1
|
Mondal I, Samanta D, Shaik MAS, Shaw M, Bhattacharya A, Basu R, Pathak A. Influence of Nitrogen-Doped Carbon Dots on H • Radical-Mediated Au-H Formation in the Hydrogenation of 4-Nitrophenol Using NCDs-Au Nanohybrids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19228-19238. [PMID: 39186469 DOI: 10.1021/acs.langmuir.4c02422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The hydrogenation of 4-nitrophenol using carbon dot-stabilized gold (Au) nanoparticles is well-studied, with Au-H species known to catalyze the reaction. However, the impact of specific nitrogen moieties in nitrogen-doped carbon dots on Au-H formation and catalytic activity remains unexplored. These nitrogen species, acting as surface ligands, may influence the catalytic properties through the generation of Au-H species via H• radicals. In this regard, modulation of the catalytic properties of Au nanoparticles has been explored by conjugating their surface with nitrogen-doped carbon dots (NCDs). Three distinct nanohybrid formulations comprising NCDs and Au nanoparticles (i.e., NCDs-Au) have been prepared, where the NCDs were derived from different carbon sources (e.g., citric acid and l-malic acid) and varying mole ratios of the nitrogen source (i.e., urea). The impact of NCDs on Au nanoparticle-mediated catalysis has been investigated using the model reaction of hydrogenation of 4-nitrophenol (4-NP) in the presence of NaBH4. The fractions of different nitrogen species (such as pyrrolic, pyridinic, and amidic) in the different NCDs-Au nanohybrids were quantified through XPS analysis, and their roles in catalytic performance have been studied. Further, the size, shape, crystallinity, defects, and exposed facets of the NCDs-Au nanohybrids have also been assessed (through XRD, HRTEM, and Raman studies), and their structure-activity relationships have been corroborated. The hydrogenation of 4-NP is proposed to happen through the formation of gold-hydride (Au-H) species facilitated by H• radicals, as confirmed by EPR analysis. The NCDs-Au nanohybrid, synthesized from NCDs derived from a 1:3 molar ratio of l-malic acid and urea (MU13-Au), exhibits superior catalytic efficiency with a rate constant of 1.013 min-1, attributed to its abundant defects and a notably high relative content of catalytically favorable pyridinic nitrogen species compared to other tested nanohybrids.
Collapse
Affiliation(s)
- Imran Mondal
- Department of Chemistry, Indian Institute of Technology, Kharagpur, W.B., 721302, India
| | - Dipanjan Samanta
- Department of Chemistry, Indian Institute of Technology, Kharagpur, W.B., 721302, India
| | - Md Abdus Salam Shaik
- Department of Chemistry, Indian Institute of Technology, Kharagpur, W.B., 721302, India
| | - Manisha Shaw
- Department of Chemistry, Indian Institute of Technology, Kharagpur, W.B., 721302, India
| | - Angana Bhattacharya
- Department of Chemistry, Indian Institute of Technology, Kharagpur, W.B., 721302, India
| | - Rajarshi Basu
- Department of Chemistry, Indian Institute of Technology, Kharagpur, W.B., 721302, India
| | - Amita Pathak
- Department of Chemistry, Indian Institute of Technology, Kharagpur, W.B., 721302, India
| |
Collapse
|
2
|
Seif-Eddine M, Cobb SJ, Dang Y, Abdiaziz K, Bajada MA, Reisner E, Roessler MM. Operando film-electrochemical EPR spectroscopy tracks radical intermediates in surface-immobilized catalysts. Nat Chem 2024; 16:1015-1023. [PMID: 38355827 DOI: 10.1038/s41557-024-01450-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
The development of surface-immobilized molecular redox catalysts is an emerging research field with promising applications in sustainable chemistry. In electrocatalysis, paramagnetic species are often key intermediates in the mechanistic cycle but are inherently difficult to detect and follow by conventional in situ techniques. We report a new method, operando film-electrochemical electron paramagnetic resonance spectroscopy (FE-EPR), which enables mechanistic studies of surface-immobilized electrocatalysts. This technique enables radicals formed during redox reactions to be followed in real time under flow conditions, at room temperature and in aqueous solution. Detailed insight into surface-immobilized catalysts, as exemplified here through alcohol oxidation catalysis by a surface-immobilized nitroxide, is possible by detecting active-site paramagnetic species sensitively and quantitatively operando, thereby enabling resolution of the reaction kinetics. Our finding that the surface electron-transfer rate, which is of the same order of magnitude as the rate of catalysis (accessible from operando FE-EPR), limits catalytic efficiency has implications for the future design of better surface-immobilized catalysts.
Collapse
Affiliation(s)
- Maryam Seif-Eddine
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Samuel J Cobb
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Yunfei Dang
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Kaltum Abdiaziz
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Mark A Bajada
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Maxie M Roessler
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK.
| |
Collapse
|
3
|
Ke YH, Zhu CM, Xu HH, Wang X, Liu H, Yuan H. Heterogeneous catalytic oxidation of glycerol over a UiO-66-derived ZrO 2@C supported Au catalyst at room temperature. RSC Adv 2023; 13:27054-27065. [PMID: 37693085 PMCID: PMC10485909 DOI: 10.1039/d3ra04300b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023] Open
Abstract
The catalytic conversion of biomass-derived glycerol into high-value-added products, such as glyceric acid (GLYA), using catalyst-supported Au nanoparticles (Au NPs) at room temperature presents a significant challenge. In this study, we constructed a series of supported Au catalysts, including Au/ZrO2@C, Au/C, Au/ZrO2, and Au/ZrO2-C, and investigated their effectiveness in selectively catalytic oxidizing glycerol to GLYA at room temperature. Among these catalysts, the Au/ZrO2@C catalyst exhibited the best catalytic performance, achieving a glycerol conversion rate of 73% and a GLYA selectivity of 79% under the optimized reaction conditions (reaction conditions: 30 mL 0.1 M glycerol, glycerol/Au = 750 mol mol-1, T = 25 °C, p(O2) = 10 bar, stirring speed = 600 rpm, time = 6 h). Physical adsorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and other characterization methods were employed to analyze the texture properties of the catalyst. The findings indicated that the support structure, the strong metal-support interactions between Au NPs and the support, and the presence of small metallic Au NPs were the primary factors contributing to the catalyst's high activity and selectivity. Moreover, the reusability of the Au/ZrO2@C catalyst was investigated, and a probable reaction mechanism for the oxidation of glycerol was proposed.
