1
|
Bhattacharya S, Varney KM, Dahmane T, Johnson BA, Weber DJ, Palmer AG. Deuterium spin relaxation of fractionally deuterated ribonuclease H using paired 475 and 950 MHz NMR spectrometers. JOURNAL OF BIOMOLECULAR NMR 2024; 78:169-177. [PMID: 38856928 PMCID: PMC11545651 DOI: 10.1007/s10858-024-00443-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/27/2024] [Indexed: 06/11/2024]
Abstract
Deuterium (2H) spin relaxation of 13CH2D methyl groups has been widely applied to investigate picosecond-to-nanosecond conformational dynamics in proteins by solution-state NMR spectroscopy. The B0 dependence of the 2H spin relaxation rates is represented by a linear relationship between the spectral density function at three discrete frequencies J(0), J(ωD) and J(2ωD). In this study, the linear relation between 2H relaxation rates at B0 fields separated by a factor of two and the interpolation of rates at intermediate frequencies are combined for a more robust approach for spectral density mapping. The general usefulness of the approach is demonstrated on a fractionally deuterated (55%) and alternate 13C-12C labeled sample of E. coli RNase H. Deuterium relaxation rate constants (R1, R1ρ, RQ, RAP) were measured for 57 well-resolved 13CH2D moieties in RNase H at 1H frequencies of 475 MHz, 500 MHz, 900 MHz, and 950 MHz. The spectral density mapping of the 475/950 MHz data combination was performed independently and jointly to validate the expected relationship between data recorded at B0 fields separated by a factor of two. The final analysis was performed by jointly analyzing 475/950 MHz rates with 700 MHz rates interpolated from 500/900 MHz data to yield six J(ωD) values for each methyl peak. The J(ω) profile for each peak was fit to the original (τM, Sf2, τf) or extended model-free function (τM, Sf2, Ss2, τf, τs) to obtain optimized dynamic parameters.
Collapse
Affiliation(s)
| | - Kristen M Varney
- University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD, 21201, USA
| | - Tassadite Dahmane
- New York Structural Biology Center, 89 Convent Ave, New York, NY, 10027, USA
| | - Bruce A Johnson
- Structural Biology Initiative, CUNY Advanced Science Research Center, 85 St. Nicholas Terrace, New York, NY, 10031, USA
| | - David J Weber
- University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD, 21201, USA
| | - Arthur G Palmer
- New York Structural Biology Center, 89 Convent Ave, New York, NY, 10027, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
2
|
Abstract
Thanks to recent improvements in NMR spectrometer hardware and pulse sequence design, modern 13C NMR has become a useful tool for biomolecular applications. The complete assignment of a protein can be accomplished by using 13C detected multinuclear experiments and it can provide unique information relevant for the study of a variety of different biomolecules including paramagnetic proteins and intrinsically disordered proteins. A wide range of NMR observables can be measured, concurring to the structural and dynamic characterization of a protein in isolation, as part of a larger complex, or even inside a living cell. We present the different properties of 13C with respect to 1H, which provide the rationale for the experiments developed and their application, the technical aspects that need to be faced, and the many experimental variants designed to address different cases. Application areas where these experiments successfully complement proton NMR are also described.
Collapse
Affiliation(s)
- Isabella C. Felli
- Department of Chemistry “Ugo
Schiff” and Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Roberta Pierattelli
- Department of Chemistry “Ugo
Schiff” and Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|
3
|
Kazimierczuk K, Kasprzak P, Georgoulia PS, Matečko-Burmann I, Burmann BM, Isaksson L, Gustavsson E, Westenhoff S, Orekhov VY. Resolution enhancement in NMR spectra by deconvolution with compressed sensing reconstruction. Chem Commun (Camb) 2020; 56:14585-14588. [PMID: 33146166 DOI: 10.1039/d0cc06188c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NMR spectroscopy is one of the basic tools for molecular structure elucidation. Unfortunately, the resolution of the spectra is often limited by inter-nuclear couplings. The existing workarounds often alleviate the problem by trading it for another deficiency, such as spectral artefacts or difficult sample preparation and, thus, are rarely used. We suggest an approach using the coupling deconvolution in the framework of compressed sensing (CS) spectra processing that leads to a major increase in resolution, sensitivity, and overall quality of NUS reconstruction. A new mathematical description of the decoupling by deconvolution explains the effects of thermal noise and reveals a relation with the underlying assumption of the CS. The gain in resolution and sensitivity for challenging molecular systems is demonstrated for the key HNCA experiment used for protein backbone assignment applied to two large proteins: intrinsically disordered 441-residue Tau and a 509-residue globular bacteriophytochrome fragment. The approach will be valuable in a multitude of chemistry applications, where NMR experiments are compromised by the homonuclear scalar coupling.
Collapse
|
4
|
Arthanari H, Takeuchi K, Dubey A, Wagner G. Emerging solution NMR methods to illuminate the structural and dynamic properties of proteins. Curr Opin Struct Biol 2019; 58:294-304. [PMID: 31327528 PMCID: PMC6778509 DOI: 10.1016/j.sbi.2019.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022]
Abstract
The first recognition of protein breathing was more than 50 years ago. Today, we are able to detect the multitude of interaction modes, structural polymorphisms, and binding-induced changes in protein structure that direct function. Solution-state NMR spectroscopy has proved to be a powerful technique, not only to obtain high-resolution structures of proteins, but also to provide unique insights into the functional dynamics of proteins. Here, we summarize recent technical landmarks in solution NMR that have enabled characterization of key biological macromolecular systems. These methods have been fundamental to atomic resolution structure determination and quantitative analysis of dynamics over a wide range of time scales by NMR. The ability of NMR to detect lowly populated protein conformations and transiently formed complexes plays a critical role in its ability to elucidate functionally important structural features of proteins and their dynamics.
