to the expression of uncertainty in measurement (GUM). We further show two examples how these nanorulers are used to evaluate the performance of TIRF microscopes that are capable of single-molecule localization microscopy (SMLM).
Collapse
Affiliation(s)
- Mario Raab
- Institute for Physical & Theoretical Chemistry, and Braunschweig, Integrated Centre of Systems Biology (BRICS) and Laboratory for Emerging Nanometrology (LENA), Braunschweig University of Technology, Rebenring 56, 38106, Braunschweig, Germany.,Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universitaet Muenchen, Butenandtstr, 5-13, 81377, Muenchen, Germany
| | - Ija Jusuk
- Institute for Physical & Theoretical Chemistry, and Braunschweig, Integrated Centre of Systems Biology (BRICS) and Laboratory for Emerging Nanometrology (LENA), Braunschweig University of Technology, Rebenring 56, 38106, Braunschweig, Germany.,Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universitaet Muenchen, Butenandtstr, 5-13, 81377, Muenchen, Germany
| | - Julia Molle
- Institute for Physical & Theoretical Chemistry, and Braunschweig, Integrated Centre of Systems Biology (BRICS) and Laboratory for Emerging Nanometrology (LENA), Braunschweig University of Technology, Rebenring 56, 38106, Braunschweig, Germany
| | - Egbert Buhr
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116, Braunschweig, Germany
| | - Bernd Bodermann
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116, Braunschweig, Germany
| | - Detlef Bergmann
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116, Braunschweig, Germany
| | - Harald Bosse
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116, Braunschweig, Germany
| | - Philip Tinnefeld
- Institute for Physical & Theoretical Chemistry, and Braunschweig, Integrated Centre of Systems Biology (BRICS) and Laboratory for Emerging Nanometrology (LENA), Braunschweig University of Technology, Rebenring 56, 38106, Braunschweig, Germany. .,Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universitaet Muenchen, Butenandtstr, 5-13, 81377, Muenchen, Germany.
| |
Collapse
|
21
|
Polarized super-resolution structural imaging inside amyloid fibrils using Thioflavine T. Sci Rep 2017; 7:12482. [PMID: 28970520 PMCID: PMC5624930 DOI: 10.1038/s41598-017-12864-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/14/2017] [Indexed: 11/08/2022] Open
Abstract
Thioflavin T (ThT) is standardly used as a fluorescent marker to detect aggregation of amyloid fibrils by conventional fluorescence microscopy, including polarization resolved imaging that brings information on the orientational order of the fibrils. These techniques are however diffraction limited and cannot provide fine structural details at the fibrils scales of 10-100 nm, which lie beyond the diffraction limit. In this work, we evaluate the capacity of ThT to photoswitch when bound to insulin amyloids by adjusting the redox properties of its environment. We demonstrate that on-off duty cycles, intensity and photostability of the ThT fluorescence emission under adequate buffer conditions permit stochastic super-resolution imaging with a localization precision close to 20 nm. We show moreover that signal to noise conditions allow polarized orientational imaging of single ThT molecules, which reveals ultra-structure signatures related to protofilaments twisting within amyloid fibrils.
Collapse
|
22
|
Chakraborty K, Veetil AT, Jaffrey SR, Krishnan Y. Nucleic Acid-Based Nanodevices in Biological Imaging. Annu Rev Biochem 2017; 85:349-73. [PMID: 27294440 DOI: 10.1146/annurev-biochem-060815-014244] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nanoscale engineering of nucleic acids has led to exciting molecular technologies for high-end biological imaging. The predictable base pairing, high programmability, and superior new chemical and biological methods used to access nucleic acids with diverse lengths and in high purity, coupled with computational tools for their design, have allowed the creation of a stunning diversity of nucleic acid-based nanodevices. Given their biological origin, such synthetic devices have a tremendous capacity to interface with the biological world, and this capacity lies at the heart of several nucleic acid-based technologies that are finding applications in biological systems. We discuss these diverse applications and emphasize the advantage, in terms of physicochemical properties, that the nucleic acid scaffold brings to these contexts. As our ability to engineer this versatile scaffold increases, its applications in structural, cellular, and organismal biology are clearly poised to massively expand.