Collapse
Affiliation(s)
- Yi-Hu Ke
- Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University Yinchuan 750021 P. R. China
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University Yinchuan 750021 P. R. China
| | - Chun-Mei Zhu
- Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University Yinchuan 750021 P. R. China
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University Yinchuan 750021 P. R. China
| | - Huan-Huan Xu
- Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University Yinchuan 750021 P. R. China
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University Yinchuan 750021 P. R. China
| | - Xue Wang
- Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University Yinchuan 750021 P. R. China
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University Yinchuan 750021 P. R. China
| | - Hai Liu
- Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University Yinchuan 750021 P. R. China
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University Yinchuan 750021 P. R. China
| | - Hong Yuan
- Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University Yinchuan 750021 P. R. China
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University Yinchuan 750021 P. R. China
| |
Collapse
|
4
|
Wang Q, Chen K, Jiang H, Chen C, Xiong C, Chen M, Xu J, Gao X, Xu S, Zhou H, Wu Y. Cell-inspired design of cascade catalysis system by 3D spatially separated active sites. Nat Commun 2023; 14:5338. [PMID: 37660124 PMCID: PMC10475024 DOI: 10.1038/s41467-023-41002-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/10/2023] [Indexed: 09/04/2023] Open
Abstract
Cells possess isolated compartments that spatially confine different enzymes, enabling high-efficiency enzymatic cascade reactions. Herein, we report a cell-inspired design of biomimetic cascade catalysis system by immobilizing Fe single atoms and Au nanoparticles on the inner and outer layers of three-dimensional nanocapsules, respectively. The different metal sites catalyze independently and work synergistically to enable engineered and cascade glucose detection. The biomimetic catalysis system demonstrates ~ 9.8- and 2-fold cascade activity enhancement than conventional mixing and coplanar construction systems, respectively. Furthermore, the biomimetic catalysis system is successfully demonstrated for the colorimetric glucose detection with high catalytic activity and selectivity. Also, the proposed gel-based sensor is integrated with smartphone to enable real-time and visual determination of glucose. More importantly, the gel-based sensor exhibits a high correlation with a commercial glucometer in real samples detection. These findings provide a strategy to design an efficient biomimetic catalysis system for applications in bioassays and nanobiomedicines.
Collapse
Affiliation(s)
- Qiuping Wang
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Kui Chen
- Key Laboratory of Strongly Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Hui Jiang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Cai Chen
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Can Xiong
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Min Chen
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Jie Xu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Xiaoping Gao
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China.
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Huang Zhou
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Yuen Wu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
5
|
Jia H, Chen Z, Yan S, Lucaccioni F, Kochovski Z, Lu Y, Friebe C, Schubert US, Gohy JF. Chameleon Multienvironment Nanoreactors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20166-20174. [PMID: 37058326 DOI: 10.1021/acsami.3c02185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Nanoreactors consisting of hydrophilic porous SiO2 shells and amphiphilic copolymer cores have been prepared, which can easily self-tune their hydrophilic/hydrophobic balance depending on the environment and exhibit chameleon-like behavior. The accordingly obtained nanoparticles show excellent colloidal stability in a variety of solvents with different polarity. Most importantly, thanks to the assistance of the nitroxide radicals attached to the amphiphilic copolymers, the synthesized nanoreactors show high catalytic activity for model reactions in both polar and nonpolar environments and, more particularly, realize a high selectivity for the products resulting from the oxidation of benzyl alcohol in toluene.
Collapse
Affiliation(s)
- He Jia
- Institute of Condensed Matter and Nanoscience (IMCN), Bio- and Soft Matter (BSMA), Université Catholique de Louvain, Place L. Pasteur, 1, 1348 Louvain-la-Neuve, Belgium
| | - Zehan Chen
- Institute of Condensed Matter and Nanoscience (IMCN), Bio- and Soft Matter (BSMA), Université Catholique de Louvain, Place L. Pasteur, 1, 1348 Louvain-la-Neuve, Belgium
| | - Shanshan Yan
- Institute of Condensed Matter and Nanoscience (IMCN), Bio- and Soft Matter (BSMA), Université Catholique de Louvain, Place L. Pasteur, 1, 1348 Louvain-la-Neuve, Belgium
| | - Fabio Lucaccioni
- Institute of Condensed Matter and Nanoscience (IMCN), Bio- and Soft Matter (BSMA), Université Catholique de Louvain, Place L. Pasteur, 1, 1348 Louvain-la-Neuve, Belgium
| | - Zdravko Kochovski
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
| | - Yan Lu
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
- Institute of Chemistry, University of Potsdam, 14467 Potsdam, Germany
| | - Christian Friebe
- Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
| | - Jean-François Gohy
- Institute of Condensed Matter and Nanoscience (IMCN), Bio- and Soft Matter (BSMA), Université Catholique de Louvain, Place L. Pasteur, 1, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
6
|
Tang L, Luo Y, Ma X, Wang B, Ding M, Wang R, Wang P, Pei Y, Wang S. Poly-Hydride [Au I 7 (PPh 3 ) 7 H 5 ](SbF 6 ) 2 cluster complex: Structure, Transformation, and Electrocatalytic CO 2 Reduction Properties. Angew Chem Int Ed Engl 2023; 62:e202300553. [PMID: 36655888 DOI: 10.1002/anie.202300553] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/20/2023]
Abstract
Hydride AuI bonds are labile due to the mismatch in electric potential of an oxidizing metal and reducing ligand, and therefore the structure and structure-activity relationships of nanoclusters that contain them are seldom studied. Herein, we report the synthesis and characterization of [Au7 (PPh3 )7 H5 ](SbF6 )2 (abbrev. Au7 H5 2+ ), an Au cluster complex containing five hydride ligands, which decomposed to give [Au8 (PPh3 )7 ]2+ (abbrev. Au8 2+ ) upon exposure to light (300 to 450 nm). The valence state of AuI and H- was verified by density functional theory (DFT) calculations, NMR, UV/Vis and XPS. The two nanoclusters behaved differently in the electrocatalytic CO2 reduction reaction (CO2 RR): Au7 H5 2+ exhibited 98.2 % selectivity for H2 , whereas Au8 2+ was selective for CO (73.5 %). Further DFT calculations showed that the H- ligand inhibited the CO2 RR process compared with the electron-donor H.
Collapse
Affiliation(s)
- Li Tang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yuting Luo
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Xiaoshuang Ma
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Bin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Mei Ding
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Ru Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Pu Wang
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Shuxin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
7
|
Hou J, Si L, Shi Z, Miao C, Zhao Y, Ji X, Hou Q, Ai S. Effective adsorption and catalytic reduction of nitrophenols by amino-rich Cu(I)-I coordination polymer. CHEMOSPHERE 2023; 311:136903. [PMID: 36280123 DOI: 10.1016/j.chemosphere.2022.136903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Nitrophenols are identified as the priority organic pollutants due to the chemical stability, water solubility, persistence, and toxicity to human health and the environment. Hence, removal of nitrophenols from waste water is vitally essential. In this study, amino-rich coordination polymer Cu2I2(MA)2 (MA = melamine) has been applied for efficient adsorption and catalytic reduction of nitrophenols, like 4-nitrophenol (4-NP), 2, 4-dinitrophenol (DNP) and 2, 4, 6-trinitrophenol (TNP). The effect of various parameters like contact time, initial concentrations, pH, and temperature on adsorption were investigated. The adsorption of nitrophenols fitted the pseudo-second-order kinetic model and Langmuir isotherms model well. The maximum adsorption capacities were 285.71, 232.02, and 131.57 mg g-1 for 4-NP, DNP, and TNP when initial concentrations were 50 mg L-1 at 293.15 K, respectively. The adsorption of nitrophenols is a spontaneous, endothermic, and entropy-driven process. The reduction reaction followed the pseudo-first-order kinetics, and the kinetic rate constants were 0.4413, 0.3167, and 0.17538 min-1 for 4-NP, DNP, and TNP, respectively. The effect of initial nitrophenols concentration, anions, and temperature on reduction process was investigated. The mechanism of adsorption and catalytic reduction of Cu2I2(MA)2 was studied. The results demonstrated that Cu2I2(MA)2 exhibits excellent adsorption and catalytic activity to remove nitrophenols.