Collapse
Affiliation(s)
- Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, United States; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, United States.
| | - Koh Takeuchi
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 135-0064 Tokyo, Japan.
| | - Abhinav Dubey
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, United States; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, United States
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
5
|
Takeuchi K, Baskaran K, Arthanari H. Structure determination using solution NMR: Is it worth the effort? JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:195-201. [PMID: 31345771 DOI: 10.1016/j.jmr.2019.07.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
It has been almost 40 years since solution NMR joined X-ray crystallography as a technique for determining high-resolution structures of proteins. Since then NMR derived structure has contributed in fundamental ways to our understanding of the function of biomolecules. With the already existing mature field of X-ray crystallography and the emergence of cryo-EM as techniques to tackle high-resolution structures of large protein complexes, the role of NMR in structure determination has been questioned. However, NMR has the unique ability to recapitulate the dynamic motion of proteins in their structures, while size limitations of the biomolecular systems that can be routinely studied still present challenges. The field has continually developed methodology and instrumentation since its introduction, pushing its frontiers and redefining its limits. Here we present a brief overview of NMR-based structure determination over the past 40 years. We outline the current state of the field and look ahead to the challenges that still need to be addressed to realize the future potential of NMR as a structural technique.
Collapse
Affiliation(s)
- Koh Takeuchi
- Molecular Profiling Research Center for Drug Discovery (Molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
| | - Kumaran Baskaran
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr, Madison, WI 53706, United States
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, United States; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, United States.
| |
Collapse
|
6
|
Sukumaran S, Malik SA, R SS, Chandra K, Atreya HS. Rapid NMR assignments of intrinsically disordered proteins using two-dimensional 13C-detection based experiments. Chem Commun (Camb) 2019; 55:7820-7823. [PMID: 31215563 DOI: 10.1039/c9cc03530c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An approach for rapid backbone resonance assignments in proteins using only two 2D NMR experiments is presented. The new method involves a combination of high-resolution 13Cα-detected NMR experiments and selective unlabeling of amino acid residues. The 13C detected 2D hNCA and 2D hNcoCA spectra of a uniformly labeled sample of the protein are analysed in concert with the 2D hNCA spectrum obtained for a selectively unlabeled sample. The combinatorial set of amino acid residues for selective unlabeling is chosen optimally to maximize the assignments. The method is useful for rapid assignment of proteins with low stability such as intrinsically disordered proteins and is applicable to deuterated proteins. This approach helped in assignments of 14.5 kDa human α-synuclein during the course of its aggregation.
Collapse
Affiliation(s)
- Sujeesh Sukumaran
- Solid State and Structural Chemistry Unit (SSCU), Indian Institute Of Science, Bangalore - 560 012, India
| | | | | | | | | |
Collapse
|
7
|
Larsen EK, Olivieri C, Walker C, V S M, Gao J, Bernlohr DA, Tonelli M, Markley JL, Veglia G. Probing Protein-Protein Interactions Using Asymmetric Labeling and Carbonyl-Carbon Selective Heteronuclear NMR Spectroscopy. Molecules 2018; 23:E1937. [PMID: 30081441 PMCID: PMC6205158 DOI: 10.3390/molecules23081937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 11/23/2022] Open
Abstract
Protein-protein interactions (PPIs) regulate a plethora of cellular processes and NMR spectroscopy has been a leading technique for characterizing them at the atomic resolution. Technically, however, PPIs characterization has been challenging due to multiple samples required to characterize the hot spots at the protein interface. In this paper, we review our recently developed methods that greatly simplify PPI studies, which minimize the number of samples required to fully characterize residues involved in the protein-protein binding interface. This original strategy combines asymmetric labeling of two binding partners and the carbonyl-carbon label selective (CCLS) pulse sequence element implemented into the heteronuclear single quantum correlation (¹H-15N HSQC) spectra. The CCLS scheme removes signals of the J-coupled 15N⁻13C resonances and records simultaneously two individual amide fingerprints for each binding partner. We show the application to the measurements of chemical shift correlations, residual dipolar couplings (RDCs), and paramagnetic relaxation enhancements (PRE). These experiments open an avenue for further modifications of existing experiments facilitating the NMR analysis of PPIs.
Collapse
Affiliation(s)
- Erik K Larsen
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Cristina Olivieri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Caitlin Walker
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Manu V S
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Jiali Gao
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, Madison, WI 53706, USA.
| | - John L Markley
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Gianluigi Veglia
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
8
|
Schörghuber J, Geist L, Platzer G, Feichtinger M, Bisaccia M, Scheibelberger L, Weber F, Konrat R, Lichtenecker RJ. Late metabolic precursors for selective aromatic residue labeling. JOURNAL OF BIOMOLECULAR NMR 2018; 71:129-140. [PMID: 29808436 PMCID: PMC6096522 DOI: 10.1007/s10858-018-0188-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/19/2018] [Indexed: 06/08/2023]
Abstract
In recent years, we developed a toolbox of heavy isotope containing compounds, which serve as metabolic amino acid precursors in the E. coli-based overexpression of aromatic residue labeled proteins. Our labeling techniques show excellent results both in terms of selectivity and isotope incorporation levels. They are additionally distinguished by low sample production costs and meet the economic demands to further implement protein NMR spectroscopy as a routinely used method in drug development processes. Different isotopologues allow for the assembly of optimized protein samples, which fulfill the requirements of various NMR experiments to elucidate protein structures, analyze conformational dynamics, or probe interaction surfaces. In the present article, we want to summarize the precursors we developed so far and give examples of their special value in the probing of protein-ligand interaction.
