1
|
Xiong JS, Qi T, Hu YX, Yang HM, Zhu LF, Hu CW, Yang HQ. Cooperative Catalysis Mechanism of Brønsted and Lewis Acids from Al(OTf) 3 with Methanol for β-Cellobiose-to-Fructose Conversion: An Experimental and Theoretical Study. J Phys Chem A 2023; 127:6400-6411. [PMID: 37498222 DOI: 10.1021/acs.jpca.3c02557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Al-containing catalysts, e.g., Al(OTf)3, show good catalytic performance toward the conversion of cellulose to fructose in methanol solution. Here, we report the catalytic isomerization and alcoholysis mechanisms for the conversion of cellobiose to fructose at the PBE0/6-311++G(d,p), aug-cc-pVTZ theoretical level, combining the relevant experimental verifications of electrospray ionization mass spectrometry (ESI-MS), high-performance liquid chromatography (HPLC), and the attenuated total reflection-infrared (ATR-IR) spectra. From the alcoholysis of Al(OTf)3 in methanol solution, the catalytically active species involves both the [CH3OH2]+ Brønsted acid and the [Al(CH3O)(OTf)(CH3OH)4]+ Lewis acid. There are two reaction pathways, i.e., one through glucose (glycosidic bond cleavage followed by isomerization, w-G) and another through cellobiulose (isomerization followed by glycosidic bond cleavage, w-L). The Lewis acid ([Al(CH3O)(OTf)(CH3OH)4]+) is responsible for the aldose-ketose tautomerization, while the Brønsted acid ([CH3OH2]+) is in charge of ring-opening, ring-closure, and glycosidic bond cleavage. For both w-G and w-L, the rate-determining steps are related to the intramolecular [1,2]-H shift between C1-C2 for the aldose-ketose tautomerization catalyzed by the [Al(CH3O)(OTf)(CH3OH)4]+ species. The Lewis acid ([Al(CH3O)(OTf)(CH3OH)4]+) exhibits higher catalytic activity toward the aldose-ketose tautomerization of glycosyl-chain-glucose to glycosyl-chain-fructose than that of chain-glucose to chain-fructose. Besides, the Brønsted acid ([CH3OH2]+) shows higher catalytic activity toward the glycosidic bond cleavage of cellobiulose than that of cellobiose. Kinetically, the w-L pathway is predominant, whereas the w-G pathway is minor. The theoretically proposed mechanism has been experimentally testified. These insights may advance on the novel design of the catalytic system toward the conversion of cellulose to fructose.
Collapse
Affiliation(s)
- Jin-Shan Xiong
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Ting Qi
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Ye-Xin Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| | - Hong-Mei Yang
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Liang-Fang Zhu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| | - Chang-Wei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| | - Hua-Qing Yang
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| |
Collapse
|
2
|
Raval P, Thomas N, Hamdouna L, Delevoye L, Lafon O, Manjunatha Reddy GN. Boron Adsorption Kinetics of Microcrystalline Cellulose and Polymer Resin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5384-5395. [PMID: 37022335 DOI: 10.1021/acs.langmuir.3c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Tailoring boron-polysaccharide interactions is an important strategy for developing functional soft materials such as hydrogels, fire retardants, and sorbents for environmental remediation, for example, using lignocellulosic biomass. For such applications to be realized, it is paramount to understand the adsorption kinetics of borate anions on cellulose and their local structures. Here, the kinetic aspects of boron adsorption by microcrystalline cellulose, lignin, and polymeric resin are investigated and compared. Borate anions interact with the vicinal diols in the glucopyranoside moieties of cellulose to yield chemisorbed boron chelate complexes. In contrast to cellulose, technical lignin contains fewer cis-vicinal diols, and it does not have a tendency to form such chelate complexes upon treatment with the aqueous boric acid solution. The formation kinetics and stability of these chelate complexes strongly depend on nanoscale structures, as well as reaction conditions such as pH and concentration of the sorbate and sorbent. Specifically, insights into the distinct boron adsorption sites were obtained by solid-state one-dimensional (1D) 11B magic-angle spinning NMR and the local structures and intermolecular interactions in the vicinities of boron chelate complexes are elucidated by analyzing two-dimensional (2D) 1H-13C and 11B-1H heteronuclear correlation NMR spectra. The total boron adsorption capacity of cellulose is estimated to be in the 1.3-3.0 mg range per gram of sorbent, which is lower than the boron adsorption capacity of a polystyrene-based resin, ∼17.2 mg of boron per gram of Amberlite IRA 743. Our study demonstrates that the local backbone and side chain flexibility as well as the structures of polyol groups play a significant role in determining the kinetic and thermodynamic stability of chelate complexes, yielding to different boron adsorption capabilities of lignocellulosic polymers.
Collapse
Affiliation(s)
- Parth Raval
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181-UCCS- Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Neethu Thomas
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181-UCCS- Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Lama Hamdouna
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181-UCCS- Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Laurent Delevoye
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181-UCCS- Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Olivier Lafon
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181-UCCS- Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - G N Manjunatha Reddy
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181-UCCS- Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| |
Collapse
|
3
|
Paulsen Thoresen P, Lange H, Rova U, Christakopoulos P, Matsakas L. Role and importance of solvents for the fractionation of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2023; 369:128447. [PMID: 36496118 DOI: 10.1016/j.biortech.2022.128447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Lignocellulosic biomass is one of the most important renewable materials to replace carbon-based fossil resources. Solvent-based fractionation is a promising route for fractionation of biomass into its major components. Processing is governed by the employed solvent-systems properties. This review sheds light on the factors governing both dissolution and potential reactivities of the chemical structures present in lignocellulose, highlighting how proper understanding of the underlying mechanisms and interactions between solute and solvent help to choose proper systems for specific fractionation needs. Structural and chemical differences between the carbohydrate-based structural polymers and lignin require very different solvents capabilities in terms of causing and eventually stabilizing conformational changes and consequent activation of bonds to be cleaved by other active components in the. A consideration of potential depolymerization events during dissolution and energetic aspects of the dissolution process considering the contribution of polymer functionalities allow for a mapping of solvent suitability for biomass fractionation.
Collapse
Affiliation(s)
- Petter Paulsen Thoresen
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87, Sweden
| | - Heiko Lange
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87, Sweden; Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87, Sweden.
| |
Collapse
|
4
|
French AD. Combining Computational Chemistry and Crystallography for a Better Understanding of the Structure of Cellulose. Adv Carbohydr Chem Biochem 2021; 80:15-93. [PMID: 34872656 DOI: 10.1016/bs.accb.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The approaches in this article seek to enhance understanding of cellulose at the molecular level, independent of the source and the particular crystalline form of cellulose. Four main areas of structure research are reviewed. Initially, the molecular shape is inferred from the crystal structures of many small molecules that have β-(1→4) linkages. Then, conformational analyses with potential energy calculations of cellobiose are covered, followed by the use of Atoms-In-Molecules theory to learn about interactions in experimental and theoretical structures. The last section covers models of cellulose nanoparticles. Controversies addressed include the stability of twofold screw-axis conformations, the influence of different computational methods, the predictability of crystalline conformations by studies of isolated molecules, and the twisting of model cellulose crystals.
Collapse
Affiliation(s)
- Alfred D French
- Southern Regional Research Center, U.S. Department of Agriculture, New Orleans, Louisiana, USA
| |
Collapse
|
5
|
Ruda A, Widmalm G, Wohlert J. O-Methylation in Carbohydrates: An NMR and MD Simulation Study with Application to Methylcellulose. J Phys Chem B 2021; 125:11967-11979. [PMID: 34704449 PMCID: PMC8573740 DOI: 10.1021/acs.jpcb.1c07293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
Methylated carbohydrates
are important from both biological and
technical perspectives. Specifically, methylcellulose is an interesting
cellulose derivative that has applications in foods, materials, cosmetics,
and many other fields. While the molecular dynamics simulation technique
has the potential for both advancing the fundamental understanding
of this polymer and aiding in the development of specific applications,
a general drawback is the lack of experimentally validated interaction
potentials for the methylated moieties. In the present study, simulations
using the GROMOS 56 carbohydrate force field are compared to NMR spin–spin
coupling constants related to the conformation of the exocyclic torsion
angle ω in d-glucopyranose and derivatives containing
a 6-O-methyl substituent and a 13C-isotopologue thereof.