Collapse
Affiliation(s)
- Jiayi Hou
- College of Chemistry and Material Science, Shandong Agricultural University; Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian, Shandong, 271018, PR China
| | - Lin Si
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Zekun Shi
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Chengxia Miao
- College of Chemistry and Material Science, Shandong Agricultural University; Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian, Shandong, 271018, PR China
| | - Yan Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Xiangshan Ji
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Qin Hou
- College of Chemistry and Material Science, Shandong Agricultural University; Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian, Shandong, 271018, PR China.
| | - Shiyun Ai
- College of Chemistry and Material Science, Shandong Agricultural University; Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian, Shandong, 271018, PR China.
| |
Collapse
|
8
|
Zhang M, Xiang L, Fan G, Yang L, Li F. Unveiling the role of surface basic sites on ruthenium-based nanocatalysts for enhanced hydrodeoxygenation of guaiacol. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Saravanakumar K, Priya VS, Balakumar V, Prabavathi SL, Muthuraj V. Noble metal nanoparticles (M x = Ag, Au, Pd) decorated graphitic carbon nitride nanosheets for ultrafast catalytic reduction of anthropogenic pollutant, 4-nitrophenol. ENVIRONMENTAL RESEARCH 2022; 212:113185. [PMID: 35395238 DOI: 10.1016/j.envres.2022.113185] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/23/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
We report an effective facile immobilization of noble nanoparticles (Mx = Ag, Au and Pd) assembled on g-C3N4 (g-CN) prepared via a simple ultra-sonication strategy. The Mx assembled g-CN nanocomposites were applied for the effective conversion of 4-nitrophenol (4-NP). As prepared nanocomposites were characterized by techniques of XRD, SEM-EDS, TEM, XPS, and FT-IR analysis to gain crystallographic structural, and morphological insights. The Pd@g-C3N4 (Pd@g-CN) nanocomposite exhibited best catalytic performance (kapp = 1.141 min-1) toward the conversion of 4-NP to 4-aminophenol (4-AP), almost 100% within 4 min using aqueous sodium borohydride (NaBH4). The higher catalytic efficiency of Pd@g-CN could be attributed to the surface electron density on the Pd and rapid electron transfer capacity. Interestingly, g-CN not only role as a stabilizer but also provided compatibility for noble metal deposition, which improves the chemical and morphological stability of noble metal nanoparticles. Different reaction parameters including concentrations of 4-NP, and catalyst amount were studied. These unique combinations make noble metal nanoparticles anchored g-CN nanosheets an ideal platform for catalysis applications and environmental remediation.
Collapse
Affiliation(s)
- Karunamoorthy Saravanakumar
- Department of Chemistry, V. H. N. Senthikumara Nadar College (Autonomous), Virudhunagar 626 001, Tamil Nadu, India; Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | | | - Vellaichamy Balakumar
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka, 819-0395, Japan
| | | | - Velluchamy Muthuraj
- Department of Chemistry, V. H. N. Senthikumara Nadar College (Autonomous), Virudhunagar 626 001, Tamil Nadu, India
| |
Collapse
|
10
|
Storm E, Maggott ED, Mashazi P, Nyokong T, Malgas-Enus R, Mapolie SF. Application of gold and palladium nanoparticles supported on polymelamine microspheres in the oxidation of 1-phenylethanol and some other phenyl substituted alcohols. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Chen J, Ma Q, Zheng X, Fang Y, Wang J, Dong S. Kinetically restrained oxygen reduction to hydrogen peroxide with nearly 100% selectivity. Nat Commun 2022; 13:2808. [PMID: 35606351 PMCID: PMC9127111 DOI: 10.1038/s41467-022-30411-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/29/2022] [Indexed: 11/09/2022] Open
Abstract
Hydrogen peroxide has been synthesized mainly through the electrocatalytic and photocatalytic oxygen reduction reaction in recent years. Herein, we synthesize a single-atom rhodium catalyst (Rh1/NC) to mimic the properties of flavoenzymes for the synthesis of hydrogen peroxide under mild conditions. Rh1/NC dehydrogenates various substrates and catalyzes the reduction of oxygen to hydrogen peroxide. The maximum hydrogen peroxide production rate is 0.48 mol gcatalyst-1 h-1 in the phosphorous acid aerobic oxidation reaction. We find that the selectivity of oxygen reduction to hydrogen peroxide can reach 100%. This is because a single catalytic site of Rh1/NC can only catalyze the removal of two electrons per substrate molecule; thus, the subsequent oxygen can only obtain two electrons to reduce to hydrogen peroxide through the typical two-electron pathway. Similarly, due to the restriction of substrate dehydrogenation, the hydrogen peroxide selectivity in commercial Pt/C-catalyzed enzymatic reactions can be found to reach 75%, which is 30 times higher than that in electrocatalytic oxygen reduction reactions.
Collapse
Affiliation(s)
- Jinxing Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Qian Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Xiliang Zheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Youxing Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jin Wang
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. .,University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
12
|
Hasegawa S, Masuda S, Takano S, Harano K, Tsukuda T. Polymer-Stabilized Au 38 Cluster: Atomically Precise Synthesis by Digestive Ripening and Characterization of the Atomic Structure and Oxidation Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Shingo Hasegawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinya Masuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Koji Harano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
13
|
Buonerba A, Noschese A, Capacchione C, Grassi A. Gold nanoparticles supported on poly(2,6‐dimethyl‐1,4‐phenylene oxide) as robust, selective and cost‐effective catalyst for aerobic oxidation and direct esterification of alcohols. ChemCatChem 2022. [DOI: 10.1002/cctc.202200338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Antonio Buonerba
- University of Salerno Department of Chemistry and Biology: Universita degli Studi di Salerno Dipartimento di Chimica e Biologia A Zambelli Chemistry and Biology via Giovanni Paolo II 84084 Fisciano ITALY
| | - Annarita Noschese
- University of Salerno Department of Chemistry and Biology: Universita degli Studi di Salerno Dipartimento di Chimica e Biologia A Zambelli Chemistry and Biology ITALY
| | - Carmine Capacchione
- University of Salerno Department of Chemistry and Biology: Universita degli Studi di Salerno Dipartimento di Chimica e Biologia A Zambelli Chemistry and Biology ITALY
| | - Alfonso Grassi
- University of Salerno Department of Chemistry and Biology: Universita degli Studi di Salerno Dipartimento di Chimica e Biologia A Zambelli Chemistry and Biology ITALY
| |
Collapse
|
14
|
Guo Q, Wang Y, Han J, Zhang J, Wang F. Interfacial Tandem Catalysis for Ethylene Carbonylation and C–C Coupling to 3-Pentanone on Rh/Ceria. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qiang Guo
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023 Dalian, China
| | - Yehong Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023 Dalian, China
| | - Jianyu Han
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023 Dalian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023 Dalian, China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023 Dalian, China
| |
Collapse
|
15
|
Masuda S, Takano S, Yamazoe S, Tsukuda T. Synthesis of active, robust and cationic Au 25 cluster catalysts on double metal hydroxide by long-term oxidative aging of Au 25(SR) 18. NANOSCALE 2022; 14:3031-3039. [PMID: 34989757 DOI: 10.1039/d1nr07493h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Synthesis of an atomically precise Au25 cluster catalyst was attempted by long-term, low-temperature aging of Au25(BaET)18 (BaET-H = 2-(Boc-amino)ethanethiol) on various double metal hydroxide (DMH) supports. X-ray absorption fine structure analysis revealed that bare Au25 clusters with high loading (1 wt%) were successfully generated on the DMH containing Co and Ce (Co3Ce) by oxidative aging in air at 150 °C for >12 h. X-ray absorption near-edge structure and X-ray photoelectron spectroscopies showed that the Au25 clusters on Co3Ce were positively charged. The Au25/Co3Ce catalyst thus synthesized exhibited superior catalytic performance in the aerobic oxidation of benzyl alcohol under ambient conditions (TOF = 1097 h-1 with >97% selectivity to benzoic acid) and high durability owing to a strong anchoring effect. Based on kinetic experiments, we propose that abstraction of hydride from α-carbon of benzyl alkoxide by Au25 is the rate-determining step of benzyl alcohol oxidation by Au25/Co3Ce.