Collapse
Affiliation(s)
- Julia Schörghuber
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
| | - Leonhard Geist
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Dr-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Gerald Platzer
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Dr-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Michael Feichtinger
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Dr-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Marilena Bisaccia
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
| | - Lukas Scheibelberger
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
| | - Frederik Weber
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
| | - Robert Konrat
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Dr-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Roman J Lichtenecker
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria.
| |
Collapse
|
9
|
Robson SA, Takeuchi K, Boeszoermenyi A, Coote PW, Dubey A, Hyberts S, Wagner G, Arthanari H. Mixed pyruvate labeling enables backbone resonance assignment of large proteins using a single experiment. Nat Commun 2018; 9:356. [PMID: 29367739 PMCID: PMC5783931 DOI: 10.1038/s41467-017-02767-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/22/2017] [Indexed: 11/30/2022] Open
Abstract
Backbone resonance assignment is a critical first step in the investigation of proteins by NMR. This is traditionally achieved with a standard set of experiments, most of which are not optimal for large proteins. Of these, HNCA is the most sensitive experiment that provides sequential correlations. However, this experiment suffers from chemical shift degeneracy problems during the assignment procedure. We present a strategy that increases the effective resolution of HNCA and enables near-complete resonance assignment using this single HNCA experiment. We utilize a combination of 2-13C and 3-13C pyruvate as the carbon source for isotope labeling, which suppresses the one bond (1Jαβ) coupling providing enhanced resolution for the Cα resonance and amino acid-specific peak shapes that arise from the residual coupling. Using this approach, we can obtain near-complete (>85%) backbone resonance assignment of a 42 kDa protein using a single HNCA experiment.
Collapse
Affiliation(s)
- Scott A Robson
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Koh Takeuchi
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 2-3-26 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Andras Boeszoermenyi
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Paul W Coote
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Abhinav Dubey
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Sven Hyberts
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Gerhard Wagner
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Haribabu Arthanari
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
- Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA.
| |
Collapse
|
10
|
Current Solution NMR Techniques for Structure-Function Studies of Proteins and RNA Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1105:43-58. [DOI: 10.1007/978-981-13-2200-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Sugiki T, Kobayashi N, Fujiwara T. Modern Technologies of Solution Nuclear Magnetic Resonance Spectroscopy for Three-dimensional Structure Determination of Proteins Open Avenues for Life Scientists. Comput Struct Biotechnol J 2017; 15:328-339. [PMID: 28487762 PMCID: PMC5408130 DOI: 10.1016/j.csbj.2017.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 02/07/2023] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for structural studies of chemical compounds and biomolecules such as DNA and proteins. Since the NMR signal sensitively reflects the chemical environment and the dynamics of a nuclear spin, NMR experiments provide a wealth of structural and dynamic information about the molecule of interest at atomic resolution. In general, structural biology studies using NMR spectroscopy still require a reasonable understanding of the theory behind the technique and experience on how to recorded NMR data. Owing to the remarkable progress in the past decade, we can easily access suitable and popular analytical resources for NMR structure determination of proteins with high accuracy. Here, we describe the practical aspects, workflow and key points of modern NMR techniques used for solution structure determination of proteins. This review should aid NMR specialists aiming to develop new methods that accelerate the structure determination process, and open avenues for non-specialist and life scientists interested in using NMR spectroscopy to solve protein structures.
Collapse
Affiliation(s)
- Toshihiko Sugiki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Naohiro Kobayashi
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshimichi Fujiwara
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
12
|
Oxenoid K, Chou JJ. A functional NMR for membrane proteins: dynamics, ligand binding, and allosteric modulation. Protein Sci 2016; 25:959-73. [PMID: 26928605 DOI: 10.1002/pro.2910] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 01/13/2023]
Abstract
By nature of conducting ions, transporting substrates and transducing signals, membrane channels, transporters and receptors are expected to exhibit intrinsic conformational dynamics. It is therefore of great interest and importance to understand the various properties of conformational dynamics acquired by these proteins, for example, the relative population of states, exchange rate, conformations of multiple states, and how small molecule ligands modulate the conformational exchange. Because small molecule binding to membrane proteins can be weak and/or dynamic, structural characterization of these effects is very challenging. This review describes several NMR studies of membrane protein dynamics, ligand-induced conformational rearrangements, and the effect of ligand binding on the equilibrium of conformational exchange. The functional significance of the observed phenomena is discussed.
Collapse
Affiliation(s)
- Kirill Oxenoid
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, 02115
| | - James J Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, 02115
| |
Collapse
|
13
|
Takeuchi K, Arthanari H, Imai M, Wagner G, Shimada I. Nitrogen-detected TROSY yields comparable sensitivity to proton-detected TROSY for non-deuterated, large proteins under physiological salt conditions. JOURNAL OF BIOMOLECULAR NMR 2016; 64:143-51. [PMID: 26800993 PMCID: PMC4871712 DOI: 10.1007/s10858-016-0015-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/16/2016] [Indexed: 05/12/2023]
Abstract
Direct detection of the TROSY component of proton-attached (15)N nuclei ((15)N-detected TROSY) yields high quality spectra with high field magnets, by taking advantage of the slow (15)N transverse relaxation. The slow transverse relaxation and narrow line width of the (15)N-detected TROSY resonances are expected to compensate for the inherently low (15)N sensitivity. However, the sensitivity of (15)N-detected TROSY in a previous report was one-order of magnitude lower than in the conventional (1)H-detected version. This could be due to the fact that the previous experiments were performed at low salt (0-50 mM), which is advantageous for (1)H-detected experiments. Here, we show that the sensitivity gap between (15)N and (1)H becomes marginal for a non-deuterated, large protein (τ c = 35 ns) at a physiological salt concentration (200 mM). This effect is due to the high salt tolerance of the (15)N-detected TROSY. Together with the previously reported benefits of the (15)N-detected TROSY, our results provide further support for the significance of this experiment for structural studies of macromolecules when using high field magnets near and above 1 GHz.
Collapse
Affiliation(s)
- Koh Takeuchi
- Molecular Profiling Research Center for Drug Discovery, National Institute for Advanced Industrial Science and Technology, Tokyo, 135-0063, Japan
- PRESTO, JST, Tokyo, 135-0063, Japan
| | - Haribabu Arthanari
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA
| | - Misaki Imai
- Research and Development Department, Japan Biological Informatics Consortium, Tokyo, 135-0063, Japan
| | - Gerhard Wagner
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.
| | - Ichio Shimada
- Molecular Profiling Research Center for Drug Discovery, National Institute for Advanced Industrial Science and Technology, Tokyo, 135-0063, Japan.
- Graduate Schools of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
14
|
Takeuchi K, Arthanari H, Shimada I, Wagner G. Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR. JOURNAL OF BIOMOLECULAR NMR 2015; 63:323-331. [PMID: 26497830 PMCID: PMC4749451 DOI: 10.1007/s10858-015-9991-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 10/01/2015] [Indexed: 05/18/2023]
Abstract
Detection of (15)N in multidimensional NMR experiments of proteins has sparsely been utilized because of the low gyromagnetic ratio (γ) of nitrogen and the presumed low sensitivity of such experiments. Here we show that selecting the TROSY components of proton-attached (15)N nuclei (TROSY (15)NH) yields high quality spectra in high field magnets (>600 MHz) by taking advantage of the slow (15)N transverse relaxation and compensating for the inherently low (15)N sensitivity. The (15)N TROSY transverse relaxation rates increase modestly with molecular weight but the TROSY gain in peak heights depends strongly on the magnetic field strength. Theoretical simulations predict that the narrowest line width for the TROSY (15)NH component can be obtained at 900 MHz, but sensitivity reaches its maximum around 1.2 GHz. Based on these considerations, a (15)N-detected 2D (1)H-(15)N TROSY-HSQC ((15)N-detected TROSY-HSQC) experiment was developed and high-quality 2D spectra were recorded at 800 MHz in 2 h for 1 mM maltose-binding protein at 278 K (τc ~ 40 ns). Unlike for (1)H detected TROSY, deuteration is not mandatory to benefit (15)N detected TROSY due to reduced dipolar broadening, which facilitates studies of proteins that cannot be deuterated, especially in cases where production requires eukaryotic expression systems. The option of recording (15)N TROSY of proteins expressed in H2O media also alleviates the problem of incomplete amide proton back exchange, which often hampers the detection of amide groups in the core of large molecular weight proteins that are expressed in D2O culture media and cannot be refolded for amide back exchange. These results illustrate the potential of (15)NH-detected TROSY experiments as a means to exploit the high resolution offered by high field magnets near and above 1 GHz.
Collapse
Affiliation(s)
- Koh Takeuchi
- Molecular Profiling Research Center for Drug Discovery, National Institute for Advanced Industrial Science and Technology, Tokyo, 135-0063, Japan
- PRESTO, JST, Tokyo, 135-0063, Japan
| | - Haribabu Arthanari
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA
| | - Ichio Shimada
- Molecular Profiling Research Center for Drug Discovery, National Institute for Advanced Industrial Science and Technology, Tokyo, 135-0063, Japan.
- Graduate Schools of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Gerhard Wagner
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
15
|
Milbradt AG, Arthanari H, Takeuchi K, Boeszoermenyi A, Hagn F, Wagner G. Increased resolution of aromatic cross peaks using alternate 13C labeling and TROSY. JOURNAL OF BIOMOLECULAR NMR 2015; 62:291-301. [PMID: 25957757 PMCID: PMC4782774 DOI: 10.1007/s10858-015-9944-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 05/02/2015] [Indexed: 05/21/2023]
Abstract
For typical globular proteins, contacts involving aromatic side chains would constitute the largest number of distance constraints that could be used to define the structure of proteins and protein complexes based on NOE contacts. However, the (1)H NMR signals of aromatic side chains are often heavily overlapped, which hampers extensive use of aromatic NOE cross peaks. Some of this overlap can be overcome by recording (13)C-dispersed NOESY spectra. However, the resolution in the carbon dimension is rather low due to the narrow dispersion of the carbon signals, large one-bond carbon-carbon (C-C) couplings, and line broadening due to chemical shift anisotropy (CSA). Although it has been noted that the CSA of aromatic carbons could be used in TROSY experiments for enhancing resolution, this has not been used much in practice because of complications arising from large aromatic one-bond C-C couplings, and 3D or 4D carbon dispersed NOESY are typically recorded at low resolution hampering straightforward peak assignments. Here we show that the aromatic TROSY effect can optimally be used when employing alternate (13)C labeling using 2-(13)C glycerol, 2-(13)C pyruvate, or 3-(13)C pyruvate as the carbon source. With the elimination of the strong one-bond C-C coupling, the TROSY effect can easily be exploited. We show that (1)H-(13)C TROSY spectra of alternately (13)C labeled samples can be recorded at high resolution, and we employ 3D NOESY aromatic-TROSY spectra to obtain valuable intramolecular and intermolecular cross peaks on a protein complex.
Collapse
Affiliation(s)
- Alexander G. Milbradt
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Koh Takeuchi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Andras Boeszoermenyi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Franz Hagn
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
- Dept. of Chemistry and Institute for Advanced Study, Technische Universität München, 85748 Garching, Germany
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
16
|
Abstract
The many advantages of (13)C NMR are often overshadowed by its intrinsically low sensitivity. Given that carbon makes up the backbone of most biologically relevant molecules, (13)C NMR offers a straightforward measurement of these compounds. Two-dimensional (13)C-(13)C correlation experiments like INADEQUATE (incredible natural abundance double quantum transfer experiment) are ideal for the structural elucidation of natural products and have great but untapped potential for metabolomics analysis. We demonstrate a new and semiautomated approach called INETA (INADEQUATE network analysis) for the untargeted analysis of INADEQUATE data sets using an in silico INADEQUATE database. We demonstrate this approach using isotopically labeled Caenorhabditis elegans mixtures.
Collapse
Affiliation(s)
- Chaevien S. Clendinen
- Department of Biochemistry & Molecular Biology,
University of Florida, Gainesville FL 32610-0245
- Southeast Center for Integrated Metabolomics, University of
Florida, Gainesville FL 32610-0245
| | | | - Ramadan Ajredini
- Department of Biochemistry & Molecular Biology,
University of Florida, Gainesville FL 32610-0245
- Southeast Center for Integrated Metabolomics, University of
Florida, Gainesville FL 32610-0245
| | - Arthur S. Edison
- Department of Biochemistry & Molecular Biology,
University of Florida, Gainesville FL 32610-0245
- Southeast Center for Integrated Metabolomics, University of
Florida, Gainesville FL 32610-0245
| |
Collapse
|
17
|
Solution NMR Structure Determination of Polytopic α-Helical Membrane Proteins: A Guide to Spin Label Paramagnetic Relaxation Enhancement Restraints. Methods Enzymol 2015; 557:329-48. [PMID: 25950972 DOI: 10.1016/bs.mie.2014.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Solution nuclear magnetic resonance structures of polytopic α-helical membrane proteins require additional restraints beyond the traditional Nuclear Overhauser Effect (NOE) restraints. Several methods have been developed and this review focuses on paramagnetic relaxation enhancement (PRE). Important aspects of spin labeling, PRE measurements, structure calculations, and structural quality are discussed.
Collapse
|
18
|
Göbl C, Madl T, Simon B, Sattler M. NMR approaches for structural analysis of multidomain proteins and complexes in solution. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 80:26-63. [PMID: 24924266 DOI: 10.1016/j.pnmrs.2014.05.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/14/2014] [Indexed: 05/22/2023]
Abstract
NMR spectroscopy is a key method for studying the structure and dynamics of (large) multidomain proteins and complexes in solution. It plays a unique role in integrated structural biology approaches as especially information about conformational dynamics can be readily obtained at residue resolution. Here, we review NMR techniques for such studies focusing on state-of-the-art tools and practical aspects. An efficient approach for determining the quaternary structure of multidomain complexes starts from the structures of individual domains or subunits. The arrangement of the domains/subunits within the complex is then defined based on NMR measurements that provide information about the domain interfaces combined with (long-range) distance and orientational restraints. Aspects discussed include sample preparation, specific isotope labeling and spin labeling; determination of binding interfaces and domain/subunit arrangements from chemical shift perturbations (CSP), nuclear Overhauser effects (NOEs), isotope editing/filtering, cross-saturation, and differential line broadening; and based on paramagnetic relaxation enhancements (PRE) using covalent and soluble spin labels. Finally, the utility of complementary methods such as small-angle X-ray or neutron scattering (SAXS, SANS), electron paramagnetic resonance (EPR) or fluorescence spectroscopy techniques is discussed. The applications of NMR techniques are illustrated with studies of challenging (high molecular weight) protein complexes.
Collapse
Affiliation(s)
- Christoph Göbl
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany
| | - Tobias Madl
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Institute of Molecular Biology, University of Graz, Graz, Austria.
| | - Bernd Simon
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Michael Sattler
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
19
|
Ramaswamy V, Hooker JW, Withers RS, Nast RE, Brey WW, Edison AS. Development of a ¹³C-optimized 1.5-mm high temperature superconducting NMR probe. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 235:58-65. [PMID: 23969086 PMCID: PMC3785096 DOI: 10.1016/j.jmr.2013.07.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 05/12/2023]
Abstract
We report a 1.5-mm NMR probe based on high temperature superconductors operating at 14.1T optimized for (13)C detection. The probe has a total sample volume of about 35 microliters (μL) with an active volume of 20 μL and provides exceptional mass sensitivity for (13)C detection. The probe also has excellent (1)H sensitivity and employs a (2)H lock; (15)N irradiation capability can be added in the future. The coils are cooled to about 20K using a standard Agilent cryogenic refrigeration system, and the sample temperature is regulated near room temperature. The coil design considerations are discussed in detail. This probe is ideal for directly detected (13)C NMR experiments for natural products chemistry and metabolomics applications, for which 35 μL is an optimal sample volume. The outstanding (13)C sensitivity of this probe allowed us to directly determine the (13)C connectivity on 1.1mg of natural abundance histidine using an INADEQUATE experiment. We demonstrated the utility of this probe for (13)C-based metabolomics using a synthetic mixture of common natural abundance metabolites whose concentrations ranged from 1 to 5mM (40-200 nmol).
Collapse
Affiliation(s)
- Vijaykumar Ramaswamy
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr., Gainesville, FL 32611
| | - Jerris W. Hooker
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr., Tallahassee, FL 32310
| | | | - Robert E. Nast
- Agilent Technologies, 5301 Stevens Creek Blvd., Santa Clara, CA 95051
| | - William W. Brey
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr., Tallahassee, FL 32310
- To whom correspondence should be sent: ,
| | - Arthur S. Edison
- Department of Biochemistry & Molecular Biology and NHMFL, University of Florida, 1200 Newell Dr., Gainesville, FL 32610
- To whom correspondence should be sent: ,
| |
Collapse
|
20
|
Abstract
Solution nuclear magnetic resonance (NMR) spectroscopy has come a long way in characterizing the structure and function of biological molecules since the first one-dimensional spectrum of protein was recorded about 30 years ago. To date (September 1, 2012), there are 9,521 solution NMR structures in the Protein Data Bank, compared to 74,009 determined by crystallographic methods. Unlike X-ray and electron microscopy (EM) methods, which are based on the concepts of Fourier optics and image reconstruction, structure determination by NMR involves measuring structural restraints and finding structural solutions that satisfy the restraints. Although the NMR approach is much less direct in a physical sense, it has proven itself over the years to be capable of de novo structure determination at high precision. Moreover, the method is highly versatile and can be used in a variety of ways for addressing mechanistic questions. NMR measurements of protein internal dynamics and protein-protein or protein-ligand interaction are directly relevant to function in vivo because the molecules are often in physiological buffer conditions. The method can also be applied to investigate protein-folding intermediates, conformational changes, as well as intrinsically unfolded proteins. Recently, along with X-ray and EM, solution NMR has entered a state of rapid growth for structural studies of membrane proteins, already demonstrating its feasibility in de novo structure determination of membrane-embedded ion channels and receptors. As the hardware advances rapidly, especially in cryogenic probes that have much higher sensitivity, the sample concentration required for solution NMR investigation is decreasing, hopefully soon to a concentration level at which nonspecific protein aggregation is no longer an issue. After three decades of improvement in spectrometer technology, NMR pulse experiments, isotope labeling schemes, and structure determination software, we believe that solution NMR will truly enter the production phase in the next decade to answer biological questions of high impact, and to become more versatile than ever in complementing X-ray and EM in investigating protein structure and function.
Collapse
Affiliation(s)
- James J Chou
- Jack and Eileen Connors Structural Biology Laboratory, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
21
|
Hiroaki H. Recent applications of isotopic labeling for protein NMR in drug discovery. Expert Opin Drug Discov 2013; 8:523-36. [PMID: 23480844 DOI: 10.1517/17460441.2013.779665] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Nuclear magnetic resonance (NMR) applications in drug discovery are classified into two categories: ligand-based methods and protein-based methods. The latter is based on the observation of the (1)H-(15)N HSQC spectra of a protein with and without lead compounds. However, in order to take this strategy, isotopic labeling is an absolute necessity. Given that each (1)H-(15)N HSQC signal corresponds to a residue of the target protein, signal changes provide specific information on whether a compound will fit into a pocket. Thus, this protein-based method is particularly suitable for fragment-based approaches, such as "SAR-by-NMR" and "fragment-growing." Alternatively, the information from a protein interface may be used to develop inhibitors for protein-protein interactions. AREAS COVERED This review discusses at the experimental procedures for preparing isotopically labeled protein and introduces selected topics on atom-specific and residue-selective isotope labeling, which may facilitate the development of PPI/PA inhibitors. Furthermore, the author reviews the recent applications of "in-cell" NMR spectroscopy, which is now considered as an important tool in drug delivery research. EXPERT OPINION Many recent advances in labeling methods have succeeded in expanding NMR's potential for drug discovery. In addition to those methods, another new technique called "in-cell NMR" allows the observation of protein-ligand interactions inside living cells. In other words, "in-cell NMR" may become a pharmaceutical NMR technique for drug delivery.
Collapse
Affiliation(s)
- Hidekazu Hiroaki
- Nagoya University, Graduate School of Pharmaceutical Sciences, Furocho, Chikusa-kum, Koto-kenkyu-kan, Nagoya, 464-8601, Japan.
| |
Collapse
|
22
|
Bermel W, Bruix M, Felli IC, Kumar M V V, Pierattelli R, Serrano S. Improving the chemical shift dispersion of multidimensional NMR spectra of intrinsically disordered proteins. JOURNAL OF BIOMOLECULAR NMR 2013; 55:231-237. [PMID: 23314728 DOI: 10.1007/s10858-013-9704-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/02/2013] [Indexed: 06/01/2023]
Abstract
Intrinsically disordered proteins (IDPs) have recently attracted the attention of the scientific community challenging the well accepted structure-function paradigm. In the characterization of the dynamic features of proteins nuclear magnetic resonance spectroscopy (NMR) is a strategic tool of investigation. However the peculiar properties of IDPs, with the lack of a unique 3D structure and their high flexibility, have a strong impact on NMR observables (low chemical shift dispersion, efficient solvent exchange broadening) and thus on the quality of NMR spectra. Key aspects to be considered in the design of new NMR experiments optimized for the study of IDPs are discussed. A new experiment, based on direct detection of (13)C(α), is proposed.
Collapse
|
23
|
Gal M, Edmonds KA, Milbradt AG, Takeuchi K, Wagner G. Speeding up direct (15)N detection: hCaN 2D NMR experiment. JOURNAL OF BIOMOLECULAR NMR 2011; 51:497-504. [PMID: 22038648 PMCID: PMC3338130 DOI: 10.1007/s10858-011-9580-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 10/11/2011] [Indexed: 05/05/2023]
Abstract
Experiments detecting low gyromagnetic nuclei have recently been proposed to utilize the relatively slow relaxation properties of these nuclei in comparison to (1)H. Here we present a new type of (15)N direct-detection experiment. Like the previously proposed CaN experiment (Takeuchi et al. in J Biomol NMR 47:271-282, 2010), the hCaN experiment described here sequentially connects amide (15)N resonances, but utilizes the initial high polarization and the faster recovery of the (1)H nucleus to shorten the recycling delay. This allows recording 2D (15)N-detected NMR experiments on proteins within a few hours, while still obtaining superior resolution for (13)C and (15)N, establishing sequential assignments through prolines, and at conditions where amide protons exchange rapidly. The experiments are demonstrated on various biomolecules, including the small globular protein GB1, the 22 kDa HEAT2 domain of eIF4G, and an unstructured polypeptide fragment of NFAT1, which contains many SerPro sequence repeats.
Collapse
Affiliation(s)
- Maayan Gal
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Katherine A. Edmonds
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Alexander G. Milbradt
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Koh Takeuchi
- Biomedicinal Information Research Center, National institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Gerhard Wagner
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
24
|
Takeuchi K, Gal M, Takahashi H, Shimada I, Wagner G. HNCA-TOCSY-CANH experiments with alternate (13)C- (12)C labeling: a set of 3D experiment with unique supra-sequential information for mainchain resonance assignment. JOURNAL OF BIOMOLECULAR NMR 2011; 49:17-26. [PMID: 21110064 PMCID: PMC3072286 DOI: 10.1007/s10858-010-9456-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 11/02/2010] [Indexed: 05/30/2023]
Abstract
Described here is a set of three-dimensional (3D) NMR experiments that rely on CACA-TOCSY magnetization transfer via the weak ³J(CαCα) coupling. These pulse sequences, which resemble recently described (13)C detected CACA-TOCSY (Takeuchi et al. 2010) experiments, are recorded in (1)H(2)O, and use (1)H excitation and detection. These experiments require alternate (13)C-(12)C labeling together with perdeuteration, which allows utilizing the small ³J(CαCα) scalar coupling that is otherwise masked by the stronger (1)J(CC) couplings in uniformly (13)C labeled samples. These new experiments provide a unique assignment ladder-mark that yields bidirectional supra-sequential information and can readily straddle proline residues. Unlike the conventional HNCA experiment, which contains only sequential information to the ¹³C(α) of the preceding residue, the 3D hnCA-TOCSY-caNH experiment can yield sequential correlations to alpha carbons in positions i-1, i + 1 and i-2. Furthermore, the 3D hNca-TOCSY-caNH and Hnca-TOCSY-caNH experiments, which share the same magnetization pathway but use a different chemical shift encoding, directly couple the (15)N-(1)H spin pair of residue i to adjacent amide protons and nitrogens at positions i-2, i-1, i + 1 and i + 2, respectively. These new experimental features make protein backbone assignments more robust by reducing the degeneracy problem associated with the conventional 3D NMR experiments.
Collapse
Affiliation(s)
- Koh Takeuchi
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA. Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Maayan Gal
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hideo Takahashi
- Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan. Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ichio Shimada
- Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan. Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Gerhard Wagner
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
25
|
Madl T, Felli IC, Bertini I, Sattler M. Structural analysis of protein interfaces from 13C direct-detected paramagnetic relaxation enhancements. J Am Chem Soc 2010; 132:7285-7. [PMID: 20462243 DOI: 10.1021/ja1014508] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The measurement of (13)C directed-detected paramagnetic relaxation enhancements (PREs) on spin-labeled proteins combines the efficacy of PREs for the detection of long-range distance information with the favorable sensitivity and resolution of (13)C direct-detected experiments. The (13)C PREs provide long-range distance restraints to map binding interfaces in proteins and protein complexes and are especially useful for studies of high-molecular weight perdeuterated molecules.
Collapse
Affiliation(s)
- Tobias Madl
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | | | | | | |
Collapse
|
26
|
Takeuchi K, Heffron G, Sun ZYJ, Frueh DP, Wagner G. Nitrogen-detected CAN and CON experiments as alternative experiments for main chain NMR resonance assignments. JOURNAL OF BIOMOLECULAR NMR 2010; 47:271-82. [PMID: 20556482 PMCID: PMC2946331 DOI: 10.1007/s10858-010-9430-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 06/01/2010] [Indexed: 05/12/2023]
Abstract
Heteronuclear direct-detection experiments, which utilize the slower relaxation properties of low gamma nuclei, such as (13)C have recently been proposed for sequence-specific assignment and structural analyses of large, unstructured, and/or paramagnetic proteins. Here we present two novel (15)N direct-detection experiments. The CAN experiment sequentially connects amide (15)N resonances using (13)C(alpha) chemical shift matching, and the CON experiment connects the preceding (13)C' nuclei. When starting from the same carbon polarization, the intensities of nitrogen signals detected in the CAN or CON experiments would be expected four times lower than those of carbon resonances observed in the corresponding (13)C-detecting experiment, NCA-DIPAP or NCO-IPAP (Bermel et al. 2006b; Takeuchi et al. 2008). However, the disadvantage due to the lower gamma is counteracted by the slower (15)N transverse relaxation during detection, the possibility for more efficient decoupling in both dimensions, and relaxation optimized properties of the pulse sequences. As a result, the median S/N in the (15)N observe CAN experiment is 16% higher than in the (13)C observe NCA-DIPAP experiment. In addition, significantly higher sensitivity was observed for those residues that are hard to detect in the NCA-DIPAP experiment, such as Gly, Ser and residues with high-field C(alpha) resonances. Both CAN and CON experiments are able to detect Pro resonances that would not be observed in conventional proton-detected experiments. In addition, those experiments are free from problems of incomplete deuterium-to-proton back exchange in amide positions of perdeuterated proteins expressed in D(2)O. Thus, these features and the superior resolution of (15)N-detected experiments provide an attractive alternative for main chain assignments. The experiments are demonstrated with the small model protein GB1 at conditions simulating a 150 kDa protein, and the 52 kDa glutathione S-transferase dimer, GST.
Collapse
Affiliation(s)
- Koh Takeuchi
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
- Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Gregory Heffron
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Zhen-Yu J. Sun
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Dominique P. Frueh
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gerhard Wagner
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
27
|
Hyberts SG, Takeuchi K, Wagner G. Poisson-gap sampling and forward maximum entropy reconstruction for enhancing the resolution and sensitivity of protein NMR data. J Am Chem Soc 2010; 132:2145-7. [PMID: 20121194 DOI: 10.1021/ja908004w] [Citation(s) in RCA: 255] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Fourier transform has been the gold standard for transforming data from the time domain to the frequency domain in many spectroscopic methods, including NMR spectroscopy. While reliable, it has the drawback that it requires a grid of uniformely sampled data points, which is not efficient for decaying signals, and it also suffers from artifacts when dealing with nondecaying signals. Over several decades, many alternative sampling and transformation schemes have been proposed. Their common problem is that relative signal amplitudes are not well-preserved. Here we demonstrate the superior performance of a sine-weighted Poisson-gap distribution sparse-sampling scheme combined with forward maximum entropy (FM) reconstruction. While the relative signal amplitudes are well-preserved, we also find that the signal-to-noise ratio is enhanced up to 4-fold per unit of data acquisition time relative to traditional linear sampling.
Collapse
Affiliation(s)
- Sven G Hyberts
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
28
|
Takeuchi K, Frueh DP, Sun ZYJ, Hiller S, Wagner G. CACA-TOCSY with alternate 13C-12C labeling: a 13Calpha direct detection experiment for mainchain resonance assignment, dihedral angle information, and amino acid type identification. JOURNAL OF BIOMOLECULAR NMR 2010; 47:55-63. [PMID: 20383561 PMCID: PMC2868269 DOI: 10.1007/s10858-010-9410-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 03/19/2010] [Indexed: 05/29/2023]
Abstract
We present a (13)C direct detection CACA-TOCSY experiment for samples with alternate (13)C-(12)C labeling. It provides inter-residue correlations between (13)C(alpha) resonances of residue i and adjacent C(alpha)s at positions i - 1 and i + 1. Furthermore, longer mixing times yield correlations to C(alpha) nuclei separated by more than one residue. The experiment also provides C(alpha)-to-sidechain correlations, some amino acid type identifications and estimates for psi dihedral angles. The power of the experiment derives from the alternate (13)C-(12)C labeling with [1,3-(13)C] glycerol or [2-(13)C] glycerol, which allows utilizing the small scalar (3)J(CC) couplings that are masked by strong (1)J(CC) couplings in uniformly (13)C labeled samples.
Collapse
|
29
|
Takeuchi K, Frueh DP, Hyberts SG, Sun ZYJ, Wagner G. High-resolution 3D CANCA NMR experiments for complete mainchain assignments using C(alpha) direct detection. J Am Chem Soc 2010; 132:2945-51. [PMID: 20155902 PMCID: PMC2832079 DOI: 10.1021/ja907717b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The primary limitation of solution state NMR with larger, highly dynamic, or paramagnetic systems originates from signal losses due to fast transverse relaxation. This is related to the high gyromagnetic ratio gamma of protons, which are usually detected. Thus, it is attractive to consider detection of nuclei with lower gamma, such as (13)C, for extending the size limits of NMR. Here, we present an approach for complete assignment of C(alpha) and N resonances in fast relaxing proteins using a C(alpha) detected 3D CANCA experiment for perdeuterated proteins. The CANCA experiment correlates alpha carbons with the sequentially adjacent and succeeding nitrogen and alpha carbons. This enables elongation of the chain of assigned residues simply by navigating along both nitrogen and carbon dimensions using a "stairway" assignment procedure. The simultaneous use of both C(alpha) and N sequential connectivities makes the experiment more robust than conventional 3D experiments, which rely solely on a single (13)C indirect dimension for sequential information. The 3D CANCA experiment, which is very useful for mainchain assignments of higher molecular weight proteins at high magnetic field, also provides an attractive alterative for smaller proteins. Two versions of the experiment are described for samples that are (13)C labeled either uniformly or at alternate positions for removing one-bond (13)C-(13)C couplings. To achieve both high resolution and sensitivity, extensive nonuniform sampling was employed. Adding longitudinal relaxation enhancement agents can allow for shorter recycling delays, decreased measuring time, or enhanced sensitivity.
Collapse
Affiliation(s)
- Koh Takeuchi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Dominique P. Frueh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Sven G. Hyberts
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Zhen-Yu J. Sun
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
30
|
Bermel W, Bertini I, Felli IC, Pierattelli R. Speeding up (13)C direct detection biomolecular NMR spectroscopy. J Am Chem Soc 2010; 131:15339-45. [PMID: 19795864 DOI: 10.1021/ja9058525] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
After the exploitation of (1)H polarization as a starting source for (13)C direct detection experiments, pulse sequences are designed which exploit the accelerated (1)H longitudinal relaxation to expedite (13)C direct detection experiments. We show here that 2D experiments based on (13)C direct detection on a 0.5 mM water sample of ubiquitin can be recorded in a few minutes and 3D experiments in a few hours. We also show that fast methods like nonuniform sampling can be easily implemented. As overall experimental time has always been a counter indication for the use of (13)C direct detection experiments, this research opens new avenues for the application of (13)C NMR to biological molecules.
Collapse
Affiliation(s)
- Wolfgang Bermel
- Bruker BioSpin GmbH, Silberstreifen, 76287 Rheinstetten, Germany
| | | | | | | |
Collapse
|
31
|
Bermel W, Bertini I, Felli IC, Peruzzini R, Pierattelli R. Exclusively Heteronuclear NMR Experiments to Obtain Structural and Dynamic Information on Proteins. Chemphyschem 2010; 11:689-95. [DOI: 10.1002/cphc.200900772] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Guo C, Geng C, Tugarinov V. Selective backbone labeling of proteins using 1,2-13C2-pyruvate as carbon source. JOURNAL OF BIOMOLECULAR NMR 2009; 44:167-173. [PMID: 19468838 DOI: 10.1007/s10858-009-9326-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 05/11/2009] [Indexed: 05/27/2023]
Abstract
A simple isotope labeling approach for selective (13)C/(15)N backbone labeling of proteins is described. Using {1,2-(13)C(2)}-pyruvate as the sole carbon source in bacterial growth media, selective incorporation of (13)C(alpha)-(13)CO spin-pairs into the backbones of protein molecules with medium-to-high levels of (13)C-enrichment is possible for a subset of 12 amino acids. The isotope labeling scheme has been tested on a pair of proteins--a 7-kDa immunoglobulin binding domain B1 of streptococcal protein G and an 82-kDa enzyme malate synthase G. A number of protein NMR applications are expected to benefit from the {1,2-(13)C(2)}-pyruvate based protein production.
Collapse
Affiliation(s)
- Chenyun Guo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|