1
|
Guneri D, Alexandrou E, El Omari K, Dvořáková Z, Chikhale RV, Pike DTS, Waudby CA, Morris CJ, Haider S, Parkinson GN, Waller ZAE. Structural insights into i-motif DNA structures in sequences from the insulin-linked polymorphic region. Nat Commun 2024; 15:7119. [PMID: 39164244 PMCID: PMC11336075 DOI: 10.1038/s41467-024-50553-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/12/2024] [Indexed: 08/22/2024] Open
Abstract
The insulin-linked polymorphic region is a variable number of tandem repeats region of DNA in the promoter of the insulin gene that regulates transcription of insulin. This region is known to form the alternative DNA structures, i-motifs and G-quadruplexes. Individuals have different sequence variants of tandem repeats and although previous work investigated the effects of some variants on G-quadruplex formation, there is not a clear picture of the relationship between the sequence diversity, the DNA structures formed, and the functional effects on insulin gene expression. Here we show that different sequence variants of the insulin linked polymorphic region form different DNA structures in vitro. Additionally, reporter genes in cellulo indicate that insulin expression may change depending on which DNA structures form. We report the crystal structure and dynamics of an intramolecular i-motif, which reveal sequences within the loop regions forming additional stabilising interactions that are critical to formation of stable i-motif structures. The outcomes of this work reveal the detail in formation of stable i-motif DNA structures, with potential for rational based drug design for compounds to target i-motif DNA.
Collapse
Affiliation(s)
- Dilek Guneri
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Effrosyni Alexandrou
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Kamel El Omari
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, OX11 0DE, UK
| | - Zuzana Dvořáková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic
| | - Rupesh V Chikhale
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Daniel T S Pike
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Christopher A Waudby
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Christopher J Morris
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| | - Shozeb Haider
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
- UCL Centre for Advanced Research Computing, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Gary N Parkinson
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| | - Zoë A E Waller
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
2
|
Zhang Z, Mlýnský V, Krepl M, Šponer J, Stadlbauer P. Mechanical Stability and Unfolding Pathways of Parallel Tetrameric G-Quadruplexes Probed by Pulling Simulations. J Chem Inf Model 2024; 64:3896-3911. [PMID: 38630447 PMCID: PMC11094737 DOI: 10.1021/acs.jcim.4c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 05/14/2024]
Abstract
Guanine quadruplex (GQ) is a noncanonical nucleic acid structure formed by guanine-rich DNA and RNA sequences. Folding of GQs is a complex process, where several aspects remain elusive, despite being important for understanding structure formation and biological functions of GQs. Pulling experiments are a common tool for acquiring insights into the folding landscape of GQs. Herein, we applied a computational pulling strategy─steered molecular dynamics (SMD) simulations─in combination with standard molecular dynamics (MD) simulations to explore the unfolding landscapes of tetrameric parallel GQs. We identified anisotropic properties of elastic conformational changes, unfolding transitions, and GQ mechanical stabilities. Using a special set of structural parameters, we found that the vertical component of pulling force (perpendicular to the average G-quartet plane) plays a significant role in disrupting GQ structures and weakening their mechanical stabilities. We demonstrated that the magnitude of the vertical force component depends on the pulling anchor positions and the number of G-quartets. Typical unfolding transitions for tetrameric parallel GQs involve base unzipping, opening of the G-stem, strand slippage, and rotation to cross-like structures. The unzipping was detected as the first and dominant unfolding event, and it usually started at the 3'-end. Furthermore, results from both SMD and standard MD simulations indicate that partial spiral conformations serve as a transient ensemble during the (un)folding of GQs.
Collapse
Affiliation(s)
- Zhengyue Zhang
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
- CEITEC−Central
European Institute of Technology, Masaryk
University, Kamenice
5, Brno 625 00, Czech Republic
- National
Center for Biomolecular Research,
Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Vojtěch Mlýnský
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
| | - Miroslav Krepl
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
| | - Jiří Šponer
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
| | - Petr Stadlbauer
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
| |
Collapse
|
3
|
Zhang Y, Cheng Y, Luo Q, Wu T, Huo J, Yin M, Peng H, Xiao Y, Tong Q, You H. Distinguishing G-Quadruplexes Stabilizer and Chaperone for c- MYC Promoter G-Quadruplexes through Single-Molecule Manipulation. J Am Chem Soc 2024; 146:3689-3699. [PMID: 38296825 DOI: 10.1021/jacs.3c09074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
G-quadruplex (G4) selective stabilizing ligands can regulate c-MYC gene expression, but the kinetic basis remains unclear. Determining the effects of ligands on c-MYC promoter G4s' folding/unfolding kinetics is challenging due to the polymorphic nature of G4s and the high energy barrier to unfold c-MYC promoter G4s. Here, we used single-molecule magnetic tweezers to manipulate a duplex hairpin containing a c-MYC promoter sequence to mimic the transiently denatured duplex during transcription. We measured the effects of six commonly used G4s binding ligands on the competition between quadruplex and duplex structures, as well as the folding/unfolding kinetics of G4s. Our results revealed two distinct roles for G4s selective stabilization: CX-5461 is mainly acting as c-MYC G4s stabilizer, reducing the unfolding rate (ku) of c-MYC G4s, whereas PDS and 360A also act as G4s chaperone, accelerating the folding rates (kf) of c-MYC G4s. qRT-PCR results obtained from CA46 and Raji cell lines demonstrated that G4s stabilizing ligands can downregulate c-MYC expression, while G4s stabilizer CX-5461 exhibited the strongest c-MYC gene suppression. These results shed light on the potential of manipulating G4s' folding/unfolding kinetics by ligands for precise regulation of promoter G4-associated biological activities.
Collapse
Affiliation(s)
- Yashuo Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuanlei Cheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Qun Luo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tongbo Wu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Junfeng Huo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meng Yin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hui Peng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qingyi Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huijuan You
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
4
|
Valle-Orero J, Rieu M, Allemand JF, Bujaa D, Joubert A, Tran PLT, Croquette V, Boulé JB. Observing G4 formation and its resolution by Pif1 in real time by manipulation under magnetic tweezers. Methods Enzymol 2024; 695:119-158. [PMID: 38521583 DOI: 10.1016/bs.mie.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
G-quadruplexes (G4s) are nucleic acids secondary structures that may form in guanine-rich sequences, either intra or inter-molecularly. Ability of a primary sequence to form a G4 can be predicted computationally with an improving accuracy as well as tested in bulk using biophysical measurements. As a result, G4 density maps have been devised for a large number of genomes from all life kingdoms. Experimental validation of the formation of G4s in vivo however remains indirect and relies on their stabilization with small molecules, antibodies or proteins, or mutational studies, in order to measure downstream effects on gene expression or genome stability for example. Although numerous techniques exist to observe spontaneous formation of G4s in single-stranded DNA, observing G4 formation in double-stranded DNA (dsDNA) is more challenging. However, it is particularly relevant to understand if a given G4 sequence forms stably in a dsDNA context, if it is stable enough to dock proteins or pose a challenge to molecular motors such as helicases or polymerases. In essence, G4s can be a threat to genomic stability but carry as well as the potential to be elements of a structural language in the non-replicating genome. To study quantitatively the formation dynamics and stability of single intramolecular G4s embedded in dsDNA, we have adapted techniques of DNA manipulation under magnetic tweezers. This technique also allows to study encounters of molecular motors with G4 at a single molecule resolution, in order to gain insight into the specificity of G4 resolution by molecular motors, and its efficiency. The procedures described here include the design of the G4 substrate, the study of G4 formation probability and lifetime in dsDNA, as well as procedures to characterize the encounter between the Pif1 helicase and a G4 until G4 resolution. The procedures that we described here can easily be extended to the study of other G4s or molecular motors.
Collapse
Affiliation(s)
- Jessica Valle-Orero
- Physics Laboratory of the École Normale Supérieure, CNRS, ENS, PSL University, Sorbonne University, Paris-Cité University, Paris, France; Biology Institute of the École Normale Supérieure (IBENS), ENS, CNRS, INSERM, PSL University, Paris, France; Department of Computer Science, Mathematics and Environmental Sciences, The American University of Paris, Paris, France.
| | - Martin Rieu
- Physics Laboratory of the École Normale Supérieure, CNRS, ENS, PSL University, Sorbonne University, Paris-Cité University, Paris, France; Biology Institute of the École Normale Supérieure (IBENS), ENS, CNRS, INSERM, PSL University, Paris, France; Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Jean-François Allemand
- Physics Laboratory of the École Normale Supérieure, CNRS, ENS, PSL University, Sorbonne University, Paris-Cité University, Paris, France; Biology Institute of the École Normale Supérieure (IBENS), ENS, CNRS, INSERM, PSL University, Paris, France
| | - Dulamkhuu Bujaa
- Physics Laboratory of the École Normale Supérieure, CNRS, ENS, PSL University, Sorbonne University, Paris-Cité University, Paris, France; Biology Institute of the École Normale Supérieure (IBENS), ENS, CNRS, INSERM, PSL University, Paris, France
| | - Alexandra Joubert
- Genome Structure and Instability Laboratory, National Museum of Natural History, CNRS, INSERM, Sorbonne University Alliance, Paris, France
| | - Phong Lan Thao Tran
- Genome Structure and Instability Laboratory, National Museum of Natural History, CNRS, INSERM, Sorbonne University Alliance, Paris, France; Depixus SAS, 3-5 impasse Reille, Paris, France
| | - Vincent Croquette
- Physics Laboratory of the École Normale Supérieure, CNRS, ENS, PSL University, Sorbonne University, Paris-Cité University, Paris, France; Biology Institute of the École Normale Supérieure (IBENS), ENS, CNRS, INSERM, PSL University, Paris, France; ESPCI Paris, PSL University, Paris, France.
| | - Jean-Baptiste Boulé
- Genome Structure and Instability Laboratory, National Museum of Natural History, CNRS, INSERM, Sorbonne University Alliance, Paris, France.
| |
Collapse
|
5
|
Stadlbauer P, Mlýnský V, Krepl M, Šponer J. Complexity of Guanine Quadruplex Unfolding Pathways Revealed by Atomistic Pulling Simulations. J Chem Inf Model 2023; 63:4716-4731. [PMID: 37458574 PMCID: PMC10428220 DOI: 10.1021/acs.jcim.3c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Indexed: 08/15/2023]
Abstract
Guanine quadruplexes (GQs) are non-canonical nucleic acid structures involved in many biological processes. GQs formed in single-stranded regions often need to be unwound by cellular machinery, so their mechanochemical properties are important. Here, we performed steered molecular dynamics simulations of human telomeric GQs to study their unfolding. We examined four pulling regimes, including a very slow setup with pulling velocity and force load accessible to high-speed atomic force microscopy. We identified multiple factors affecting the unfolding mechanism, i.e.,: (i) the more the direction of force was perpendicular to the GQ channel axis (determined by GQ topology), the more the base unzipping mechanism happened, (ii) the more parallel the direction of force was, GQ opening and cross-like GQs were more likely to occur, (iii) strand slippage mechanism was possible for GQs with an all-anti pattern in a strand, and (iv) slower pulling velocity led to richer structural dynamics with sampling of more intermediates and partial refolding events. We also identified that a GQ may eventually unfold after a force drop under forces smaller than those that the GQ withstood before the drop. Finally, we found out that different unfolding intermediates could have very similar chain end-to-end distances, which reveals some limitations of structural interpretations of single-molecule spectroscopic data.