Collapse
Affiliation(s)
- Shinya Masuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
16
|
Guo W, Guo B, Chen H, Liu C, Wu L. Facet-engineering palladium nanocrystals for remarkable photocatalytic dechlorination of polychlorinated biphenyls. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01752g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rationally constructing functionalized cocatalysts for removing chemically inert polychlorinated biphenyls is significant and challenging.
Collapse
Affiliation(s)
- Wei Guo
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
| | - Binbin Guo
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
| | - Huiling Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
| | - Cheng Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
| | - Ling Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
17
|
Gutiérrez-Tarriño S, Gaona-Miguélez J, Oña-Burgos P. Tailoring the electron density of cobalt oxide clusters to provide highly selective superoxide and peroxide species for aerobic cyclohexane oxidation. Dalton Trans 2021; 50:15370-15379. [PMID: 34642710 DOI: 10.1039/d1dt02347k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic aerobic cyclohexane oxidation to cyclohexanol and cyclohexanone (KA oil) is an industrially relevant reaction. This work is focused on the synthesis of tailor-made catalysts based on the well-known Co4O4 core in order to successfully deal with cyclohexane oxidation reaction. The catalytic activity and selectivity of the synthesized catalysts can be correlated with the electronic density of the cluster, modulated by changing the organic ligands. This is not trivial in cyclohexane oxidation. Furthermore, the reaction mechanism is discussed on the basis of kinetics and spin trapping experiments, confirming that the electronic density of the catalyst has a clear influence on the distribution of the reaction products. In addition, in situ Raman spectroscopy was used to characterize the oxygen species formed on the cobalt cluster during the oxidation reaction. Altogether, it can be concluded that the catalyst with the highest oxidation potential promotes the formation of peroxide and superoxide species, which is the best way to oxidize inactivated CH bonds in alkanes. Finally, based on the results of the mechanistic studies, the contribution of these cobalt oxide clusters in each single reaction step of the whole process has been proposed.
Collapse
Affiliation(s)
- Silvia Gutiérrez-Tarriño
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022 Valencia, Spain.
| | - José Gaona-Miguélez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022 Valencia, Spain.
| | - Pascual Oña-Burgos
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022 Valencia, Spain. .,Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120 Almería, Spain
| |
Collapse
|
18
|
Dong J, Gao ZH, Wang LS. The synthesis and characterization of a new diphosphine-protected gold hydride nanocluster. J Chem Phys 2021; 155:034307. [PMID: 34293870 DOI: 10.1063/5.0056958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gold is the most inert metal and does not form a bulk hydride. However, gold becomes chemically active in the nanometer scale and gold nanoparticles have been found to exhibit important catalytic properties. Here, we report the synthesis and characterization of a highly stable ligand-protected gold hydride nanocluster, [Au22H3(dppee)7]3+ [dppee = bis(2-diphenylphosphino) ethyl ether]. A synthetic method is developed to obtain high purity samples of the gold trihydride nanocluster with good yields. The properties of the new hydride cluster are characterized with different experimental techniques, as well as theoretical calculations. Solid samples of [Au22H3(dppee)7]3+ are found to be stable under ambient conditions. Both experimental evidence and theoretical evidence suggest that the Au22H3 core of the [Au22H3(dppee)7]3+ hydride nanocluster consists of two Au11 units bonded via two triangular faces, creating six uncoordinated Au sites at the interface. The three H atoms bridge the six uncoordinated Au atoms at the interface. The Au11 unit behaves as an eight-electron trivalent superatom, forming a superatom triple bond (Au11 ≡ Au11) in the [Au22H3(dppee)7]3+ trihydride nanocluster assisted by the three bridging H atoms.
Collapse
Affiliation(s)
- Jia Dong
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Ze-Hua Gao
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Lai-Sheng Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
19
|
Shimoyama Y, Ohgomori Y, Kon Y, Hong D. Hydrogen peroxide production from oxygen and formic acid by homogeneous Ir-Ni catalyst. Dalton Trans 2021; 50:9410-9416. [PMID: 34096959 DOI: 10.1039/d1dt01431e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen peroxide was directly produced from oxygen and formic acid, catalysed by a hetero-dinuclear Ir-Ni complex with two adjacent sites, at ambient temperature. Synergistic catalysis derived from the hetero-dinuclear Ir and Ni centres was demonstrated by comparing its activity to those of the component mononuclear Ir and Ni complexes. A reaction intermediate of Ir-hydrido was detected by UV-vis, ESI-TOF-MS, and 1H NMR spectroscopies. It was revealed that the Ir moiety serves as an active species of Ir-hydrido, reacting with oxygen to afford an Ir-hydroperoxide species through O2 insertion, which is the rate-determining step for H2O2 production. Meanwhile, the Ni moiety promotes H2O2 formation by activating solvents as proton sources. We also found that H2O2 production is strongly affected by the solvent dielectric constants (DE); the highest H2O2 concentration was obtained in ethylene glycol with a moderate DE. The catalytic mechanism of H2O2 production by the Ir-Ni complex was discussed, based on kinetic analysis, isotope labelling experiments, and theoretical DFT calculations.
Collapse
Affiliation(s)
- Yoshihiro Shimoyama
- Interdisciplinary Research Centre for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Yuji Ohgomori
- Interdisciplinary Research Centre for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Yoshihiro Kon
- Interdisciplinary Research Centre for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Dachao Hong
- Interdisciplinary Research Centre for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| |
Collapse
|
20
|
Trends in Sustainable Synthesis of Organics by Gold Nanoparticles Embedded in Polymer Matrices. Catalysts 2021. [DOI: 10.3390/catal11060714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Gold nanoparticles (AuNPs) have emerged in recent decades as attractive and selective catalysts for sustainable organic synthesis. Nanostructured gold is indeed environmentally friendly and benign for human health; at the same time, it is active, under different morphologies, in a large variety of oxidation and reduction reactions of interest for the chemical industry. To stabilize the AuNPs and optimize the chemical environment of the catalytic sites, a wide library of natural and synthetic polymers has been proposed. This review describes the main routes for the preparation of AuNPs supported/embedded in synthetic organic polymers and compares the performances of these catalysts with those of the most popular AuNPs supported onto inorganic materials applied in hydrogenation and oxidation reactions. Some examples of cascade coupling reactions are also discussed where the polymer-supported AuNPs allow for the attainment of remarkable activity and selectivity.
Collapse
|
21
|
Chen J, Ma Q, Li M, Chao D, Huang L, Wu W, Fang Y, Dong S. Glucose-oxidase like catalytic mechanism of noble metal nanozymes. Nat Commun 2021; 12:3375. [PMID: 34099730 PMCID: PMC8184917 DOI: 10.1038/s41467-021-23737-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Au nanoparticles (NPs) have been found to be excellent glucose oxidase mimics, while the catalytic processes have rarely been studied. Here, we reveal that the process of glucose oxidation catalyzed by Au NPs is as the same as that of natural glucose oxidase, namely, a two-step reaction including the dehydrogenation of glucose and the subsequent reduction of O2 to H2O2 by two electrons. Pt, Pd, Ru, Rh, and Ir NPs can also catalyze the dehydrogenation of glucose, except that O2 is preferably reduced to H2O. By the electron transfer feature of noble metal NPs, we overcame the limitation that H2O2 must be produced in the traditional two-step glucose assay and realize the rapid colorimetric detections of glucose. Inspired by the electron transport pathway in the catalytic process of natural enzymes, noble metal NPs have also been found to mimic various enzymatic electron transfer reactions including cytochrome c, coenzymes as well as nitrobenzene reductions.