A 3JCC Karplus-type relationship
is proposed for the C5–C6–O6–CMe torsion
angle. Moreover, solvation free energies are compared to experimental
data for small model compounds. Alkylation in the form of 6-O-methylation
affects exocyclic torsion only marginally. Computed solvation free
energies between nonmethylated and methylated molecules were internally
consistent, which validates the application of these interaction potentials
for more specialized purposes.
Collapse
Affiliation(s)
- Alessandro Ruda
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jakob Wohlert
- Department of Fiber and Polymer Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.,Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
6
|
Merino D, Paul UC, Athanassiou A. Bio-based plastic films prepared from potato peels using mild acid hydrolysis followed by plasticization with a polyglycerol. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Hata Y, Serizawa T. Self-assembly of cellulose for creating green materials with tailor-made nanostructures. J Mater Chem B 2021; 9:3944-3966. [PMID: 33908581 DOI: 10.1039/d1tb00339a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Inspired by living systems, biomolecules have been employed in vitro as building blocks for creating advanced nanostructured materials. In regard to nucleic acids, peptides, and lipids, their self-assembly pathways and resulting assembled structures are mostly encoded in their molecular structures. On the other hand, outside of its chain length, cellulose, a polysaccharide, lacks structural diversity; therefore, it is challenging to direct this homopolymer to controllably assemble into ordered nanostructures. Nevertheless, the properties of cellulose assemblies are outstanding in terms of their robustness and inertness, and these assemblies are attractive for constructing versatile materials. In this review article, we summarize recent research progress on the self-assembly of cellulose and the applications of assembled cellulose materials, especially for biomedical use. Given that cellulose is the most abundant biopolymer on Earth, gaining control over cellulose assembly represents a promising route for producing green materials with tailor-made nanostructures.
Collapse
Affiliation(s)
- Yuuki Hata
- Division of Biomedical Engineering, National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa-shi, Saitama 359-8513, Japan.
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
8
|
Wang Y, Kiziltas A, Drews AR, Tamrakar S, Blanchard P, Walsh TR. Dynamical Water Ingress and Dissolution at the Amorphous-Crystalline Cellulose Interface. Biomacromolecules 2021; 22:3884-3891. [PMID: 34337937 DOI: 10.1021/acs.biomac.1c00690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of cellulose has considerable promise in a wide range of industrial applications but is hampered by degradation in mechanical properties due to ambient moisture uptake. Existing models of equilibrium moisture content can predict the impact of these effects, but at present, the dynamical, atomic-scale picture of water ingress into cellulose is lacking. The present work reports nonequilibrium molecular simulations of the interface between cellulose and water aimed at capturing the initial stages of two simultaneous dynamical processes, water ingress into cellulose and cellulose dissolution into water. These simulations demonstrate that the process depends on the temperature and chain length in the amorphous region, where high temperatures can induce more mass exchange and short chains can easily detach from amorphous cellulose. A cooperative mechanism that involves both chemical and physical aspects, namely, hydrogen bonding and chain intertwining, respectively, is proposed to interpret the incipient dual ingress/dissolution process. Outcomes of this work will provide a foundation for cellulose functionalization strategies to impede moisture uptake and preserve the mechanical properties of nanocellulose in applications.
Collapse
Affiliation(s)
- Yuxiang Wang
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Alper Kiziltas
- Research and Innovation Center, Ford Motor Company, Dearborn, Michigan 48124, United States
| | - Andrew R Drews
- Research and Innovation Center, Ford Motor Company, Dearborn, Michigan 48124, United States
| | - Sandeep Tamrakar
- Research and Innovation Center, Ford Motor Company, Dearborn, Michigan 48124, United States
| | - Patrick Blanchard
- Research and Innovation Center, Ford Motor Company, Dearborn, Michigan 48124, United States
| | - Tiffany R Walsh
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
9
|
Olson E, Liu F, Blisko J, Li Y, Tsyrenova A, Mort R, Vorst K, Curtzwiler G, Yong X, Jiang S. Self-assembly in biobased nanocomposites for multifunctionality and improved performance. NANOSCALE ADVANCES 2021; 3:4321-4348. [PMID: 36133470 PMCID: PMC9418702 DOI: 10.1039/d1na00391g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/26/2021] [Indexed: 06/16/2023]
Abstract
Concerns of petroleum dependence and environmental pollution prompt an urgent need for new sustainable approaches in developing polymeric products. Biobased polymers provide a potential solution, and biobased nanocomposites further enhance the performance and functionality of biobased polymers. Here we summarize the unique challenges and review recent progress in this field with an emphasis on self-assembly of inorganic nanoparticles. The conventional wisdom is to fully disperse nanoparticles in the polymer matrix to optimize the performance. However, self-assembly of the nanoparticles into clusters, networks, and layered structures provides an opportunity to address performance challenges and create new functionality in biobased polymers. We introduce basic assembly principles through both blending and in situ synthesis, and identify key technologies that benefit from the nanoparticle assembly in the polymer matrix. The fundamental forces and biobased polymer conformations are discussed in detail to correlate the nanoscale interactions and morphology with the macroscale properties. Different types of nanoparticles, their assembly structures and corresponding applications are surveyed. Through this review we hope to inspire the community to consider utilizing self-assembly to elevate functionality and performance of biobased materials. Development in this area sets the foundation for a new era of designing sustainable polymers in many applications including packaging, construction chemicals, adhesives, foams, coatings, personal care products, and advanced manufacturing.
Collapse
Affiliation(s)
- Emily Olson
- Mateirals Science and Engineering, Iowa State University Ames IA 50011 USA
- Polymer and Food Protection Consortium, Iowa State University Ames IA 50011 USA
| | - Fei Liu
- Mateirals Science and Engineering, Iowa State University Ames IA 50011 USA
| | - Jonathan Blisko
- Mechanical Engineering, Binghamton University Binghamton NY 13902 USA
| | - Yifan Li
- Mateirals Science and Engineering, Iowa State University Ames IA 50011 USA
| | - Ayuna Tsyrenova
- Mateirals Science and Engineering, Iowa State University Ames IA 50011 USA
| | - Rebecca Mort
- Mateirals Science and Engineering, Iowa State University Ames IA 50011 USA
- Polymer and Food Protection Consortium, Iowa State University Ames IA 50011 USA
| | - Keith Vorst
- Polymer and Food Protection Consortium, Iowa State University Ames IA 50011 USA
- Food Science and Human Nutrition, Iowa State University Ames IA 50011 USA
| | - Greg Curtzwiler
- Polymer and Food Protection Consortium, Iowa State University Ames IA 50011 USA
- Food Science and Human Nutrition, Iowa State University Ames IA 50011 USA
| | - Xin Yong
- Mechanical Engineering, Binghamton University Binghamton NY 13902 USA
| | - Shan Jiang
- Mateirals Science and Engineering, Iowa State University Ames IA 50011 USA
- Polymer and Food Protection Consortium, Iowa State University Ames IA 50011 USA
| |
Collapse
|
10
|
Olson E, Blisko J, Du C, Liu Y, Li Y, Thurber H, Curtzwiler G, Ren J, Thuo M, Yong X, Jiang S. Biobased superhydrophobic coating enabled by nanoparticle assembly. NANOSCALE ADVANCES 2021; 3:4037-4047. [PMID: 36132850 PMCID: PMC9416850 DOI: 10.1039/d1na00296a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/08/2021] [Indexed: 06/16/2023]
Abstract
Understanding biobased nanocomposites is critical in fabricating high performing sustainable materials. In this study, fundamental nanoparticle assembly structures at the nanoscale are examined and correlated with the macroscale properties of coatings formulated with these structures. Nanoparticle assembly mechanisms within biobased polymer matrices were probed using in situ liquid-phase atomic force microscopy (AFM) and computational simulation. Furthermore, coatings formulated using these nanoparticle assemblies with biobased polymers were evaluated with regard to the hydrophobicity and adhesion after water immersion. Two biobased glycopolymers, hydroxyethyl cellulose (HEC) and hydroxyethyl starch (HES), were investigated. Their repeating units share the same chemical composition and only differ in monomer conformations (α- and β-anomeric glycosides). Unique fractal structures of silica nanoparticle assemblies were observed with HEC, while compact clusters were observed with HES. Simulation and AFM measurement suggest that strong attraction between silica surfaces in the HEC matrix induces diffusion-limited-aggregation, leading to large-scale, fractal assembly structures. By contrast, weak attraction in HES only produces reaction-limited-aggregation and small compact cluster structures. With high particle loading, the fractal structures in HEC formed a network, which enabled a waterborne formulation of superhydrophobic coating after silane treatment. The silica nanoparticle assembly in HEC was demonstrated to significantly improve adhesion, which showed minimum adhesion loss even after extended water immersion. The superior performance was only observed with HEC, not HES. The results bridge the assembly structures at the nanoscale, influenced by molecular conformation of biobased polymers, to the coating performance at the macroscopic level. Through this study we unveil new opportunities in economical and sustainable development of high-performance biobased materials.
Collapse
Affiliation(s)
- Emily Olson
- Department of Materials Science and Engineering, Iowa State University Ames IA 50011 USA
- Polymer and Food Protection Consortium, Iowa State University Ames IA 50011 USA
| | - Jonathan Blisko
- Department of Mechanical Engineering, Binghamton University Binghamton NY 13902 USA
| | - Chuanshen Du
- Department of Materials Science and Engineering, Iowa State University Ames IA 50011 USA
| | - Yi Liu
- Department of Mechanical Engineering, Iowa State University Ames IA 50011 USA
| | - Yifan Li
- Department of Materials Science and Engineering, Iowa State University Ames IA 50011 USA
| | - Henry Thurber
- Department of Materials Science and Engineering, Iowa State University Ames IA 50011 USA
- Polymer and Food Protection Consortium, Iowa State University Ames IA 50011 USA
| | - Greg Curtzwiler
- Polymer and Food Protection Consortium, Iowa State University Ames IA 50011 USA
- Department of Food Science and Human Nutrition, Iowa State University Ames IA 50011 USA
| | - Juan Ren
- Department of Mechanical Engineering, Iowa State University Ames IA 50011 USA
| | - Martin Thuo
- Department of Materials Science and Engineering, Iowa State University Ames IA 50011 USA
| | - Xin Yong
- Department of Mechanical Engineering, Binghamton University Binghamton NY 13902 USA
| | - Shan Jiang
- Department of Materials Science and Engineering, Iowa State University Ames IA 50011 USA
- Polymer and Food Protection Consortium, Iowa State University Ames IA 50011 USA
| |
Collapse
|
11
|
French AD, Montgomery DW, Prevost NT, Edwards JV, Woods RJ. Comparison of cellooligosaccharide conformations in complexes with proteins with energy maps for cellobiose. Carbohydr Polym 2021; 264:118004. [PMID: 33910736 DOI: 10.1016/j.carbpol.2021.118004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 01/24/2023]
Abstract
Shapes (conformations) of cellulose molecules are described by their glycosidic linkage torsion angles ϕ and ψ. Although the torsions are known for cellulose in crystals, amorphous shapes are also interesting for understanding reactivity and physical properties. ϕ and ψ determination for unorganized matter is difficult; one approach is to study their range in many related molecules. For example, linkage torsions of cellulose should be similar to those in cellobiose. Herein, torsions were measured for cellooligosaccharides and lactose moieties complexed with proteins in the Protein Data Bank (PDB). These torsions were compared with ϕ/ψ maps based on quantum mechanics energies for solvated cellobiose and analogs lacking hydroxyl groups. Most PDB conformations corresponded to low map energies. Amorphous cellulose should be generally extended with individual linkages that would give 2- to 3-fold helices. The map for an analog lacking hydrogen bonding ability was more predictive for PDB linkages than the cellobiose map.
Collapse
Affiliation(s)
- Alfred D French
- Southern Regional Research Center, U. S. Department of Agriculture, 1100 Robert E. Lee Blvd., New Orleans, LA, 70124, USA.
| | - David W Montgomery
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA.
| | - Nicolette T Prevost
- Southern Regional Research Center, U. S. Department of Agriculture, 1100 Robert E. Lee Blvd., New Orleans, LA, 70124, USA.
| | - J Vincent Edwards
- Southern Regional Research Center, U. S. Department of Agriculture, 1100 Robert E. Lee Blvd., New Orleans, LA, 70124, USA.
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA.
| |
Collapse
|
12
|
Peesapati S, Sajeevan KA, Patel SK, Roy D. Relation between glycosidic linkage, structure and dynamics of α- and β-glucans in water. Biopolymers 2021; 112:e23423. [PMID: 33572006 DOI: 10.1002/bip.23423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 11/09/2022]
Abstract
In a molecular dynamics simulation study of several oligosaccharides comprising of the very basic building block of carbohydrate, the α- or β-d glucopyranose units, linked by any one of the 1-3/1-4 or 1-6 glycosidic linkages, we compare and contrast their structural and dynamical properties. Results indicate that the litheness of the oligosaccharide chain is noticeably controlled by the composition, anomeric nature and glycosidic linkage type of the units. In mixed β 1-4/1-3 d-glucopyranosides, as those found in oats and barley, the ratio of the β 1-4 and β 1-3 linked residues is crucial in determining the structural and dynamical attributes. Principal component analysis (PCA) using the internal coordinates of torsion angles subtended by glycosidic oxygen atoms and subsequent K-means clustering of the dynamical space spanned by PC1 to PC2 point to the dynamical and structural disparity in the various types of oligosaccharides studied. The properties simulated in this work are meant to provide a systematic yet comparative understanding of the importance of linkage and anomericity on the oligosaccharide chain properties and are in line with some experimental structural attributes.
Collapse
Affiliation(s)
- Sruthi Peesapati
- Department of Chemistry, Birla Institute of Technology and Science- Pilani, Hyderabad, Telangana, India
| | - Karuna Anna Sajeevan
- Department of Chemistry, Birla Institute of Technology and Science- Pilani, Hyderabad, Telangana, India
| | - Siddhant Kumar Patel
- Department of Chemistry, Birla Institute of Technology and Science- Pilani, Hyderabad, Telangana, India
| | - Durba Roy
- Department of Chemistry, Birla Institute of Technology and Science- Pilani, Hyderabad, Telangana, India
| |
Collapse
|
13
|
Computerized Molecular Modeling of Carbohydrates. Methods Mol Biol 2020. [PMID: 32617954 DOI: 10.1007/978-1-0716-0621-6_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Computerized molecular modeling continues to increase in capability and applicability to carbohydrates. This chapter covers nomenclature and conformational aspects of carbohydrates, perhaps of greater use to computational chemists who do not have a strong background in carbohydrates, and its comments on various methods and studies might be of more use to carbohydrate chemists who are inexperienced with computation. Work on the intrinsic variability of glucose, an overall theme, is described. Other areas of the authors' emphasis, including evaluation of hydrogen bonding by the atoms-in-molecules approach, and validation of modeling methods with crystallographic results are also presented.
Collapse
|
14
|
Wu C, Chen X, Chen D, Xia Q, Liu Z, Li F, Yan Y, Cai Y. Insight into ponatinib resistance mechanisms in rhabdomyosarcoma caused by the mutations in FGFR4 tyrosine kinase using molecular modeling strategies. Int J Biol Macromol 2019; 135:294-302. [DOI: 10.1016/j.ijbiomac.2019.05.138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 01/03/2023]
|
15
|
Manna B, Ghosh A. Dissolution of cellulose in ionic liquid and water mixtures as revealed by molecular dynamics simulations. J Biomol Struct Dyn 2019; 37:3987-4005. [PMID: 30319053 DOI: 10.1080/07391102.2018.1533496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Bharat Manna
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Amit Ghosh
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
16
|
SeethaLekshmi S, Kiran MSRN, Ramamurty U, Varughese S. Molecular Basis for the Mechanical Response of Sulfa Drug Crystals. Chemistry 2018; 25:526-537. [DOI: 10.1002/chem.201803987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Sunil SeethaLekshmi
- Chemical Science and Technology DivisionCSIR-National Institute for Interdisciplinary Science and Technology Trivandrum 695 019 India
| | - Mangalampalli S. R. N. Kiran
- Nanomechanics Laboratory, Department of Physics and NanotechnologySRM Institute of Science and Technology Chennai 603203 India
| | - Upadrasta Ramamurty
- School of Mechanical & Aerospace EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Sunil Varughese
- Chemical Science and Technology DivisionCSIR-National Institute for Interdisciplinary Science and Technology Trivandrum 695 019 India
- Academy of Scientific and Innovative Research, CSIR-NIIST Campus Trivandrum 695 019 India
| |
Collapse
|
17
|
Kan Z, Zhu Q, Yang L, Huang Z, Jin B, Ma J. Polarization Effects on the Cellulose Dissolution in Ionic Liquids: Molecular Dynamics Simulations with Polarization Model and Integrated Tempering Enhanced Sampling Method. J Phys Chem B 2017; 121:4319-4332. [DOI: 10.1021/acs.jpcb.6b12647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zigui Kan
- School
of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic
Chemistry of MOE, Nanjing University, Nanjing 210093, People’s Republic of China
- School
of Sciences, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Qiang Zhu
- School
of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic
Chemistry of MOE, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Lijiang Yang
- Institute
of Theoretical and Computational Chemistry, College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Zhixiong Huang
- Research
Institute of Superconductor Electronics (RISE), School of Electronic
Science and Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Biaobing Jin
- Research
Institute of Superconductor Electronics (RISE), School of Electronic
Science and Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Jing Ma
- School
of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic
Chemistry of MOE, Nanjing University, Nanjing 210093, People’s Republic of China
| |
Collapse
|
18
|
Nakano T. Modeling of the morphological change of cellulose microfibrils caused with aqueous NaOH solution: the longitudinal contraction and laterally swelling during decrystallization. J Mol Model 2017; 23:129. [PMID: 28332081 DOI: 10.1007/s00894-017-3307-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 03/06/2017] [Indexed: 11/28/2022]
Abstract
The conformation of cellulose microfibrils treated with aqueous NaOH was modeled as partially decrystallized cellulose chains before completing conversion to cellulose II, in order to elucidate the change in morphology of ramie fiber caused by NaOH treatment. Equations for the relative length and width of the microfibrils were derived on the basis of partially decrystallized microfibrils modeling. Each equation contains four parameters, n, β, w c , and c r , which correspond to the number of glucose residues between periodic defects along the untreated ramie cellulose microfibrils, the extension ratio of amorphous cellulose chain along length, the cross-section crystallinity, and the correction term of crystallinity, respectively. The validity of the derived equations was confirmed by two types of simulations. One is performed using experimental data L/L 0 and W/W 0 as a function of crystallinity, while the other is done using the relationship between the relative length and width obtained from the experimental data, which is independent of crystallinity, was performed. The best-fit simulation was obtained under n = 277, β = 2.813, and c r w c = 0.671 for the former and under n = 301 and β = 2.792 for the latter. These values of n and β correspond closely to the values reported in references for ramie microfibrils. Both simulation results show that macroscopic changes in the morphology of ramie fibers is attributable to the changes in cellulose chain conformation in the decrystallized regions created along the microfibrils upon NaOH treatment.
Collapse
|
19
|
Schutt TC, Hegde GA, Bharadwaj VS, Johns AJ, Maupin CM. Impact of Water-Dilution on the Solvation Properties of the Ionic Liquid 1-Methyltriethoxy-3-ethylimidazolium Acetate for Model Biomass Molecules. J Phys Chem B 2017; 121:843-853. [DOI: 10.1021/acs.jpcb.6b09101] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Timothy C. Schutt
- Chemical and Biological Engineering
Department, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| | - Govind A. Hegde
- Chemical and Biological Engineering
Department, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| | - Vivek S. Bharadwaj
- Chemical and Biological Engineering
Department, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| | - Adam J. Johns
- Chemical and Biological Engineering
Department, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| | - C. Mark Maupin
- Chemical and Biological Engineering
Department, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| |
Collapse
|
20
|
Kanjanatanin P, Pichyangkura R, Chunsrivirot S. Replica exchange molecular dynamics simulations reveal the structural and molecular properties of levan-type fructo-oligosaccharides of various chain lengths. BMC Bioinformatics 2016; 17:306. [PMID: 27534934 PMCID: PMC4989353 DOI: 10.1186/s12859-016-1182-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/12/2016] [Indexed: 12/17/2022] Open
Abstract
Background Levan and levan-type fructo-oligosaccharides (LFOs) have various potential applications in pharmaceutical and food industries due to their beneficial properties such as their low intrinsic viscosity and high water solubility. Previous studies showed that they exhibited prebiotic effects, anti-inflammatory and anti-tumor activities against Sarcoma-180 tumor cells of human. Despite their various potential applications, the structural and molecular properties of LFOs of various chain lengths are not well understood. Results We employed the replica-exchange molecular dynamics simulations method (REMD) in AMBER14 to elucidate structural and molecular properties of LFOs with chain lengths of 5 (LFO5), 10 (LFO10) and 15 (LFO15) residues in two models of generalized Born implicit solvent (GBHCT and GBOBC1). For LFO10 and LFO15, four distinct conformations (helix-like, partial helix, zig-zag and random structures) were characterized by their upper-middle and lower-middle torsions. For LFO5, two distinct conformations (partial helix and random structures) were characterized by their middle torsion and molecular angle of residues 1, 3 and 5. To determine hydrogen bonds important for the formation of helix-like structures of LFO10 and LFO15, occurrence frequencies of hydrogen bonds were analyzed, and the O6(i)--H3O(i+1) hydrogen bond was found with the highest frequency, suggesting its importance in helix formation. Among three dihedral angles between two fructosyl units [ϕ (O5’-C2’-O6-C6), ψ (C2’-O6-C6-C5) and ω (O6-C6-C5-C4)], dihedral angle distributions showed that ω was the most flexible dihedral angle and probably responsible for conformational differences of LFOs. Conclusions Our study provides important insights into the structural and molecular properties of LFOs, which tend to form helical structures as the chain length increases from 5 to 15 residues. This information could be beneficial for the selection of LFOs with appropriate lengths and properties for pharmaceutical and biological applications. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1182-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pongsakorn Kanjanatanin
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phaya Thai road, Pathumwan, Bangkok, 10330, Thailand.,Structural and Computational Biology Research Group, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phaya Thai road, Pathumwan, Bangkok, 10330, Thailand
| | - Rath Pichyangkura
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phaya Thai road, Pathumwan, Bangkok, 10330, Thailand
| | - Surasak Chunsrivirot
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phaya Thai road, Pathumwan, Bangkok, 10330, Thailand. .,Structural and Computational Biology Research Group, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phaya Thai road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
21
|
Yang M, MacKerell AD. Conformational sampling of oligosaccharides using Hamiltonian replica exchange with two-dimensional dihedral biasing potentials and the weighted histogram analysis method (WHAM). J Chem Theory Comput 2016; 11:788-99. [PMID: 25705140 DOI: 10.1021/ct500993h] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Oligosaccharides and polysaccharides exert numerous functional roles in biology through their structural diversity and conformational properties. To investigate their conformational properties using computational methods, Hamiltonian replica exchange (H-REX) combined with two-dimensional grid-based correction maps as biasing potentials (bpCMAP) significantly improves the sampling efficiency about glycosidic linkages. In the current study, we extend the application of H-REX with bpCMAP to complex saccharides and establish systematic procedures for bpCMAP construction, determination of replica distribution, and data analysis. Our main findings are that (1) the bpCMAP for each type of glycosidic linkage can be constructed from the corresponding disaccharide using gas-phase umbrella sampling simulations, (2) the replica distribution can be conveniently determined following the exact definition of the average acceptance ratio based on the assigned distribution of biasing potentials, and (3) the extracted free energy surface (or potential of mean force (PMF)) can be improved using the weighted histogram analysis method (WHAM) allowing for the inclusion of data from the excited state replicas in the calculated probability distribution. The method is applied to a branched N-glycan found on the HIV gp120 protein, and a linear N-glycan. Considering the general importance of N-glycans and the wide appreciation of the sampling problem, the present method represents an efficient procedure for the conformational sampling of complex oligo- and polysaccharides under explicit solvent conditions. More generally, the use of WHAM is anticipated to be of general utility for the calculation of PMFs from H-REX simulations in a wide range of macromolecular systems.
Collapse
Affiliation(s)
- Mingjun Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | | |
Collapse
|
22
|
Huang W, Ramesh R, Jha PK, Larson RG. A Systematic Coarse-Grained Model for Methylcellulose Polymers: Spontaneous Ring Formation at Elevated Temperature. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02373] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Wenjun Huang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| | - Rahul Ramesh
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| | - Prateek K. Jha
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| | - Ronald G. Larson
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| |
Collapse
|
23
|
Conley K, Godbout L, Whitehead M(T, van de Ven TG. Origin of the twist of cellulosic materials. Carbohydr Polym 2016; 135:285-99. [DOI: 10.1016/j.carbpol.2015.08.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 08/03/2015] [Accepted: 08/10/2015] [Indexed: 10/23/2022]
|
24
|
Abstract
Glycosidic linkage conformations are the main factors in determining the shapes of disaccharide, oligosaccharide, and polysaccharide molecules. The conformations are expressed in terms of the torsion angles about the bonds from each ring of the disaccharide moiety to its glycosidic oxygen atom, and the probability of a given conformation is often expressed in terms of its free or potential energy. The energy surface or map for a disaccharide is a display of the energy plotted against the two torsion angles. Successful mapping allows a particular kind of energy calculation to provide the energy values for each conformation and avoids possible pitfalls. Although different methods are discussed, the main emphasis of this chapter is on the technical production of the maps and their exploitation in further understanding the shape of the molecule in question.
Collapse
|
25
|
Ehmann HMA, Werzer O, Pachmajer S, Mohan T, Amenitsch H, Resel R, Kornherr A, Stana-Kleinschek K, Kontturi E, Spirk S. Surface-Sensitive Approach to Interpreting Supramolecular Rearrangements in Cellulose by Synchrotron Grazing Incidence Small-Angle X-ray Scattering. ACS Macro Lett 2015; 4:713-716. [PMID: 35596493 DOI: 10.1021/acsmacrolett.5b00306] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The supramolecular rearrangements of biopolymers have remained difficult to discern. Here, we present a versatile approach that allows for an in situ investigation of two major types of rearrangements typically observed with cellulose, the most abundant biopolymer on earth. Model thin films were employed to study time-resolved pore size changes using in situ grazing incidence small-angle X-ray scattering (GISAXS) during regeneration and drying.
Collapse
Affiliation(s)
- Heike M. A. Ehmann
- Institute
for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Oliver Werzer
- Institute
of Pharmaceutical Science, Department of Pharmaceutical Technology, Karl-Franzens University of Graz, Universitätsplatz 1, A-8010 Graz, Austria
| | - Stefan Pachmajer
- Institute
of Solid State Physics, Graz University of Technology, Petersgasse
16, A-8010 Graz, Austria
| | - Tamilselvan Mohan
- Institute
for Chemistry, Karl-Franzens University of Graz, Heinrichstraße
28, A-8010 Graz, Austria
| | - Heinz Amenitsch
- Institute
of Inorganic Chemistry, Graz University of Technology, Stremayrgasse
9, A-8010 Graz, Austria
| | - Roland Resel
- Institute
of Solid State Physics, Graz University of Technology, Petersgasse
16, A-8010 Graz, Austria
| | - Andreas Kornherr
- Mondi Uncoated Fine & Kraft Paper GmbH, Marxergasse 4A, 1030 Wien, Austria
| | - Karin Stana-Kleinschek
- Institute
for Engineering Materials and Design, University of Maribor, Smetanova
ulica 17, SI-2000 Maribor, Slovenia
| | - Eero Kontturi
- Polymer and Composites
Engineering group, Department of Forest Products Technology, Aalto University, PO
Box 16300, FI-00076 Aalto, Finland
- Department
of Chemical Engineering, Imperial College London, South Kensington
Campus, London SW7 2AZ, U.K
| | - Stefan Spirk
- Institute
for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
- Institute
for Engineering Materials and Design, University of Maribor, Smetanova
ulica 17, SI-2000 Maribor, Slovenia
| |
Collapse
|
26
|
Angles d’Ortoli T, Sjöberg NA, Vasiljeva P, Lindman J, Widmalm G, Bergenstråhle-Wohlert M, Wohlert J. Temperature Dependence of Hydroxymethyl Group Rotamer Populations in Cellooligomers. J Phys Chem B 2015; 119:9559-70. [DOI: 10.1021/acs.jpcb.5b02866] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Thibault Angles d’Ortoli
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106
91 Stockholm, Sweden
| | - Nils A. Sjöberg
- Wallenberg
Wood Science Center, and the Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Polina Vasiljeva
- Wallenberg
Wood Science Center, and the Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Jonas Lindman
- Wallenberg
Wood Science Center, and the Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Göran Widmalm
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106
91 Stockholm, Sweden
| | - Malin Bergenstråhle-Wohlert
- Wallenberg
Wood Science Center, and the Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Jakob Wohlert
- Wallenberg
Wood Science Center, and the Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
27
|
Kubota R, Asayama S, Kawakami H. A bioinspired polymer-bound Mn-porphyrin as an artificial active center of catalase. Chem Commun (Camb) 2015; 50:15909-12. [PMID: 25380330 DOI: 10.1039/c4cc06286h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The complex comprising a cationic Mn-porphyrin and carboxymethyl poly(1-vinylimidazole) (CM-PVIm) was prepared as an artificial active center of catalase. Interestingly, the catalase activity of the complex depends on the chain length of the polymer and the chemical structure of Mn-porphyrin. This study is one step forward in the development of a new class of water-soluble catalase mimics.
Collapse
Affiliation(s)
- Riku Kubota
- Department of Applied Chemistry, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo 192-0397, Japan.
| | | | | |
Collapse
|
28
|
Oehme DP, Downton MT, Doblin MS, Wagner J, Gidley MJ, Bacic A. Unique aspects of the structure and dynamics of elementary Iβ cellulose microfibrils revealed by computational simulations. PLANT PHYSIOLOGY 2015; 168:3-17. [PMID: 25786828 PMCID: PMC4424011 DOI: 10.1104/pp.114.254664] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/06/2015] [Indexed: 05/18/2023]
Abstract
The question of how many chains an elementary cellulose microfibril contains is critical to understanding the molecular mechanism(s) of cellulose biosynthesis and regulation. Given the hexagonal nature of the cellulose synthase rosette, it is assumed that the number of chains must be a multiple of six. We present molecular dynamics simulations on three different models of Iβ cellulose microfibrils, 18, 24, and 36 chains, to investigate their structure and dynamics in a hydrated environment. The 36-chain model stays in a conformational space that is very similar to the initial crystalline phase, while the 18- and 24-chain models sample a conformational space different from the crystalline structure yet similar to conformations observed in recent high-temperature molecular dynamics simulations. Major differences in the conformations sampled between the different models result from changes to the tilt of chains in different layers, specifically a second stage of tilt, increased rotation about the O2-C2 dihedral, and a greater sampling of non-TG exocyclic conformations, particularly the GG conformation in center layers and GT conformation in solvent-exposed exocyclic groups. With a reinterpretation of nuclear magnetic resonance data, specifically for contributions made to the C6 peak, data from the simulations suggest that the 18- and 24-chain structures are more viable models for an elementary cellulose microfibril, which also correlates with recent scattering and diffraction experimental data. These data inform biochemical and molecular studies that must explain how a six-particle cellulose synthase complex rosette synthesizes microfibrils likely comprised of either 18 or 24 chains.
Collapse
Affiliation(s)
- Daniel P Oehme
- IBM Research Collaboratory for Life Sciences-Melbourne, Victorian Life Sciences Computation Initiative, Carlton, Victoria 3010, Australia (D.P.O., M.T.D., J.W.); IBM Research-Australia, Carlton, Victoria 3010, Australia (D.P.O., M.T.D., J.W.); Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany (M.S.D., A.B.) and Bio21 Molecular Science and Biotechnology Institute (A.B.), University of Melbourne, Parkville, Victoria 3010, Australia; andAustralian Research Council Centre of Excellence in Plant Cell Walls and Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia 4072, Australia (M.J.G.)
| | - Matthew T Downton
- IBM Research Collaboratory for Life Sciences-Melbourne, Victorian Life Sciences Computation Initiative, Carlton, Victoria 3010, Australia (D.P.O., M.T.D., J.W.); IBM Research-Australia, Carlton, Victoria 3010, Australia (D.P.O., M.T.D., J.W.); Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany (M.S.D., A.B.) and Bio21 Molecular Science and Biotechnology Institute (A.B.), University of Melbourne, Parkville, Victoria 3010, Australia; andAustralian Research Council Centre of Excellence in Plant Cell Walls and Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia 4072, Australia (M.J.G.)
| | - Monika S Doblin
- IBM Research Collaboratory for Life Sciences-Melbourne, Victorian Life Sciences Computation Initiative, Carlton, Victoria 3010, Australia (D.P.O., M.T.D., J.W.); IBM Research-Australia, Carlton, Victoria 3010, Australia (D.P.O., M.T.D., J.W.); Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany (M.S.D., A.B.) and Bio21 Molecular Science and Biotechnology Institute (A.B.), University of Melbourne, Parkville, Victoria 3010, Australia; andAustralian Research Council Centre of Excellence in Plant Cell Walls and Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia 4072, Australia (M.J.G.)
| | - John Wagner
- IBM Research Collaboratory for Life Sciences-Melbourne, Victorian Life Sciences Computation Initiative, Carlton, Victoria 3010, Australia (D.P.O., M.T.D., J.W.); IBM Research-Australia, Carlton, Victoria 3010, Australia (D.P.O., M.T.D., J.W.); Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany (M.S.D., A.B.) and Bio21 Molecular Science and Biotechnology Institute (A.B.), University of Melbourne, Parkville, Victoria 3010, Australia; andAustralian Research Council Centre of Excellence in Plant Cell Walls and Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia 4072, Australia (M.J.G.)
| | - Michael J Gidley
- IBM Research Collaboratory for Life Sciences-Melbourne, Victorian Life Sciences Computation Initiative, Carlton, Victoria 3010, Australia (D.P.O., M.T.D., J.W.); IBM Research-Australia, Carlton, Victoria 3010, Australia (D.P.O., M.T.D., J.W.); Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany (M.S.D., A.B.) and Bio21 Molecular Science and Biotechnology Institute (A.B.), University of Melbourne, Parkville, Victoria 3010, Australia; andAustralian Research Council Centre of Excellence in Plant Cell Walls and Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia 4072, Australia (M.J.G.)
| | - Antony Bacic
- IBM Research Collaboratory for Life Sciences-Melbourne, Victorian Life Sciences Computation Initiative, Carlton, Victoria 3010, Australia (D.P.O., M.T.D., J.W.); IBM Research-Australia, Carlton, Victoria 3010, Australia (D.P.O., M.T.D., J.W.); Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany (M.S.D., A.B.) and Bio21 Molecular Science and Biotechnology Institute (A.B.), University of Melbourne, Parkville, Victoria 3010, Australia; andAustralian Research Council Centre of Excellence in Plant Cell Walls and Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia 4072, Australia (M.J.G.)
| |
Collapse
|
29
|
Johnson QR, Lindsay RJ, Petridis L, Shen T. Investigation of Carbohydrate Recognition via Computer Simulation. Molecules 2015; 20:7700-18. [PMID: 25927900 PMCID: PMC6272577 DOI: 10.3390/molecules20057700] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/15/2015] [Accepted: 04/15/2015] [Indexed: 12/11/2022] Open
Abstract
Carbohydrate recognition by proteins, such as lectins and other (bio)molecules, can be essential for many biological functions. Recently, interest has arisen due to potential protein and drug design and future bioengineering applications. A quantitative measurement of carbohydrate-protein interaction is thus important for the full characterization of sugar recognition. We focus on the aspect of utilizing computer simulations and biophysical models to evaluate the strength and specificity of carbohydrate recognition in this review. With increasing computational resources, better algorithms and refined modeling parameters, using state-of-the-art supercomputers to calculate the strength of the interaction between molecules has become increasingly mainstream. We review the current state of this technique and its successful applications for studying protein-sugar interactions in recent years.
Collapse
Affiliation(s)
- Quentin R Johnson
- UT-ORNL Graduate School of Genome Science and Technology, Knoxville, TN 37996, USA.
| | - Richard J Lindsay
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA.
| | - Loukas Petridis
- Center for Molecular Biophysics, Oak Ridge National Lab, Oak Ridge, TN 37830, USA.
| | - Tongye Shen
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
30
|
Tolonen LK, Bergenstråhle-Wohlert M, Sixta H, Wohlert J. Solubility of Cellulose in Supercritical Water Studied by Molecular Dynamics Simulations. J Phys Chem B 2015; 119:4739-48. [DOI: 10.1021/acs.jpcb.5b01121] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Lasse K. Tolonen
- Department
of Forest Products Technology, Aalto University, P.O. Box 16300, FI-00076 Espoo, Finland
| | - Malin Bergenstråhle-Wohlert
- Wallenberg
Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56-58, SE-10040 Stockholm, Sweden
| | - Herbert Sixta
- Department
of Forest Products Technology, Aalto University, P.O. Box 16300, FI-00076 Espoo, Finland
| | - Jakob Wohlert
- Wallenberg
Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56-58, SE-10040 Stockholm, Sweden
| |
Collapse
|
31
|
Yan S, Yao L. DFT application in conformational determination of cellobiose. Carbohydr Res 2015; 404:117-23. [DOI: 10.1016/j.carres.2014.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/08/2014] [Accepted: 12/16/2014] [Indexed: 11/26/2022]
|
32
|
Chauhan NPS, Mozafari M, Ameta R, Punjabi PB, Ameta SC. Spectral and thermal characterization of halogen-bonded novel crystalline oligo(p-bromoacetophenone formaldehyde). J Phys Chem B 2015; 119:3223-30. [PMID: 25594328 DOI: 10.1021/jp510320g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel oligomer p-bromoacetophenone-formaldehyde (OPBAF) was prepared by condensation polymerization in the presence of an acid as catalyst. It was characterized by FT-IR, NMR, pyrolysis GC/MS, XRD, GPC, and TG-DTG. The crystallographic parameters and space group for hexagonal OPBAF were a = b = 2.0810 Å and c = 9.2340 Å and P3̅m1, respectively. The degradation activation energy of the oligomer was studied by the Kissinger method. The kinetic parameters were also obtained. Halogen bonding interactions in the crystalline oligomers are identified between halogen···carbonyl and halogen···halogen. Little correlation was found in the halogen bonding motifs exhibited as a function of bromine present in this oligomer, and a unique bifurcated Br···Br/Br···O═C halogen bonding synthon was identified. This newly developed oligomer may be used as an interesting material for the development of 3D-designed structural products.
Collapse
Affiliation(s)
- Narendra Pal Singh Chauhan
- Department of Chemistry, Bhupal Nobles Post Graduate (B.N.P.G.) College , Udaipur 313001, Rajasthan, India
| | | | | | | | | |
Collapse
|
33
|
Payal RS, Bejagam KK, Mondal A, Balasubramanian S. Dissolution of cellulose in room temperature ionic liquids: anion dependence. J Phys Chem B 2015; 119:1654-9. [PMID: 25535797 DOI: 10.1021/jp512240t] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The dissolution of cellulosic biomass in room temperature ionic liquids (RTILs) is studied through free energy calculations of its monomer, viz., cellobiose, within a molecular dynamics simulation approach. The solvation free energy (SFE) of cellobiose in ionic liquids containing any of seven different anions has been calculated. The ranking of these liquids based on SFE compares well with experimental data on the solubility of cellulose. The dissolution is shown to be enthalpically dominated, which is correlated with the strength of intermolecular hydrogen bonding between cellobiose and the anions of the IL. Large entropic changes upon solvation in [CF3SO3](-) and [OAc](-) based ionic liquids have been explained in terms of the solvent-aided conformational flexibility of cellobiose.
Collapse
Affiliation(s)
- Rajdeep Singh Payal
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore 560 064, India
| | | | | | | |
Collapse
|
34
|
Computerized Models of Carbohydrates. POLYSACCHARIDES 2015. [DOI: 10.1007/978-3-319-16298-0_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
35
|
Bharadwaj VS, Schutt TC, Ashurst TC, Maupin CM. Elucidating the conformational energetics of glucose and cellobiose in ionic liquids. Phys Chem Chem Phys 2015; 17:10668-78. [DOI: 10.1039/c5cp00118h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The energetics driving the conformational preference of the ω dihedral of glucose and the φ–ψ dihedrals of cellobiose solvated in imidazolium acetate ionic liquids and water are elucidated and compared.
Collapse
Affiliation(s)
- Vivek S. Bharadwaj
- Chemical and Biological Engineering Department
- Colorado School of Mines
- Golden
- USA
| | - Timothy C. Schutt
- Chemical and Biological Engineering Department
- Colorado School of Mines
- Golden
- USA
| | - Timothy C. Ashurst
- Chemical and Biological Engineering Department
- Colorado School of Mines
- Golden
- USA
| | - C. Mark Maupin
- Chemical and Biological Engineering Department
- Colorado School of Mines
- Golden
- USA
| |
Collapse
|
36
|
Velioglu S, Yao X, Devémy J, Ahunbay MG, Tantekin-Ersolmaz SB, Dequidt A, Costa Gomes MF, Pádua AAH. Solvation of a Cellulose Microfibril in Imidazolium Acetate Ionic Liquids: Effect of a Cosolvent. J Phys Chem B 2014; 118:14860-9. [DOI: 10.1021/jp508113a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
37
|
Huang W, Dalal IS, Larson RG. Analysis of Solvation and Gelation Behavior of Methylcellulose Using Atomistic Molecular Dynamics Simulations. J Phys Chem B 2014; 118:13992-4008. [DOI: 10.1021/jp509760x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenjun Huang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| | - Indranil S. Dalal
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| | - Ronald G. Larson
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| |
Collapse
|
38
|
|
39
|
Mostofian B, Cheng X, Smith JC. Replica-exchange molecular dynamics simulations of cellulose solvated in water and in the ionic liquid 1-butyl-3-methylimidazolium chloride. J Phys Chem B 2014; 118:11037-49. [PMID: 25180945 DOI: 10.1021/jp502889c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ionic liquids have become a popular solvent for cellulose pretreatment in biorefineries due to their efficiency in dissolution and their reusability. Understanding the interactions between cations, anions, and cellulose is key to the development of better solvents and the improvement of pretreatment conditions. While previous studies described the interactions between ionic liquids and cellulose fibers, shedding light on the initial stages of the cellulose dissolution process, we study the end state of that process by exploring the structure and dynamics of a single cellulose decamer solvated in 1-butyl-3-methyl-imidazolium chloride (BmimCl) and in water using replica-exchange molecular dynamics. In both solvents, global structural features of the cellulose chain are similar. However, analyses of local structural properties show that cellulose explores greater conformational variability in the ionic liquid than in water. For instance, in BmimCl the cellulose intramolecular hydrogen bond O3H'···O5 is disrupted more often resulting in greater flexibility of the solute. Our results indicate that the cellulose chain is more dynamic in BmimCl than in water, which may play a role in the favorable dissolution of cellulose in the ionic liquid. Calculation of the configurational entropy of the cellulose decamer confirms its higher conformational flexibility in BmimCl than in water at elevated temperatures.
Collapse
Affiliation(s)
- Barmak Mostofian
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37830, United States
| | | | | |
Collapse
|
40
|
Bell NGA, Rigg G, Masters S, Bella J, Uhrín D. Detecting low-level flexibility using residual dipolar couplings: a study of the conformation of cellobiose. Phys Chem Chem Phys 2014; 15:18223-34. [PMID: 24064673 DOI: 10.1039/c3cp52987h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed novel NMR methods for the measurement of heteronuclear residual dipolar couplings (RDCs) in molecules with severely overlapping NMR resonances. These and other methods enabled us to obtain 31 RDCs for α-D-cellobiose and 24 RDCs for β-D-cellobiose. The interpretation of the data in the approximation of a rigid disaccharide structure, using RDCs and interglycosidic (3)J coupling constants, yielded conformation that is very close to that determined using X-ray crystallography. However, depending on which ring was used to calculate the order parameters, the dihedral angle ψH varied up to 30° or 40°, while the φH angle was always the same. This indicates residual flexibility of the glycosidic linkage between the two monosaccharide rings and was observed for both α- and β-D-cellobiose. The RDC analysis using rigid fragments rather than a complete molecule has thus shown that the glycosidic bond of cellobiose is not completely rigid and exhibits low-level flexibility. The sources of this flexibility are discussed and evidence presented to support a hypothesis that it is associated with the ψ more than the φ angle.
Collapse
Affiliation(s)
- Nicholle G A Bell
- EastChem School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JJ, UK.
| | | | | | | | | |
Collapse
|
41
|
Kang Y, Barbirz S, Lipowsky R, Santer M. Conformational Diversity of O-Antigen Polysaccharides of the Gram-Negative Bacterium Shigella flexneri Serotype Y. J Phys Chem B 2014; 118:2523-34. [DOI: 10.1021/jp4111713] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yu Kang
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Stefanie Barbirz
- Physikalische
Biochemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Mark Santer
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| |
Collapse
|
42
|
Johnson QR, Lindsay RJ, Raval SR, Dobbs JS, Nellas RB, Shen T. Effects of Branched O-Glycosylation on a Semiflexible Peptide Linker. J Phys Chem B 2014; 118:2050-7. [DOI: 10.1021/jp410788r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Quentin R. Johnson
- UT-ORNL
Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996, United States
- UT-ORNL
Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Richard J. Lindsay
- UT-ORNL
Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Sherin R. Raval
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jeremy S. Dobbs
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ricky B. Nellas
- UT-ORNL
Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Tongye Shen
- UT-ORNL
Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
43
|
Mayes HB, Broadbelt LJ, Beckham GT. How Sugars Pucker: Electronic Structure Calculations Map the Kinetic Landscape of Five Biologically Paramount Monosaccharides and Their Implications for Enzymatic Catalysis. J Am Chem Soc 2014; 136:1008-22. [DOI: 10.1021/ja410264d] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Heather B. Mayes
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- National
Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Linda J. Broadbelt
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Gregg T. Beckham
- National
Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
44
|
Tuna D, Sobolewski AL, Domcke W. Electronically excited states and photochemical reaction mechanisms of β-glucose. Phys Chem Chem Phys 2014; 16:38-47. [DOI: 10.1039/c3cp52359d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Lindner B, Petridis L, Schulz R, Smith JC. Solvent-Driven Preferential Association of Lignin with Regions of Crystalline Cellulose in Molecular Dynamics Simulation. Biomacromolecules 2013; 14:3390-8. [DOI: 10.1021/bm400442n] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Benjamin Lindner
- UT/ORNL
Center for Molecular Biophysics, Oak Ridge National Laboratory, 1 Bethel Valley Road, Building 6011, Oak Ridge, Tennessee 37830-6309, United States
- Genome
Science and Technology, University of Tennessee—Knoxville, F337 Walters Life Sciences, 1414
Cumberland Avenue, Knoxville, Tennessee 37996, United States
| | - Loukas Petridis
- UT/ORNL
Center for Molecular Biophysics, Oak Ridge National Laboratory, 1 Bethel Valley Road, Building 6011, Oak Ridge, Tennessee 37830-6309, United States
| | - Roland Schulz
- UT/ORNL
Center for Molecular Biophysics, Oak Ridge National Laboratory, 1 Bethel Valley Road, Building 6011, Oak Ridge, Tennessee 37830-6309, United States
- Genome
Science and Technology, University of Tennessee—Knoxville, F337 Walters Life Sciences, 1414
Cumberland Avenue, Knoxville, Tennessee 37996, United States
| | - Jeremy C. Smith
- UT/ORNL
Center for Molecular Biophysics, Oak Ridge National Laboratory, 1 Bethel Valley Road, Building 6011, Oak Ridge, Tennessee 37830-6309, United States
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, M407 Walters
Life Sciences, 1414 Cumberland Avenue, Knoxville, Tennessee 37996, United States
| |
Collapse
|
46
|
Devarajan A, Markutsya S, Lamm MH, Cheng X, Smith JC, Baluyut JY, Kholod Y, Gordon MS, Windus TL. Ab Initio Study of Molecular Interactions in Cellulose Iα. J Phys Chem B 2013; 117:10430-43. [DOI: 10.1021/jp406266u] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | | | | | - Xiaolin Cheng
- UT/ORNL
Center for Molecular Biophysics, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6309, United States
| | - Jeremy C. Smith
- UT/ORNL
Center for Molecular Biophysics, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6309, United States
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, M407 Walters
Life Sciences, 1414 Cumberland Avenue, Knoxville, Tennessee 37996, United States
| | | | | | | | | |
Collapse
|
47
|
Niazi AA, Rabideau BD, Ismail AE. Effects of Water Concentration on the Structural and Diffusion Properties of Imidazolium-Based Ionic Liquid–Water Mixtures. J Phys Chem B 2013; 117:1378-88. [DOI: 10.1021/jp3080496] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amir A. Niazi
- Aachener
Verfahrenstechnik: Molecular Simulations and
Transformations, Faculty of Mechanical Engineering, RWTH Aachen University, Schinkelstraße 2, 52062 Aachen,
Germany
| | - Brooks D. Rabideau
- Aachener
Verfahrenstechnik: Molecular Simulations and
Transformations, Faculty of Mechanical Engineering, RWTH Aachen University, Schinkelstraße 2, 52062 Aachen,
Germany
| | - Ahmed E. Ismail
- Aachener
Verfahrenstechnik: Molecular Simulations and
Transformations, Faculty of Mechanical Engineering, RWTH Aachen University, Schinkelstraße 2, 52062 Aachen,
Germany
| |
Collapse
|
48
|
Gupta KM, Hu Z, Jiang J. Molecular insight into cellulose regeneration from a cellulose/ionic liquid mixture: effects of water concentration and temperature. RSC Adv 2013. [DOI: 10.1039/c3ra22561e] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
49
|
Re S, Nishima W, Miyashita N, Sugita Y. Conformational flexibility of N-glycans in solution studied by REMD simulations. Biophys Rev 2012; 4:179-187. [PMID: 28510079 DOI: 10.1007/s12551-012-0090-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 06/21/2012] [Indexed: 01/09/2023] Open
Abstract
Protein-glycan recognition regulates a wide range of biological and pathogenic processes. Conformational diversity of glycans in solution is apparently incompatible with specific binding to their receptor proteins. One possibility is that among the different conformational states of a glycan, only one conformer is utilized for specific binding to a protein. However, the labile nature of glycans makes characterizing their conformational states a challenging issue. All-atom molecular dynamics (MD) simulations provide the atomic details of glycan structures in solution, but fairly extensive sampling is required for simulating the transitions between rotameric states. This difficulty limits application of conventional MD simulations to small fragments like di- and tri-saccharides. Replica-exchange molecular dynamics (REMD) simulation, with extensive sampling of structures in solution, provides a valuable way to identify a family of glycan conformers. This article reviews recent REMD simulations of glycans carried out by us or other research groups and provides new insights into the conformational equilibria of N-glycans and their alteration by chemical modification. We also emphasize the importance of statistical averaging over the multiple conformers of glycans for comparing simulation results with experimental observables. The results support the concept of "conformer selection" in protein-glycan recognition.
Collapse
Affiliation(s)
- Suyong Re
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Wataru Nishima
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Naoyuki Miyashita
- RIKEN Quantitative Biology Center, IMDA 6F, 1-6-5 Minatojimaminamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Yuji Sugita
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,RIKEN Quantitative Biology Center, IMDA 6F, 1-6-5 Minatojimaminamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan. .,RIKEN Advanced Institute for Computational Science, 7-1-26 Minatojimaminamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|
50
|
Liu H, Cheng G, Kent M, Stavila V, Simmons BA, Sale KL, Singh S. Simulations Reveal Conformational Changes of Methylhydroxyl Groups during Dissolution of Cellulose Iβ in Ionic Liquid 1-Ethyl-3-methylimidazolium Acetate. J Phys Chem B 2012; 116:8131-8. [DOI: 10.1021/jp301673h] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hanbin Liu
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, California
- Sandia National Laboratories, Livermore, California
| | - Gang Cheng
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, California
- Sandia National Laboratories, Livermore, California
| | - Michael Kent
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, California
- Sandia National Laboratories, Albuquerque, New Mexico
| | | | - Blake A Simmons
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, California
- Sandia National Laboratories, Livermore, California
| | - Kenneth L Sale
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, California
- Sandia National Laboratories, Livermore, California
| | - Seema Singh
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, California
- Sandia National Laboratories, Livermore, California
| |
Collapse
|