Collapse
Affiliation(s)
- Petr Stadlbauer
- Institute of Biophysics of the Czech
Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic
| | - Vojtěch Mlýnský
- Institute of Biophysics of the Czech
Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics of the Czech
Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech
Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic
| |
Collapse
|
6
|
Khatik SY, Sudhakar S, Mishra S, Kalia J, Pradeepkumar PI, Srivatsan SG. Probing juxtaposed G-quadruplex and hairpin motifs using a responsive nucleoside probe: a unique scaffold for chemotherapy. Chem Sci 2023; 14:5627-5637. [PMID: 37265741 PMCID: PMC10231310 DOI: 10.1039/d3sc00519d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/30/2023] [Indexed: 06/03/2023] Open
Abstract
Paucity of efficient probes and small molecule ligands that can distinguish different G-quadruplex (GQ) topologies poses challenges not only in understanding their basic structure but also in targeting an individual GQ form from others. Alternatively, G-rich sequences that harbour unique chimeric structural motifs (e.g., GQ-duplex or GQ-hairpin junctions) are perceived as new therapeutic hotspots. In this context, the epidermal growth factor receptor (EGFR) gene, implicated in many cancers, contains a 30 nucleotide G-rich segment in the promoter region, which adopts in vitro two unique architectures each composed of a GQ topology (parallel and hybrid-type) juxtaposed with a hairpin domain. Here, we report the use of a novel dual-app probe, C5-trifluoromethyl benzofuran-modified 2'-deoxyuridine (TFBF-dU), in the systematic analysis of EGFR GQs and their interaction with small molecules by fluorescence and 19F NMR techniques. Notably, distinct fluorescence and 19F NMR signals exhibited by the probe enabled the quantification of the relative population of random, parallel and hybrid-type GQ structures under different conditions, which could not be obtained by conventional CD and 1H NMR techniques. Using the fluorescence component, we quantified ligand binding properties of GQs, whereas the 19F label enabled the assessment of ligand-induced changes in GQ dynamics. Studies also revealed that mutations in the hairpin domain affected GQ formation and stability, which was further functionally verified in polymerase stop assay. We anticipate that these findings and useful properties of the nucleoside probe could be utilized in designing and evaluating binders that jointly target both GQ and hairpin domains for enhanced selectivity and druggability.
Collapse
Affiliation(s)
- Saddam Y Khatik
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road Pune 411008 India
| | - Sruthi Sudhakar
- Department of Chemistry, Indian Institute of Technology Bombay Mumbai 400076 India
| | - Satyajit Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 India
| | - Jeet Kalia
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 India
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 India
| | - P I Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay Mumbai 400076 India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road Pune 411008 India
| |
Collapse
|
7
|
Zhang X, Barrow J, van Mourik T, Bühl M. Towards Computational Modeling of Ligand Binding to the ILPR G-Quadruplex. Molecules 2023; 28:molecules28083447. [PMID: 37110681 PMCID: PMC10145587 DOI: 10.3390/molecules28083447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
Using a combination of unconstrained and constrained molecular dynamics simulations, we have evaluated the binding affinities between two porphyrin derivatives (TMPyP4 and TEGPy) and the G-quadruplex (G4) of a DNA fragment modeling the insulin-linked polymorphic region (ILPR). Refining a well-established potential of mean force (PMF) approach to selections of constraints based on root-mean-square fluctuations results in an excellent agreement between the calculated and observed absolute free binding energy of TMPyP4. The binding affinity of IPLR-G4 toward TEGPy is predicted to be higher than that toward TMPyP4 by 2.5 kcal/mol, which can be traced back to stabilization provided by the polyether side chains of TMPyP4 that can nestle into the grooves of the quadruplex and form hydrogen bonds through the ether oxygen atoms. Because our refined methodology can be applied to large ligands with high flexibility, the present research opens an avenue for further ligand design in this important area.
Collapse
Affiliation(s)
- Xiaotong Zhang
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - John Barrow
- School of Medicine, Medical Sciences and Nutrition, Institute of Education in Healthcare and Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Tanja van Mourik
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - Michael Bühl
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| |
Collapse
|
8
|
Fang J, Xie C, Tao Y, Wei D. An overview of single-molecule techniques and applications in the study of nucleic acid structure and function. Biochimie 2023; 206:1-11. [PMID: 36179939 DOI: 10.1016/j.biochi.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/02/2022]
Abstract
Nucleic acids are an indispensable component in all known life forms. The biological processes are regulated by Nucleic acids, which associate to form special high-order structures. since the high-level structures of nucleic acids are related to gene expression in cancer cells or viruses, it is very likely to become a potential drug target. Traditional biochemical methods are limited to distinguish the conformational distribution and dynamic transition process of single nucleic acid structure. The ligands based on the intermediate and transition states between different conformations are not designed by traditional biochemical methods. The single-molecule techniques enable real-time observation of the individual nucleic acid behavior due to its high resolution. Here, we introduce the application of single-molecule techniques in the study of small molecules to recognize nucleic acid structures, such as single-molecule FRET, magnetic tweezers, optical tweezers and atomic force microscopy. At the same time, we also introduce the specific advantages of single-molecule technology compared with traditional biochemical methods and some problems arisen in current research.
Collapse
Affiliation(s)
- Junkang Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Huazhong Agricultural University, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Congbao Xie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Huazhong Agricultural University, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Yanfei Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Huazhong Agricultural University, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| | - Dengguo Wei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Huazhong Agricultural University, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
9
|
Bertini L, Libera V, Ripanti F, Seydel T, Paolantoni M, Orecchini A, Petrillo C, Comez L, Paciaroni A. Role of fast dynamics in the complexation of G-quadruplexes with small molecules. Phys Chem Chem Phys 2022; 24:29232-29240. [PMID: 36445842 DOI: 10.1039/d2cp03602a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
G-quadruplexes (G4s) formed by the human telomeric sequence AG3 (TTAG3)3 (Tel22) play a key role in cancer and aging. We combined elastic incoherent neutron scattering (EINS) and quasielastic incoherent neutron scattering (QENS) to characterize the internal dynamics of Tel22 G4s and to assess how it is affected by complexation with two standard ligands, Berberine and BRACO19. We show that the interaction with the two ligands induces an increase of the overall mobility of Tel22 as quantified by the mean squared displacements (MSD) of hydrogen atoms. At the same time, the complexes display a lower stiffness than G4 alone. Two different types of motion characterize the G4 nanosecond timescale dynamics. Upon complexation, an increasing fraction of G4 atomic groups participate in this fast dynamics, along with an increase in the relevant characteristic length scales. We suggest that the entropic contribution to the conformational free energy of these motions might be crucial for the complexation mechanisms.
Collapse
Affiliation(s)
- Luca Bertini
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy.
| | - Valeria Libera
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy. .,Istituto Officina dei Materiali-IOM, National Research Council-CNR, Via Alessandro Pascoli, 06123 Perugia, Italy.
| | - Francesca Ripanti
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy.
| | - Tilo Seydel
- Institut Max von Laue - Paul Langevin (ILL) 71 avenue des Martyrs, 38042 Grenoble, France
| | - Marco Paolantoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 6, 06123 Perugia, Italy
| | - Andrea Orecchini
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy.
| | - Caterina Petrillo
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy.
| | - Lucia Comez
- Istituto Officina dei Materiali-IOM, National Research Council-CNR, Via Alessandro Pascoli, 06123 Perugia, Italy.
| | - Alessandro Paciaroni
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy.
| |
Collapse
|
10
|
Pokhrel P, Ren K, Shen H, Mao H. Mechanical Stability of DNA Corona Phase on Gold Nanospheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13569-13576. [PMID: 36305083 PMCID: PMC10318588 DOI: 10.1021/acs.langmuir.2c02251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Noncovalent adsorption of biopolymers on the surface of gold nanoparticles (AuNPs) forms a corona phase that drastically diversify AuNP functions. However, mechanical stabilities of such corona phase are still obscure, hindering the application of biopolymer-coated AuNPs. Here, using optical tweezers, we have observed, for the first time, that DNA corona phase adsorbed on a 5 nm AuNP via two (dA)21 strands in proximity can withstand an average desorption force of 40 pN, which is higher than the stall force of DNA/RNA polymerases. This suggests a new role for AuNPs to modulate replications or transcriptions after binding to prevalent poly(dA) segments in eukaryotic genomes. We have also revealed that with increasing AuNP size (1.8-10 nm), DNA corona becomes harder to remove, likely due to the larger surfaces and flatter facets on bigger AuNPs. These findings provide guidance to design AuNP corona that can withstand harsh environments for biological and materials applications.
Collapse
Affiliation(s)
- Pravin Pokhrel
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Kehao Ren
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Hao Shen
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
- Advanced materials and liquid crystal institute, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
11
|
He Y, Cheng Y, Wen X. A design of red emission CDs-based aptasensor for sensitive detection of insulin via fluorescence resonance energy transfer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121497. [PMID: 35749972 DOI: 10.1016/j.saa.2022.121497] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/31/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
We successfully designed an aptasensor based on the red emission carbon dots (R-CDs) and effectively detected insulin (INS) via fluorescence resonance energy transfer (FRET). In the process, the aptamer (apt) labeled with R-CDs (R-CDs@apt) was used as fluorescence donor and graphene oxide (GO) was used as fluorescence receptor. The successful detection due to the aptamer sequence has a certain affinity for Go and INS, while the affinity for INS is stronger than that of GO. When INS is not added to the detection system, the aptamer is adsorbed onto the surface of GO, shortening the distance between R-CDs@apt and GO, resulting in FRET and the quenching of fluorescence of R-CDs@apt. When INS was added to the detection system, the aptamer selectively bound INS and separated from the adsorption of GO, FRET gradually disappeared and the fluorescence of R-CDs@apt/GO/INS system was restored. By comparing the changes of fluorescence intensity before and after adding INS, the detection of INS was implemented. The aptasensor has a good linear curve with the detection limit of as low as 1.1 nM when the concentration of INS reached 1.3-150 nM. This method has excellent selectivity and anti-interference. Therefore, it is a potential method for detecting substances in biological fluids.