Collapse
Affiliation(s)
- Jinxing Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, PR China.,University of Science and Technology of China, Hefei, Anhui, PR China
| | - Qian Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, PR China.,University of Science and Technology of China, Hefei, Anhui, PR China
| | - Minghua Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, PR China
| | - Daiyong Chao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, PR China
| | - Liang Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, PR China.,University of Science and Technology of China, Hefei, Anhui, PR China
| | - Weiwei Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, PR China.,University of Science and Technology of China, Hefei, Anhui, PR China
| | - Youxing Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, PR China.
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, PR China. .,University of Science and Technology of China, Hefei, Anhui, PR China.
| |
Collapse
|
22
|
Hasegawa S, Takano S, Harano K, Tsukuda T. New Magic Au 24 Cluster Stabilized by PVP: Selective Formation, Atomic Structure, and Oxidation Catalysis. JACS AU 2021; 1:660-668. [PMID: 34467325 PMCID: PMC8395683 DOI: 10.1021/jacsau.1c00102] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 06/13/2023]
Abstract
An unprecedented magic number cluster, Au24Cl x (x = 0-3), was selectively synthesized by the kinetically controlled reduction of the Au precursor ions in a microfluidic mixer in the presence of a large excess of poly(N-vinyl-2-pyrrolidone) (PVP). The atomic structure of the PVP-stabilized Au24Cl x was investigated by means of aberration-corrected transmission electron microscopy (ACTEM) and density functional theory (DFT) calculations. ACTEM video imaging revealed that the Au24Cl x clusters were stable against dissociation but fluctuated during the observation period. Some of the high-resolution ACTEM snapshots were explained by DFT-optimized isomeric structures in which all the constituent atoms were located on the surface. This observation suggests that the featureless optical spectrum of Au24Cl x is associated with the coexistence of distinctive isomers. X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy of CO adsorbates revealed the electron-rich nature of Au24Cl x clusters due to the interaction with PVP. The Au24Cl x :PVP clusters catalyzed the aerobic oxidation of benzyl alcohol derivatives without degradation. Hammett analysis and the kinetic isotope effect indicated that the hydride elimination by Au24Cl x was the rate-limiting step with an apparent activation energy of 56 ± 3 kJ/mol, whereas the oxygen pressure dependence of the reaction kinetics suggested the involvement of hydrogen abstraction by coadsorbed O2 as a faster process.
Collapse
Affiliation(s)
- Shingo Hasegawa
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinjiro Takano
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Koji Harano
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tatsuya Tsukuda
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Elements
Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
23
|
Mahdavi-Shakib A, Sempel J, Hoffman M, Oza A, Bennett E, Owen JS, Rahmani Chokanlu A, Frederick BG, Austin RN. Au/TiO 2-Catalyzed Benzyl Alcohol Oxidation on Morphologically Precise Anatase Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11793-11804. [PMID: 33660991 DOI: 10.1021/acsami.0c20442] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Au nanoparticles (NP) on TiO2 have been shown to be effective catalysts for selective oxidation reactions by using molecular oxygen. In this work, we have studied the influence of support morphology on the catalytic activity of Au/TiO2 catalysts. Two TiO2 anatase supports, a nanoplatelet-shaped material with predominantly the {001} facet exposed and a truncated bipyramidal-shaped nanoparticle with predominantly the {101} facet exposed, were prepared by using a nonaqueous solvothermal method and characterized by using DRIFTS, XPS, and TEM. Au nanoparticles were deposited on the supports by using the deposition-precipitation method, and particle sizes were determined by using STEM. Au nanoparticles were smaller on the support with the majority of the {101} facet exposed. The resulting materials were used to catalyze the aerobic oxidation of benzyl alcohol and trifluoromethylbenzyl alcohol. Support morphology impacts the catalytic activity of Au/TiO2; reaction rates for reactions catalyzed by the predominantly {101} material were higher. Much of the increased reactivity can be explained by the presence of smaller Au particles on the predominantly {101} material, providing more Au/TiO2 interface area, which is where catalysis occurs. The remaining modest differences between the two catalysts are likely due to geometric effects as Hammett slopes show no evidence for electronic differences between the Au particles on the different materials.
Collapse
Affiliation(s)
- Akbar Mahdavi-Shakib
- Department of Chemistry, Barnard College, Columbia University, New York, New York 10027, United States
| | - Janine Sempel
- Department of Chemistry, Barnard College, Columbia University, New York, New York 10027, United States
| | - Maya Hoffman
- Department of Chemistry, Barnard College, Columbia University, New York, New York 10027, United States
| | - Aisha Oza
- Department of Chemistry, Barnard College, Columbia University, New York, New York 10027, United States
| | - Ellie Bennett
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Jonathan S Owen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | | | - Brian G Frederick
- Department of Chemistry, University of Maine, Orono, Maine 04469, United States
| | - Rachel Narehood Austin
- Department of Chemistry, Barnard College, Columbia University, New York, New York 10027, United States
| |
Collapse
|
24
|
Yuan S, Lei Z, Guan Z, Wang Q. Atomically Precise Preorganization of Open Metal Sites on Gold Nanoclusters with High Catalytic Performance. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shang‐Fu Yuan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
- Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Zhen Lei
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
| | - Zong‐Jie Guan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
| | - Quan‐Ming Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
- Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
25
|
Ren D, Wang J, Jiang X, Song Z, Norinaga K, Huo Z. A Supported Ni Catalyst Produced from Ni‐Al Hydrotalcite‐Like Precursor for Reduction of Furfuryl Alcohol to Tetrahydrofurfuryl Alcohol by NaBH
4
in Water. ChemistrySelect 2021. [DOI: 10.1002/slct.202003543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dezhang Ren
- College of Marine Ecology and Environment Shanghai Ocean University 1999 Huchenghuan Road Shanghai 201306 China
| | - Jingyi Wang
- College of Marine Ecology and Environment Shanghai Ocean University 1999 Huchenghuan Road Shanghai 201306 China
| | - Xuelei Jiang
- College of Marine Ecology and Environment Shanghai Ocean University 1999 Huchenghuan Road Shanghai 201306 China
| | - Zhiyuan Song
- School of Environmental Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Koyo Norinaga
- Department of Chemical Systems Engineering, Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Zhibao Huo
- College of Marine Ecology and Environment Shanghai Ocean University 1999 Huchenghuan Road Shanghai 201306 China
- School of Environmental Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
26
|
Yuan SF, Lei Z, Guan ZJ, Wang QM. Atomically Precise Preorganization of Open Metal Sites on Gold Nanoclusters with High Catalytic Performance. Angew Chem Int Ed Engl 2021; 60:5225-5229. [PMID: 33258228 DOI: 10.1002/anie.202012499] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/06/2020] [Indexed: 12/27/2022]
Abstract
Gold nanoclusters with surface open sites are crucial for practical applications in catalysis. We have developed a surface geometric mismatch strategy by using mixed ligands of different type of hindrance. When bulky phosphine Ph3 P and planar dipyridyl amine (Hdpa) are simultaneously used, steric repulsion between the ligands will reduce the ligand coverage of gold clusters. A well-defined access granted gold nanocluster [Au23 (Ph3 P)10 (dpa)2 Cl](SO3 CF3 )2 (Au23 , dpa=dipyridylamido) has been successfully synthesized. Single crystal structural determination reveals that Au23 has eight uncoordinated gold atoms in the shape of a distorted bicapped triangular prism. The accessibility of the exposed Au atoms has been confirmed quantitatively by luminescent titration with 2-naphthalenethiol. This cluster has excellent performance toward selective oxidation of benzyl alcohol to benzaldehyde and demonstrates excellent stability due to the protection of negatively charged multidentate ligand dpa.