Collapse
Affiliation(s)
- Kasturi Chakraborty
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637; , ,
| | - Aneesh T Veetil
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637; , ,
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York 10065;
| | - Yamuna Krishnan
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637; , , .,Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
23
|
Cremer C, Szczurek A, Schock F, Gourram A, Birk U. Super-resolution microscopy approaches to nuclear nanostructure imaging. Methods 2017; 123:11-32. [PMID: 28390838 DOI: 10.1016/j.ymeth.2017.03.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/23/2017] [Indexed: 12/14/2022] Open
Abstract
The human genome has been decoded, but we are still far from understanding the regulation of all gene activities. A largely unexplained role in these regulatory mechanisms is played by the spatial organization of the genome in the cell nucleus which has far-reaching functional consequences for gene regulation. Until recently, it appeared to be impossible to study this problem on the nanoscale by light microscopy. However, novel developments in optical imaging technology have radically surpassed the limited resolution of conventional far-field fluorescence microscopy (ca. 200nm). After a brief review of available super-resolution microscopy (SRM) methods, we focus on a specific SRM approach to study nuclear genome structure at the single cell/single molecule level, Spectral Precision Distance/Position Determination Microscopy (SPDM). SPDM, a variant of localization microscopy, makes use of conventional fluorescent proteins or single standard organic fluorophores in combination with standard (or only slightly modified) specimen preparation conditions; in its actual realization mode, the same laser frequency can be used for both photoswitching and fluorescence read out. Presently, the SPDM method allows us to image nuclear genome organization in individual cells down to few tens of nanometer (nm) of structural resolution, and to perform quantitative analyses of individual small chromatin domains; of the nanoscale distribution of histones, chromatin remodeling proteins, and transcription, splicing and repair related factors. As a biomedical research application, using dual-color SPDM, it became possible to monitor in mouse cardiomyocyte cells quantitatively the effects of ischemia conditions on the chromatin nanostructure (DNA). These novel "molecular optics" approaches open an avenue to study the nuclear landscape directly in individual cells down to the single molecule level and thus to test models of functional genome architecture at unprecedented resolution.
Collapse
Affiliation(s)
- Christoph Cremer
- Superresolution Microscopy, Institute of Molecular Biology (IMB), Mainz, Germany; Department of Physics, University of Mainz (JGU), Mainz, Germany; Institute for Pharmacy and Molecular Biotechnology (IPMB), and Kirchhoff Institute for Physics (KIP), University of Heidelberg, Heidelberg, Germany. http://www.optics.imb-mainz.de
| | - Aleksander Szczurek
- Superresolution Microscopy, Institute of Molecular Biology (IMB), Mainz, Germany
| | - Florian Schock
- Department of Physics, University of Mainz (JGU), Mainz, Germany; Institute for Pharmacy and Molecular Biotechnology (IPMB), and Kirchhoff Institute for Physics (KIP), University of Heidelberg, Heidelberg, Germany
| | - Amine Gourram
- Superresolution Microscopy, Institute of Molecular Biology (IMB), Mainz, Germany
| | - Udo Birk
- Superresolution Microscopy, Institute of Molecular Biology (IMB), Mainz, Germany; Department of Physics, University of Mainz (JGU), Mainz, Germany; Institute for Pharmacy and Molecular Biotechnology (IPMB), and Kirchhoff Institute for Physics (KIP), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
24
|
Abstract
Super-resolution fluorescence imaging by photoactivation or photoswitching of single fluorophores and position determination (single-molecule localization microscopy, SMLM) provides microscopic images with subdiffraction spatial resolution. This technology has enabled new insights into how proteins are organized in a cellular context, with a spatial resolution approaching virtually the molecular level. A unique strength of SMLM is that it delivers molecule-resolved information, along with super-resolved images of cellular structures. This allows quantitative access to cellular structures, for example, how proteins are distributed and organized and how they interact with other biomolecules. Ultimately, it is even possible to determine protein numbers in cells and the number of subunits in a protein complex. SMLM thus has the potential to pave the way toward a better understanding of how cells function at the molecular level. In this review, we describe how SMLM has contributed new knowledge in eukaryotic biology, and we specifically focus on quantitative biological data extracted from SMLM images.
Collapse
Affiliation(s)
- Markus Sauer
- Department of Biotechnology & Biophysics, Julius-Maximilian-University of Würzburg , 97074 Würzburg, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt , 60438 Frankfurt, Germany
| |
Collapse
|
25
|
Affiliation(s)
- Hans Blom
- Royal Institute of Technology (KTH), Dept Applied Physics, SciLifeLab, 17165 Solna, Sweden
| | - Jerker Widengren
- Royal Institute of Technology (KTH), Dept Applied Physics, Albanova Univ Center, 10691 Stockholm, Sweden
| |
Collapse
|
26
|
Mack DL, Cortés E, Giannini V, Török P, Roschuk T, Maier SA. Decoupling absorption and emission processes in super-resolution localization of emitters in a plasmonic hotspot. Nat Commun 2017; 8:14513. [PMID: 28211479 PMCID: PMC5321739 DOI: 10.1038/ncomms14513] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/03/2017] [Indexed: 01/13/2023] Open
Abstract
The absorption process of an emitter close to a plasmonic antenna is enhanced due to strong local electromagnetic (EM) fields. The emission, if resonant with the plasmonic system, re-radiates to the far-field by coupling with the antenna via plasmonic states, whose presence increases the local density of states. Far-field collection of the emission of single molecules close to plasmonic antennas, therefore, provides mixed information of both the local EM field strength and the local density of states. Moreover, super-resolution localizations from these emission-coupled events do not report the real position of the molecules. Here we propose using a fluorescent molecule with a large Stokes shift in order to spectrally decouple the emission from the plasmonic system, leaving the absorption strongly resonant with the antenna's enhanced EM fields. We demonstrate that this technique provides an effective way of mapping the EM field or the local density of states with nanometre spatial resolution. Reporting the position of molecules and the electromagnetic enhancement in a plasmonic hotspot is difficult. Here Mack et al. use a large Stokes-shifted molecule to spectrally decouple the emission process of the dye from the plasmonic system, keeping the absorption on resonance with the plasmon resonance of the antenna.