Collapse
Affiliation(s)
- Yanhua He
- Shanxi Normal University, Taiyuan 030031, PR China.
| | | | - Xiaoye Wen
- Shanxi Normal University, Taiyuan 030031, PR China
| |
Collapse
|
12
|
Craig JM, Mills M, Kim HC, Huang JR, Abell S, Mount J, Gundlach J, Neuman K, Laszlo A. Nanopore tweezers measurements of RecQ conformational changes reveal the energy landscape of helicase motion. Nucleic Acids Res 2022; 50:10601-10613. [PMID: 36165957 PMCID: PMC9561376 DOI: 10.1093/nar/gkac837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/13/2022] Open
Abstract
Helicases are essential for nearly all nucleic acid processes across the tree of life, yet detailed understanding of how they couple ATP hydrolysis to translocation and unwinding remains incomplete because their small (∼300 picometer), fast (∼1 ms) steps are difficult to resolve. Here, we use Nanopore Tweezers to observe single Escherichia coli RecQ helicases as they translocate on and unwind DNA at ultrahigh spatiotemporal resolution. Nanopore Tweezers simultaneously resolve individual steps of RecQ along the DNA and conformational changes of the helicase associated with stepping. Our data reveal the mechanochemical coupling between physical domain motions and chemical reactions that together produce directed motion of the helicase along DNA. Nanopore Tweezers measurements are performed under either assisting or opposing force applied directly on RecQ, shedding light on how RecQ responds to such forces in vivo. Determining the rates of translocation and physical conformational changes under a wide range of assisting and opposing forces reveals the underlying dynamic energy landscape that drives RecQ motion. We show that RecQ has a highly asymmetric energy landscape that enables RecQ to maintain velocity when encountering molecular roadblocks such as bound proteins and DNA secondary structures. This energy landscape also provides a mechanistic basis making RecQ an 'active helicase,' capable of unwinding dsDNA as fast as it translocates on ssDNA. Such an energy landscape may be a general strategy for molecular motors to maintain consistent velocity despite opposing loads or roadblocks.
Collapse
Affiliation(s)
- Jonathan M Craig
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| | - Maria Mills
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Physics & Astronomy, University of Missouri, 701 S College Ave, Physics Building Rm 223, Columbia, MO 65211, USA
| | - Hwanhee C Kim
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| | - Jesse R Huang
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| | - Sarah J Abell
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| | - Jonathan W Mount
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| | - Jens H Gundlach
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew H Laszlo
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| |
Collapse
|
13
|
Pandey S, Mandal S, Danielsen MB, Brown A, Hu C, Christensen NJ, Kulakova AV, Song S, Brown T, Jensen KJ, Wengel J, Lou C, Mao H. Chirality transmission in macromolecular domains. Nat Commun 2022; 13:76. [PMID: 35013247 PMCID: PMC8748818 DOI: 10.1038/s41467-021-27708-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/07/2021] [Indexed: 11/17/2022] Open
Abstract
Chiral communications exist in secondary structures of foldamers and copolymers via a network of noncovalent interactions within effective intermolecular force (IMF) range. It is not known whether long-range chiral communication exists between macromolecular tertiary structures such as peptide coiled-coils beyond the IMF distance. Harnessing the high sensitivity of single-molecule force spectroscopy, we investigate the chiral interaction between covalently linked DNA duplexes and peptide coiled-coils by evaluating the binding of a diastereomeric pair of three DNA-peptide conjugates. We find that right-handed DNA triple helices well accommodate peptide triple coiled-coils of the same handedness, but not with the left-handed coiled-coil stereoisomers. This chiral communication is effective in a range (<4.5 nm) far beyond canonical IMF distance. Small-angle X-ray scattering and molecular dynamics simulation indicate that the interdomain linkers are tightly packed via hydrophobic interactions, which likely sustains the chirality transmission between DNA and peptide domains. Our findings establish that long-range chiral transmission occurs in tertiary macromolecular domains, explaining the presence of homochiral pairing of superhelices in proteins. Chiral communication can propagate in secondary structures within the effective intermolecular force (IMF) range but it is not known whether long-range chiral communication exists between tertiary peptide structures. Here, the authors use single-molecule force spectroscopy to investigate chiral interaction between DNA duplexes/triplexes and peptide coiled-coils and demonstrate chiral communication beyond the IMF distance.
Collapse
Affiliation(s)
- Shankar Pandey
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| | - Shankar Mandal
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| | - Mathias Bogetoft Danielsen
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Asha Brown
- ATDBio Ltd., Magdalen Centre, Oxford Science Park, 1 Robert Robinson Avenue, Oxford, OX4 4GA, UK
| | - Changpeng Hu
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| | - Niels Johan Christensen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | | | - Shixi Song
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Tom Brown
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Knud J Jensen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Jesper Wengel
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Chenguang Lou
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
14
|
Pandey S, Xiang Y, Friedrich D, Leng Y, Mao H. Direct Measurement of Intermolecular Mechanical Force for Nonspecific Interactions between Small Molecules. J Phys Chem Lett 2021; 12:11316-11322. [PMID: 34780182 PMCID: PMC8778946 DOI: 10.1021/acs.jpclett.1c03142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mechanical force can evaluate intramolecular interactions in macromolecules. Because of the rapid motion of small molecules, it is extremely challenging to measure mechanical forces of nonspecific intermolecular interactions. Here, we used optical tweezers to directly examine the intermolecular mechanical force (IMMF) of nonspecific interactions between two cholesterols. We found that IMMFs of dimeric cholesterol complexes were dependent on the orientation of the interaction. The surprisingly high IMMF in cholesterol dimers (∼30 pN) is comparable to the mechanical stability of DNA secondary structures. Using Hess-like cycles, we quantified that changes in free energy of solubilizing cholesterol (ΔGsolubility) by β-cyclodextrin (βCD) and methylated βCD (Me-βCD) were as low as -16 and -27 kcal/mol, respectively. Compared to the ΔGsolubility of cholesterols in water (5.1 kcal/mol), these values indicated that cyclodextrins can easily solubilize cholesterols. Our results demonstrated that the IMMF can serve as a generic and multipurpose variable to dissect nonspecific intermolecular interactions among small molecules into orientational components.
Collapse
Affiliation(s)
- Shankar Pandey
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| | - Yuan Xiang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Dirk Friedrich
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| | - Yongsheng Leng
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
15
|
Wickhorst PJ, Ihmels H, Paululat T. Studies on the Interactions of 3,11-Difluoro-6,8,13-trimethyl-8 H-quino[4,3,2- kl]acridinium and Insulin with the Quadruplex-Forming Oligonucleotide Sequence a2 from the Insulin-Linked Polymorphic Region. Molecules 2021; 26:molecules26216595. [PMID: 34771003 PMCID: PMC8587938 DOI: 10.3390/molecules26216595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, several quadruplex-DNA-forming sequences have been identified in the insulin-linked polymorphic region (ILPR), which is a guanine-rich oligonucleotide sequence in the promoter region of insulin. The formation of this non-canonical quadruplex DNA (G4-DNA) has been shown to be involved in the biological activity of the ILPR, specifically with regard to its interplay with insulin. In this context, this contribution reports on the investigation of the association of the quadruplex-forming ILPR sequence a2 with insulin as well as with the well-known G4-DNA ligand 3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium (1), also named RHPS4, by optical and NMR spectroscopy. CD- and NMR-spectroscopic measurements confirmed the preferential formation of an antiparallel quadruplex structure of a2 with four stacked guanine quartets. Furthermore, ligand 1 has high affinity toward a2 and binds by terminal π stacking to the G1-G11-G15-G25 quartet. In addition, the spectroscopic studies pointed to an association of insulin to the deoxyribose backbone of the loops of a2.
Collapse
|
16
|
Cheng Y, Zhang Y, You H. Characterization of G-Quadruplexes Folding/Unfolding Dynamics and Interactions with Proteins from Single-Molecule Force Spectroscopy. Biomolecules 2021; 11:1579. [PMID: 34827577 PMCID: PMC8615981 DOI: 10.3390/biom11111579] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022] Open
Abstract
G-quadruplexes (G4s) are stable secondary nucleic acid structures that play crucial roles in many fundamental biological processes. The folding/unfolding dynamics of G4 structures are associated with the replication and transcription regulation functions of G4s. However, many DNA G4 sequences can adopt a variety of topologies and have complex folding/unfolding dynamics. Determining the dynamics of G4s and their regulation by proteins remains challenging due to the coexistence of multiple structures in a heterogeneous sample. Here, in this mini-review, we introduce the application of single-molecule force-spectroscopy methods, such as magnetic tweezers, optical tweezers, and atomic force microscopy, to characterize the polymorphism and folding/unfolding dynamics of G4s. We also briefly introduce recent studies using single-molecule force spectroscopy to study the molecular mechanisms of G4-interacting proteins.
Collapse
Affiliation(s)
| | | | - Huijuan You
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.C.); (Y.Z.)
| |
Collapse
|
17
|
Pandey S, Xiang Y, Walpita Kankanamalage DVD, Jayawickramarajah J, Leng Y, Mao H. Measurement of Single-Molecule Forces in Cholesterol and Cyclodextrin Host-Guest Complexes. J Phys Chem B 2021; 125:11112-11121. [PMID: 34523939 PMCID: PMC8788999 DOI: 10.1021/acs.jpcb.1c03916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biological host molecules such as β-cyclodextrins (β-CDs) have been used to remove cholesterol guests from membranes and artery plaques. In this work, we calibrated the host-guest intermolecular mechanical forces (IMMFs) between cholesterol and cyclodextrin complexes by combining single-molecule force spectroscopy in optical tweezers and computational molecular simulations for the first time. Compared to native β-CD, methylated beta cyclodextrins complexed with cholesterols demonstrated higher mechanical stabilities due to the loss of more high-energy water molecules inside the methylated β-CD cavities. This result is consistent with the finding that methylated β-CD is more potent at solubilizing cholesterols than β-CD, suggesting that the IMMF can serve as a novel indicator to evaluate the solubility of small molecules such as cholesterols. Importantly, we found that the force spectroscopy measured in such biological host-guest complexes is direction-dependent: pulling from the alkyl end of the cholesterol molecule resulted in a larger IMMF than that from the hydroxyl end of the cholesterol molecule. Molecular dynamics coupled with umbrella sampling simulations further revealed that cholesterol molecules tend to enter or leave from the wide opening of cyclodextrins. Such an orientation rationalizes that cyclodextrins are rather efficient at extracting cholesterols from the phospholipid bilayer in which hydroxyl groups of cholesterols are readily exposed to the hydrophobic cavities of cyclodextrins. We anticipate that the IMMF measured by both experimental and computational force spectroscopy measurements help elucidate solubility mechanisms not only for cholesterols in different environments but also to host-guest systems in general, which have been widely exploited for their solubilization properties in drug delivery, for example.
Collapse
Affiliation(s)
- Shankar Pandey
- Department of Chemistry and Biochemistry, and Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242
| | - Yuan Xiang
- School of Engineering and Applied Science, The George Washington University, Washington, DC 20052, USA
| | | | | | - Yongsheng Leng
- School of Engineering and Applied Science, The George Washington University, Washington, DC 20052, USA
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, and Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242
| |
Collapse
|
18
|
Hu C, Jonchhe S, Pokhrel P, Karna D, Mao H. Mechanical unfolding of ensemble biomolecular structures by shear force. Chem Sci 2021; 12:10159-10164. [PMID: 34377405 PMCID: PMC8336480 DOI: 10.1039/d1sc02257a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/11/2021] [Indexed: 01/09/2023] Open
Abstract
Mechanical unfolding of biomolecular structures has been exclusively performed at the single-molecule level by single-molecule force spectroscopy (SMFS) techniques. Here we transformed sophisticated mechanical investigations on individual molecules into a simple platform suitable for molecular ensembles. By using shear flow inside a homogenizer tip, DNA secondary structures such as i-motifs are unfolded by shear force up to 50 pN at a 77 796 s-1 shear rate. We found that the larger the molecules, the higher the exerted shear forces. This shear force approach revealed affinity between ligands and i-motif structures. It also demonstrated a mechano-click reaction in which a Cu(i) catalyzed azide-alkyne cycloaddition was modulated by shear force. We anticipate that this ensemble force spectroscopy method can investigate intra- and inter-molecular interactions with the throughput, accuracy, and robustness unparalleled to those of SMFS methods.
Collapse
Affiliation(s)
- Changpeng Hu
- Department of Chemistry & Biochemistry and School of Biomedical Sciences, Advanced Materials and Liquid Crystal Institute, Kent State University Kent OH 44242 USA
| | - Sagun Jonchhe
- Department of Chemistry & Biochemistry and School of Biomedical Sciences, Advanced Materials and Liquid Crystal Institute, Kent State University Kent OH 44242 USA
| | - Pravin Pokhrel
- Department of Chemistry & Biochemistry and School of Biomedical Sciences, Advanced Materials and Liquid Crystal Institute, Kent State University Kent OH 44242 USA
| | - Deepak Karna
- Department of Chemistry & Biochemistry and School of Biomedical Sciences, Advanced Materials and Liquid Crystal Institute, Kent State University Kent OH 44242 USA
| | - Hanbin Mao
- Department of Chemistry & Biochemistry and School of Biomedical Sciences, Advanced Materials and Liquid Crystal Institute, Kent State University Kent OH 44242 USA
| |
Collapse
|
19
|
Zhang Y, Cheng Y, Chen J, Zheng K, You H. Mechanical diversity and folding intermediates of parallel-stranded G-quadruplexes with a bulge. Nucleic Acids Res 2021; 49:7179-7188. [PMID: 34139007 PMCID: PMC8266575 DOI: 10.1093/nar/gkab531] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/17/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022] Open
Abstract
A significant number of sequences in the human genome form noncanonical G-quadruplexes (G4s) with bulges or a guanine vacancy. Here, we systematically characterized the mechanical stability of parallel-stranded G4s with a one to seven nucleotides bulge at various positions. Our results show that G4-forming sequences with a bulge form multiple conformations, including fully-folded G4 with high mechanical stability (unfolding forces > 40 pN), partially-folded intermediates (unfolding forces < 40 pN). The folding probability and folded populations strongly depend on the positions and lengths of the bulge. By combining a single-molecule unfolding assay, dimethyl sulfate (DMS) footprinting, and a guanine-peptide conjugate that selectively stabilizes guanine-vacancy-bearing G-quadruplexes (GVBQs), we identified that GVBQs are the major intermediates of G4s with a bulge near the 5′ or 3′ ends. The existence of multiple structures may induce different regulatory functions in many biological processes. This study also demonstrates a new strategy for selectively stabilizing the intermediates of bulged G4s to modulate their functions.
Collapse
Affiliation(s)
- Yashuo Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuanlei Cheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Juannan Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou 510275, China
| | - Kewei Zheng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou 510275, China
| | - Huijuan You
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
20
|
Tran P, Rieu M, Hodeib S, Joubert A, Ouellet J, Alberti P, Bugaut A, Allemand JF, Boulé JB, Croquette V. Folding and persistence times of intramolecular G-quadruplexes transiently embedded in a DNA duplex. Nucleic Acids Res 2021; 49:5189-5201. [PMID: 34009328 PMCID: PMC8136832 DOI: 10.1093/nar/gkab306] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
G-quadruplex (G4) DNA structures have emerged as important regulatory elements during DNA metabolic transactions. While many in vitro studies have focused on the kinetics of G4 formation within DNA single-strands, G4 are found in vivo in double-stranded DNA regions, where their formation is challenged by the complementary strand. Since the energy of hybridization of Watson-Crick structures dominates the energy of G4 folding, this competition should play a critical role on G4 persistence. To address this, we designed a single-molecule assay allowing to measure G4 folding and persistence times in the presence of the complementary strand. We quantified both folding and unfolding rates of biologically relevant G4 sequences, such as the cMYC and cKIT oncogene promoters, human telomeres and an avian replication origin. We confirmed that G4s are found much more stable in tested replication origin and promoters than in human telomere repeats. In addition, we characterized how G4 dynamics was affected by G4 ligands and showed that both folding rate and persistence time increased. Our assay opens new perspectives for the measurement of G4 dynamics in double-stranded DNA mimicking a replication fork, which is important to understand their role in DNA replication and gene regulation at a mechanistic level.
Collapse
Affiliation(s)
- Phong Lan Thao Tran
- Structure et Instabilité des Génomes, Museum National d’Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université, 75005 Paris, France
| | - Martin Rieu
- Laboratoire de physique de L’École Normale Supérieure de Paris, CNRS, ENS, Université PSL, Sorbonne Université, Université de Paris, 75005 Paris, France
- Institut de Biologie de l’École Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Samar Hodeib
- Laboratoire de physique de L’École Normale Supérieure de Paris, CNRS, ENS, Université PSL, Sorbonne Université, Université de Paris, 75005 Paris, France
- Institut de Biologie de l’École Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Alexandra Joubert
- Structure et Instabilité des Génomes, Museum National d’Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université, 75005 Paris, France
| | - Jimmy Ouellet
- Depixus SAS, 3-5 Impasse Reille, 75014 Paris, France
| | - Patrizia Alberti
- Structure et Instabilité des Génomes, Museum National d’Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université, 75005 Paris, France
| | - Anthony Bugaut
- Structure et Instabilité des Génomes, Museum National d’Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université, 75005 Paris, France
| | - Jean-François Allemand
- Laboratoire de physique de L’École Normale Supérieure de Paris, CNRS, ENS, Université PSL, Sorbonne Université, Université de Paris, 75005 Paris, France
- Institut de Biologie de l’École Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Jean-Baptiste Boulé
- Structure et Instabilité des Génomes, Museum National d’Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université, 75005 Paris, France
| | - Vincent Croquette
- Laboratoire de physique de L’École Normale Supérieure de Paris, CNRS, ENS, Université PSL, Sorbonne Université, Université de Paris, 75005 Paris, France
- Institut de Biologie de l’École Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- ESPCI Paris, Université PSL, 75005 Paris, France
| |
Collapse
|
21
|
Hossain KA, Jurkowski M, Czub J, Kogut M. Mechanism of recognition of parallel G-quadruplexes by DEAH/RHAU helicase DHX36 explored by molecular dynamics simulations. Comput Struct Biotechnol J 2021; 19:2526-2536. [PMID: 34025941 PMCID: PMC8114077 DOI: 10.1016/j.csbj.2021.04.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
Because of high stability and slow unfolding rates of G-quadruplexes (G4), cells have evolved specialized helicases that disrupt these non-canonical DNA and RNA structures in an ATP-dependent manner. One example is DHX36, a DEAH-box helicase, which participates in gene expression and replication by recognizing and unwinding parallel G4s. Here, we studied the molecular basis for the high affinity and specificity of DHX36 for parallel-type G4s using all-atom molecular dynamics simulations. By computing binding free energies, we found that the two main G4-interacting subdomains of DHX36, DSM and OB, separately exhibit high G4 affinity but they act cooperatively to recognize two distinctive features of parallel G4s: the exposed planar face of a guanine tetrad and the unique backbone conformation of a continuous guanine tract, respectively. Our results also show that DSM-mediated interactions are the main contributor to the binding free energy and rely on making extensive van der Waals contacts between the GXXXG motifs and hydrophobic residues of DSM and a flat guanine plane. Accordingly, the sterically more accessible 5'-G-tetrad allows for more favorable van der Waals and hydrophobic interactions which leads to the preferential binding of DSM to the 5'-side. In contrast to DSM, OB binds to G4 mostly through polar interactions by flexibly adapting to the 5'-terminal guanine tract to form a number of strong hydrogen bonds with the backbone phosphate groups. We also identified a third DHX36/G4 interaction site formed by the flexible loop missing in the crystal structure.
Collapse
Affiliation(s)
- Kazi Amirul Hossain
- Department of Physical Chemistry, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Michal Jurkowski
- Department of Physical Chemistry, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Jacek Czub
- Department of Physical Chemistry, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Mateusz Kogut
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
22
|
You H, Zhou Y, Yan J. Using Magnetic Tweezers to Unravel the Mechanism of the G-quadruplex Binding and Unwinding Activities of DHX36 Helicase. Methods Mol Biol 2021; 2209:175-191. [PMID: 33201470 DOI: 10.1007/978-1-0716-0935-4_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Single-molecule manipulation methods are useful techniques to probe the interactions of proteins and nucleic acid structures. Here, we describe the magnetic tweezers-based single-molecule investigation of the binding of helicases to G-quadruplex structures and their ATP-dependent unwinding activity, using DHX36 (also known as RHAU and G4R1) helicase and a DNA G-quadruplex structure for an example. We specifically emphasize on the principle and method to probe the interactions between DHX36 and the DNA G-quadruplex in different intermediate states during an ATPase cycle of DHX36, based on detecting the DHX36-induced changes in the lifetime of the DNA G-quadruplex under tension. The principle of the measurement can be broadly extended to the studies of other DNA or RNA G-quadruplex helicases.
Collapse
Affiliation(s)
- Huijuan You
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhou
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
23
|
Becher J, Berdnikova DV, Ihmels H, Stremmel C. Synthesis and investigation of quadruplex-DNA-binding, 9- O-substituted berberine derivatives. Beilstein J Org Chem 2020; 16:2795-2806. [PMID: 33281983 PMCID: PMC7684686 DOI: 10.3762/bjoc.16.230] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
A small series of five novel berberine derivatives was synthesized by the Cu-catalyzed click reaction of 9-propargyladenine with 9-O-(azidoalkyl)berberine derivatives. The association of the resulting berberine-adenine conjugates with representative quadruplex-forming oligonucleotides 22AG dA(G3TTA)3G3 and a2 d(ACAG4TGTG4)2 was examined with photometric and fluorimetric titrations, thermal DNA denaturation analysis, and CD spectroscopy. The results from the spectrometric titrations indicated the formation of 2:1 or 1:1 complexes (ligand:G4-DNA) with log K b values of 10-11 (2:1) and 5-6 (1:1), which are typical for berberine derivatives. Notably, a clear relationship between the binding affinity of the ligands with the length of the alkyl linker chain, n, was not observed. However, depending on the structure, the ligands exhibited different effects when bound to the G4-DNA, such as fluorescent light-up effects and formation of ICD bands, which are mostly pronounced with a linker length of n = 4 (with a2) and n = 5 (with 22AG), thus indicating that each ligand-G4-DNA complex has a specific structure with respect to relative alignment and conformational flexibility of the ligand in the binding site. It was shown exemplarily with one representative ligand from the series that such berberine-adenine conjugates exhibit a selective binding, specifically a selectivity to quadruplex DNA in competition with duplex DNA, and a preferential thermal stabilization of the G4-DNA forms 22AG and KRAS. Notably, the experimental data do not provide evidence for a significant effect of the adenine unit on the binding affinity of the ligands, for example, by additional association with the loops, presumably because the adenine residue is sterically shielded by the neighboring triazole unit.
Collapse
Affiliation(s)
- Jonas Becher
- Department of Chemistry and Biology, University of Siegen and Center of Micro- and Nanochemistry and Engineering (Cμ); Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| | - Daria V Berdnikova
- Department of Chemistry and Biology, University of Siegen and Center of Micro- and Nanochemistry and Engineering (Cμ); Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| | - Heiko Ihmels
- Department of Chemistry and Biology, University of Siegen and Center of Micro- and Nanochemistry and Engineering (Cμ); Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| | - Christopher Stremmel
- Department of Chemistry and Biology, University of Siegen and Center of Micro- and Nanochemistry and Engineering (Cμ); Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| |
Collapse
|
24
|
Cheng Y, Zhang Y, Gong Z, Zhang X, Li Y, Shi X, Pei Y, You H. High Mechanical Stability and Slow Unfolding Rates Are Prevalent in Parallel-Stranded DNA G-Quadruplexes. J Phys Chem Lett 2020; 11:7966-7971. [PMID: 32885976 DOI: 10.1021/acs.jpclett.0c02229] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Guanine-rich repeat sequences are known to adopt diverse G-quadruplex (G4) topologies. Determining the unfolding rates of individual G4 species is challenging due to the coexistence of multiple G4 conformations in a solution. Here, using single-molecule magnetic tweezers, we systematically measured the unfolding force distributions of 4 oncogene promoter G4s, 12 model sequences with two 1-nucleotide (nt) thymine loops that predominantly adopt parallel-stranded G4 structures, and 6 sequences forming multiple G4 structures. All parallel-stranded G4s reveal an unfolding force peak at 40-60 pN, which is associated with extremely slow unfolding rates on the order of 10-5-10-7 s-1. In contrast, nonparallel G4s and partially folded intermediate states reveal an unfolding force peak <40 pN. These results suggest a strong correlation between the parallel-stranded G4s folding topology and the slow unfolding rates and provide important insights into the mechanism that govern the stability and the transition kinetics of G4s.
Collapse
Affiliation(s)
- Yuanlei Cheng
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Yashuo Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Zhou Gong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, 430071 Wuhan, China
| | - Xinghua Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, 430072 Wuhan, China
| | - Yutong Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Xiangqian Shi
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Yufeng Pei
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Huijuan You
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| |
Collapse
|
25
|
Jonchhe S, Pandey S, Karna D, Pokhrel P, Cui Y, Mishra S, Sugiyama H, Endo M, Mao H. Duplex DNA Is Weakened in Nanoconfinement. J Am Chem Soc 2020; 142:10042-10049. [PMID: 32383870 PMCID: PMC7295077 DOI: 10.1021/jacs.0c01978] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
For proteins and DNA secondary structures such as G-quadruplexes and i-motifs, nanoconfinement can facilitate their folding and increase structural stabilities. However, the properties of the physiologically prevalent B-DNA duplex have not been elucidated inside the nanocavity. Using a 17-bp DNA duplex in the form of a hairpin stem, here, we probed folding and unfolding transitions of the hairpin DNA duplex inside a DNA origami nanocavity. Compared to the free solution, the DNA hairpin inside the nanocage with a 15 × 15 nm cross section showed a drastic decrease in mechanical (20 → 9 pN) and thermodynamic (25 → 6 kcal/mol) stabilities. Free energy profiles revealed that the activation energy of unzipping the hairpin DNA duplex decreased dramatically (28 → 8 kcal/mol), whereas the transition state moved closer to the unfolded state inside the nanocage. All of these indicate that nanoconfinement weakens the stability of the hairpin DNA duplex to an unexpected extent. In a DNA hairpin made of a stem that contains complementary telomeric G-quadruplex (GQ) and i-motif (iM) forming sequences, formation of the Hoogsteen base pairs underlining the GQ or iM is preferred over the Watson-Crick base pairs in the DNA hairpin. These results shed light on the behavior of DNA in nanochannels, nanopores, or nanopockets of various natural or synthetic machineries. It also elucidates an alternative pathway to populate noncanonical DNA over B-DNA in the cellular environment where the nanocavity is abundant.
Collapse
Affiliation(s)
- Sagun Jonchhe
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Shankar Pandey
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Deepak Karna
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Pravin Pokhrel
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Yunxi Cui
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Shubham Mishra
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell–Material Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell–Material Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Masayuki Endo
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell–Material Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Hanbin Mao
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
26
|
Pandey S, Kankanamalage DVW, Zhou X, Hu C, Isaacs L, Jayawickramarajah J, Mao H. Chaperone-Assisted Host-Guest Interactions Revealed by Single-Molecule Force Spectroscopy. J Am Chem Soc 2019; 141:18385-18389. [PMID: 31679339 PMCID: PMC7007810 DOI: 10.1021/jacs.9b09019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The recent discovery of ultra-high binding affinities in cucurbit[7]uril (CB7)-based host-guest pairs in an aqueous environment has rendered CB7 a rather attractive material in analytical and biomedical applications. Due to the lack of a molecular platform that can follow the same host-guest complex during repetitive mechanical measurements, however, mechanical stabilities of the CB7 system have not been revealed, hindering its potential to rival widely used conjugation pairs, such as streptavidin-biotin. Here, we assembled a DNA template in which a flexible DNA linker was exploited to keep the host (CB7) and guest (adamantane) in proximity. This platform not only increased the efficiency of the single-molecule characterization in optical tweezers but also clearly revealed mechanical features of the same host-guest complex. We found that positively charged adamantane guest demonstrated higher mechanical stability (49 pN) than neutral adamantane (44 pN), a trend consistent with the chemical affinity between guest molecules and the CB7 host. Surprisingly, we found that a hexyl group adjacent to the adamantane served as a chaperone to assist the formation of the adamantane-CB7 pairs. The discovery of an unprecedented chaperone-assisted interaction mechanism provides new approaches to efficiently assemble host-guest-based supramolecules with increased mechanical stabilities, which can be exploited in various biomedical, biosensing, and materials fields.
Collapse
Affiliation(s)
- Shankar Pandey
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio, 44242, USA
| | | | - Xiao Zhou
- Department of Chemistry, Tulane University, 2015 Percival Stern Hall, New Orleans, Louisiana 70118, USA
| | - Changpeng Hu
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio, 44242, USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| | | | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio, 44242, USA
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio, 44242, USA
| |
Collapse
|
27
|
Yang YJ, Song L, Zhao XC, Zhang C, Wu WQ, You HJ, Fu H, Zhou EC, Zhang XH. A Universal Assay for Making DNA, RNA, and RNA-DNA Hybrid Configurations for Single-Molecule Manipulation in Two or Three Steps without Ligation. ACS Synth Biol 2019; 8:1663-1672. [PMID: 31264849 DOI: 10.1021/acssynbio.9b00241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite having a great variety of topologies, most DNA, RNA, and RNA-DNA hybrid (RDH) configurations for single-molecule manipulation are composed of several single-stranded (ss) DNA and ssRNA strands, with functional labels at the two ends for surface tethering. On this basis, we developed a simple, robust, and universal amplification-annealing (AA) assay for making all these configurations in two or three steps without inefficient digestion and ligation reactions. As examples, we made ssDNA, short ssDNA with double-stranded (ds) DNA handles, dsDNA with ssDNA handles, replication-fork shaped DNA/RDH/RNA, DNA holiday junction, three-site multiple-labeled and nicked DNA, torsion-constrained RNA/RDH, and short ssRNA with RDH handles. In addition to single-molecule manipulation techniques including optical tweezers, magnetic tweezers, and atomic force microscopy, these configurations can be applied in other surface-tethering techniques as well.
Collapse
Affiliation(s)
- Ya-Jun Yang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Lun Song
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Xiao-Cong Zhao
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Chen Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Wen-Qiang Wu
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Hui-Juan You
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hang Fu
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Er-Chi Zhou
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Xing-Hua Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| |
Collapse
|
28
|
Ma VPY, Salaita K. DNA Nanotechnology as an Emerging Tool to Study Mechanotransduction in Living Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900961. [PMID: 31069945 PMCID: PMC6663650 DOI: 10.1002/smll.201900961] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/18/2019] [Indexed: 05/24/2023]
Abstract
The ease of tailoring DNA nanostructures with sub-nanometer precision has enabled new and exciting in vivo applications in the areas of chemical sensing, imaging, and gene regulation. A new emerging paradigm in the field is that DNA nanostructures can be engineered to study molecular mechanics. This new development has transformed the repertoire of capabilities enabled by DNA to include detection of molecular forces in living cells and elucidating the fundamental mechanisms of mechanotransduction. This Review first describes fundamental aspects of force-induced melting of DNA hairpins and duplexes. This is then followed by a survey of the currently available force sensing DNA probes and different fluorescence-based force readout modes. Throughout the Review, applications of these probes in studying immune receptor signaling, including the T cell receptor and B cell receptor, as well as Notch and integrin signaling, are discussed.
Collapse
Affiliation(s)
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
29
|
Mandal S, Kawamoto Y, Yue Z, Hashiya K, Cui Y, Bando T, Pandey S, Hoque ME, Hossain MA, Sugiyama H, Mao H. Submolecular dissection reveals strong and specific binding of polyamide-pyridostatin conjugates to human telomere interface. Nucleic Acids Res 2019; 47:3295-3305. [PMID: 30820532 PMCID: PMC6468309 DOI: 10.1093/nar/gkz135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/13/2019] [Accepted: 02/26/2019] [Indexed: 01/20/2023] Open
Abstract
To modulate biological functions, G-quadruplexes in genome are often non-specifically targeted by small molecules. Here, specificity is increased by targeting both G-quadruplex and its flanking duplex DNA in a naturally occurring dsDNA-ssDNA telomere interface using polyamide (PA) and pyridostatin (PDS) conjugates (PA-PDS). We innovated a single-molecule assay in which dissociation constant (Kd) of the conjugate can be separately evaluated from the binding of either PA or PDS. We found Kd of 0.8 nM for PA-PDS, which is much lower than PDS (Kd ∼ 450 nM) or PA (Kd ∼ 35 nM). Functional assays further indicated that the PA-PDS conjugate stopped the replication of a DNA polymerase more efficiently than PA or PDS. Our results not only established a new method to dissect multivalent binding into actions of individual monovalent components, they also demonstrated a strong and specific G-quadruplex targeting strategy by conjugating highly specific duplex-binding molecules with potent quadruplex ligands.
Collapse
Affiliation(s)
- Shankar Mandal
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Yusuke Kawamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Zhizhou Yue
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yunxi Cui
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Shankar Pandey
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | | | | | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell–Material Science (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Hanbin Mao
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
30
|
Cheng Y, Tang Q, Li Y, Zhang Y, Zhao C, Yan J, You H. Folding/unfolding kinetics of G-quadruplexes upstream of the P1 promoter of the human BCL-2 oncogene. J Biol Chem 2019; 294:5890-5895. [PMID: 30787104 DOI: 10.1074/jbc.ra119.007516] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/14/2019] [Indexed: 12/29/2022] Open
Abstract
The G-rich Pu39 region of the P1 promoter of the oncogene BCL-2, an apoptosis regulator, can fold into multiple G-quadruplex (G4) structures. Bcl2-2345 and Bcl2-1245 are two major G4 species forming with high thermal stability and distinct topologies in the Pu39 region, but their folding/unfolding kinetics have not yet been investigated. Here, we used magnetic tweezers to measure the mechanical stability and the folding/unfolding kinetics of the Bcl2-2345 and Bcl2-1245 G4 structures. We report that the hybrid-stranded Bcl2-2345 G4 had a lower mechanical stability than the parallel-stranded Bcl2-1245 G4. We observed that the Bcl2-2345 G4 is a kinetically favored structure, whereas the Bcl2-1245 G4, with a slow unfolding rate, may function as a kinetic barrier for transcription. We also determined that in addition to the Bcl2-2345 and Bcl2-1245 G4s, other stable DNA secondary structures, such as a hybrid-stranded Bcl2-1234 G4, can also form in the Pu39 sequence. The characterization of the folding/unfolding kinetics of specific G4s reported here sheds light on the participation of G4s during gene transcription and provides information for designing G4-targeting small molecules that could modulate BCL-2 gene expression.
Collapse
Affiliation(s)
- Yuanlei Cheng
- From the School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Qingnan Tang
- the Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Yutong Li
- From the School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Yashuo Zhang
- From the School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Chuyuan Zhao
- the Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Jie Yan
- the Department of Physics, National University of Singapore, Singapore 117542, Singapore; the Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Huijuan You
- From the School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China.
| |
Collapse
|
31
|
Abstract
The genome-wide occurrence of G-quadruplexes and their demonstrated biological activities call for detailed understanding on the stability and transition kinetics of the structures. Although the core structural element in a G-quadruplex is simple and requires only four tandem repeats of Guanine rich sequences, there is rather rich conformational diversity in this structure. Corresponding to this structural diversity, it displays involved transition kinetics within individual G-quadruplexes and complicated interconversion among different G-quadruplex species. Due to the inherently high signal-to-noise ratio in the measurement, single-molecule tools offer a unique capability to investigate the thermodynamic, kinetic, and mechanical properties of G-quadruplexes with dynamic conformations. In this chapter, we describe different single molecule methods such as atomic-force microscopy (AFM), single-molecule fluorescence resonance energy transfer (smFRET), optical, magnetic, and magneto-optical tweezers to investigate G-quadruplex structures as well as their interactions with small-molecule ligands.
Collapse
Affiliation(s)
- Shankar Mandal
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, USA
| | | | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, USA.
| |
Collapse
|
32
|
Punnoose JA, Ma Y, Hoque ME, Cui Y, Sasaki S, Guo AH, Nagasawa K, Mao H. Random Formation of G-Quadruplexes in the Full-Length Human Telomere Overhangs Leads to a Kinetic Folding Pattern with Targetable Vacant G-Tracts. Biochemistry 2018; 57:6946-6955. [PMID: 30480434 PMCID: PMC6684037 DOI: 10.1021/acs.biochem.8b00957] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
G-Quadruplexes formed in the 3' telomere overhang (∼200 nucleotides) have been shown to regulate biological functions of human telomeres. The mechanism governing the population pattern of multiple telomeric G-quadruplexes is yet to be elucidated inside the telomeric overhang in a time window shorter than thermodynamic equilibrium. Using a single-molecule force ramping assay, we quantified G-quadruplex populations in telomere overhangs over a full physiological range of 99-291 nucleotides. We found that G-quadruplexes randomly form in these overhangs within seconds, which leads to a population governed by a kinetic, rather than a thermodynamic, folding pattern. The kinetic folding gives rise to vacant G-tracts between G-quadruplexes. By targeting these vacant G-tracts using complementary DNA fragments, we demonstrated that binding to the telomeric G-quadruplexes becomes more efficient and specific for telomestatin derivatives.
Collapse
Affiliation(s)
| | - Yue Ma
- Department of Biotechnology and Life Science Faculty of Technology, Tokyo University of Agriculture and Technology (TUAT), 2-14-16 Naka-cho, Koganeishi, Tokyo 184-8588, Japan
| | - Mohammed Enamul Hoque
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio, 44242, USA
| | - Yunxi Cui
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio, 44242, USA
| | - Shogo Sasaki
- Department of Biotechnology and Life Science Faculty of Technology, Tokyo University of Agriculture and Technology (TUAT), 2-14-16 Naka-cho, Koganeishi, Tokyo 184-8588, Japan
| | - Athena Huixin Guo
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio, 44242, USA
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science Faculty of Technology, Tokyo University of Agriculture and Technology (TUAT), 2-14-16 Naka-cho, Koganeishi, Tokyo 184-8588, Japan
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio, 44242, USA
| |
Collapse
|
33
|
Hu Y, Li X, Zhang Z, Chen G, Liang H, Zhang D, Liu C. Detection of hydrogen sulphide based on a novel G-quadruplex selective fluorescent probe. SENSORS AND ACTUATORS B: CHEMICAL 2018; 272:308-313. [DOI: 10.1016/j.snb.2018.05.177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
|
34
|
Gutiérrez I, Garavís M, de Lorenzo S, Villasante A, González C, Arias-Gonzalez JR. Single-Stranded Condensation Stochastically Blocks G-Quadruplex Assembly in Human Telomeric RNA. J Phys Chem Lett 2018; 9:2498-2503. [PMID: 29688724 DOI: 10.1021/acs.jpclett.8b00722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
TERRA is an RNA molecule transcribed from human subtelomeric regions toward chromosome ends potentially involved in regulation of heterochromatin stability, semiconservative replication, and telomerase inhibition, among others. TERRA contains tandem repeats of the sequence GGGUUA, with a strong tendency to fold into a four-stranded arrangement known as a parallel G-quadruplex. Here, we demonstrate by using single-molecule force spectroscopy that this potential is limited by the inherent capacity of RNA to self-associate randomly and further condense into entropically more favorable structures. We stretched RNA constructions with more than four and less than eight hexanucleotide repeats, thus unable to form several G-quadruplexes in tandem, flanked by non-G-rich overhangs of random sequence by optical tweezers on a one by one basis. We found that condensed RNA stochastically blocks G-quadruplex folding pathways with a near 20% probability, a behavior that is not found in DNA analogous molecules.
Collapse
Affiliation(s)
- Irene Gutiérrez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) , Cantoblanco, 28049 Madrid , Spain
| | - Miguel Garavís
- Instituto de Química Física Rocasolano, CSIC , C/Serrano 119 , 28006 Madrid , Spain
| | - Sara de Lorenzo
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) , Cantoblanco, 28049 Madrid , Spain
| | - Alfredo Villasante
- Centro de Biología Molecular "Severo Ochoa" CSIC-UAM , C/Nicolás Cabrera 1 , 28049 Madrid , Spain
| | - Carlos González
- Instituto de Química Física Rocasolano, CSIC , C/Serrano 119 , 28006 Madrid , Spain
| | - J Ricardo Arias-Gonzalez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) , Cantoblanco, 28049 Madrid , Spain
- CNB-CSIC-IMDEA Nanociencia Associated Unit "Unidad de Nanobiotecnología" , Cantoblanco, 28049 Madrid , Spain
| |
Collapse
|
35
|
You H, Guo S, Le S, Tang Q, Yao M, Zhao X, Yan J. Two-State Folding Energy Determination Based on Transition Points in Nonequilibrium Single-Molecule Experiments. J Phys Chem Lett 2018; 9:811-816. [PMID: 29385343 DOI: 10.1021/acs.jpclett.7b03123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Many small protein domains or nucleic acid structures undergo two-state unfolding-refolding transitions during mechanical stretching using single-molecule techniques. Here, by applying the Jarzynski equality (JE), we analytically express the folding energy of a molecule as a function of the experimentally measured transition points ξ* obtained with two typical time-varying mechanical constraints: the force constraints F(t) and the position constraints R(t) of a Hookian spring attached to one end of the molecule. Compared to previous applications of JE based on the integration of accurately measured force-extension curves of a tether that typically contains the molecule of interest and handles, our approach just needs to accurately measure a single data point. In the case of the F(t) process, the calculation is handle-independent. The broad applications of the theory are demonstrated by measuring the folding energies of a DNA hairpin, a DNA G-quadruplex, and the titin I27 domain based on transition forces using magnetic tweezers.
Collapse
Affiliation(s)
- Huijuan You
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology , 430030 Wuhan, China
- Mechanobiology Institute, National University of Singapore , 117411 Singapore
| | - Shiwen Guo
- Mechanobiology Institute, National University of Singapore , 117411 Singapore
| | - Shimin Le
- Department of Physics, National University of Singapore , 117542 Singapore
| | - Qingnan Tang
- Department of Physics, National University of Singapore , 117542 Singapore
| | - Mingxi Yao
- Mechanobiology Institute, National University of Singapore , 117411 Singapore
| | - Xiaodan Zhao
- Mechanobiology Institute, National University of Singapore , 117411 Singapore
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore , 117411 Singapore
- Department of Physics, National University of Singapore , 117542 Singapore
- Centre for Bioimaging Sciences, National University of Singapore , 117546 Singapore
| |
Collapse
|
36
|
Topological impact of noncanonical DNA structures on Klenow fragment of DNA polymerase. Proc Natl Acad Sci U S A 2017; 114:9605-9610. [PMID: 28827350 DOI: 10.1073/pnas.1704258114] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Noncanonical DNA structures that stall DNA replication can cause errors in genomic DNA. Here, we investigated how the noncanonical structures formed by sequences in genes associated with a number of diseases impacted DNA polymerization by the Klenow fragment of DNA polymerase. Replication of a DNA sequence forming an i-motif from a telomere, hypoxia-induced transcription factor, and an insulin-linked polymorphic region was effectively inhibited. On the other hand, replication of a mixed-type G-quadruplex (G4) from a telomere was less inhibited than that of the antiparallel type or parallel type. Interestingly, the i-motif was a better inhibitor of replication than were mixed-type G4s or hairpin structures, even though all had similar thermodynamic stabilities. These results indicate that both the stability and topology of structures formed in DNA templates impact the processivity of a DNA polymerase. This suggests that i-motif formation may trigger genomic instability by stalling the replication of DNA, causing intractable diseases.
Collapse
|
37
|
Selvam S, Mandal S, Mao H. Quantification of Chemical and Mechanical Effects on the Formation of the G-Quadruplex and i-Motif in Duplex DNA. Biochemistry 2017; 56:4616-4625. [PMID: 28738141 DOI: 10.1021/acs.biochem.7b00279] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The formation of biologically significant tetraplex DNA species, such as G-quadruplexes and i-motifs, is affected by chemical (ions and pH) and mechanical [superhelicity (σ) and molecular crowding] factors. Because of the extremely challenging experimental conditions, the relative importance of these factors on tetraplex folding is unknown. In this work, we quantitatively evaluated the chemical and mechanical effects on the population dynamics of DNA tetraplexes in the insulin-linked polymorphic region using magneto-optical tweezers. By mechanically unfolding individual tetraplexes, we found that ions and pH have the largest effects on the formation of the G-quadruplex and i-motif, respectively. Interestingly, superhelicity has the second largest effect followed by molecular crowding conditions. While chemical effects are specific to tetraplex species, mechanical factors have generic influences. The predominant effect of chemical factors can be attributed to the fact that they directly change the stability of a specific tetraplex, whereas the mechanical factors, superhelicity in particular, reduce the stability of the competing species by changing the kinetics of the melting and annealing of the duplex DNA template in a nonspecific manner. The substantial dependence of tetraplexes on superhelicity provides strong support that DNA tetraplexes can serve as topological sensors to modulate fundamental cellular processes such as transcription.
Collapse
Affiliation(s)
- Sangeetha Selvam
- Department of Chemistry and Biochemistry, Kent State University , Kent, Ohio 44242, United States
| | - Shankar Mandal
- Department of Chemistry and Biochemistry, Kent State University , Kent, Ohio 44242, United States
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University , Kent, Ohio 44242, United States
| |
Collapse
|
38
|
Kwok CK, Merrick CJ. G-Quadruplexes: Prediction, Characterization, and Biological Application. Trends Biotechnol 2017; 35:997-1013. [PMID: 28755976 DOI: 10.1016/j.tibtech.2017.06.012] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 02/08/2023]
Abstract
Guanine (G)-rich sequences in nucleic acids can assemble into G-quadruplex structures that involve G-quartets linked by loop nucleotides. The structural and topological diversity of G-quadruplexes have attracted great attention for decades. Recent methodological advances have advanced the identification and characterization of G-quadruplexes in vivo as well as in vitro, and at a much higher resolution and throughput, which has greatly expanded our current understanding of G-quadruplex structure and function. Accumulating knowledge about the structural properties of G-quadruplexes has helped to design and develop a repertoire of molecular and chemical tools for biological applications. This review highlights how these exciting methods and findings have opened new doors to investigate the potential functions and applications of G-quadruplexes in basic and applied biosciences.
Collapse
Affiliation(s)
- Chun Kit Kwok
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
| | - Catherine J Merrick
- Centre for Applied Entomology and Parasitology, Faculty of Natural Sciences, Keele University, Keele, Staffordshire, UK.
| |
Collapse
|
39
|
Odorant Sensory Input Modulates DNA Secondary Structure Formation and Heterogeneous Ribonucleoprotein Recruitment on the Tyrosine Hydroxylase and Glutamic Acid Decarboxylase 1 Promoters in the Olfactory Bulb. J Neurosci 2017; 37:4778-4789. [PMID: 28411275 DOI: 10.1523/jneurosci.1363-16.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 12/25/2022] Open
Abstract
Adaptation of neural circuits to changes in sensory input can modify several cellular processes within neurons, including neurotransmitter biosynthesis levels. For a subset of olfactory bulb interneurons, activity-dependent changes in GABA are reflected by corresponding changes in Glutamate decarboxylase 1 (Gad1) expression levels. Mechanisms regulating Gad1 promoter activity are poorly understood, but here we show that a conserved G:C-rich region in the mouse Gad1 proximal promoter region both recruits heterogeneous nuclear ribonucleoproteins (hnRNPs) that facilitate transcription and forms single-stranded DNA secondary structures associated with transcriptional repression. This promoter architecture and function is shared with Tyrosine hydroxylase (Th), which is also modulated by odorant-dependent activity in the olfactory bulb. This study shows that the balance between DNA secondary structure formation and hnRNP binding on the mouse Th and Gad1 promoters in the olfactory bulb is responsive to changes in odorant-dependent sensory input. These findings reveal that Th and Gad1 share a novel transcription regulatory mechanism that facilitates sensory input-dependent regulation of dopamine and GABA expression.SIGNIFICANCE STATEMENT Adaptation of neural circuits to changes in sensory input can modify several cellular processes within neurons, including neurotransmitter biosynthesis levels. This study shows that transcription of genes encoding rate-limiting enzymes for GABA and dopamine biosynthesis (Gad1 and Th, respectively) in the mammalian olfactory bulb is regulated by G:C-rich regions that both recruit heterogeneous nuclear ribonucleoproteins (hnRNPs) to facilitate transcription and form single-stranded DNA secondary structures associated with repression. hnRNP binding and formation of DNA secondary structure on the Th and Gad1 promoters are mutually exclusive, and odorant sensory input levels regulate the balance between these regulatory features. These findings reveal that Th and Gad1 share a transcription regulatory mechanism that facilitates odorant-dependent regulation of dopamine and GABA expression levels.
Collapse
|
40
|
Sutherland C, Cui Y, Mao H, Hurley LH. A Mechanosensor Mechanism Controls the G-Quadruplex/i-Motif Molecular Switch in the MYC Promoter NHE III1. J Am Chem Soc 2016; 138:14138-14151. [DOI: 10.1021/jacs.6b09196] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Caleb Sutherland
- University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, Arizona 85724, United States
| | - Yunxi Cui
- Department
of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, Ohio 44242, United States
| | - Hanbin Mao
- Department
of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, Ohio 44242, United States
| | - Laurence H. Hurley
- University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, Arizona 85724, United States
- University of Arizona, College of Pharmacy, 1703 East Mabel Street, Tucson, Arizona 85721, United States
- BIO5 Institute, 1657 East
Helen Street, Tucson, Arizona 85721, United States
| |
Collapse
|
41
|
Li Y, Syed J, Suzuki Y, Asamitsu S, Shioda N, Wada T, Sugiyama H. Effect of ATRX and G-Quadruplex Formation by the VNTR Sequence on α-Globin Gene Expression. Chembiochem 2016; 17:928-35. [DOI: 10.1002/cbic.201500655] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Yue Li
- Department of Chemistry; Graduate School of Science; Kyoto University; Kyoto 606-8502 Japan
| | - Junetha Syed
- Department of Chemistry; Graduate School of Science; Kyoto University; Kyoto 606-8502 Japan
| | - Yuki Suzuki
- Department of Chemistry; Graduate School of Science; Kyoto University; Kyoto 606-8502 Japan
| | - Sefan Asamitsu
- Department of Chemistry; Graduate School of Science; Kyoto University; Kyoto 606-8502 Japan
| | - Norifumi Shioda
- Department of Pharmacology; Graduate School of Pharmaceutical Sciences; Tohoku University; Sendai 980-8578 Japan
| | - Takahito Wada
- Department of Medical Ethics and Medical Genetics; Graduate School of Medicine; Kyoto University; Kyoto 606-8501 Japan
| | - Hiroshi Sugiyama
- Department of Chemistry; Graduate School of Science; Kyoto University; Kyoto 606-8502 Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS); Kyoto University; Kyoto 606-8501 Japan
| |
Collapse
|
42
|
Cui Y, Kong D, Ghimire C, Xu C, Mao H. Mutually Exclusive Formation of G-Quadruplex and i-Motif Is a General Phenomenon Governed by Steric Hindrance in Duplex DNA. Biochemistry 2016; 55:2291-9. [DOI: 10.1021/acs.biochem.6b00016] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yunxi Cui
- Department
of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, Ohio 44242, United States
| | - Deming Kong
- Key
Laboratory of Functional Polymer Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Chiran Ghimire
- Department
of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, Ohio 44242, United States
| | - Cuixia Xu
- Department
of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, Ohio 44242, United States
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hanbin Mao
- Department
of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
43
|
Endo M, Xing X, Zhou X, Emura T, Hidaka K, Tuesuwan B, Sugiyama H. Single-Molecule Manipulation of the Duplex Formation and Dissociation at the G-Quadruplex/i-Motif Site in the DNA Nanostructure. ACS NANO 2015; 9:9922-9929. [PMID: 26371377 DOI: 10.1021/acsnano.5b03413] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We demonstrate the single-molecule operation and observation of the formation and resolution of double-stranded DNA (dsDNA) containing a G-quadruplex (GQ) forming and counterpart i-motif forming sequence in the DNA nanostructure. Sequential manipulation of DNA strands in the DNA frame was performed to prepare a topologically controlled GQ/i-motif dsDNA. Using strand displacement and the addition and removal of K(+), the topologically controlled GQ/i-motif dsDNA in the DNA frame was obtained in high yield. The dsDNA was resolved into the single-stranded DNA, GQ, and i-motif by the addition of K(+) and operation in acidic conditions. The dissociation of the dsDNA under the GQ and i-motif formation condition was monitored by high-speed atomic force microscopy. The results indicate that the dsDNA containing the GQ- and i-motif sequence is effectively dissolved when the duplex is helically loosened in the DNA nanoscaffold.
Collapse
Affiliation(s)
- Masayuki Endo
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University , Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
- CREST , Japan Science and Technology Corporation (JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Xiwen Xing
- Department of Chemistry, Graduate School of Science, Kyoto University , Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University , Wuhan, Hubei 430072, People's Republic of China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University , Wuhan, Hubei 430072, People's Republic of China
| | - Tomoko Emura
- Department of Chemistry, Graduate School of Science, Kyoto University , Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University , Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Bodin Tuesuwan
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University , Bangkok 10330, Thailand
| | - Hiroshi Sugiyama
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University , Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Chemistry, Graduate School of Science, Kyoto University , Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- CREST , Japan Science and Technology Corporation (JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
44
|
Bergues-Pupo AE, Arias-Gonzalez JR, Morón MC, Fiasconaro A, Falo F. Role of the central cations in the mechanical unfolding of DNA and RNA G-quadruplexes. Nucleic Acids Res 2015; 43:7638-47. [PMID: 26170233 PMCID: PMC4551928 DOI: 10.1093/nar/gkv690] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/23/2015] [Indexed: 12/20/2022] Open
Abstract
Cations are known to mediate diverse interactions in nucleic acids duplexes but they are critical in the arrangement of four-stranded structures. Here, we use all-atom molecular dynamics simulations with explicit solvent to analyse the mechanical unfolding of representative intramolecular G-quadruplex structures: a parallel, a hybrid and an antiparallel DNA and a parallel RNA, in the presence of stabilising cations. We confirm the stability of these conformations in the presence of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$\rm {K}^+$\end{document} central ions and observe distortions from the tetrad topology in their absence. Force-induced unfolding dynamics is then investigated. We show that the unfolding events in the force-extension curves are concomitant to the loss of coordination between the central ions and the guanines of the G-quadruplex. We found lower ruptures forces for the parallel configuration with respect to the antiparallel one, while the behaviour of the force pattern of the parallel RNA appears similar to the parallel DNA. We anticipate that our results will be essential to interpret the fine structure rupture profiles in stretching assays at high resolution and will shed light on the mechanochemical activity of G-quadruplex-binding machinery.
Collapse
Affiliation(s)
- Ana Elisa Bergues-Pupo
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Mariano Esquillor, 50018 Zaragoza, Spain Departamento de Física, Universidad de Oriente, 90500 Santiago de Cuba, Cuba
| | - J Ricardo Arias-Gonzalez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Cantoblanco, 28049 Madrid, Spain CNB-CSIC-IMDEA Nanociencia Associated Unit 'Unidad de Nanobiotecnología, Madrid, Spain'
| | - María Carmen Morón
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain Instituto de Ciencia de Materiales de Aragón (ICMA), Consejo Superior de Investigaciones Científicas, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Alessandro Fiasconaro
- School of Mathematical Sciences, Queen Mary University of London - Mile End Road, London E1 4NS, UK
| | - Fernando Falo
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Mariano Esquillor, 50018 Zaragoza, Spain
| |
Collapse
|
45
|
|
46
|
Abraham Punnoose J, Cui Y, Koirala D, Yangyuoru PM, Ghimire C, Shrestha P, Mao H. Interaction of G-quadruplexes in the full-length 3' human telomeric overhang. J Am Chem Soc 2014; 136:18062-9. [PMID: 25438191 DOI: 10.1021/ja510079u] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The 3' human telomeric overhang provides ample opportunities for the formation and interaction of G-quadruplexes, which have shown impacts on many biological functions including telomerase activities in the telomere region. However, in the few investigations on DNA constructs that approach to the full length of the human telomeric overhang, the presence of higher-order quadruplex-quadruplex interactions is still a subject of debate. Herein, we employed dynamic splint ligation (DSL) to prepare a DNA construct, 5'-(TTAGGG)24 or 24G, which has the length comparable to the full stretch of 3' human telomeric overhang. Using mechanical unfolding assays in laser tweezers, we observed a minor population (∼5%) of higher-order interactions between G-quadruplexes, while the majority of the quadruplexes follow the bead-on-a-string model. Analyses on the noninteracting G-quadruplexes in the 24G construct showed features similar to those of the stand-alone G-quadruplexes in the 5'-(TTAGGG)4 (4G) construct. As each 24G construct contains as many as six G-quadruplexes, this method offers increased throughput for the time-consuming mechanical unfolding experiments of non-B DNA structures.
Collapse
Affiliation(s)
- Jibin Abraham Punnoose
- Department of Chemistry and Biochemistry, Kent State University , Kent, Ohio 44242, United States
| | | | | | | | | | | | | |
Collapse
|
47
|
Dzubiel D, Ihmels H, Mahmoud MMA, Thomas L. A comparative study of the interactions of cationic hetarenes with quadruplex-DNA forming oligonucleotide sequences of the insulin-linked polymorphic region (ILPR). Beilstein J Org Chem 2014; 10:2963-74. [PMID: 25550763 PMCID: PMC4273293 DOI: 10.3762/bjoc.10.314] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 11/26/2014] [Indexed: 11/23/2022] Open
Abstract
The interactions of the ILPR sequence (ILPR = "insulin-linked polymorphic region") a2 [d(ACAG4TGTG4ACAG4TGTG4)] with [2.2.2]heptamethinecyanine derivatives 1a–e and with the already established quadruplex ligands coralyne (2), 3,3′-[2,6-pyridinediylbis(carbonylimino)]bis[1-methylquinolinium] (3), 4,4′,4′′,4′′′-(21H,23H-porphine-5,10,15,20-tetrayl)tetrakis[1-methylpyridinium] (4), naphtho[2,1-b:3,4-b′:6,5-b′′:7,8-b′′′]tetraquinolizinium (5) and thiazole orange (6) were studied. It is demonstrated with absorption, fluorescence and CD spectroscopy that all investigated ligands bind with relatively high affinity to the ILPR-quadruplex DNA a2 (0.2–5.5 × 106 M−1) and that in most cases the binding parameters of ligand-ILPR complexes are different from the ones observed with other native quadruplex-forming DNA sequences.
Collapse
Affiliation(s)
- Darinka Dzubiel
- Department Chemie-Biologie, Universität Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| | - Heiko Ihmels
- Department Chemie-Biologie, Universität Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| | - Mohamed M A Mahmoud
- Department Chemie-Biologie, Universität Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| | - Laura Thomas
- Department Chemie-Biologie, Universität Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| |
Collapse
|
48
|
Yu Z, Cui Y, Selvam S, Ghimire C, Mao H. Dissecting Cooperative Communications in a Protein with a High-Throughput Single-Molecule Scalpel. Chemphyschem 2014; 16:223-32. [DOI: 10.1002/cphc.201402443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Indexed: 01/24/2023]
|
49
|
Ghimire C, Park S, Iida K, Yangyuoru P, Otomo H, Yu Z, Nagasawa K, Sugiyama H, Mao H. Direct quantification of loop interaction and π-π stacking for G-quadruplex stability at the submolecular level. J Am Chem Soc 2014; 136:15537-44. [PMID: 25296000 DOI: 10.1021/ja503585h] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The well-demonstrated biological functions of DNA G-quadruplex inside cells call for small molecules that can modulate these activities by interacting with G-quadruplexes. However, the paucity of the understanding of the G-quadruplex stability contributed from submolecular elements, such as loops and tetraguanine (G) planes (or G-quartets), has hindered the development of small-molecule binders. Assisted by click chemistry, herein, we attached pulling handles via two modified guanines in each of the three G-quartets in human telomeric G-quadruplex. Mechanical unfolding using these handles revealed that the loop interaction contributed more to the G-quadruplex stability than the stacking of G-quartets. This result was further confirmed by the binding of stacking ligands, such as telomestatin derivatives, which led to similar mechanical stability for all three G-quartets by significant reduction of loop interactions for the top and bottom G-quartets. The direct comparison of loop interaction and G-quartet stacking in G-quadruplex provides unprecedented insights for the design of more efficient G-quadruplex-interacting molecules. Compared to traditional experiments, in which mutations are employed to elucidate the roles of specific residues in a biological molecule, our submolecular dissection offers a complementary approach to evaluate individual domains inside a molecule with fewer disturbances to the native structure.
Collapse
Affiliation(s)
- Chiran Ghimire
- Department of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University , Kent, Ohio 44242, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Selvam S, Koirala D, Yu Z, Mao H. Quantification of Topological Coupling between DNA Superhelicity and G-quadruplex Formation. J Am Chem Soc 2014; 136:13967-70. [DOI: 10.1021/ja5064394] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sangeetha Selvam
- Department of Chemistry and
Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Deepak Koirala
- Department of Chemistry and
Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Zhongbo Yu
- Department of Chemistry and
Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Hanbin Mao
- Department of Chemistry and
Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|