Collapse
Affiliation(s)
- Shang-Fu Yuan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P. R. China.,Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhen Lei
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P. R. China
| | - Zong-Jie Guan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P. R. China
| | - Quan-Ming Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P. R. China.,Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
27
|
Fabrication of Pd–Au Clusters by In Situ Spontaneous Reduction of Reductive Layered Double Hydroxides. Catal Letters 2021. [DOI: 10.1007/s10562-020-03481-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Dong J, Gao Z, Zhang Q, Wang L. The Synthesis, Bonding, and Transformation of a Ligand‐Protected Gold Nanohydride Cluster. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jia Dong
- Department of Chemistry Brown University Providence RI 02912 USA
| | - Ze‐Hua Gao
- Department of Chemistry Brown University Providence RI 02912 USA
| | - Qian‐Fan Zhang
- Department of Chemistry Brown University Providence RI 02912 USA
| | - Lai‐Sheng Wang
- Department of Chemistry Brown University Providence RI 02912 USA
| |
Collapse
|
29
|
Dong J, Gao Z, Zhang Q, Wang L. The Synthesis, Bonding, and Transformation of a Ligand‐Protected Gold Nanohydride Cluster. Angew Chem Int Ed Engl 2020; 60:2424-2430. [DOI: 10.1002/anie.202011748] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/03/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Jia Dong
- Department of Chemistry Brown University Providence RI 02912 USA
| | - Ze‐Hua Gao
- Department of Chemistry Brown University Providence RI 02912 USA
| | - Qian‐Fan Zhang
- Department of Chemistry Brown University Providence RI 02912 USA
| | - Lai‐Sheng Wang
- Department of Chemistry Brown University Providence RI 02912 USA
| |
Collapse
|
30
|
Pd/Mo2N-TiO2 as efficient catalysts for promoted selective hydrogenation of 4-nitrophenol: A green bio-reducing preparation method. J Catal 2020. [DOI: 10.1016/j.jcat.2020.08.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
He J, Lai C, Qin L, Li B, Liu S, Jiao L, Fu Y, Huang D, Li L, Zhang M, Liu X, Yi H, Chen L, Li Z. Strategy to improve gold nanoparticles loading efficiency on defect-free high silica ZSM-5 zeolite for the reduction of nitrophenols. CHEMOSPHERE 2020; 256:127083. [PMID: 32464359 DOI: 10.1016/j.chemosphere.2020.127083] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Catalytic reduction of toxic and aqueous stable nitrophenols by gold nanoparticles (Au NPs) is hot issue due to the serious environmental pollution in recent years. But the expensive price and poor recycling performance of Au NPs limit its further application. Defect-free high silica zeolite is suitable support for Au NPs due to its cheaper price, higher stability and stronger adsorbability, but the low alumina content and defect sites usually lead to poor Au NPs loading efficiency. Herein, we reported the improved Au NPs loading efficiency on defect-free high silica ZSM-5 zeolite through the additional surface fluffy structure. The fluffy structure was created through the addition of multi-walled carbon nanotubes (MWCNTs) and ethanol into synthesis gel. Highly dispersed ca. 4 nm Au NPs on zeolite surface are prepared by the green enhanced sol-gel immobilization method. The Au NPs loading efficiency on conventional ZSM-5 zeolite is 10.7%, in contrast, this result can arrive to 82.6% on fluffy structure ZSM-5 zeolite. The fluffy structure ZSM-5 zeolite and Au NPs nanocomposites show higher efficiency than traditional Au/ZSM-5 nanocomposites towards catalytic reduction of nitrophenols. Additionally, the experiments with different affecting factors (MWCNTs dosage, aging time, catalysts dosage, pH, initial 4-NP concentration, storage time and recycling times) were carried out to test general applicability of the nanocomposites. And the degradation of nitrophenols experiment was operated to explore the catalytic performance of the prepared nanocomposites in further environmental application. The detailed possible relationship between zeolite with fluffy structure and Au NPs is also proposed in the paper.
Collapse
Affiliation(s)
- Jiangfan He
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, PR China.
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Bisheng Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Lingjie Jiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Xigui Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Liang Chen
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, PR China
| | - Zhongwu Li
- College of Resources and Environmental Sciences, Hunan Normal University, Changsha, Hunan, 410082, PR China
| |
Collapse
|
32
|
Xu Y, Li J, Zhou J, Liu Y, Wei Z, Zhang H. Layered double hydroxides supported atomically precise Aun nanoclusters for air oxidation of benzyl alcohol: Effects of size and active site structure. J Catal 2020. [DOI: 10.1016/j.jcat.2020.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Mahdavi-Shakib A, Sempel J, Babb L, Oza A, Hoffman M, Whittaker TN, Chandler BD, Austin RN. Combining Benzyl Alcohol Oxidation Saturation Kinetics and Hammett Studies as Mechanistic Tools for Examining Supported Metal Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02212] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Akbar Mahdavi-Shakib
- Department of Chemistry, Barnard College of Columbia University, 3009 Broadway, New York, New York 10027, United States
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, United States
| | - Janine Sempel
- Department of Chemistry, Barnard College of Columbia University, 3009 Broadway, New York, New York 10027, United States
| | - Lauren Babb
- Department of Chemistry, Barnard College of Columbia University, 3009 Broadway, New York, New York 10027, United States
| | - Aisha Oza
- Department of Chemistry, Barnard College of Columbia University, 3009 Broadway, New York, New York 10027, United States
| | - Maya Hoffman
- Department of Chemistry, Barnard College of Columbia University, 3009 Broadway, New York, New York 10027, United States
| | - Todd N. Whittaker
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, United States
| | - Bert D. Chandler
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, United States
| | - Rachel Narehood Austin
- Department of Chemistry, Barnard College of Columbia University, 3009 Broadway, New York, New York 10027, United States
| |
Collapse
|
34
|
Hot Electrons, Hot Holes, or Both? Tandem Synthesis of Imines Driven by the Plasmonic Excitation in Au/CeO 2 Nanorods. NANOMATERIALS 2020; 10:nano10081530. [PMID: 32759860 PMCID: PMC7466498 DOI: 10.3390/nano10081530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 11/25/2022]
Abstract
Solar-to-chemical conversion via photocatalysis is of paramount importance for a sustainable future. Thus, investigating the synergistic effects promoted by light in photocatalytic reactions is crucial. The tandem oxidative coupling of alcohols and amines is an attractive route to synthesize imines. Here, we unravel the performance and underlying reaction pathway in the visible-light-driven tandem oxidative coupling of benzyl alcohol and aniline employing Au/CeO2 nanorods as catalysts. We propose an alternative reaction pathway for this transformation that leads to improved efficiencies relative to individual CeO2 nanorods, in which the localized surface plasmon resonance (LSPR) excitation in Au nanoparticles (NPs) plays an important role. Our data suggests a synergism between the hot electrons and holes generated from the LSPR excitation in Au NPs. While the oxygen vacancies in CeO2 nanorods trap the hot electrons and facilitate their transfer to adsorbed O2 at surface vacancy sites, the hot holes in the Au NPs facilitate the α-H abstraction from the adsorbed benzyl alcohol, evolving into benzaldehyde, which then couples with aniline in the next step to yield the corresponding imine. Finally, cerium-coordinated superoxide species abstract hydrogen from the Au surface, regenerating the catalyst surface.
Collapse
|
35
|
Gold nanoparticles onto cerium oxycarbonate as highly efficient catalyst for aerobic allyl alcohol oxidation. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2020.105989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
36
|
Gold Nanoparticles for Oxidation Reactions: Critical Role of Supports and Au Particle Size. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Ishida T, Murayama T, Taketoshi A, Haruta M. Importance of Size and Contact Structure of Gold Nanoparticles for the Genesis of Unique Catalytic Processes. Chem Rev 2019; 120:464-525. [DOI: 10.1021/acs.chemrev.9b00551] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Tamao Ishida
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Gold Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Toru Murayama
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Gold Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Ayako Taketoshi
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Gold Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Masatake Haruta
- Research Center for Gold Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
38
|
Wang W, Xie Y, Zhang S, Liu X, Zhang L, Zhang B, Haruta M, Huang J. Highly efficient base-free aerobic oxidation of alcohols over gold nanoparticles supported on ZnO-CuO mixed oxides. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63429-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Zhao G, Gao E, Wan Q, Liu Q, Liang J, Qiao Y, Zhao G, Tian Y. Structure‐Activity Relationships of Au/Al
2
O
3
Catalyst for the Selective Oxidative Esterification of 1,3‐Propanediol and Methanol. ChemistrySelect 2019. [DOI: 10.1002/slct.201903059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guoming Zhao
- Key Laboratory of Low Carbon Energy and Chemical EngineeringCollege of Chemical and Environmental EngineeringShandong University of Science and Technology Qingdao 266590 China
- CAS Key Laboratory of Biobased MaterialsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences Qingdao 266101 China
| | - Enyuan Gao
- Key Laboratory of Low Carbon Energy and Chemical EngineeringCollege of Chemical and Environmental EngineeringShandong University of Science and Technology Qingdao 266590 China
| | - Qiaoqiao Wan
- Key Laboratory of Low Carbon Energy and Chemical EngineeringCollege of Chemical and Environmental EngineeringShandong University of Science and Technology Qingdao 266590 China
| | - Qing Liu
- Key Laboratory of Low Carbon Energy and Chemical EngineeringCollege of Chemical and Environmental EngineeringShandong University of Science and Technology Qingdao 266590 China
| | - Junjie Liang
- CAS Key Laboratory of Biobased MaterialsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences Qingdao 266101 China
- College of Chemistry and Chemical EngineeringGuizhou University Guiyang 550025 China
| | - Yingyun Qiao
- Key Laboratory of Low Carbon Energy and Chemical EngineeringCollege of Chemical and Environmental EngineeringShandong University of Science and Technology Qingdao 266590 China
- State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum (East China) Qingdao 266580 China
| | - Guangzhen Zhao
- CAS Key Laboratory of Biobased MaterialsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences Qingdao 266101 China
| | - Yuanyu Tian
- Key Laboratory of Low Carbon Energy and Chemical EngineeringCollege of Chemical and Environmental EngineeringShandong University of Science and Technology Qingdao 266590 China
- State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum (East China) Qingdao 266580 China
| |
Collapse
|
40
|
Efficient and stable platinum nanocatalysts supported over Ca-doped ZnAl2O4 spinels for base-free selective oxidation of glycerol to glyceric acid. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
Formation and Stabilization of Gold Nanoparticles in Bovine Serum Albumin Solution. Molecules 2019; 24:molecules24183395. [PMID: 31540504 PMCID: PMC6766809 DOI: 10.3390/molecules24183395] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 01/28/2023] Open
Abstract
The formation and growth of gold nanoparticles (AuNPs) were investigated in pH 7 buffer solution of bovine serum albumin (BSA) at room temperature. The processes were monitored by UV-Vis, circular dichroism, Raman and electron paramagnetic resonance (EPR) spectroscopies. TEM microscopy and dynamic light scattering (DLS) measurements were used to evidence changes in particle size during nanoparticle formation and growth. The formation of AuNPs at pH 7 in the absence of BSA was not observed, which proves that the albumin is involved in the first step of Au(III) reduction. Changes in the EPR spectral features of two spin probes, CAT16 and DIS3, with affinity for BSA and AuNPs, respectively, allowed us to monitor the particle growth and to demonstrate the protective role of BSA for AuNPs. The size of AuNPs formed in BSA solution increases slowly with time, resulting in nanoparticles of different morphologies, as revealed by TEM. Raman spectra of BSA indicate the interaction of albumin with AuNPs through sulfur-containing amino acid residues. This study shows that albumins act as both reducing agents and protective corona of AuNPs.
Collapse
|
42
|
Jin X, Nozaki K, Mizuno N, Yamaguchi K. Dehydrogenative Aromatization Reactions by Supported Pd or Au-Pd Alloy Nanoparticles Catalysts. J SYN ORG CHEM JPN 2019. [DOI: 10.5059/yukigoseikyokaishi.77.566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiongjie Jin
- School of Engineering, Department of Chemistry and Biotechnology, The University of Tokyo
| | - Kyoko Nozaki
- School of Engineering, Department of Chemistry and Biotechnology, The University of Tokyo
| | - Noritaka Mizuno
- School of Engineering, Department of Applied Chemistry, The University of Tokyo
| | - Kazuya Yamaguchi
- School of Engineering, Department of Applied Chemistry, The University of Tokyo
| |
Collapse
|
43
|
Qin L, Zeng G, Lai C, Huang D, Zhang C, Cheng M, Yi H, Liu X, Zhou C, Xiong W, Huang F, Cao W. Synthetic strategies and application of gold-based nanocatalysts for nitroaromatics reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:93-116. [PMID: 30359806 DOI: 10.1016/j.scitotenv.2018.10.215] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
With the increasing requirement of efficient organic transformations on the basic concept of Green Sustainable Chemistry, the development of highly efficient catalytic reaction system is greatly desired. In this case, gold (Au)-based nanocatalysts are promising candidates for catalytic reaction, especially for the reduction of nitroaromatics. They have attracted wide attention and well developed in the application of nitroaromatics reduction because of the unique properties compared with that of other conventional metal-based catalysts. With this respect, this review proposes recent trends in the application of Au nanocatalysts for efficient reduction process of nitroaromatics. Some typical approaches are compared and discussed to guide the synthesis of highly efficient Au nanocatalysts. The mechanism on the use of H2 and NaBH4 solution as the source of hydrogen is compared, and that proposed under light irradiation is discussed. The high and unique catalytic activity of some carriers, such as oxides and carbons-based materials, based on different sizes, structures, and shapes of supported Au nanocatalysts for nitroaromatics reduction are described. The catalytic performance of Au combining with other metal nanoparticles by alloy or doping, like multi-metal nanoparticles system, is further discussed. Finally, a short discussion is introduced to compare the catalysis with other metallic nanocatalysts.
Collapse
Affiliation(s)
- Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China.
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China.
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Xigui Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Fanglong Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Weicheng Cao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| |
Collapse
|
44
|
Liu Q, Xu Y, Qiu X, Huang C, Liu M. Chemoselective hydrogenation of nitrobenzenes activated with tuned Au/h-BN. J Catal 2019. [DOI: 10.1016/j.jcat.2018.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Wu M, Pang JH, Song PP, Peng JJ, Xu F, Li Q, Zhang XM. Visible light-driven oxidation of vanillyl alcohol in air with Au–Pd bimetallic nanoparticles on phosphorylated hydrotalcite. NEW J CHEM 2019. [DOI: 10.1039/c8nj05477k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This catalyst could recurrently realize the production of vanillin from vanilla alcohol under mild reaction conditions due to the synergistically double dehydrogenative oxidation (SDDO).
Collapse
Affiliation(s)
- Miao Wu
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing
- P. R. China
- National Engineering Laboratory for Pulp and Paper
| | - Jin-Hui Pang
- College of Marine Science and Biological Engineering
- Qingdao University of Science and Technology
- Qingdao
- P. R. China
| | - Ping-Ping Song
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing
- P. R. China
| | - Jian-Jun Peng
- National Engineering Laboratory for Pulp and Paper
- China National Pulp and Paper Research Institute
- Beijing
- P. R. China
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing
- P. R. China
| | - Qiang Li
- School of Science
- Beijing Forestry University
- Beijing
- P. R. China
| | - Xue-Ming Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing
- P. R. China
| |
Collapse
|
46
|
Fecteau KM, Gould IR, Williams LB, Hartnett HE, Shaver GD, Johnson KN, Shock EL. Bulk gold catalyzes hydride transfer in the Cannizzaro and related reactions. NEW J CHEM 2019. [DOI: 10.1039/c9nj04029c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Disproportionation reactions of benzaldehyde and benzyl alcohol are catalyzed by bulk gold with hot water as the only other reagent.
Collapse
Affiliation(s)
- Kristopher M. Fecteau
- School of Molecular Sciences
- Arizona State University
- Tempe
- USA
- School of Earth and Space Exploration
| | - Ian R. Gould
- School of Molecular Sciences
- Arizona State University
- Tempe
- USA
| | - Lynda B. Williams
- School of Earth and Space Exploration
- Arizona State University
- Tempe
- USA
| | - Hilairy E. Hartnett
- School of Molecular Sciences
- Arizona State University
- Tempe
- USA
- School of Earth and Space Exploration
| | | | | | - Everett L. Shock
- School of Molecular Sciences
- Arizona State University
- Tempe
- USA
- School of Earth and Space Exploration
| |
Collapse
|
47
|
Zhao J, Li Q, Zhuang S, Song Y, Morris DJ, Zhou M, Wu Z, Zhang P, Jin R. Reversible Control of Chemoselectivity in Au 38(SR) 24 Nanocluster-Catalyzed Transfer Hydrogenation of Nitrobenzaldehyde Derivatives. J Phys Chem Lett 2018; 9:7173-7179. [PMID: 30537840 DOI: 10.1021/acs.jpclett.8b02784] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chemoselective hydrogenation of nitrobenzaldehyde derivatives is one of the important catalytic processes being studied in hydrogenation catalysis. In this work, we report for the first time the catalytic reaction over atomically precise gold nanocluster catalysts (Au25, Au38, Au52, and Au144) using potassium formate as the hydrogen source. A complete selectivity for hydrogenation of the aldehyde group, instead of the nitro group, is obtained. A distinct dependence on the size of nanocluster catalysts is also observed, in which the Au38(SCH2CH2Ph)24 gives rise to the highest catalytic activity. The catalyst also shows good versatility and recyclability. Interestingly, the ligand-off nanocluster changes its catalytic selectivity to the nitro hydrogenation, which is in contrast with the ligand-on catalyst. In addition, the selectivity can be restored by treating the ligand-off nanocluster catalyst with thiol. This reversible control of chemoselectivity is remarkable and may stimulate future work on the exploitation of such nanoclusters for hydrogenation catalysis with control over selectivity.
Collapse
Affiliation(s)
- Jianbo Zhao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration , Zhengzhou University of Light Industry , Zhengzhou 450001 , China
- Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Qi Li
- Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Shengli Zhuang
- Key Laboratory of Materials Physics , Institute of Solid State Physics, Chinese Academy of Sciences , Hefei 230031 , China
| | - Yongbo Song
- Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - David J Morris
- Department of Chemistry , Dalhousie University , Halifax , Nova Scotia B3R 4J2 , Canada
| | - Meng Zhou
- Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Zhikun Wu
- Key Laboratory of Materials Physics , Institute of Solid State Physics, Chinese Academy of Sciences , Hefei 230031 , China
| | - Peng Zhang
- Department of Chemistry , Dalhousie University , Halifax , Nova Scotia B3R 4J2 , Canada
| | - Rongchao Jin
- Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|
48
|
Gu Q, Sautet P, Michel C. Unraveling the Role of Base and Catalyst Polarization in Alcohol Oxidation on Au and Pt in Water. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03494] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qingyi Gu
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Carine Michel
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France
| |
Collapse
|
49
|
Ke C, Li M, Fan G, Yang L, Li F. Pt Nanoparticles Supported on Nitrogen-Doped-Carbon-Decorated CeO 2 for Base-Free Aerobic Oxidation of 5-Hydroxymethylfurfural. Chem Asian J 2018; 13:2714-2722. [PMID: 30020565 DOI: 10.1002/asia.201800738] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/16/2018] [Indexed: 11/11/2022]
Abstract
Currently, the base-free aerobic oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) to produce 2,5-furandicarboxylic acid (FDCA) is attracting intense interest due to its prospects for the green, sustainable, and promising production of biomass-based aromatic polymers. Herein, we have developed a new Pt catalyst supported on nitrogen-doped-carbon-decorated CeO2 (NC-CeO2 ) for the aerobic oxidation of HMF in water without the addition of any homogeneous base. It was demonstrated that the small-sized Pt particles could be well dispersed on the surface of the hybrid NC-CeO2 support, and the activity of the supported Pt catalyst depended strongly on the surface structure and properties of the catalysts. The as-fabricated Pt/NC-CeO2 catalyst, with abundant surface defects, enhanced basicity, and favorable electron-deficient metallic Pt species, enabled an almost 100 % yield of FDCA in water with molecular oxygen (0.4 MPa) at 110 °C for 8 h without the addition of any homogeneous base, which is indicative of exceptional catalytic performance. Furthermore, this Pt/NC-CeO2 catalyst also showed good stability and reusability owing to strong metal-support interactions. An understanding of the role of surface structural defects and basicity of the hybrid NC-CeO2 support provides a basis for the rational design of high-performance and stable supported metal catalysts with practical applications in various transformations of biomass-derived compounds.
Collapse
Affiliation(s)
- Changxuan Ke
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, P. O. BOX 98, Beijing, 100029, P. R. China
| | - Mengyuan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, P. O. BOX 98, Beijing, 100029, P. R. China
| | - Guoli Fan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, P. O. BOX 98, Beijing, 100029, P. R. China
| | - Lan Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, P. O. BOX 98, Beijing, 100029, P. R. China
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, P. O. BOX 98, Beijing, 100029, P. R. China
| |
Collapse
|
50
|
Wang R, Li B, Xiao Y, Tao X, Su X, Dong X. Optimizing Pd and Au-Pd decorated Bi2WO6 ultrathin nanosheets for photocatalytic selective oxidation of aromatic alcohols. J Catal 2018. [DOI: 10.1016/j.jcat.2018.05.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|