Collapse
Affiliation(s)
- David L Mack
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Emiliano Cortés
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Vincenzo Giannini
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Peter Török
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Tyler Roschuk
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Stefan A Maier
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
27
|
Abstract
This review describes the growing partnership between super-resolution imaging and plasmonics, by describing the various ways in which the two topics mutually benefit one another to enhance our understanding of the nanoscale world. First, localization-based super-resolution imaging strategies, where molecules are modulated between emissive and nonemissive states and their emission localized, are applied to plasmonic nanoparticle substrates, revealing the hidden shape of the nanoparticles while also mapping local electromagnetic field enhancements and reactivity patterns on their surface. However, these results must be interpreted carefully due to localization errors induced by the interaction between metallic substrates and single fluorophores. Second, plasmonic nanoparticles are explored as image contrast agents for both superlocalization and super-resolution imaging, offering benefits such as high photostability, large signal-to-noise, and distance-dependent spectral features but presenting challenges for localizing individual nanoparticles within a diffraction-limited spot. Finally, the use of plasmon-tailored excitation fields to achieve subdiffraction-limited spatial resolution is discussed, using localized surface plasmons and surface plasmon polaritons to create confined excitation volumes or image magnification to enhance spatial resolution.
Collapse
Affiliation(s)
- Katherine A Willets
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Andrew J Wilson
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Vignesh Sundaresan
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Padmanabh B Joshi
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
28
|
Würsch D, Hofmann FJ, Eder T, Aggarwal AV, Idelson A, Höger S, Lupton JM, Vogelsang J. Molecular Water Lilies: Orienting Single Molecules in a Polymer Film by Solvent Vapor Annealing. J Phys Chem Lett 2016; 7:4451-4457. [PMID: 27786495 DOI: 10.1021/acs.jpclett.6b02119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The microscopic orientation and position of photoactive molecules is crucial to the operation of optoelectronic devices such as OLEDs and solar cells. Here, we introduce a shape-persistent macrocyclic molecule as an excellent fluorescent probe to simply measure (i) its orientation by rotating the excitation polarization and recording the strength of modulation in photoluminescence (PL) and (ii) its position in a film by analyzing the overall PL brightness at the molecular level. The unique shape, the absorption and the fluorescence properties of this probe yield information on molecular orientation and position. We control orientation and positioning of the probe in a polymer film by solvent vapor annealing (SVA). During the SVA process the molecules accumulate at the polymer/air interface, where they adopt a flat orientation, much like water lilies on the surface of a pond. The results are potentially significant for OLED fabrication and single-molecule spectroscopy (SMS) in general.
Collapse
Affiliation(s)
- Dominik Würsch
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg , 93053 Regensburg, Germany
| | - Felix J Hofmann
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg , 93053 Regensburg, Germany
| | - Theresa Eder
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg , 93053 Regensburg, Germany
| | - A Vikas Aggarwal
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn , 53121 Bonn, Germany
| | - Alissa Idelson
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn , 53121 Bonn, Germany
| | - Sigurd Höger
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn , 53121 Bonn, Germany
| | - John M Lupton
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg , 93053 Regensburg, Germany
| | - Jan Vogelsang
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg , 93053 Regensburg, Germany
| |
Collapse
|
29
|
Laine RF, Kaminski Schierle GS, van de Linde S, Kaminski CF. From single-molecule spectroscopy to super-resolution imaging of the neuron: a review. Methods Appl Fluoresc 2016; 4:022004. [PMID: 28809165 PMCID: PMC5390958 DOI: 10.1088/2050-6120/4/2/022004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/09/2016] [Accepted: 05/19/2016] [Indexed: 12/03/2022]
Abstract
For more than 20 years, single-molecule spectroscopy has been providing invaluable insights into nature at the molecular level. The field has received a powerful boost with the development of the technique into super-resolution imaging methods, ca. 10 years ago, which overcome the limitations imposed by optical diffraction. Today, single molecule super-resolution imaging is routinely used in the study of macromolecular function and structure in the cell. Concomitantly, computational methods have been developed that provide information on numbers and positions of molecules at the nanometer-scale. In this overview, we outline the technical developments that have led to the emergence of localization microscopy techniques from single-molecule spectroscopy. We then provide a comprehensive review on the application of the technique in the field of neuroscience research.
Collapse
Affiliation(s)
- Romain F Laine
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, Cambridge University, Pembroke Street, Cambridge, CB2 3RA, UK
| | - Gabriele S Kaminski Schierle
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, Cambridge University, Pembroke Street, Cambridge, CB2 3RA, UK
| | - Sebastian van de Linde
- Department of Biotechnology and Biophysics, Julius-Maximilians-University, Am Hubland, D-97074 Würzburg, Germany
| | - Clemens F Kaminski
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, Cambridge University, Pembroke Street, Cambridge, CB2 3RA, UK
| |
Collapse
|
30
|
Mattila PK, Batista FD, Treanor B. Dynamics of the actin cytoskeleton mediates receptor cross talk: An emerging concept in tuning receptor signaling. J Cell Biol 2016; 212:267-80. [PMID: 26833785 PMCID: PMC4748574 DOI: 10.1083/jcb.201504137] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent evidence implicates the actin cytoskeleton in the control of receptor signaling. This may be of particular importance in the context of immune receptors, such as the B cell receptor, where dysregulated signaling can result in autoimmunity and malignancy. Here, we discuss the role of the actin cytoskeleton in controlling receptor compartmentalization, dynamics, and clustering as a means to regulate receptor signaling through controlling the interactions with protein partners. We propose that the actin cytoskeleton is a point of integration for receptor cross talk through modulation of protein dynamics and clustering. We discuss the implication of this cross talk via the cytoskeleton for both ligand-induced and low-level constitutive (tonic) signaling necessary for immune cell survival.
Collapse
Affiliation(s)
- Pieta K Mattila
- Institute of Biomedicine, MediCity, University of Turku, 20520 Turku, Finland
| | - Facundo D Batista
- Lymphocyte Interaction Laboratory, The Francis Crick Institute, Cancer Research UK, London WC2A 3LY, England, UK
| | - Bebhinn Treanor
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M5T 1C6, Canada
| |
Collapse
|
31
|
Abstract
The majority of studies of the living cell rely on capturing images using fluorescence microscopy. Unfortunately, for centuries, diffraction of light was limiting the spatial resolution in the optical microscope: structural and molecular details much finer than about half the wavelength of visible light (~200 nm) could not be visualized, imposing significant limitations on this otherwise so promising method. The surpassing of this resolution limit in far-field microscopy is currently one of the most momentous developments for studying the living cell, as the move from microscopy to super-resolution microscopy or 'nanoscopy' offers opportunities to study problems in biophysical and biomedical research at a new level of detail. This review describes the principles and modalities of present fluorescence nanoscopes, as well as their potential for biophysical and cellular experiments. All the existing nanoscopy variants separate neighboring features by transiently preparing their fluorescent molecules in states of different emission characteristics in order to make the features discernible. Usually these are fluorescent 'on' and 'off' states causing the adjacent molecules to emit sequentially in time. Each of the variants can in principle reach molecular spatial resolution and has its own advantages and disadvantages. Some require specific transitions and states that can be found only in certain fluorophore subfamilies, such as photoswitchable fluorophores, while other variants can be realized with standard fluorescent labels. Similar to conventional far-field microscopy, nanoscopy can be utilized for dynamical, multi-color and three-dimensional imaging of fixed and live cells, tissues or organisms. Lens-based fluorescence nanoscopy is poised for a high impact on future developments in the life sciences, with the potential to help solve long-standing quests in different areas of scientific research.
Collapse
|
32
|
van der Velde JHM, Oelerich J, Huang J, Smit JH, Aminian Jazi A, Galiani S, Kolmakov K, Guoridis G, Eggeling C, Herrmann A, Roelfes G, Cordes T. A simple and versatile design concept for fluorophore derivatives with intramolecular photostabilization. Nat Commun 2016; 7:10144. [PMID: 26751640 PMCID: PMC4729898 DOI: 10.1038/ncomms10144] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/05/2015] [Indexed: 11/09/2022] Open
Abstract
Intramolecular photostabilization via triple-state quenching was recently revived as a tool to impart synthetic organic fluorophores with 'self-healing' properties. To date, utilization of such fluorophore derivatives is rare due to their elaborate multi-step synthesis. Here we present a general strategy to covalently link a synthetic organic fluorophore simultaneously to a photostabilizer and biomolecular target via unnatural amino acids. The modular approach uses commercially available starting materials and simple chemical transformations. The resulting photostabilizer-dye conjugates are based on rhodamines, carbopyronines and cyanines with excellent photophysical properties, that is, high photostability and minimal signal fluctuations. Their versatile use is demonstrated by single-step labelling of DNA, antibodies and proteins, as well as applications in single-molecule and super-resolution fluorescence microscopy. We are convinced that the presented scaffolding strategy and the improved characteristics of the conjugates in applications will trigger the broader use of intramolecular photostabilization and help to emerge this approach as a new gold standard.
Collapse
Affiliation(s)
- Jasper H M van der Velde
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jens Oelerich
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jingyi Huang
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jochem H Smit
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Atieh Aminian Jazi
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Silvia Galiani
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Kirill Kolmakov
- Department NanoBiophotonics, Max-Planck-Institute of Molecular Medicine, Am Fassberg 1, 37077 Goettingen, Germany
| | - Giorgos Guoridis
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Andreas Herrmann
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Gerard Roelfes
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Thorben Cordes
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
33
|
Analyzing Protein Clusters on the Plasma Membrane: Application of Spatial Statistical Analysis Methods on Super-Resolution Microscopy Images. FOCUS ON BIO-IMAGE INFORMATICS 2016; 219:95-122. [DOI: 10.1007/978-3-319-28549-8_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Abstract
The local structure and composition of the outer membrane of an animal cell are important factors in the control of many membrane processes and mechanisms. These include signaling, sorting, and exo- and endocytic processes that are occurring all the time in a living cell. Paradoxically, not only are the local structure and composition of the membrane matters of much debate and discussion, the mechanisms that govern its genesis remain highly controversial. Here, we discuss a swathe of new technological advances that may be applied to understand the local structure and composition of the membrane of a living cell from the molecular scale to the scale of the whole membrane.
Collapse
Affiliation(s)
- Thomas S van Zanten
- National Centre for Biological Sciences (TIFR), Bellary Road, Bangalore, 560065, India
| | - Satyajit Mayor
- National Centre for Biological Sciences (TIFR), Bellary Road, Bangalore, 560065, India
| |
Collapse
|
35
|
Super-Resolution Imaging Conditions for enhanced Yellow Fluorescent Protein (eYFP) Demonstrated on DNA Origami Nanorulers. Sci Rep 2015; 5:14075. [PMID: 26373229 PMCID: PMC4571581 DOI: 10.1038/srep14075] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/07/2015] [Indexed: 01/31/2023] Open
Abstract
Photostability is one of the crucial properties of a fluorophore which strongly influences the quality of single molecule-based super-resolution imaging. Enhanced yellow fluorescent protein (eYFP) is one of the most widely used versions of fluorescent proteins in modern cell biology exhibiting fast intrinsic blinking and reversible photoactivation by UV light. Here, we developed an assay for studying photostabilization of single eYFP molecules with respect to fast blinking and demonstrated a 6-fold enhanced photostability of single eYFP molecules with a beneficial influence on the blinking kinetics under oxygen removal and addition of aliphatic thiols (dSTORM-buffer). Conjugation to single stranded DNA and immobilization via DNA hybridization on a DNA origami 12 helix bundle in aqueous solution allowed photophyiscal studies of eYFP at the single-molecule level and at close to physiological conditions. The benefit of improved photophysical properties for localization-based super-resolution microscopy is demonstrated and quantitatively characterized by imaging 12 helix bundle DNA origami nanorulers with binding sites at designed distances of 160 and 100 nm and by imaging microtubules in fixed mammalian Vero cells.
Collapse
|
36
|
Uno SN, Tiwari DK, Kamiya M, Arai Y, Nagai T, Urano Y. A guide to use photocontrollable fluorescent proteins and synthetic smart fluorophores for nanoscopy. Microscopy (Oxf) 2015; 64:263-77. [PMID: 26152215 DOI: 10.1093/jmicro/dfv037] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/12/2015] [Indexed: 12/28/2022] Open
Abstract
Recent advances in nanoscopy, which breaks the diffraction barrier and can visualize structures smaller than the diffraction limit in cells, have encouraged biologists to investigate cellular processes at molecular resolution. Since nanoscopy depends not only on special optics but also on 'smart' photophysical properties of photocontrollable fluorescent probes, including photoactivatability, photoswitchability and repeated blinking, it is important for biologists to understand the advantages and disadvantages of fluorescent probes and to choose appropriate ones for their specific requirements. Here, we summarize the characteristics of currently available fluorescent probes based on both proteins and synthetic compounds applicable to nanoscopy and provide a guideline for selecting optimal probes for specific applications.
Collapse
Affiliation(s)
- Shin-Nosuke Uno
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Dhermendra K Tiwari
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Yoshiyuki Arai
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Takeharu Nagai
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Yasuteru Urano
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
37
|
Lin Y, Long JJ, Huang F, Duim WC, Kirschbaum S, Zhang Y, Schroeder LK, Rebane AA, Velasco MGM, Virrueta A, Moonan DW, Jiao J, Hernandez SY, Zhang Y, Bewersdorf J. Quantifying and optimizing single-molecule switching nanoscopy at high speeds. PLoS One 2015; 10:e0128135. [PMID: 26011109 PMCID: PMC4444241 DOI: 10.1371/journal.pone.0128135] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 04/23/2015] [Indexed: 12/12/2022] Open
Abstract
Single-molecule switching nanoscopy overcomes the diffraction limit of light by stochastically switching single fluorescent molecules on and off, and then localizing their positions individually. Recent advances in this technique have greatly accelerated the data acquisition speed and improved the temporal resolution of super-resolution imaging. However, it has not been quantified whether this speed increase comes at the cost of compromised image quality. The spatial and temporal resolution depends on many factors, among which laser intensity and camera speed are the two most critical parameters. Here we quantitatively compare the image quality achieved when imaging Alexa Fluor 647-immunolabeled microtubules over an extended range of laser intensities and camera speeds using three criteria - localization precision, density of localized molecules, and resolution of reconstructed images based on Fourier Ring Correlation. We found that, with optimized parameters, single-molecule switching nanoscopy at high speeds can achieve the same image quality as imaging at conventional speeds in a 5-25 times shorter time period. Furthermore, we measured the photoswitching kinetics of Alexa Fluor 647 from single-molecule experiments, and, based on this kinetic data, we developed algorithms to simulate single-molecule switching nanoscopy images. We used this software tool to demonstrate how laser intensity and camera speed affect the density of active fluorophores and influence the achievable resolution. Our study provides guidelines for choosing appropriate laser intensities for imaging Alexa Fluor 647 at different speeds and a quantification protocol for future evaluations of other probes and imaging parameters.
Collapse
Affiliation(s)
- Yu Lin
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States of America
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut, United States of America
| | - Jane J. Long
- Yale College, Yale University, New Haven, Connecticut, United States of America
| | - Fang Huang
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Whitney C. Duim
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Stefanie Kirschbaum
- Institute for Molecular Biophysics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Yongdeng Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Lena K. Schroeder
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Aleksander A. Rebane
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut, United States of America
- Department of Physics, Yale University, New Haven, Connecticut, United States of America
| | - Mary Grace M. Velasco
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States of America
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut, United States of America
| | - Alejandro Virrueta
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut, United States of America
- Department of Mechanical Engineering and Material Science, Yale University, New Haven, Connecticut, United States of America
| | - Daniel W. Moonan
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut, United States of America
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Junyi Jiao
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut, United States of America
| | - Sandy Y. Hernandez
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States of America
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut, United States of America
| | - Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut, United States of America
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States of America
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
38
|
Zhang M, Jiang J, Cai M, Wang H. Electrochemical Modulation of the Fluorescence of Cyanine Dye Cy5. ELECTROANAL 2015. [DOI: 10.1002/elan.201500058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
39
|
Wu X, Liu F, Wells KL, Tan SLJ, Webster RD, Tan H, Zhang D, Xing B, Yeow EKL. Interplay of Hole Transfer and Host–Guest Interaction in a Molecular Dyad and Triad: Ensemble and Single‐Molecule Spectroscopy and Sensing Applications. Chemistry 2014; 21:3387-98. [DOI: 10.1002/chem.201404360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Xiangyang Wu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Fax: (+65) 6791‐1961
| | - Fang Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Fax: (+65) 6791‐1961
| | - Kym L. Wells
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Fax: (+65) 6791‐1961
| | - Serena L. J. Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Fax: (+65) 6791‐1961
| | - Richard D. Webster
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Fax: (+65) 6791‐1961
| | - Howe‐Siang Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Fax: (+65) 6791‐1961
| | - Dawei Zhang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Fax: (+65) 6791‐1961
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Fax: (+65) 6791‐1961
| | - Edwin K. L. Yeow
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Fax: (+65) 6791‐1961
| |
Collapse
|
40
|
Leménager G, De Luca E, Sun YP, Pompa PP. Super-resolution fluorescence imaging of biocompatible carbon dots. NANOSCALE 2014; 6:8617-23. [PMID: 24983856 DOI: 10.1039/c4nr01970a] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Carbon Dots (CDs) are a new promising type of small (5 nm), biocompatible and multicolor luminescent nanoparticle. Here, we demonstrate super-resolution imaging of CDs at the nanoscale through STimulated Emission Depletion (STED) microscopy. In addition, we report the application of STED for detection of CD localization in both fixed and living cells, achieving a spatial resolution down to 30 nm, far below the diffraction limit, showing great promise for high resolution visualization of cellular dynamics.
Collapse
Affiliation(s)
- Godefroy Leménager
- Istituto Italiano di Tecnologia, Center for Bio-Molecular Nanotechnologies@UniLe, Via Barsanti - 73010, Arnesano (Lecce), Italy.
| | | | | | | |
Collapse
|
41
|
Uno SN, Kamiya M, Yoshihara T, Sugawara K, Okabe K, Tarhan MC, Fujita H, Funatsu T, Okada Y, Tobita S, Urano Y. A spontaneously blinking fluorophore based on intramolecular spirocyclization for live-cell super-resolution imaging. Nat Chem 2014; 6:681-9. [PMID: 25054937 DOI: 10.1038/nchem.2002] [Citation(s) in RCA: 284] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 06/10/2014] [Indexed: 12/11/2022]
Abstract
Single-molecule localization microscopy is used to construct super-resolution images, but generally requires prior intense laser irradiation and in some cases additives, such as thiols, to induce on-off switching of fluorophores. These requirements limit the potential applications of this methodology. Here, we report a first-in-class spontaneously blinking fluorophore based on an intramolecular spirocyclization reaction. Optimization of the intramolecular nucleophile and rhodamine-based fluorophore (electrophile) provide a suitable lifetime for the fluorescent open form, and equilibrium between the open form and the non-fluorescent closed form. We show that this spontaneously blinking fluorophore is suitable for single-molecule localization microscopy imaging deep inside cells and for tracking the motion of structures in living cells. We further demonstrate the advantages of this fluorophore over existing methodologies by applying it to nuclear pore structures located far above the coverslip with a spinning-disk confocal microscope and for repetitive time-lapse super-resolution imaging of microtubules in live cells for up to 1 h.
Collapse
Affiliation(s)
- Shin-Nosuke Uno
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Toshitada Yoshihara
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Ko Sugawara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kohki Okabe
- 1] Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan [2] JST, PRESTO, Saitama 332-0012, Japan
| | - Mehmet C Tarhan
- Center for International Research on Micronano Mechatronics, Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Hiroyuki Fujita
- Center for International Research on Micronano Mechatronics, Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Takashi Funatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yasushi Okada
- Laboratory for Cell Polarity Regulation, Quantitative Biology Center, RIKEN, Suita, 565-0874, Japan
| | - Seiji Tobita
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Yasuteru Urano
- 1] Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan [2] Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan [3] Basic Research Program, Japan Science and Technology Agency, Tokyo 102-0075, Japan
| |
Collapse
|
42
|
Chozinski TJ, Gagnon LA, Vaughan JC. Twinkle, twinkle little star: photoswitchable fluorophores for super-resolution imaging. FEBS Lett 2014; 588:3603-12. [PMID: 25010263 DOI: 10.1016/j.febslet.2014.06.043] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/14/2014] [Accepted: 06/16/2014] [Indexed: 01/01/2023]
Abstract
Photoswitchable fluorescent probes are key elements of newly developed super-resolution fluorescence microscopy techniques that enable far-field interrogation of biological systems with a resolution of 50 nm or better. In contrast to most conventional fluorescence imaging techniques, the performance achievable by most super-resolution techniques is critically impacted by the photoswitching properties of the fluorophores. Here we review photoswitchable fluorophores for super-resolution imaging with discussion of the fundamental principles involved, a focus on practical implementation with available tools, and an outlook on future directions.
Collapse
Affiliation(s)
| | - Lauren A Gagnon
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Joshua C Vaughan
- Department of Chemistry, University of Washington, Seattle, WA, USA; Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
43
|
Sauer M. Localization microscopy coming of age: from concepts to biological impact. J Cell Sci 2014; 126:3505-13. [PMID: 23950110 DOI: 10.1242/jcs.123612] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Super-resolution fluorescence imaging by single-molecule photoactivation or photoswitching and position determination (localization microscopy) has the potential to fundamentally revolutionize our understanding of how cellular function is encoded at the molecular level. Among all powerful, high-resolution imaging techniques introduced in recent years, localization microscopy excels because it delivers single-molecule information about molecular distributions, even giving absolute numbers of proteins present in subcellular compartments. This provides insight into biological systems at a molecular level that can yield direct experimental feedback for modeling the complexity of biological interactions. In addition, efficient new labeling methods and strategies to improve localization are emerging that promise to achieve true molecular resolution. This raises localization microscopy as a powerful complementary method for correlative light and electron microscopy experiments.
Collapse
Affiliation(s)
- Markus Sauer
- Department of Biotechnology and Biophysics, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
44
|
Habuchi S. Super-resolution molecular and functional imaging of nanoscale architectures in life and materials science. Front Bioeng Biotechnol 2014; 2:20. [PMID: 25152893 PMCID: PMC4126472 DOI: 10.3389/fbioe.2014.00020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/30/2014] [Indexed: 11/13/2022] Open
Abstract
Super-resolution (SR) fluorescence microscopy has been revolutionizing the way in which we investigate the structures, dynamics, and functions of a wide range of nanoscale systems. In this review, I describe the current state of various SR fluorescence microscopy techniques along with the latest developments of fluorophores and labeling for the SR microscopy. I discuss the applications of SR microscopy in the fields of life science and materials science with a special emphasis on quantitative molecular imaging and nanoscale functional imaging. These studies open new opportunities for unraveling the physical, chemical, and optical properties of a wide range of nanoscale architectures together with their nanostructures and will enable the development of new (bio-)nanotechnology.
Collapse
Affiliation(s)
- Satoshi Habuchi
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology , Jeddah , Saudi Arabia
| |
Collapse
|
45
|
Raab M, Schmied JJ, Jusuk I, Forthmann C, Tinnefeld P. Fluorescence microscopy with 6 nm resolution on DNA origami. Chemphyschem 2014; 15:2431-5. [PMID: 24895173 DOI: 10.1002/cphc.201402179] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Indexed: 11/10/2022]
Abstract
Resolution of emerging superresolution microscopy is commonly characterized by the width of a point-spread-function or by the localization accuracy of single molecules. In contrast, resolution is defined as the ability to separate two objects. Recently, DNA origamis have been proven as valuable scaffold for self-assembled nanorulers in superresolution microscopy. Here, we use DNA origami nanorulers to overcome the discrepancy of localizing single objects and separating two objects by resolving two docking sites at distances of 18, 12, and 6 nm by using the superresolution technique DNA PAINT(point accumulation for imaging in nanoscale topography). For the smallest distances, we reveal the influence of localization noise on the yield of resolvable structures that we rationalize by Monte Carlo simulations.
Collapse
Affiliation(s)
- Mario Raab
- Institute for Physical and Theoretical Chemistry and Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig University of Technology, Hans-Sommer Str. 10, 38106 Braunschweig (Germany)
| | | | | | | | | |
Collapse
|
46
|
Abstract
Validating and testing a fluorescence microscope or a microscopy method requires defined samples that can be used as standards. DNA origami is a new tool that provides a framework to place defined numbers of small molecules such as fluorescent dyes or proteins in a programmed geometry with nanometer precision. The flexibility and versatility in the design of DNA origami microscopy standards makes them ideally suited for the broad variety of emerging super-resolution microscopy methods. As DNA origami structures are durable and portable, they can become a universally available specimen to check the everyday functionality of a microscope. The standards are immobilized on a glass slide, and they can be imaged without further preparation and can be stored for up to 6 months. We describe a detailed protocol for the design, production and use of DNA origami microscopy standards, and we introduce a DNA origami rectangle, bundles and a nanopillar as fluorescent nanoscopic rulers. The protocol provides procedures for the design and realization of fluorescent marks on DNA origami structures, their production and purification, quality control, handling, immobilization, measurement and data analysis. The procedure can be completed in 1-2 d.
Collapse
|
47
|
Beater S, Holzmeister P, Pibiri E, Lalkens B, Tinnefeld P. Choosing dyes for cw-STED nanoscopy using self-assembled nanorulers. Phys Chem Chem Phys 2014; 16:6990-6. [PMID: 24599511 PMCID: PMC4159684 DOI: 10.1039/c4cp00127c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/12/2014] [Indexed: 11/21/2022]
Abstract
Superresolution microscopy is currently revolutionizing optical imaging. A key factor for getting images of highest quality is - besides a well-performing imaging system - the labeling of the sample. We compared the fluorescent dyes Abberior Star 488, Alexa 488, Chromeo 488 and Oregon Green 488 for use in continuous wave (cw-)STED microscopy in aqueous buffer and in a durable polymer matrix. To optimize comparability, we designed DNA origami standards labeled with the fluorescent dyes including a bead-like DNA origami with dyes focused on one spot and a DNA origami with two marks at a designed distance of ∼100 nm. Our data show that all dyes are well suited for cw-STED microscopy but that the optimal dye depends on the embedding medium. The precise comparison enabled by DNA origami nanorulers indicates that these structures have matured from the proof-of-concept to easily applicable tools in fluorescence microscopy.
Collapse
Affiliation(s)
- Susanne Beater
- NanoBioSciences Group , Institute for Physical and Theoretical Chemistry , TU Braunschweig , Hans-Sommer-Str. 10 , 38106 Braunschweig , Germany . ;
| | - Phil Holzmeister
- NanoBioSciences Group , Institute for Physical and Theoretical Chemistry , TU Braunschweig , Hans-Sommer-Str. 10 , 38106 Braunschweig , Germany . ;
| | - Enrico Pibiri
- NanoBioSciences Group , Institute for Physical and Theoretical Chemistry , TU Braunschweig , Hans-Sommer-Str. 10 , 38106 Braunschweig , Germany . ;
| | - Birka Lalkens
- NanoBioSciences Group , Institute for Physical and Theoretical Chemistry , TU Braunschweig , Hans-Sommer-Str. 10 , 38106 Braunschweig , Germany . ;
| | - Philip Tinnefeld
- NanoBioSciences Group , Institute for Physical and Theoretical Chemistry , TU Braunschweig , Hans-Sommer-Str. 10 , 38106 Braunschweig , Germany . ;
| |
Collapse
|
48
|
Monitoring triplet state dynamics with fluorescence correlation spectroscopy: Bias and correction. Microsc Res Tech 2014; 77:528-36. [DOI: 10.1002/jemt.22368] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/06/2014] [Accepted: 03/27/2014] [Indexed: 12/12/2022]
|
49
|
Pitchiaya S, Heinicke LA, Custer TC, Walter NG. Single molecule fluorescence approaches shed light on intracellular RNAs. Chem Rev 2014; 114:3224-65. [PMID: 24417544 PMCID: PMC3968247 DOI: 10.1021/cr400496q] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sethuramasundaram Pitchiaya
- Single Molecule Analysis in Real-Time (SMART)
Center, University of Michigan, Ann Arbor, MI 48109-1055, USA
- Single Molecule Analysis Group, Department of
Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Laurie A. Heinicke
- Single Molecule Analysis Group, Department of
Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Thomas C. Custer
- Program in Chemical Biology, University of Michigan,
Ann Arbor, MI 48109-1055, USA
| | - Nils G. Walter
- Single Molecule Analysis in Real-Time (SMART)
Center, University of Michigan, Ann Arbor, MI 48109-1055, USA
- Single Molecule Analysis Group, Department of
Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
50
|
Abstract
In this review, we introduce the principles of spatial resolution improvement in super-resolution microscopies that were recently developed. These super-resolution techniques utilize the interaction of light and fluorescent probes in order to break the diffraction barrier that limits spatial resolution. The imaging property of each super-resolution technique is also compared with the corresponding conventional one. Typical applications of the super-resolution techniques in biological research are also introduced.
Collapse
Affiliation(s)
- Masahito Yamanaka
- Department of Applied Physics Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Nicholas I Smith
- Department of Applied Physics Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Katsumasa Fujita
- Department of Applied Physics Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| |
Collapse
|