1
|
Vulpetti A, Rondeau JM, Bellance MH, Blank J, Boesch R, Boettcher A, Bornancin F, Buhr S, Connor LE, Dumelin CE, Esser O, Hediger M, Hintermann S, Hommel U, Koch E, Lapointe G, Leder L, Lehmann S, Lehr P, Meier P, Muller L, Ostermeier D, Ramage P, Schiebel-Haddad S, Smith AB, Stojanovic A, Velcicky J, Yamamoto R, Hurth K. Ligandability Assessment of IL-1β by Integrated Hit Identification Approaches. J Med Chem 2024; 67:8141-8160. [PMID: 38728572 DOI: 10.1021/acs.jmedchem.4c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Human interleukin-1β (IL-1β) is a pro-inflammatory cytokine that plays a critical role in the regulation of the immune response and the development of various inflammatory diseases. In this publication, we disclose our efforts toward the discovery of IL-1β binders that interfere with IL-1β signaling. To this end, several technologies were used in parallel, including fragment-based screening (FBS), DNA-encoded library (DEL) technology, peptide discovery platform (PDP), and virtual screening. The utilization of distinct technologies resulted in the identification of new chemical entities exploiting three different sites on IL-1β, all of them also inhibiting the interaction with the IL-1R1 receptor. Moreover, we identified lysine 103 of IL-1β as a target residue suitable for the development of covalent, low-molecular-weight IL-1β antagonists.
Collapse
Affiliation(s)
- Anna Vulpetti
- Biomedical Research, Novartis, CH-4002 Basel, Switzerland
| | | | | | - Jutta Blank
- Biomedical Research, Novartis, CH-4002 Basel, Switzerland
| | - Ralf Boesch
- Biomedical Research, Novartis, CH-4002 Basel, Switzerland
| | | | | | - Sylvia Buhr
- Biomedical Research, Novartis, CH-4002 Basel, Switzerland
| | | | | | - Oliver Esser
- Biomedical Research, Novartis, CH-4002 Basel, Switzerland
| | | | | | - Ulrich Hommel
- Biomedical Research, Novartis, CH-4002 Basel, Switzerland
| | - Elke Koch
- Biomedical Research, Novartis, CH-4002 Basel, Switzerland
| | | | - Lukas Leder
- Biomedical Research, Novartis, CH-4002 Basel, Switzerland
| | - Sylvie Lehmann
- Biomedical Research, Novartis, CH-4002 Basel, Switzerland
| | - Philipp Lehr
- Biomedical Research, Novartis, CH-4002 Basel, Switzerland
| | - Peter Meier
- Biomedical Research, Novartis, CH-4002 Basel, Switzerland
| | - Lionel Muller
- Biomedical Research, Novartis, CH-4002 Basel, Switzerland
| | | | - Paul Ramage
- Biomedical Research, Novartis, CH-4002 Basel, Switzerland
| | | | | | | | - Juraj Velcicky
- Biomedical Research, Novartis, CH-4002 Basel, Switzerland
| | - Rina Yamamoto
- Biomedical Research, Novartis, CH-4002 Basel, Switzerland
| | | |
Collapse
|
2
|
Myers SH, Poppi L, Rinaldi F, Veronesi M, Ciamarone A, Previtali V, Bagnolini G, Schipani F, Ortega Martínez JA, Girotto S, Di Stefano G, Farabegoli F, Walsh N, De Franco F, Roberti M, Cavalli A. An 19F NMR fragment-based approach for the discovery and development of BRCA2-RAD51 inhibitors to pursuit synthetic lethality in combination with PARP inhibition in pancreatic cancer. Eur J Med Chem 2024; 265:116114. [PMID: 38194775 DOI: 10.1016/j.ejmech.2023.116114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/11/2024]
Abstract
The BRCA2-RAD51 interaction remains an intriguing target for cancer drug discovery due to its vital role in DNA damage repair mechanisms, which cancer cells become particularly reliant on. Moreover, RAD51 has many synthetically lethal partners, including PARP1-2, which can be exploited to induce synthetic lethality in cancer. In this study, we established a 19F-NMR-fragment based approach to identify RAD51 binders, leading to two initial hits. A subsequent SAR program identified 46 as a low micromolar inhibitor of the BRCA2-RAD51 interaction. 46 was tested in different pancreatic cancer cell lines, to evaluate its ability to inhibit the homologous recombination DNA repair pathway, mediated by BRCA2-RAD51 and trigger synthetic lethality in combination with the PARP inhibitor talazoparib, through the induction of apoptosis. Moreover, we further analyzed the 46/talazoparib combination in 3D pancreatic cancer models. Overall, 46 showed its potential as a tool to evaluate the RAD51/PARP1-2 synthetic lethality mechanism, along with providing a prospect for further inhibitors development.
Collapse
Affiliation(s)
- Samuel H Myers
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, 16163, Genoa, Italy
| | - Laura Poppi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Francesco Rinaldi
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, 16163, Genoa, Italy; Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Marina Veronesi
- Structural Biophysics Facility, Istituto Italiano di Tecnologia, 16163, Genoa, Italy; D3 PharmaChemistry, Istituto Italiano di Tecnologia, 16163, Genoa, Italy
| | - Andrea Ciamarone
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, 16163, Genoa, Italy
| | - Viola Previtali
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, 16163, Genoa, Italy
| | - Greta Bagnolini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Fabrizio Schipani
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, 16163, Genoa, Italy
| | | | - Stefania Girotto
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, 16163, Genoa, Italy; Structural Biophysics Facility, Istituto Italiano di Tecnologia, 16163, Genoa, Italy
| | - Giuseppina Di Stefano
- Department of Surgical and Medical Sciences, University of Bologna, 40126, Bologna, Italy
| | - Fulvia Farabegoli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Naomi Walsh
- School of Biotechnology, Dublin City University, D09 NR58, Dublin, Ireland
| | | | - Marinella Roberti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy.
| | - Andrea Cavalli
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, 16163, Genoa, Italy; Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland
| |
Collapse
|
3
|
Penner P, Vulpetti A. QM assisted ML for 19F NMR chemical shift prediction. J Comput Aided Mol Des 2023; 38:4. [PMID: 38082055 DOI: 10.1007/s10822-023-00542-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Ligand-observed 19F NMR detection is an efficient method for screening libraries of fluorinated molecules in fragment-based drug design campaigns. Screening fluorinated molecules in large mixtures makes 19F NMR a high-throughput method. Typically, these mixtures are generated from pools of well-characterized fragments. By predicting 19F NMR chemical shift, mixtures could be generated for arbitrary fluorinated molecules facilitating for example focused screens. METHODS In a previous publication, we introduced a method to predict 19F NMR chemical shift using rooted fluorine fingerprints and machine learning (ML) methods. Having observed that the quality of the prediction depends on similarity to the training set, we here propose to assist the prediction with quantum mechanics (QM) based methods in cases where compounds are not well covered by a training set. RESULTS Beyond similarity, the performance of ML methods could be associated with individual features in compounds. A combination of both could be used as a procedure to split input data sets into those that could be predicted by ML and those that required QM processing. We could show on a proprietary fluorinated fragment library, known as LEF (Local Environment of Fluorine), and a public Enamine data set of 19F NMR chemical shifts that ML and QM methods could synergize to outperform either method individually. Models built on Enamine data, as well as model building and QM workflow tools, can be found at https://github.com/PatrickPenner/lefshift and https://github.com/PatrickPenner/lefqm .
Collapse
Affiliation(s)
- Patrick Penner
- Global Discovery Chemistry, Biomedical Research, Novartis AG, 4056, Basel, Switzerland.
| | - Anna Vulpetti
- Global Discovery Chemistry, Biomedical Research, Novartis AG, 4056, Basel, Switzerland.
| |
Collapse
|
4
|
Stadler GR, Segawa TF, Bütikofer M, Decker V, Loss S, Czarniecki B, Torres F, Riek R. Fragment Screening and Fast Micromolar Detection on a Benchtop NMR Spectrometer Boosted by Photoinduced Hyperpolarization. Angew Chem Int Ed Engl 2023; 62:e202308692. [PMID: 37524651 DOI: 10.1002/anie.202308692] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Fragment-based drug design is a well-established strategy for rational drug design, with nuclear magnetic resonance (NMR) on high-field spectrometers as the method of reference for screening and hit validation. However, high-field NMR spectrometers are not only expensive, but require specialized maintenance, dedicated space, and depend on liquid helium cooling which became critical over the recurring global helium shortages. We propose an alternative to high-field NMR screening by applying the recently developed approach of fragment screening by photoinduced hyperpolarized NMR on a cryogen-free 80 MHz benchtop NMR spectrometer yielding signal enhancements of up to three orders in magnitude. It is demonstrated that it is possible to discover new hits and kick-off drug design using a benchtop NMR spectrometer at low micromolar concentrations of both protein and ligand. The approach presented performs at higher speed than state-of-the-art high-field NMR approaches while exhibiting a limit of detection in the nanomolar range. Photoinduced hyperpolarization is known to be inexpensive and simple to be implemented, which aligns greatly with the philosophy of benchtop NMR spectrometers. These findings open the way for the use of benchtop NMR in near-physiological conditions for drug design and further life science applications.
Collapse
Affiliation(s)
- Gabriela R Stadler
- ETH Zürich, Swiss Federal Institute of Technology, Institute for Molecular Physical Science, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Takuya F Segawa
- ETH Zürich, Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Matthias Bütikofer
- ETH Zürich, Swiss Federal Institute of Technology, Institute for Molecular Physical Science, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Venita Decker
- Bruker BioSpin GmbH, Rudolf-Plank-Strasse 23, 76275, Ettlingen, Germany
| | - Sandra Loss
- Bruker Switzerland AG, Industriestrasse 26, 8117, Fällanden, Switzerland
| | - Barbara Czarniecki
- Bruker Switzerland AG, Industriestrasse 26, 8117, Fällanden, Switzerland
| | - Felix Torres
- ETH Zürich, Swiss Federal Institute of Technology, Institute for Molecular Physical Science, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
- NexMR GmbH, Wiesenstrasse 10 A, 8952, Schlieren, Switzerland
| | - Roland Riek
- ETH Zürich, Swiss Federal Institute of Technology, Institute for Molecular Physical Science, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| |
Collapse
|
5
|
Hommel U, Hurth K, Rondeau JM, Vulpetti A, Ostermeier D, Boettcher A, Brady JP, Hediger M, Lehmann S, Koch E, Blechschmidt A, Yamamoto R, Tundo Dottorello V, Haenni-Holzinger S, Kaiser C, Lehr P, Lingel A, Mureddu L, Schleberger C, Blank J, Ramage P, Freuler F, Eder J, Bornancin F. Discovery of a selective and biologically active low-molecular weight antagonist of human interleukin-1β. Nat Commun 2023; 14:5497. [PMID: 37679328 PMCID: PMC10484922 DOI: 10.1038/s41467-023-41190-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Human interleukin-1β (hIL-1β) is a pro-inflammatory cytokine involved in many diseases. While hIL-1β directed antibodies have shown clinical benefit, an orally available low-molecular weight antagonist is still elusive, limiting the applications of hIL-1β-directed therapies. Here we describe the discovery of a low-molecular weight hIL-1β antagonist that blocks the interaction with the IL-1R1 receptor. Starting from a low affinity fragment-based screening hit 1, structure-based optimization resulted in a compound (S)-2 that binds and antagonizes hIL-1β with single-digit micromolar activity in biophysical, biochemical, and cellular assays. X-ray analysis reveals an allosteric mode of action that involves a hitherto unknown binding site in hIL-1β encompassing two loops involved in hIL-1R1/hIL-1β interactions. We show that residues of this binding site are part of a conformationally excited state of the mature cytokine. The compound antagonizes hIL-1β function in cells, including primary human fibroblasts, demonstrating the relevance of this discovery for future development of hIL-1β directed therapeutics.
Collapse
Affiliation(s)
- Ulrich Hommel
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002, Basel, Switzerland.
| | - Konstanze Hurth
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002, Basel, Switzerland.
| | - Jean-Michel Rondeau
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | - Anna Vulpetti
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | - Daniela Ostermeier
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | - Andreas Boettcher
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | - Jacob Peter Brady
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Michael Hediger
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | - Sylvie Lehmann
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | - Elke Koch
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | - Anke Blechschmidt
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | - Rina Yamamoto
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | | | | | - Christian Kaiser
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | - Philipp Lehr
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | - Andreas Lingel
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | - Luca Mureddu
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Christian Schleberger
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | - Jutta Blank
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | - Paul Ramage
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | - Felix Freuler
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | - Joerg Eder
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | - Frédéric Bornancin
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002, Basel, Switzerland.
| |
Collapse
|
6
|
Albayrak S, Farajzadeh N, Yasemin Yenilmez H, Özdemir S, Gonca S, Altuntaş Bayır Z. Fluorinated Phthalocyanine/Silver Nanoconjugates for Multifunctional Biological Applications. Chem Biodivers 2023:e202300389. [PMID: 37366243 DOI: 10.1002/cbdv.202300389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
In this study, a new phthalonitrile derivative namely 4-[(2,4-difluorophenyl)ethynyl]phthalonitrile (1) and its metal phthalocyanines (2 and 3) were synthesized. The resultant compounds were conjugated to silver nanoparticles and characterized using transmission electron microscopy (TEM) images. The biological properties of compounds (1-3), their nanoconjugates (4-6), and silver nanoparticles (7) were examined for the first time in this study. The antioxidant activities of biological candidates (1-7) were studied by applying the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The highest antioxidant activity was obtained 97.47 % for 200 mg/L manganese phthalocyanine-silver nanoconjugates (6). The antimicrobial and antimicrobial photodynamic therapy (APDT) activities of biological candidates (1-7) were examined using a micro-dilution assay. The highest MIC value was obtained 8 mg/L for nanoconjugate 6 against E. hirae. The studied compounds and their silver nanoconjugates exhibited high APDT activities against all the studied microorganisms. The most effective APDT activities were obtained 4 mg/L for nanoconjugates (5 and 6) against L. pneumophila and E. hirae, respectively. All the studied biological candidates displayed high cell viability inhibition activities against E. coli cell growth. The biofilm inhibition activities of the tested biological candidates were also investigated against S. aureus and P. Aeruginosa. Biological candidates (1-6) can be considered efficient metal nanoparticle-based materials for multi-disciplinary biological applications.
Collapse
Affiliation(s)
- Sedef Albayrak
- Chemistry, Istanbul Technical University, Maslak, TR-34469, Istanbul, Türkiye
| | - Nazli Farajzadeh
- Chemistry, Istanbul Technical University, Maslak, TR-34469, Istanbul, Türkiye
| | - H Yasemin Yenilmez
- Chemistry, Istanbul Technical University, Maslak, TR-34469, Istanbul, Türkiye
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, University of Mersin, Yenisehir, TR-33343, Mersin, Türkiye
| | - Serpil Gonca
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Mersin, Yenisehir, TR-33343, Mersin, Türkiye
| | | |
Collapse
|
7
|
Padroni G, Bikaki M, Novakovic M, Wolter AC, Rüdisser S, Gossert AD, Leitner A, Allain FHT. A hybrid structure determination approach to investigate the druggability of the nucleocapsid protein of SARS-CoV-2. Nucleic Acids Res 2023; 51:4555-4571. [PMID: 36928389 PMCID: PMC10201421 DOI: 10.1093/nar/gkad195] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
The pandemic caused by SARS-CoV-2 has called for concerted efforts to generate new insights into the biology of betacoronaviruses to inform drug screening and development. Here, we establish a workflow to determine the RNA recognition and druggability of the nucleocapsid N-protein of SARS-CoV-2, a highly abundant protein crucial for the viral life cycle. We use a synergistic method that combines NMR spectroscopy and protein-RNA cross-linking coupled to mass spectrometry to quickly determine the RNA binding of two RNA recognition domains of the N-protein. Finally, we explore the druggability of these domains by performing an NMR fragment screening. This workflow identified small molecule chemotypes that bind to RNA binding interfaces and that have promising properties for further fragment expansion and drug development.
Collapse
Affiliation(s)
- Giacomo Padroni
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Maria Bikaki
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Mihajlo Novakovic
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Antje C Wolter
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Simon H Rüdisser
- Biomolecular NMR Spectroscopy Platform, ETH Zurich, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Alvar D Gossert
- Biomolecular NMR Spectroscopy Platform, ETH Zurich, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Alexander Leitner
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Frederic H-T Allain
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, 8093 Zürich, Switzerland
| |
Collapse
|
8
|
Dammann M, Stahlecker J, Zimmermann MO, Klett T, Rotzinger K, Kramer M, Coles M, Stehle T, Boeckler FM. Screening of a Halogen-Enriched Fragment Library Leads to Unconventional Binding Modes. J Med Chem 2022; 65:14539-14552. [DOI: 10.1021/acs.jmedchem.2c00951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marcel Dammann
- Laboratory for Molecular Design & Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, 72076Tübingen, Germany
| | - Jason Stahlecker
- Laboratory for Molecular Design & Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, 72076Tübingen, Germany
| | - Markus O. Zimmermann
- Laboratory for Molecular Design & Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, 72076Tübingen, Germany
| | - Theresa Klett
- Laboratory for Molecular Design & Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, 72076Tübingen, Germany
| | - Kilian Rotzinger
- Laboratory for Molecular Design & Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, 72076Tübingen, Germany
| | - Markus Kramer
- Institute of Organic Chemistry, Eberhard Karls Universität Tübingen, 72076Tübingen, Germany
| | - Murray Coles
- Department of Protein Evolution, Max-Planck-Institute for Developmental Biology, 72076Tübingen, Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, Eberhard Karls Universität Tübingen, 72076Tübingen, Germany
| | - Frank M. Boeckler
- Laboratory for Molecular Design & Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, 72076Tübingen, Germany
- Interfaculty Institute for Biomedical Informatics (IBMI), Eberhard Karls Universität Tübingen, 72076Tübingen, Germany
| |
Collapse
|
9
|
Thoidingjam LK, Blouin CM, Gaillet C, Brion A, Solier S, Niyomchon S, El Marjou A, Mouasni S, Sepulveda FE, de Saint Basile G, Lamaze C, Rodriguez R. Small Molecule Inhibitors of Interferon‐Induced JAK‐STAT Signalling. Angew Chem Int Ed Engl 2022; 61:e202205231. [PMID: 35612562 PMCID: PMC9400964 DOI: 10.1002/anie.202205231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Indexed: 11/11/2022]
Abstract
Interferons (IFN) are cytokines which, upon binding to cell surface receptors, trigger a series of downstream biochemical events including Janus Kinase (JAK) activation, phosphorylation of Signal Transducer and Activator of Transcription protein (STAT), translocation of pSTAT to the nucleus and transcriptional activation. Dysregulated IFN signalling has been linked to cancer progression and auto‐immune diseases. Here, we report the serendipitous discovery of a small molecule that blocks IFNγ activation of JAK‐STAT signalling. Further lead optimisation gave rise to a potent and more selective analogue that exerts its activity by a mechanism consistent with direct IFNγ targeting in vitro, which reduces bleeding in model of haemorrhagic colitis in vivo. This first‐in‐class small molecule also inhibits type I and III IFN‐induced STAT phosphorylation in vitro. Our work provides the basis for the development of pan‐IFN inhibitory drugs.
Collapse
Affiliation(s)
- Leishemba K. Thoidingjam
- Chemical Biology Laboratory Institut Curie PSL Research University CNRS UMR 3666 INSERM U1143 75005 Paris France
| | - Cédric M. Blouin
- Membrane Mechanics and Dynamics of Intracellular Signalling Institut Curie PSL Research University CNRS UMR 3666 INSERM U1143 75005 Paris France
| | - Christine Gaillet
- Chemical Biology Laboratory Institut Curie PSL Research University CNRS UMR 3666 INSERM U1143 75005 Paris France
| | - Aurélien Brion
- Chemical Biology Laboratory Institut Curie PSL Research University CNRS UMR 3666 INSERM U1143 75005 Paris France
| | - Stéphanie Solier
- Chemical Biology Laboratory Institut Curie PSL Research University CNRS UMR 3666 INSERM U1143 75005 Paris France
| | - Supaporn Niyomchon
- Chemical Biology Laboratory Institut Curie PSL Research University CNRS UMR 3666 INSERM U1143 75005 Paris France
| | - Ahmed El Marjou
- Protein Expression and Purification Core Facility Institut Curie PSL Research University UMR 144 CNRS 75005 Paris France
| | - Sara Mouasni
- Molecular basis of altered immune homeostasis laboratory Université de Paris Imagine Institute INSERM UMR 1163 75015 Paris France
| | - Fernando E. Sepulveda
- Molecular basis of altered immune homeostasis laboratory Université de Paris Imagine Institute INSERM UMR 1163 75015 Paris France
| | - Geneviève de Saint Basile
- Molecular basis of altered immune homeostasis laboratory Université de Paris Imagine Institute INSERM UMR 1163 75015 Paris France
- Centre d'Etude des Déficits Immunitaires AP-HP Hôpital Necker-Enfants Malades Paris France
| | - Christophe Lamaze
- Membrane Mechanics and Dynamics of Intracellular Signalling Institut Curie PSL Research University CNRS UMR 3666 INSERM U1143 75005 Paris France
| | - Raphaël Rodriguez
- Chemical Biology Laboratory Institut Curie PSL Research University CNRS UMR 3666 INSERM U1143 75005 Paris France
| |
Collapse
|
10
|
Thoidingjam LK, Blouin CM, Gaillet C, Brion A, Solier S, Niyomchon S, El Marjou A, Mouasni S, Sepulveda FE, de Saint Basile G, Lamaze C, Rodriguez R. Small Molecule Inhibitors of Interferon‐Induced JAK‐STAT Signalling. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Cédric M. Blouin
- Institut Curie Membrane Mechanics and Dynamics of Intracellular Signaling 26 rue d’Ulm 75005 Paris FRANCE
| | - Christine Gaillet
- Institut Curie Chemical biology of cancer 26 rue d’Ulm 75005 Paris FRANCE
| | - Aurélien Brion
- Institut Curie Chemical biology of cancer 26 rue d’Ulm 75005 Paris FRANCE
| | - Stéphanie Solier
- Institut Curie Chemical biology of cancer 26 rue d’Ulm 75005 Paris FRANCE
| | - Supaporn Niyomchon
- Institut Curie Chemical biology of cancer 26 rue d’Ulm 75005 Paris FRANCE
| | - Ahmed El Marjou
- Institut Curie Protein Expression and Purification Core Facility 26 rue d’Ulm 75005 Paris FRANCE
| | - Sara Mouasni
- Institut Imagine Institut des Maladies Genetiques Molecular basis of altered immune homeostasis laboratory FRANCE
| | - Fernando E. Sepulveda
- Institut Imagine Institut des Maladies Genetiques Molecular basis of altered immune homeostasis laboratory 75015 Paris FRANCE
| | - Geneviève de Saint Basile
- Institut Imagine Institut des Maladies Genetiques Molecular basis of altered immune homeostasis laboratory 75015 Paris FRANCE
| | - Christophe Lamaze
- Institut Curie Membrane Mechanics and Dynamics of Intracellular Signaling 26 rue d’Ulm 75005 Paris FRANCE
| | - Raphaël Rodriguez
- Institut Curie Research Center Organic Synthesis and Cell Biology Group 26 rue d’Ulm 75248 Paris FRANCE
| |
Collapse
|
11
|
Vulpetti A, Lingel A, Dalvit C, Schiering N, Oberer L, Henry C, Lu Y. Efficient Screening of Target-Specific Selected Compounds in Mixtures by 19F NMR Binding Assay with Predicted 19F NMR Chemical Shifts. ChemMedChem 2022; 17:e202200163. [PMID: 35475323 DOI: 10.1002/cmdc.202200163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/26/2022] [Indexed: 11/06/2022]
Abstract
Ligand-based 19 F NMR screening is a highly effective and well-established hit-finding approach. The high sensitivity to protein binding makes it particularly suitable for fragment screening. Different criteria can be considered for generating fluorinated fragment libraries. One common strategy is to assemble a large, diverse, well-designed and characterized fragment library which is screened in mixtures, generated based on experimental 19 F NMR chemical shifts. Here, we introduce a complementary knowledge-based 19 F NMR screening approach, named 19 Focused screening, enabling the efficient screening of putative active molecules selected by computational hit finding methodologies, in mixtures assembled and on-the-fly deconvoluted based on predicted 19 F NMR chemical shifts. In this study, we developed a novel approach, named LEFshift , for 19 F NMR chemical shift prediction using rooted topological fluorine torsion fingerprints in combination with a random forest machine learning method. A demonstration of this approach to a real test case is reported.
Collapse
Affiliation(s)
- Anna Vulpetti
- Novartis Pharma AG, Global Discovery Chemistry, Novartis Campus, 4002, Basel, SWITZERLAND
| | - Andreas Lingel
- Novartis Institutes for BioMedical Research Basel, Global Discovery Chemistry, SWITZERLAND
| | - Claudio Dalvit
- Novartis Institutes for BioMedical Research Basel, Protease Platform, SWITZERLAND
| | - Nikolaus Schiering
- Novartis Institutes for BioMedical Research Basel, Protease Platform, SWITZERLAND
| | - Lukas Oberer
- Novartis Institutes for BioMedical Research Basel, Global Discovery Chemistry, SWITZERLAND
| | - Chrystelle Henry
- Novartis Institutes for BioMedical Research Basel, Protein Science, SWITZERLAND
| | - Yipin Lu
- Novartis Institutes for BioMedical Research Basel, Global Discovery Chemistry, SWITZERLAND
| |
Collapse
|
12
|
Ayotte Y, Woo S, LaPlante SR. Practical Considerations and Guidelines for Spectral Referencing for Fluorine NMR Ligand Screening. ACS OMEGA 2022; 7:13155-13163. [PMID: 35474811 PMCID: PMC9026065 DOI: 10.1021/acsomega.2c00613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Fluorine (19F) NMR strategies are increasingly being employed for evaluating ligand binding to macromolecules, among many other uses. 19F NMR offers many advantages as a result of its sensitive spin 1/2 nucleus, 100% natural abundance, and wide chemical shift range. Moreover, because of its absence from biological samples, one can directly monitor ligand binding without background interference from the macromolecule. Therefore, all these aforementioned features make it an attractive approach for screening compounds. However, the detection of ligand binding, especially those with weak affinities, can require interpretations of minor changes in chemical shifts. Thus, chemical shift referencing is critical for accurate measurements and interpretations. Unfortunately, one cannot rely on spectrometer indirect referencing alone, and internal chemical references have sample-dependent issues. Here, we evaluated 10 potential candidate compounds that could serve as 19F NMR chemical references. Multiple factors were systematically evaluated for each candidate to monitor the suitability for 19F NMR screening purposes. These factors include aqueous solubility, buffer compatibility, salt compatibility, aqueous stability, tolerability to pH changes, temperature changes, and compound pooling. It was concluded that there was no ideal candidate, but five compounds had properties that met the screening requirements.
Collapse
Affiliation(s)
- Yann Ayotte
- Centre
Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, 531 boulevard des Prairies, Laval, Québec H7V 1B7, Canada
- NMX
Research and Solutions Inc., 500 boulevard Cartier Ouest, Suite 6000, Laval, Québec H7V 5B7, Canada
| | - Simon Woo
- Centre
Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, 531 boulevard des Prairies, Laval, Québec H7V 1B7, Canada
- NMX
Research and Solutions Inc., 500 boulevard Cartier Ouest, Suite 6000, Laval, Québec H7V 5B7, Canada
| | - Steven R. LaPlante
- Centre
Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, 531 boulevard des Prairies, Laval, Québec H7V 1B7, Canada
- NMX
Research and Solutions Inc., 500 boulevard Cartier Ouest, Suite 6000, Laval, Québec H7V 5B7, Canada
| |
Collapse
|
13
|
Balboni B, Tripathi SK, Veronesi M, Russo D, Penna I, Giabbai B, Bandiera T, Storici P, Girotto S, Cavalli A. Identification of Novel GSK-3β Hits Using Competitive Biophysical Assays. Int J Mol Sci 2022; 23:ijms23073856. [PMID: 35409221 PMCID: PMC8998611 DOI: 10.3390/ijms23073856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023] Open
Abstract
Glycogen synthase kinase 3 beta (GSK-3β) is an evolutionarily conserved serine-threonine kinase dysregulated in numerous pathologies, such as Alzheimer’s disease and cancer. Even though GSK-3β is a validated pharmacological target most of its inhibitors have two main limitations: the lack of selectivity due to the high homology that characterizes the ATP binding site of most kinases, and the toxicity that emerges from GSK-3β complete inhibition which translates into the impairment of the plethora of pathways GSK-3β is involved in. Starting from a 1D 19F NMR fragment screening, we set up several biophysical assays for the identification of GSK-3β inhibitors capable of binding protein hotspots other than the ATP binding pocket or to the ATP binding pocket, but with an affinity able of competing with a reference binder. A phosphorylation activity assay on a panel of several kinases provided selectivity data that were further rationalized and corroborated by structural information on GSK-3β in complex with the hit compounds. In this study, we identified promising fragments, inhibitors of GSK-3β, while proposing an alternative screening workflow that allows facing the flaws that characterize the most common GSK-3β inhibitors through the identification of selective inhibitors and/or inhibitors able to modulate GSK-3β activity without leading to its complete inhibition.
Collapse
Affiliation(s)
- Beatrice Balboni
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (B.B.); (S.K.T.)
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Shailesh Kumar Tripathi
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (B.B.); (S.K.T.)
| | - Marina Veronesi
- D3 Pharmachemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (M.V.); (D.R.); (I.P.); (T.B.)
| | - Debora Russo
- D3 Pharmachemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (M.V.); (D.R.); (I.P.); (T.B.)
| | - Ilaria Penna
- D3 Pharmachemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (M.V.); (D.R.); (I.P.); (T.B.)
| | - Barbara Giabbai
- Structural Biology Laboratory, Elettra Sincrotrone Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy; (B.G.); (P.S.)
| | - Tiziano Bandiera
- D3 Pharmachemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (M.V.); (D.R.); (I.P.); (T.B.)
| | - Paola Storici
- Structural Biology Laboratory, Elettra Sincrotrone Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy; (B.G.); (P.S.)
| | - Stefania Girotto
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (B.B.); (S.K.T.)
- Correspondence: (S.G.); (A.C.); Tel.: +39-010-2896-983 (S.G.); +39-010-2897-403 (A.C.)
| | - Andrea Cavalli
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (B.B.); (S.K.T.)
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
- Correspondence: (S.G.); (A.C.); Tel.: +39-010-2896-983 (S.G.); +39-010-2897-403 (A.C.)
| |
Collapse
|
14
|
Dampalla CS, Rathnayake AD, Perera KD, Jesri ARM, Nguyen HN, Miller MJ, Thurman HA, Zheng J, Kashipathy MM, Battaile KP, Lovell S, Perlman S, Kim Y, Groutas WC, Chang KO. Structure-Guided Design of Potent Inhibitors of SARS-CoV-2 3CL Protease: Structural, Biochemical, and Cell-Based Studies. J Med Chem 2021; 64:17846-17865. [PMID: 34865476 PMCID: PMC8673480 DOI: 10.1021/acs.jmedchem.1c01037] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 12/21/2022]
Abstract
The COVID-19 pandemic is having a major impact on public health worldwide, and there is an urgent need for the creation of an armamentarium of effective therapeutics, including vaccines, biologics, and small-molecule therapeutics, to combat SARS-CoV-2 and emerging variants. Inspection of the virus life cycle reveals multiple viral- and host-based choke points that can be exploited to combat the virus. SARS-CoV-2 3C-like protease (3CLpro), an enzyme essential for viral replication, is an attractive target for therapeutic intervention, and the design of inhibitors of the protease may lead to the emergence of effective SARS-CoV-2-specific antivirals. We describe herein the results of our studies related to the application of X-ray crystallography, the Thorpe-Ingold effect, deuteration, and stereochemistry in the design of highly potent and nontoxic inhibitors of SARS-CoV-2 3CLpro.
Collapse
Affiliation(s)
| | - Athri D. Rathnayake
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, USA
| | - Krishani Dinali Perera
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, USA
| | | | - Harry Nhat Nguyen
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, USA
| | - Matthew J. Miller
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, USA
| | - Hayden A. Thurman
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, USA
| | - Jian Zheng
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | - Scott Lovell
- Protein Structure Laboratory, The University of Kansas, Lawrence, Kansas 66047, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Yunjeong Kim
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, USA
| | - William C. Groutas
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, USA
| |
Collapse
|
15
|
LeBlanc RM, Mesleh MF. A drug discovery toolbox for Nuclear Magnetic Resonance (NMR) characterization of ligands and their targets. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 37:51-60. [PMID: 34895655 DOI: 10.1016/j.ddtec.2020.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
Information about the structure, dynamics, and ligand-binding properties of biomolecules can be derived from Nuclear Magnetic Resonance (NMR) spectroscopy and provides valuable information for drug discovery. A multitude of experimental approaches provides a wealth of information that can be tailored to the system of interest. Methods to study the behavior of ligands upon target binding enable the identification of weak binders in a robust manner that is critical for the identification of truly novel binding interactions. This is particularly important for challenging targets. Observing the solution behavior of biomolecules yields information about their structure, dynamics, and interactions. This review describes the breadth of approaches that are available, many of which are under-utilized in a drug-discovery environment, and focuses on recent advances that continue to emerge.
Collapse
Affiliation(s)
- Regan M LeBlanc
- Structural Biology and Biophysics, Vertex Pharmaceuticals Inc., Boston, MA, 02210, United States
| | - Michael F Mesleh
- Structural Biology and Biophysics, Vertex Pharmaceuticals Inc., Boston, MA, 02210, United States.
| |
Collapse
|
16
|
Ikeda K, Kezuka Y, Nonaka T, Yonezawa T, Osawa M, Katoh E. Comprehensive Approach of 19F Nuclear Magnetic Resonance, Enzymatic, and In Silico Methods for Site-Specific Hit Selection and Validation of Fragment Molecules that Inhibit Methionine γ-Lyase Activity. J Med Chem 2021; 64:14299-14310. [PMID: 34582207 DOI: 10.1021/acs.jmedchem.1c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fragment-based screening using 19F NMR (19F-FS) is an efficient method for exploring seed and lead compounds for drug discovery. Here, we demonstrate the utility and merits of using 19F-FS for methionine γ-lyase-binding fragments, together with a 19F NMR-based competition and mutation assay, as well as enzymatic and in silico methods. 19F NMR-based assays provided useful information on binding between 19F-FS hit fragments and target proteins. Although the 19F-FS and enzymatic assay were weakly correlated, they show that the 19F-FS hit fragments contained compounds with inhibitory activity. Furthermore, we found that in silico calculations partially account for the differences in activity levels between the 19F-FS hits as per NMR analysis. A comprehensive approach combining the 19F-FS and other methods not only identified fragment hits but also distinguished structural differences in chemical groups with diverse activity levels.
Collapse
Affiliation(s)
- Kazuyoshi Ikeda
- Division of Physics for Life Functions, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Yuichiro Kezuka
- Division of Structural Biology, Department of Pharmaceutical Sciences, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Takamasa Nonaka
- Division of Structural Biology, Department of Pharmaceutical Sciences, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Tomoki Yonezawa
- Division of Physics for Life Functions, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Masanori Osawa
- Division of Physics for Life Functions, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Etsuko Katoh
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| |
Collapse
|
17
|
Applications of Solution NMR in Drug Discovery. Molecules 2021; 26:molecules26030576. [PMID: 33499337 PMCID: PMC7865596 DOI: 10.3390/molecules26030576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 01/13/2023] Open
Abstract
During the past decades, solution nuclear magnetic resonance (NMR) spectroscopy has demonstrated itself as a promising tool in drug discovery. Especially, fragment-based drug discovery (FBDD) has benefited a lot from the NMR development. Multiple candidate compounds and FDA-approved drugs derived from FBDD have been developed with the assistance of NMR techniques. NMR has broad applications in different stages of the FBDD process, which includes fragment library construction, hit generation and validation, hit-to-lead optimization and working mechanism elucidation, etc. In this manuscript, we reviewed the current progresses of NMR applications in fragment-based drug discovery, which were illustrated by multiple reported cases. Moreover, the NMR applications in protein-protein interaction (PPI) modulators development and the progress of in-cell NMR for drug discovery were also briefly summarized.
Collapse
|
18
|
Diethelm-Varela B. Using NMR Spectroscopy in the Fragment-Based Drug Discovery of Small-Molecule Anticancer Targeted Therapies. ChemMedChem 2020; 16:725-742. [PMID: 33236493 DOI: 10.1002/cmdc.202000756] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/21/2020] [Indexed: 12/19/2022]
Abstract
Against the challenge of providing personalized cancer care, the development of targeted therapies stands as a promising approach. The discovery of these agents can benefit from fragment-based drug discovery (FBDD) methods that help guide ligand design and provide key structural information on the targets of interest. In particular, nuclear magnetic resonance spectroscopy is a promising biophysical tool in fragment discovery due to its detection capabilities and versatility. This review provides an overview of FBDD, describes the basis of NMR-based fragment screening, summarizes some exciting technical advances reported over the past decades, and closes with a discussion of selected case studies where this technique has been used as part of drug discovery campaigns to produce lead compounds towards the design of anti-cancer targeted therapies.
Collapse
Affiliation(s)
- Benjamin Diethelm-Varela
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn St., Baltimore, MD 21201, USA
| |
Collapse
|
19
|
Troelsen NS, Clausen MH. Library Design Strategies To Accelerate Fragment‐Based Drug Discovery. Chemistry 2020; 26:11391-11403. [DOI: 10.1002/chem.202000584] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/26/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Nikolaj S. Troelsen
- Center for Nanomedicine and Theranostics Department of Chemistry Technical University of Denmark Kemitorvet 207 2800 Kongens Lyngby Denmark
| | - Mads H. Clausen
- Center for Nanomedicine and Theranostics Department of Chemistry Technical University of Denmark Kemitorvet 207 2800 Kongens Lyngby Denmark
| |
Collapse
|
20
|
Lingel A, Vulpetti A, Reinsperger T, Proudfoot A, Denay R, Frommlet A, Henry C, Hommel U, Gossert AD, Luy B, Frank AO. Comprehensive and High-Throughput Exploration of Chemical Space Using Broadband 19 F NMR-Based Screening. Angew Chem Int Ed Engl 2020; 59:14809-14817. [PMID: 32363632 DOI: 10.1002/anie.202002463] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/27/2020] [Indexed: 12/20/2022]
Abstract
Fragment-based lead discovery has become a fundamental approach to identify ligands that efficiently interact with disease-relevant targets. Among the numerous screening techniques, fluorine-detected NMR has gained popularity owing to its high sensitivity, robustness, and ease of use. To effectively explore chemical space, a universal NMR experiment, a rationally designed fragment library, and a sample composition optimized for a maximal number of compounds and minimal measurement time are required. Here, we introduce a comprehensive method that enabled the efficient assembly of a high-quality and diverse library containing nearly 4000 fragments and screening for target-specific binders within days. At the core of the approach is a novel broadband relaxation-edited NMR experiment that covers the entire chemical shift range of drug-like 19 F motifs in a single measurement. Our approach facilitates the identification of diverse binders and the fast ligandability assessment of new targets.
Collapse
Affiliation(s)
- Andreas Lingel
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, CA, 94608, USA.,Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Campus, 4056, Basel, Switzerland
| | - Anna Vulpetti
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Campus, 4056, Basel, Switzerland
| | - Tony Reinsperger
- Institute of Organic Chemistry and Institute for Biological Interfaces 4 - Magnetic Resonance, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Andrew Proudfoot
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, CA, 94608, USA
| | - Regis Denay
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Campus, 4056, Basel, Switzerland
| | - Alexandra Frommlet
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, CA, 94608, USA
| | - Christelle Henry
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Novartis Campus, 4056, Basel, Switzerland
| | - Ulrich Hommel
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Novartis Campus, 4056, Basel, Switzerland
| | - Alvar D Gossert
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Novartis Campus, 4056, Basel, Switzerland
| | - Burkhard Luy
- Institute of Organic Chemistry and Institute for Biological Interfaces 4 - Magnetic Resonance, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Andreas O Frank
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, CA, 94608, USA
| |
Collapse
|
21
|
Lingel A, Vulpetti A, Reinsperger T, Proudfoot A, Denay R, Frommlet A, Henry C, Hommel U, Gossert AD, Luy B, Frank AO. Comprehensive and High‐Throughput Exploration of Chemical Space Using Broadband
19
F NMR‐Based Screening. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Andreas Lingel
- Global Discovery Chemistry Novartis Institutes for BioMedical Research 5300 Chiron Way Emeryville CA 94608 USA
- Global Discovery Chemistry Novartis Institutes for BioMedical Research Novartis Campus 4056 Basel Switzerland
| | - Anna Vulpetti
- Global Discovery Chemistry Novartis Institutes for BioMedical Research Novartis Campus 4056 Basel Switzerland
| | - Tony Reinsperger
- Institute of Organic Chemistry and Institute for Biological Interfaces 4 – Magnetic Resonance Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany
| | - Andrew Proudfoot
- Global Discovery Chemistry Novartis Institutes for BioMedical Research 5300 Chiron Way Emeryville CA 94608 USA
| | - Regis Denay
- Global Discovery Chemistry Novartis Institutes for BioMedical Research Novartis Campus 4056 Basel Switzerland
| | - Alexandra Frommlet
- Global Discovery Chemistry Novartis Institutes for BioMedical Research 5300 Chiron Way Emeryville CA 94608 USA
| | - Christelle Henry
- Chemical Biology and Therapeutics Novartis Institutes for BioMedical Research Novartis Campus 4056 Basel Switzerland
| | - Ulrich Hommel
- Chemical Biology and Therapeutics Novartis Institutes for BioMedical Research Novartis Campus 4056 Basel Switzerland
| | - Alvar D. Gossert
- Chemical Biology and Therapeutics Novartis Institutes for BioMedical Research Novartis Campus 4056 Basel Switzerland
| | - Burkhard Luy
- Institute of Organic Chemistry and Institute for Biological Interfaces 4 – Magnetic Resonance Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany
| | - Andreas O. Frank
- Global Discovery Chemistry Novartis Institutes for BioMedical Research 5300 Chiron Way Emeryville CA 94608 USA
| |
Collapse
|
22
|
Lu Y, Anand S, Shirley W, Gedeck P, Kelley BP, Skolnik S, Rodde S, Nguyen M, Lindvall M, Jia W. Prediction of pKa Using Machine Learning Methods with Rooted Topological Torsion Fingerprints: Application to Aliphatic Amines. J Chem Inf Model 2019; 59:4706-4719. [DOI: 10.1021/acs.jcim.9b00498] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yipin Lu
- Novartis Institutes for Biomedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Shankara Anand
- Novartis Institutes for Biomedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - William Shirley
- Novartis Institutes for Biomedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Peter Gedeck
- Novartis Institutes for Biomedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Brian P. Kelley
- Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Suzanne Skolnik
- Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Stephane Rodde
- Novartis Institutes for Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Mai Nguyen
- Novartis Institutes for Biomedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Mika Lindvall
- Novartis Institutes for Biomedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Weiping Jia
- Novartis Institutes for Biomedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| |
Collapse
|
23
|
Dalvit C, Parent A, Vallée F, Mathieu M, Rak A. Fast NMR Methods for Measuring in the Direct and/or Competition Mode the Dissociation Constants of Chemical Fragments Interacting with a Receptor. ChemMedChem 2019; 14:1115-1127. [DOI: 10.1002/cmdc.201900152] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Indexed: 12/16/2022]
Affiliation(s)
| | - Annick Parent
- Bio Structure and BiophysicsIntegrated Drug DiscoverySanofi R&D 13, Quai Jules Guesde—BP 14 94403 Vitry sur Seine Cedex France
| | - Francois Vallée
- Bio Structure and BiophysicsIntegrated Drug DiscoverySanofi R&D 13, Quai Jules Guesde—BP 14 94403 Vitry sur Seine Cedex France
| | - Magali Mathieu
- Bio Structure and BiophysicsIntegrated Drug DiscoverySanofi R&D 13, Quai Jules Guesde—BP 14 94403 Vitry sur Seine Cedex France
| | - Alexey Rak
- Bio Structure and BiophysicsIntegrated Drug DiscoverySanofi R&D 13, Quai Jules Guesde—BP 14 94403 Vitry sur Seine Cedex France
| |
Collapse
|
24
|
de Castro GV, Ciulli A. Spy vs. spy: selecting the best reporter for 19F NMR competition experiments. Chem Commun (Camb) 2019; 55:1482-1485. [PMID: 30644956 PMCID: PMC6369734 DOI: 10.1039/c8cc09790a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 12/27/2018] [Indexed: 12/15/2022]
Abstract
Systematic characterization of a series of fluorinated VHL ligands, varying binding affinity and position of the trifluoromethyl group, qualifies a spy molecule for competitive 19F NMR screening and reveals guiding principles to develop highly sensitive assays with low material consumption.
Collapse
Affiliation(s)
- Guilherme Vieira de Castro
- Division of Biological Chemistry and Drug Discovery
, School of Life Sciences
, University of Dundee
,
Dow Street
, Dundee
, DD1 5EH
, UK
.
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery
, School of Life Sciences
, University of Dundee
,
Dow Street
, Dundee
, DD1 5EH
, UK
.
| |
Collapse
|
25
|
|
26
|
Dalvit C, Vulpetti A. Ligand-Based Fluorine NMR Screening: Principles and Applications in Drug Discovery Projects. J Med Chem 2018; 62:2218-2244. [DOI: 10.1021/acs.jmedchem.8b01210] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Anna Vulpetti
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| |
Collapse
|
27
|
Kim Y, Liu M, Hilty C. Determination of binding affinities using hyperpolarized NMR with simultaneous 4-channel detection. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 295:80-86. [PMID: 30144688 PMCID: PMC6201311 DOI: 10.1016/j.jmr.2018.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/10/2018] [Accepted: 08/12/2018] [Indexed: 05/23/2023]
Abstract
Dissolution dynamic nuclear polarization (D-DNP) is a powerful technique to improve NMR sensitivity by a factor of thousands. Combining D-DNP with NMR-based screening enables to mitigate solubility or availability problems of ligands and target proteins in drug discovery as it can lower the concentration requirements into the sub-micromolar range. One of the challenges that D-DNP assisted NMR screening methods face for broad application, however, is a reduced throughput due to additional procedures and time required to create hyperpolarization. These requirements result in a delay of several tens of minutes in-between each NMR measurement. To solve this problem, we have developed a simultaneous 4-channel detection method for hyperpolarized 19F NMR, which can increase throughput fourfold by utilizing a purpose-built multiplexed NMR spectrometer and probe. With this system, the concentration-dependent binding interactions were observed for benzamidine and benzylamine with the serine protease trypsin. A T2 relaxation measurement of a hyperpolarized reporter ligand (TFBC; CF3C6H4CNHNH2), which competes for the same binding site on trypsin with the other ligands, was used. The hyperpolarized TFBC was mixed with trypsin and the ligand of interest, and injected into four flow cells inside the NMR probe. Across the set of four channels, a concentration gradient was created. From the simultaneously acquired relaxation datasets, it was possible to determine the dissociation constant (KD) of benzamidine and benzylamine without the requirement for individually optimizing experimental conditions for different affinities. A simulation showed that this 4-channel detection method applied to D-DNP NMR extends the screenable KD range to up to three orders of magnitude in a single experiment.
Collapse
Affiliation(s)
- Yaewon Kim
- Chemistry Department, Texas A&M University, 3255 TAMU, College Station, TX 77843, USA
| | - Mengxiao Liu
- Chemistry Department, Texas A&M University, 3255 TAMU, College Station, TX 77843, USA
| | - Christian Hilty
- Chemistry Department, Texas A&M University, 3255 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
28
|
Nagatoishi S, Yamaguchi S, Katoh E, Kajita K, Yokotagawa T, Kanai S, Furuya T, Tsumoto K. A combination of 19F NMR and surface plasmon resonance for site-specific hit selection and validation of fragment molecules that bind to the ATP-binding site of a kinase. Bioorg Med Chem 2018; 26:1929-1938. [PMID: 29510947 DOI: 10.1016/j.bmc.2018.02.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 01/08/2023]
Abstract
19F NMR has recently emerged as an efficient, sensitive tool for analyzing protein binding to small molecules, and surface plasmon resonance (SPR) is also a popular tool for this purpose. Herein a combination of 19F NMR and SPR was used to find novel binders to the ATP-binding pocket of MAP kinase extracellular regulated kinase 2 (ERK2) by fragment screening with an original fluorinated-fragment library. The 19F NMR screening yielded a high primary hit rate of binders to the ERK2 ATP-binding pocket compared with the rate for the SPR screening. Hit compounds were evaluated and categorized according to their ability to bind to different binding sites in the ATP-binding pocket. The binding manner was characterized by using isothermal titration calorimetry and docking simulation. Combining 19F NMR with other biophysical methods allows the identification of multiple types of hit compounds, thereby increasing opportunities for drug design using preferred fragments.
Collapse
Affiliation(s)
- Satoru Nagatoishi
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sou Yamaguchi
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Etsuko Katoh
- Advanced Analysis Center, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-0856, Japan.
| | - Keita Kajita
- Nard Institute, Ltd., 5-4-1 Minatojima Minamimachi Chuo-ku, Kobe 650-0047, Japan
| | - Takane Yokotagawa
- PeptiDream, Inc., 3-25-23 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-0821, Japan
| | - Satoru Kanai
- PeptiDream, Inc., 3-25-23 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-0821, Japan
| | - Toshio Furuya
- PeptiDream, Inc., 3-25-23 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-0821, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
29
|
Sugiki T, Furuita K, Fujiwara T, Kojima C. Current NMR Techniques for Structure-Based Drug Discovery. Molecules 2018; 23:molecules23010148. [PMID: 29329228 PMCID: PMC6017608 DOI: 10.3390/molecules23010148] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/28/2017] [Accepted: 01/09/2018] [Indexed: 12/22/2022] Open
Abstract
A variety of nuclear magnetic resonance (NMR) applications have been developed for structure-based drug discovery (SBDD). NMR provides many advantages over other methods, such as the ability to directly observe chemical compounds and target biomolecules, and to be used for ligand-based and protein-based approaches. NMR can also provide important information about the interactions in a protein-ligand complex, such as structure, dynamics, and affinity, even when the interaction is too weak to be detected by ELISA or fluorescence resonance energy transfer (FRET)-based high-throughput screening (HTS) or to be crystalized. In this study, we reviewed current NMR techniques. We focused on recent progress in NMR measurement and sample preparation techniques that have expanded the potential of NMR-based SBDD, such as fluorine NMR (19F-NMR) screening, structure modeling of weak complexes, and site-specific isotope labeling of challenging targets.
Collapse
Affiliation(s)
- Toshihiko Sugiki
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
| | - Kyoko Furuita
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
| | | | - Chojiro Kojima
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
- Graduate School of Engineering, Yokohama National University, Yokohama 240-8501, Japan.
| |
Collapse
|
30
|
Dalvit C, Knapp S. 19 F NMR isotropic chemical shift for efficient screening of fluorinated fragments which are racemates and/or display multiple conformers. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:1091-1095. [PMID: 28762528 DOI: 10.1002/mrc.4640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/12/2017] [Accepted: 07/29/2017] [Indexed: 06/07/2023]
Abstract
Fluorine ligand-based NMR spectroscopy is now an established method for performing binding screening against a macromolecular target. Typically, the transverse relaxation rate of the fluorine signals is monitored in the absence and presence of the target. However, useful structural information can sometimes be obtained from the analysis of the fluorine isotropic chemical shift. This is particularly relevant for molecules that are racemates and/or display multiple conformers. The large difference in fluorine isotropic chemical shift between free and bound state deriving mainly from the breaking and/or making of intramolecular and/or intermolecular hydrogen bonds allows the detection of very weak affinity ligands. According to our experimental results, racemates should always be included in the generation of the fluorinated fragment libraries. The selection or the availability of only one of the enantiomers for the fluorinated screening library could result in missing relevant chemical scaffold motifs.
Collapse
Affiliation(s)
- Claudio Dalvit
- Faculty of Science, University of Neuchatel, 2000, Neuchatel, Switzerland
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Riedberg Campus, 60438, Frankfurt, Germany
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, Oxford University, Oxford, OX3 7DQ, UK
| |
Collapse
|
31
|
Ángeles Canales M, Félix Espinosa J. Ligand-detected NMR Methods in Drug Discovery. BIOPHYSICAL TECHNIQUES IN DRUG DISCOVERY 2017. [DOI: 10.1039/9781788010016-00023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This book chapter describes the basic principles of NMR-based techniques for detecting ligand binding and uses examples of the application of these techniques in drug discovery programs for screening, hit validation and optimization to illustrate their utility in characterizing ligand–protein interactions. The binding of small molecules to biological receptors can be observed directly by detecting changes in a particular NMR parameter when the protein is added to a sample containing the ligand, or indirectly, using a “spy” molecule in competitive NMR experiments. Combinations of different NMR experiments can be used to confirm binding and also to obtain structural information that can be used to guide medicinal chemistry decisions. Ligand-observed NMR methods are able to identify weak affinity ligands that cannot be detected by other biophysical techniques, which means that NMR-based methods are extremely valuable tools for fragment-based drug discovery approaches.
Collapse
Affiliation(s)
- María Ángeles Canales
- Department of Química Orgánica I, Universidad Complutense de Madrid Avd. Complutense s/n 28040 Madrid Spain
| | - Juan Félix Espinosa
- Centro de Investigación Lilly Avda. de la Industria 30 28108, