1
|
Verstreken MFK, Chanut N, Magnin Y, Landa HOR, Denayer JFM, Baron GV, Ameloot R. Mind the Gap: The Role of Mass Transfer in Shaped Nanoporous Adsorbents for Carbon Dioxide Capture. J Am Chem Soc 2024; 146:23633-23648. [PMID: 39162369 DOI: 10.1021/jacs.4c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Adsorptive separations by nanoporous materials are major industrial processes. The industrial importance of solid adsorbents is only expected to grow due to the increased focus on carbon dioxide capture technology and energy-efficient separations. To evaluate the performance of an adsorbent and design a separation process, the adsorption thermodynamics and kinetics must be known. However, although diffusion kinetics determine the maximum production rate in any adsorption-based separation, this aspect has received less attention due to the challenges associated with conducting diffusion measurements. These challenges are exacerbated in the study of shaped adsorbents due to the presence of porosity at different length scales. As a result, adsorbent selection typically relies mainly on adsorption properties at equilibrium, i.e., uptake capacity, selectivity and adsorption enthalpy. In this Perspective, based on an extensive literature review on mass transfer of CO2 in nanoporous adsorbents, we discuss the importance and limitations of measuring diffusion in nanoporous materials, from the powder form to the adsorption bed, considering the nature of the process, i.e., equilibrium-based or kinetic-based separations. By highlighting the lack of and discrepancies between published diffusivity data in the context of CO2 capture, we discuss future challenges and opportunities in studying mass transfer across scales in adsorption-based separations.
Collapse
Affiliation(s)
- Margot F K Verstreken
- Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Nicolas Chanut
- Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Yann Magnin
- TotalEnergies, OneTech, R&D, CSTJF, Pau 64800, France
| | - Héctor Octavio Rubiera Landa
- Department of Chemical Engineering & Industrial Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Elsene, B-1050, Brussels, Belgium
| | - Joeri F M Denayer
- Department of Chemical Engineering & Industrial Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Elsene, B-1050, Brussels, Belgium
| | - Gino V Baron
- Department of Chemical Engineering & Industrial Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Elsene, B-1050, Brussels, Belgium
| | - Rob Ameloot
- Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
2
|
Kim S, Lee S, Sung S, Gu S, Kim J, Lee G, Park J, Yip ACK, Choi J. Zeolite Membrane-Based Low-Temperature Dehydrogenation of a Liquid Organic Hydrogen Carrier: A Key Step in the Development of a Hydrogen Economy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403128. [PMID: 38868919 PMCID: PMC11321665 DOI: 10.1002/advs.202403128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Indexed: 06/14/2024]
Abstract
Methylcyclohexane (MCH) dehydrogenation is an equilibrium-limited reaction that requires high temperatures (>300 °C) for complete conversion. However, high-temperature operation can degrade catalytic activity and produce unwanted side products. Thus, a hybrid zeolite membrane (Z) is prepared on the inner surface of a tubular support and used it as a wall in a membrane reactor (MR) configuration. Pt/C catalysts is packed diluted with quartz sand inside the Z-coated tube and applied the MR for MCH dehydrogenation at low temperatures (190-250 °C). Z showed a remarkable H2-permselectivity in the presence of both toluene and MCH, yielding separation factors over 350. The Z-based MR achieved higher MCH conversion (75.3% ± 0.8% at 220 °C) than the conventional packed-bed reactor (56.4% ± 0.3%) and the equilibrium state (53.2%), owing to the selective removal of H2 through Z. In summary, the hybrid zeolite MR enhances MCH dehydrogenation at low temperatures by overcoming thermodynamic limitations and improves the catalytic performance and product selectivity of the reaction.
Collapse
Affiliation(s)
- Sejin Kim
- Chemical & Biological EngineeringKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Seungmi Lee
- Chemical & Biological EngineeringKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Suhyeon Sung
- Chemical & Biological EngineeringKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Sangseo Gu
- Chemical & Biological EngineeringKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Jinseong Kim
- Chemical & Biological EngineeringKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Gihoon Lee
- Chemical & Biological EngineeringKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Jaesung Park
- Green Carbon Research CenterKorea Research Institute of Chemical Technology (KRICT)141 Gajeong‐ro, Yuseong‐guDaejeon34114Republic of Korea
| | - Alex C. K. Yip
- Chemical and Process EngineeringUniversity of CanterburyChristchurch8140New Zealand
| | - Jungkyu Choi
- Chemical & Biological EngineeringKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| |
Collapse
|
3
|
Peng X, Chen L, You L, Jin Y, Zhang C, Ren S, Kapteijn F, Wang X, Gu X. Improved Synthesis of Hollow Fiber SSZ-13 Zeolite Membranes for High-Pressure CO 2/CH 4 Separation. Angew Chem Int Ed Engl 2024; 63:e202405969. [PMID: 38760324 DOI: 10.1002/anie.202405969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/19/2024]
Abstract
High-silica CHA zeolite membranes are highly desired for natural gas upgrading because of their separation performance in combination with superior mechanical and chemical stability. However, the narrow synthesis condition range significantly constrains scale-up preparation. Herein, we propose a facile interzeolite conversion approach using the FAU zeolite to prepare SSZ-13 zeolite seeds, featuring a shorter induction and a longer crystallization period of the membrane synthesis on hollow fiber substrates. The membrane thickness was constant at ~3 μm over a wide span of synthesis time (24-96 h), while the selectivity (separation efficiency) was easily improved by extending the synthesis time without compromising permeance (throughput). At 0.2 MPa feed pressure and 303 K, the membranes showed an average CO2 permeance of (5.2±0.5)×10-7 mol m-2 s-1 Pa-1 (1530 GPU), with an average CO2/CH4 mixture selectivity of 143±7. Minimal defects ensure a high selectivity of 126 with a CO2 permeation flux of 0.4 mol m-2 s-1 at 6.1 MPa feed pressure, far surpassing requirements for industrial applications. The feasibility for successful scale-up of our approach was further demonstrated by the batch synthesis of 40 cm-long hollow fiber SSZ-13 zeolite membranes exhibiting CO2/CH4 mixture selectivity up to 400 (0.2 MPa feed pressure and 303 K) without using sweep gas.
Collapse
Affiliation(s)
- Xingyu Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Lingjie Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, P. R. China
- Quzhou Membrane Material Innovation Institute, No. 99 Zheda Road, Quzhou, 324000, P. R. China
| | - Lekai You
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Yang Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Chun Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Shengyuan Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Freek Kapteijn
- Chemical Engineering Department, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The, Netherlands
| | - Xuerui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, P. R. China
- Quzhou Membrane Material Innovation Institute, No. 99 Zheda Road, Quzhou, 324000, P. R. China
| | - Xuehong Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, P. R. China
- Quzhou Membrane Material Innovation Institute, No. 99 Zheda Road, Quzhou, 324000, P. R. China
| |
Collapse
|
4
|
Pakdel S, Erfan-Niya H, Azamat J, Hasanzadeh A. Highly efficient helium purification through a dual-membrane system: insights from molecular dynamics simulations. Phys Chem Chem Phys 2023; 25:30572-30582. [PMID: 37929921 DOI: 10.1039/d3cp04797k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Almost all helium is resourced from natural gas reservoirs. Hence, it is essential to develop new efficient technologies to recover helium from natural gas. In this work, we propose a novel dual membrane system, consisting of C2N (M1) and graphdiyne (M2) membranes, to separate and purify helium from a ternary gas mixture of He/N2/CH4. In this regard, we performed molecular dynamics (MD) simulations to investigate the separation performance of the proposed system. Here, we explored the effect of applied pressure (up to 2 MPa) and the feed composition on the separation performance. The simulation results revealed that in the designed system, the M1 membrane allows He and N2 to diffuse through and prevents CH4 from crossing even at an applied pressure gradient. Next, the M2 membrane only allows He to transfer through and prevents N2 from crossing even at the applied pressure gradient. As a result, the dual membrane system showed a high He permeance of 2.5 × 106 GPU and ultrahigh He selectivity. In addition, the suggested dual membrane system could separate three components simultaneously at the applied pressure of 2 MPa, which implies the outstanding performance of the system. We also analyzed the density map, the van der Waals interactions, and the potential of the mean force calculations to better understand the permeation of gas species across the designed system.
Collapse
Affiliation(s)
- Siamak Pakdel
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran.
| | - Hamid Erfan-Niya
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran.
| | - Jafar Azamat
- Department of Chemistry Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran
| | - Amir Hasanzadeh
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
5
|
Ghojavand S, Dib E, Mintova S. Flexibility in zeolites: origin, limits, and evaluation. Chem Sci 2023; 14:12430-12446. [PMID: 38020361 PMCID: PMC10646982 DOI: 10.1039/d3sc03934j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Numerous pieces of evidence in the literature suggest that zeolitic materials exhibit significant intrinsic flexibility as a consequence of the spring-like behavior of Si-O and Al-O bonds and the distortion ability of Si-O-Si and Al-O-Si angles. Understanding the origin of flexibility and how it may be tuned to afford high adsorption selectivity in zeolites is a big challenge. Zeolite flexibility may be triggered by changes in temperature, pressure, or chemical composition of the framework and extra-framework compounds, as well as by the presence of guest molecules. Therefore, zeolite flexibility can be classified into three categories: (i) temperature and pressure-induced flexibility; (ii) guest-induced flexibility; and (iii) compositionally-induced flexibility. An outlook on zeolite flexibility and the challenges met during the precise experimental evaluations of zeolites will be discussed. Overcoming these challenges will provide an important tool for designing novel selective adsorbents.
Collapse
Affiliation(s)
- Sajjad Ghojavand
- Normandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie (LCS) 14000 Caen France
| | - Eddy Dib
- Normandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie (LCS) 14000 Caen France
| | - Svetlana Mintova
- Normandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie (LCS) 14000 Caen France
| |
Collapse
|
6
|
Wang J, Ma C, Liu J, Liu Y, Xu X, Xie M, Wang H, Wang L, Guo P, Liu Z. Pure Silica with Ordered Silanols for Propylene/Propane Adsorptive Separation Unraveled by Three-Dimensional Electron Diffraction. J Am Chem Soc 2023; 145:6853-6860. [PMID: 36939742 DOI: 10.1021/jacs.2c13847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Adsorptive separation of propylene (C3H6) from propane (C3H8), which could deal with energy-intensive cryogenic distillation technologies, remains challenging due to their similar physiochemical properties. Herein, we present a pure silica zeolite with ordered silanols (OSs), whose crystallographic structure was unraveled by the advanced three-dimensional electron diffraction (3D ED), displaying the highly efficient separation of propylene from propane under ambient conditions. The 3D ED technique enables us to investigate its 8-ring pore opening transformation from the round one to the elliptical one during the removal of organic structure-directing agents. Such unique elliptical 8-ring pore openings can exclude larger-size propane and only adsorb propylene. Its C3H6/C3H8 separation performance is also confirmed by column breakthrough experiments, showing a high dynamic adsorption capacity of 53.36 cm3 g-1 for C3H6 but negligible C3H8 under ambient conditions. The dynamic capacity for C3H6 is superior to that of the well-known pure silica DDR-type zeolite (31.07 cm3 g-1). The density functional theory calculation demonstrates that the adsorbed propylene is distributed in the heart-shaped cavity and has a weak interaction with the OSs.
Collapse
Affiliation(s)
- Jing Wang
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Chao Ma
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd., Nanshan, Shenzhen 518055, China
| | - Yi Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Ganjingzi District, Dalian, 116024, China
| | - Xiaoqiu Xu
- College of Science, Institute for Frontier and Interdisciplinary Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Miao Xie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Hao Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd., Nanshan, Shenzhen 518055, China
| | - Lei Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Peng Guo
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongmin Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Song J, Peng X, You L, Du P, Zhou T, Jin X, Gao X, Wang X, Gu X. Effect of Light Gas Components on CO 2 Permeation through DD3R Membranes. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Jieyu Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, Jiangsu, China
| | - Xingyu Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, Jiangsu, China
| | - Lekai You
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, Jiangsu, China
| | - Peng Du
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, Jiangsu, China
| | - Tao Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, Jiangsu, China
| | - Xiang Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, Jiangsu, China
| | - Xuechao Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, Jiangsu, China
| | - Xuerui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, Jiangsu, China
| | - Xuehong Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, Jiangsu, China
| |
Collapse
|
8
|
Confinement effects facilitate low-concentration carbon dioxide capture with zeolites. Proc Natl Acad Sci U S A 2022; 119:e2211544119. [PMID: 36122236 PMCID: PMC9522334 DOI: 10.1073/pnas.2211544119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Direct air capture (DAC) of CO2 from the atmosphere is being pursued to aid in mitigating global CO2 amounts and possibly reaching net negative emissions by 2050. We report that a type of commercialized zeolite, mordenite (MOR)-type zeolite, is a promising adsorbent for DAC because of its high CO2 capacity, high selectivity, fast kinetics, low isosteric heat of adsorption, and high stability under simulated DAC conditions. We demonstrate that the primary site for CO2 adsorption in the MOR-type zeolite is located at the side-pocket and that its size (i.e., the confinement effect) is the key to the performance by comparing its adsorption behavior to those obtained from a number of other zeolites with varying pore space sizes. Engineered systems designed to remove CO2 from the atmosphere need better adsorbents. Here, we report on zeolite-based adsorbents for the capture of low-concentration CO2. Synthetic zeolites with the mordenite (MOR)-type framework topology physisorb CO2 from low concentrations with fast kinetics, low heat of adsorption, and high capacity. The MOR-type zeolites can have a CO2 capacity of up to 1.15 and 1.05 mmol/g for adsorption from 400 ppm CO2 at 30 °C, measured by volumetric and gravimetric methods, respectively. A structure–performance study demonstrates that Na+ cations in the O33 site located in the side-pocket of the MOR-type framework, that is accessed through a ring of eight tetrahedral atoms (either Si4+ or Al3+: eight-membered ring [8MR]), is the primary site for the CO2 uptake at low concentrations. The presence of N2 and O2 shows negligible impact on CO2 adsorption in MOR-type zeolites, and the capacity increases to ∼2.0 mmol/g at subambient temperatures. By using a series of zeolites with variable topologies, we found the size of the confining pore space to be important for the adsorption of trace CO2. The results obtained here show that the MOR-type zeolites have a number of desirable features for the capture of CO2 at low concentrations.
Collapse
|
9
|
Wang X, Hinkle KR, Jameson CJ, Murad S. Using Molecular Simulations to Facilitate Design and Operation of Membrane-Based and Chiral Separation Processes. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoyu Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556
| | - Kevin R. Hinkle
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, Ohio 45469
| | - Cynthia J. Jameson
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Sohail Murad
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| |
Collapse
|
10
|
Pakdel S, Erfan-Niya H, Azamat J. Efficient separation of He/CH4 mixture by functionalized graphenylene membranes: A theoretical study. J Mol Graph Model 2022; 115:108211. [DOI: 10.1016/j.jmgm.2022.108211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 01/19/2023]
|
11
|
Azizi B, Vessally E, Ahmadi S, Ebadi AG, Azamat J. Separation of CH4/N2 gas mixture using MFI zeolite nanosheet: Insights from molecular dynamics simulation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128527] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Mohammadzadeh M, Pakdel S, Azamat J, Erfan-Niya H, Khataee A. Theoretical Study of CO 2/N 2 Gas Mixture Separation through a High-Silica PWN-type Zeolite Membrane. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00087] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mina Mohammadzadeh
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Siamak Pakdel
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Jafar Azamat
- Department of Basic Sciences, Farhangian University, 19989-63341 Tehran, Iran
| | - Hamid Erfan-Niya
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
- Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey
| |
Collapse
|
13
|
Rao W, Yuan J, Tang X, Lin K, Xu X, Xia H, Jiang Y, Zheng A, Liu Z. Diffusive Skin Effect in Zeolites. J Phys Chem Lett 2022; 13:2808-2813. [PMID: 35319210 DOI: 10.1021/acs.jpclett.2c00285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Effective contact and collision between reactants and active sites are essential for heterogeneous catalysis. Herein, we investigated molecular diffusion in more than 200 kinds of zeolites, and an intriguing "diffusive skin effect" was observed, whereby molecules migrated along the pore walls of zeolites (i.e., diffusion trajectories) because of the effect of the guest-host interaction and diffusion barrier. Furthermore, it was found that such a "diffusive skin effect" of zeolites would strongly promote the contacts and collisions between reactants and active sites in the reaction process, which might effectively promote the zeolite-catalyzed performance. These new findings will provide some new fundamental understanding of zeolite catalytic mechanisms under confinement effect.
Collapse
Affiliation(s)
- Wei Rao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 15000, P.R. China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Jiamin Yuan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xiaomin Tang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Kaifeng Lin
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 15000, P.R. China
| | - Xianzhu Xu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 15000, P.R. China
| | - Hongqiang Xia
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan750021, P.R. China
| | - Yanqiu Jiang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 15000, P.R. China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Zhiqiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| |
Collapse
|
14
|
Control of zeolite framework flexibility for ultra-selective carbon dioxide separation. Nat Commun 2022; 13:1427. [PMID: 35301325 PMCID: PMC8930971 DOI: 10.1038/s41467-022-29126-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 02/28/2022] [Indexed: 01/12/2023] Open
Abstract
Molecular sieving membranes with uniform pore size are highly desired for carbon dioxide separation. All-silica zeolite membranes feature well-defined micropores, but the size-exclusion effect is significantly compromised by the non-selective macro-pores generated during detemplation. Here we propose a template modulated crystal transition (TMCT) approach to tune the flexibility of Decadodecasil 3 R (DD3R) zeolite to prepare ultra-selective membranes for CO2/CH4 separation. An instantaneous overheating is applied to synchronize the template decomposition with the structure relaxation. The organic template molecules are transitionally converted to tight carbon species by the one-minute overheating at 700 °C, which are facilely burnt out by a following moderate thermal treatment. The resulting membranes exhibit CO2/CH4 selectivity of 157~1,172 and CO2 permeance of (890~1,540) × 10−10 mol m−2 s−1 Pa−1. The CO2 flux and CO2/CH4 mixture selectivity reach 3.6 Nm3 m−2 h−1 and 43 even at feed pressure up to 31 bar. Such strategy could pave the way of all-silica zeolite membranes to practical applications. All-silica zeolite membranes are highly desired for natural gas upgrading but the size-exclusion effect is compromised by defects generated during high-temperature detemplation. Here, the authors develop a strategy to fabricate ultra-selective DD3R zeolite membranes via tuning the zeolite flexibility under rapid template decomposition.
Collapse
|
15
|
Jeong Y, Kim S, Lee M, Hong S, Jang MG, Choi N, Hwang KS, Baik H, Kim JK, Yip ACK, Choi J. A Hybrid Zeolite Membrane-Based Breakthrough for Simultaneous CO 2 Capture and CH 4 Upgrading from Biogas. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2893-2907. [PMID: 34985249 DOI: 10.1021/acsami.1c21277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biogas is an environmentally friendly and sustainable energy resource that can substitute or complement conventional fossil fuels. For practical uses, biogas upgrading, mainly through the effective separation of CO2 (0.33 nm) and CH4 (0.38 nm), is required to meet the approximately 90-95% purity of CH4, while CO2 should be concomitantly purified. In this study, a high CO2 perm-selective zeolite membrane was synthesized by heteroepitaxially growing a chabazite (CHA) zeolite seed layer with a synthetic precursor that allowed the formation of all-silica deca-dodecasil 3 rhombohedral (DDR) zeolite (with a pore size of 0.36 × 0.44 nm2). The resulting hydrophobic DDR@CHA hybrid membrane on an asymmetric α-Al2O3 tube was thin (ca. 2 μm) and continuous, thus providing both high flux and permselectivity for CO2 irrespective of the presence or absence of water vapor (the third largest component in the biogas streams). To the best of our knowledge, the CO2 permeance of (2.9 ± 0.3) × 10-7 mol m-2 s-1 Pa-1 and CO2/CH4 separation factor of ca. 274 ± 73 at a saturated water vapor partial pressure of ca. 12 kPa at 50 °C have the highest CO2/CH4 separation performance yet achieved. Furthermore, we explored the membrane module properties of the hybrid membrane in terms of the recovery and purity of both CO2 and CH4 under dry and wet conditions. Despite the high intrinsic membrane properties of the current hybrid membrane, reflected by the high permeance and SF, the corresponding module properties indicated that high-performance separation of CO2 and CH4 for the desired biogas upgrading was achieved at a limited processing capacity. This supports the importance of understanding the correlation between the membrane and module properties, as this will provide guidance for the optimal operating conditions.
Collapse
Affiliation(s)
- Yanghwan Jeong
- Department of Chemical & Biological Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sejin Kim
- Department of Chemical & Biological Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Minseong Lee
- Department of Chemical & Biological Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sungwon Hong
- Department of Chemical & Biological Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Mun-Gi Jang
- Department of Chemical Engineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Nakwon Choi
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Kyo Seon Hwang
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hionsuck Baik
- Korea Basic Science Institute (KBSI), Seoul Center, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jin-Kuk Kim
- Department of Chemical Engineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Alex C K Yip
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch 8140, New Zealand
| | - Jungkyu Choi
- Department of Chemical & Biological Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
16
|
Fu D, Davis ME. Carbon dioxide capture with zeotype materials. Chem Soc Rev 2022; 51:9340-9370. [DOI: 10.1039/d2cs00508e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review describes the application of zeotype materials for the capture of CO2 in different scenarios, the critical parameters defining the adsorption performances, and the challenges of zeolitic adsorbents for CO2 capture.
Collapse
Affiliation(s)
- Donglong Fu
- Chemical Engineering, California Institute of Technology, Mail Code 210-41, Pasadena, California 91125, USA
| | - Mark E. Davis
- Chemical Engineering, California Institute of Technology, Mail Code 210-41, Pasadena, California 91125, USA
| |
Collapse
|
17
|
Song J, Liu L, Liu C, Gao X. Interfacial resistance of gas transport through rigid and flexible zeolites. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Controllable Synthesis of 1, 3, 5-tris (1H-benzo[d]imidazole-2-yl) Benzene-Based MOFs. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11219856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The growing interest in metal–organic frameworks (MOFs) in both industrial and scientific circles has increased in the last twenty years, owing to their crystallinity, structural versatility, and controlled porosity. In this study, we present three novel MOFs obtained from the 1, 3, 5-tris (1H-benzo[d]imidazole-2-yl) benzene (TIBM) organic linker. The formed TIBM crystal powders were characterized by scanning electron microscopy (SEM) to estimate the morphology of the particles, powder X-ray diffraction (XRD) to confirm the crystal structure, Brunauer–Emmett–Teller (BET) method for structural analysis, and thermogravimetric measurements to examine the thermal stability. The TIBM-Cu MOF showed excellent CO2 (3.60 mmol/g) adsorption capacity at 1 bar and 298 K, because of the open Cu site, compared to TIBM-Cr (1.6 mmol/g) and TIBM-Al (2.1 mmol/g). Additionally, due to the high porosity (0.3–1.5 nm), TIBM-Cu MOF showed a considerable CO2/N2 selectivity (53) compared to TIBM-Al (35) and TIBM-Cr (10).
Collapse
|
19
|
Du P, Song J, Wang X, Zhang Y, Xie J, Liu G, Liu Y, Wang Z, Hong Z, Gu X. Efficient scale-up synthesis and hydrogen separation of hollow fiber DD3R zeolite membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Zhang P, Gong C, Zhou T, Du P, Song J, Shi M, Wang X, Gu X. Helium extraction from natural gas using DD3R zeolite membranes. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Moradi H, Azizpour H, Bahmanyar H, Emamian M. Molecular dynamic simulation of carbon dioxide, methane, and nitrogen adsorption on Faujasite zeolite. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.05.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Abstract
AbstractNanoporous solids are ubiquitous in chemical, energy, and environmental processes, where controlled transport of molecules through the pores plays a crucial role. They are used as sorbents, chromatographic or membrane materials for separations, and as catalysts and catalyst supports. Defined as materials where confinement effects lead to substantial deviations from bulk diffusion, nanoporous materials include crystalline microporous zeotypes and metal–organic frameworks (MOFs), and a number of semi-crystalline and amorphous mesoporous solids, as well as hierarchically structured materials, containing both nanopores and wider meso- or macropores to facilitate transport over macroscopic distances. The ranges of pore sizes, shapes, and topologies spanned by these materials represent a considerable challenge for predicting molecular diffusivities, but fundamental understanding also provides an opportunity to guide the design of new nanoporous materials to increase the performance of transport limited processes. Remarkable progress in synthesis increasingly allows these designs to be put into practice. Molecular simulation techniques have been used in conjunction with experimental measurements to examine in detail the fundamental diffusion processes within nanoporous solids, to provide insight into the free energy landscape navigated by adsorbates, and to better understand nano-confinement effects. Pore network models, discrete particle models and synthesis-mimicking atomistic models allow to tackle diffusion in mesoporous and hierarchically structured porous materials, where multiscale approaches benefit from ever cheaper parallel computing and higher resolution imaging. Here, we discuss synergistic combinations of simulation and experiment to showcase theoretical progress and computational techniques that have been successful in predicting guest diffusion and providing insights. We also outline where new fundamental developments and experimental techniques are needed to enable more accurate predictions for complex systems.
Collapse
|
23
|
Liu Z, Yuan J, van Baten JM, Zhou J, Tang X, Zhao C, Chen W, Yi X, Krishna R, Sastre G, Zheng A. Synergistically enhance confined diffusion by continuum intersecting channels in zeolites. SCIENCE ADVANCES 2021; 7:7/11/eabf0775. [PMID: 33712464 PMCID: PMC7954456 DOI: 10.1126/sciadv.abf0775] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
In separation and catalysis applications, adsorption and diffusion are normally considered mutually exclusive. That is, rapid diffusion is generally accompanied by weak adsorption and vice versa. In this work, we analyze the anomalous loading-dependent mechanism of p-xylene diffusion in a newly developed zeolite called SCM-15. The obtained results demonstrate that the unique system of "continuum intersecting channels" (i.e., channels made of fused cavities) plays a key role in the diffusion process for the molecule-selective pathways. At low pressure, the presence of strong adsorption sites and intersections that provide space for molecule rotation facilitates the diffusion of p-xylene along the Z direction. Upon increasing the molecular uptake, the adsorbates move faster along the X direction because of the effect of continuum intersections in reducing the diffusion barriers and thus maintaining the large diffusion coefficient of the diffusing compound. This mechanism synergistically improves the diffusion in zeolites with continuum intersecting channels.
Collapse
Affiliation(s)
- Zhiqiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, and Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Jiamin Yuan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, and Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jasper M van Baten
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Jian Zhou
- Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai 201208, P. R. China
| | - Xiaomin Tang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, and Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chao Zhao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, and Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, and Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - German Sastre
- Instituto de Tecnologia Quimica UPV-CSIC, Universitat Politecnica de Valencia, Av. Los Naranjos s/n, 46022 Valencia, Spain
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, and Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| |
Collapse
|
24
|
Wang X, Zhang Y, Wang X, Andres‐Garcia E, Du P, Giordano L, Wang L, Hong Z, Gu X, Murad S, Kapteijn F. Xenon Recovery by DD3R Zeolite Membranes: Application in Anaesthetics. Angew Chem Int Ed Engl 2019; 58:15518-15525. [DOI: 10.1002/anie.201909544] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Xuerui Wang
- Chemical Engineering DepartmentDelft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
- State Key Laboratory of Materials-Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University 5 Xinmofan Road Nanjing 210009 P. R. China
| | - Yuting Zhang
- State Key Laboratory of Materials-Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University 5 Xinmofan Road Nanjing 210009 P. R. China
| | - Xiaoyu Wang
- Department of Chemical and Biological EngineeringIllinois Institute of Technology Chicago IL 60616 USA
| | - Eduardo Andres‐Garcia
- Chemical Engineering DepartmentDelft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
- Current address: Instituto de Ciencia Molecular (ICMol)Universitat de València c/Catedrático José Beltrán, 2 46980 Paterna Spain
| | - Peng Du
- State Key Laboratory of Materials-Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University 5 Xinmofan Road Nanjing 210009 P. R. China
| | - Lorena Giordano
- Chemical Engineering DepartmentDelft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Lin Wang
- State Key Laboratory of Materials-Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University 5 Xinmofan Road Nanjing 210009 P. R. China
| | - Zhou Hong
- State Key Laboratory of Materials-Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University 5 Xinmofan Road Nanjing 210009 P. R. China
| | - Xuehong Gu
- State Key Laboratory of Materials-Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University 5 Xinmofan Road Nanjing 210009 P. R. China
| | - Sohail Murad
- Department of Chemical and Biological EngineeringIllinois Institute of Technology Chicago IL 60616 USA
| | - Freek Kapteijn
- Chemical Engineering DepartmentDelft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| |
Collapse
|
25
|
Khalkhali M, Ghorbani A, Bayati B. Study of adsorption and diffusion of methyl mercaptan and methane on FAU zeolite using molecular simulation. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.07.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Wang X, Zhang Y, Wang X, Andres‐Garcia E, Du P, Giordano L, Wang L, Hong Z, Gu X, Murad S, Kapteijn F. Xenon Recovery by DD3R Zeolite Membranes: Application in Anaesthetics. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909544] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xuerui Wang
- Chemical Engineering Department Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University 5 Xinmofan Road Nanjing 210009 P. R. China
| | - Yuting Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University 5 Xinmofan Road Nanjing 210009 P. R. China
| | - Xiaoyu Wang
- Department of Chemical and Biological Engineering Illinois Institute of Technology Chicago IL 60616 USA
| | - Eduardo Andres‐Garcia
- Chemical Engineering Department Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
- Current address: Instituto de Ciencia Molecular (ICMol) Universitat de València c/Catedrático José Beltrán, 2 46980 Paterna Spain
| | - Peng Du
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University 5 Xinmofan Road Nanjing 210009 P. R. China
| | - Lorena Giordano
- Chemical Engineering Department Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Lin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University 5 Xinmofan Road Nanjing 210009 P. R. China
| | - Zhou Hong
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University 5 Xinmofan Road Nanjing 210009 P. R. China
| | - Xuehong Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University 5 Xinmofan Road Nanjing 210009 P. R. China
| | - Sohail Murad
- Department of Chemical and Biological Engineering Illinois Institute of Technology Chicago IL 60616 USA
| | - Freek Kapteijn
- Chemical Engineering Department Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| |
Collapse
|
27
|
Cavity-controlled diffusion in 8-membered ring molecular sieve catalysts for shape selective strategy. J Catal 2019. [DOI: 10.1016/j.jcat.2019.07.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Enhanced CO 2 Adsorption on Nitrogen-Doped Carbon Materials by Salt and Base Co-Activation Method. MATERIALS 2019; 12:ma12081207. [PMID: 31013838 PMCID: PMC6515410 DOI: 10.3390/ma12081207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/31/2022]
Abstract
Nitrogen-doped carbon materials with enhanced CO2 adsorption were prepared by the salt and base co-activation method. First, resorcinol-formaldehyde resin was synthesized with a certain salt as an additive and used as a precursor. Next, the resulting precursor was mixed with KOH and subsequently carbonized under ammonia flow to finally obtain the nitrogen-doped carbon materials. A series of samples, with and without the addition of different salts, were prepared, characterized by XRD (X-ray powder diffraction), elemental analysis, BET (N2-adsorption-desorption analysis), XPS (X-ray photoelectron spectroscopy) and SEM (Scanning electron microscopy) and tested for CO2 adsorption. The results showed that the salt and base co-activation method has a remarkable enhancing effect on the CO2 capture capacity. The combination of KCl and KOH was proved to be the best combination, and 167.15 mg CO2 could be adsorbed with 1 g nitrogen-doped carbon at 30 °C under 1 atm pressure. The materials characterizations revealed that the introduction of the base and salt could greatly increase the content of doped nitrogen, the surface area and the amount of formed micropore, which led to enhanced CO2 absorption of the carbon materials.
Collapse
|
29
|
Li Y, Wang X, Cao M. Three-dimensional porous carbon frameworks derived from mangosteen peel waste as promising materials for CO2 capture and supercapacitors. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.07.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
De Wispelaere K, Martínez-Espín JS, Hoffmann MJ, Svelle S, Olsbye U, Bligaard T. Understanding zeolite-catalyzed benzene methylation reactions by methanol and dimethyl ether at operating conditions from first principle microkinetic modeling and experiments. Catal Today 2018. [DOI: 10.1016/j.cattod.2018.02.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
|
32
|
Effect of force and location of bottleneck for particle moving through window under encapsulation. J CHEM SCI 2017. [DOI: 10.1007/s12039-017-1336-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Verploegh RJ, Wu Y, Sholl DS. Lattice-Gas Modeling of Adsorbate Diffusion in Mixed-Linker Zeolitic Imidazolate Frameworks: Effect of Local Imidazolate Ordering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6481-6491. [PMID: 28594184 DOI: 10.1021/acs.langmuir.7b01409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The rates of adsorbate diffusion in zeolitic imidazolate frameworks (ZIFs) can be varied by several orders of magnitude by incorporating two different imidazolate linkers in the ZIF crystals. Although some prior measurements of short-range order in these mixed-linker materials have been reported, it is unclear how this short-range order impacts the net diffusion of adsorbates. We introduce a lattice diffusion model that treats diffusion in ZIF-8x-90100-x crystals as a series of activated hops between cages, allowing us to assess the effects of short-range imidazolate order on molecular diffusion.
Collapse
Affiliation(s)
- Ross J Verploegh
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0100, United States
| | - Ying Wu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0100, United States
- The School of Chemistry and Chemical Engineering, South China University of Technology , Guangzhou, Guangdong, People's Republic of China 510641
| | - David S Sholl
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
34
|
Pourmahdi Z, Maghsoudi H. Adsorption isotherms of carbon dioxide and methane on CHA-type zeolite synthesized in fluoride medium. ADSORPTION 2017. [DOI: 10.1007/s10450-017-9894-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Yang S, Cao Z, Arvanitis A, Sun X, Xu Z, Dong J. DDR-type zeolite membrane synthesis, modification and gas permeation studies. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.01.043] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Verploegh RJ, Nair S, Sholl DS. Temperature and Loading-Dependent Diffusion of Light Hydrocarbons in ZIF-8 as Predicted Through Fully Flexible Molecular Simulations. J Am Chem Soc 2015; 137:15760-71. [DOI: 10.1021/jacs.5b08746] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ross J. Verploegh
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Sankar Nair
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - David S. Sholl
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
37
|
Uphill diffusion and overshooting in the adsorption of binary mixtures in nanoporous solids. Nat Commun 2015; 6:7697. [PMID: 26177626 PMCID: PMC4518250 DOI: 10.1038/ncomms8697] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 06/02/2015] [Indexed: 01/21/2023] Open
Abstract
Under certain conditions, during binary mixture adsorption in nanoporous hosts, the concentration of one component may temporarily exceed its equilibrium value. This implies that, in contrast to Fick's Law, molecules must diffuse in the direction of increasing rather than decreasing concentration. Although this phenomenon of ‘overshooting' has been observed previously, it is only recently, using microimaging techniques, that diffusive fluxes in the interior of nanoporous materials have become accessible to direct observation. Here we report the application of interference microscopy to monitor ‘uphill' fluxes, covering the entire period of overshooting from initiation until final equilibration. It is shown that the evolution of the profiles can be adequately predicted from the single-component diffusivities together with the binary adsorption equilibrium data. The guest molecules studied (carbon dioxide, ethane and propene) and the host material (ZSM-58 or DDR) are of practical interest in relation to the development of kinetically selective adsorption separation processes. During the transient adsorption of a binary mixture in a nanoporous host, the concentration of one component may temporarily exceed its equilibrium value, with molecules diffusing in the direction of increasing concentration. Here, the authors use microimaging to examine this process in a real system.
Collapse
|
38
|
Mitome T, Uchida Y, Nishiyama N. Facile Synthesis of Nanoporous Carbons with High Surface Area and Their CO 2 Adsorption Properties. CHEM LETT 2015. [DOI: 10.1246/cl.150297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takahito Mitome
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University
| | - Yoshiaki Uchida
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University
- PRESTO, Japan Science and Technology Agency
| | - Norikazu Nishiyama
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University
| |
Collapse
|
39
|
Holcroft JM, Hartlieb KJ, Moghadam PZ, Bell JG, Barin G, Ferris DP, Bloch ED, Algaradah MM, Nassar MS, Botros YY, Thomas KM, Long JR, Snurr RQ, Stoddart JF. Carbohydrate-Mediated Purification of Petrochemicals. J Am Chem Soc 2015; 137:5706-19. [DOI: 10.1021/ja511878b] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- James M. Holcroft
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Karel J. Hartlieb
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Peyman Z. Moghadam
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3120, United States
| | - Jon G. Bell
- Wolfson Northern Carbon Research Laboratories, School of Chemical
Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Gokhan Barin
- Department
of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Daniel P. Ferris
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Eric D. Bloch
- Department
of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Mohammed M. Algaradah
- Joint
Center
of Excellence in Integrated Nano-Systems (JCIN), King Abdul-Aziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Kingdom of Saudi Arabia
| | - Majed S. Nassar
- Joint
Center
of Excellence in Integrated Nano-Systems (JCIN), King Abdul-Aziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Kingdom of Saudi Arabia
| | - Youssry Y. Botros
- Joint
Center
of Excellence in Integrated Nano-Systems (JCIN), King Abdul-Aziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Kingdom of Saudi Arabia
- University
Research Office, Intel Corporation, Building RNB-6-64, 2200 Mission
College Boulevard, Santa Clara, California 95054-1549, United States
| | - K. Mark Thomas
- Wolfson Northern Carbon Research Laboratories, School of Chemical
Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Jeffrey R. Long
- Department
of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Randall Q. Snurr
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3120, United States
| | - J. Fraser Stoddart
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
40
|
Newsome D, Coppens MO. Molecular dynamics as a tool to study heterogeneity in zeolites – Effect of Na+ cations on diffusion of CO2 and N2 in Na-ZSM-5. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2014.09.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Becker T, Nelissen K, Cleuren B, Partoens B, Van den Broeck C. Diffusion of interacting particles in discrete geometries: Equilibrium and dynamical properties. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:052139. [PMID: 25493771 DOI: 10.1103/physreve.90.052139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Indexed: 06/04/2023]
Abstract
We expand on a recent study of a lattice model of interacting particles [Phys. Rev. Lett. 111, 110601 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.110601]. The adsorption isotherm and equilibrium fluctuations in particle number are discussed as a function of the interaction. Their behavior is similar to that of interacting particles in porous materials. Different expressions for the particle jump rates are derived from transition-state theory. Which expression should be used depends on the strength of the interparticle interactions. Analytical expressions for the self- and transport diffusion are derived when correlations, caused by memory effects in the environment, are neglected. The diffusive behavior is studied numerically with kinetic Monte Carlo (kMC) simulations, which reproduces the diffusion including correlations. The effect of correlations is studied by comparing the analytical expressions with the kMC simulations. It is found that the Maxwell-Stefan diffusion can exceed the self-diffusion. To our knowledge, this is the first time this is observed. The diffusive behavior in one-dimensional and higher-dimensional systems is qualitatively the same, with the effect of correlations decreasing for increasing dimension. The length dependence of both the self- and transport diffusion is studied for one-dimensional systems. For long lengths the self-diffusion shows a 1/L dependence. Finally, we discuss when agreement with experiments and simulations can be expected. The assumption that particles in different cavities do not interact is expected to hold quantitatively at low and medium particle concentrations if the particles are not strongly interacting.
Collapse
Affiliation(s)
- T Becker
- Hasselt University, B-3590 Diepenbeek, Belgium
| | - K Nelissen
- Hasselt University, B-3590 Diepenbeek, Belgium and Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
| | - B Cleuren
- Hasselt University, B-3590 Diepenbeek, Belgium
| | - B Partoens
- Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
| | | |
Collapse
|
42
|
|
43
|
Yang J, Li J, Wang W, Li L, Li J. Adsorption of CO2, CH4, and N2 on 8-, 10-, and 12-Membered Ring Hydrophobic Microporous High-Silica Zeolites: DDR, Silicalite-1, and Beta. Ind Eng Chem Res 2013. [DOI: 10.1021/ie403217n] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jiangfeng Yang
- Research Institute of Special
Chemicals, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
| | - Junmin Li
- Research Institute of Special
Chemicals, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
| | - Wei Wang
- Research Institute of Special
Chemicals, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
| | - Libo Li
- Research Institute of Special
Chemicals, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
| | - Jinping Li
- Research Institute of Special
Chemicals, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
| |
Collapse
|
44
|
Pera-Titus M. Porous inorganic membranes for CO2 capture: present and prospects. Chem Rev 2013; 114:1413-92. [PMID: 24299113 DOI: 10.1021/cr400237k] [Citation(s) in RCA: 285] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marc Pera-Titus
- Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON), Université de Lyon, UMR 5256 CNRS-Université Lyon 1 , 2 Av. A. Einstein, 69626 Villeurbanne Cedex, France
| |
Collapse
|
45
|
Remy T, Peter SA, Van Tendeloo L, Van der Perre S, Lorgouilloux Y, Kirschhock CEA, Martens JA, Xiong Y, Baron GV, Denayer JFM. Adsorption and separation of CO2 on KFI zeolites: effect of cation type and Si/Al ratio on equilibrium and kinetic properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:4998-5012. [PMID: 23509898 DOI: 10.1021/la400352r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Selective separation of CO2 is becoming one of the key technologies in the (petro-) chemical industry. This study focuses on the adsorption and separation of CO2 from CH4 on a new low-silica (LS) type of the eight-membered ring KFI zeolite. A series of alkali (Li, Na, K) and alkaline-earth (Mg, Ca, Sr) exchanged samples of the new LS KFI were synthesized and characterized. LS Li-KFI showed the largest pore volume, whereas LS Na-KFI and LS K-KFI were inaccessible for Argon at 87 K. Adsorption of CO2 at 303 K demonstrated the dominant quadrupolar interaction on alkali-exchanged LS KFI samples. LS Li-KFI showed the largest capacities upon high pressure isotherm measurements of CO2 (4.8 mmol/g), CH4 (2.6 mmol/g), and N2 (2.2 mmol/g) up to 40 bar at 303 K. The performance of the new LS KFI was compared to a KFI sample (ZK-5) with a higher Si/Al ratio. Isotherm measurements and dynamic breakthrough experiments demonstrated that ZK-5 samples show larger working capacities for CO2/CH4 separations at low pressure. Li-ZK-5 and Na-ZK-5 show the highest capacities and high selectivities (similar to benchmark 13X).
Collapse
Affiliation(s)
- Tom Remy
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wickramaratne NP, Jaroniec M. Activated carbon spheres for CO2 adsorption. ACS APPLIED MATERIALS & INTERFACES 2013; 5:1849-55. [PMID: 23398600 DOI: 10.1021/am400112m] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A series of carbon spheres (CS) was prepared by carbonization of phenolic resin spheres obtained by the one-pot modified Stöber method. Activated CS (ACS), having diameters from 200 to 420 nm, high surface area (from 730 to 2930 m(2)/g), narrow micropores (<1 nm) and, importantly, high volume of these micropores (from 0.28 to 1.12 cm(3)/g), were obtained by CO2 activation of the aforementioned CS. The remarkably high CO2 adsorption capacities, 4.55 and 8.05 mmol/g, were measured on these AC spheres at 1 bar and two temperatures, 25 and 0 °C, respectively.
Collapse
|
47
|
Swisher JA, Lin LC, Kim J, Smit B. Evaluating mixture adsorption models using molecular simulation. AIChE J 2013. [DOI: 10.1002/aic.14058] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Joseph A. Swisher
- Dept. of Chemical and Biomolecular Engineering; University of California; Berkeley CA 94720
- Materials Sciences Div.; Lawrence Berkeley National Laboratory; Berkeley CA 94720
| | - Li-Chiang Lin
- Dept. of Chemical and Biomolecular Engineering; University of California; Berkeley CA 94720
- Materials Sciences Div.; Lawrence Berkeley National Laboratory; Berkeley CA 94720
| | - Jihan Kim
- Dept. of Chemical and Biomolecular Engineering; University of California; Berkeley CA 94720
- Materials Sciences Div.; Lawrence Berkeley National Laboratory; Berkeley CA 94720
| | - Berend Smit
- Dept. of Chemistry; University of California; Berkeley CA 94720
- Materials Sciences Div.; Lawrence Berkeley National Laboratory; Berkeley CA 94720
| |
Collapse
|
48
|
Fang H, Kamakoti P, Ravikovitch PI, Aronson M, Paur C, Sholl DS. First principles derived, transferable force fields for CO2 adsorption in Na-exchanged cationic zeolites. Phys Chem Chem Phys 2013; 15:12882-94. [DOI: 10.1039/c3cp52246f] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Keskin S. Gas adsorption and diffusion in a highly CO2selective metal–organic framework: molecular simulations. MOLECULAR SIMULATION 2013. [DOI: 10.1080/08927022.2012.700485] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
50
|
Combariza AF, Gomez DA, Sastre G. Simulating the properties of small pore silicazeolites using interatomic potentials. Chem Soc Rev 2013; 42:114-27. [DOI: 10.1039/c2cs35243e] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|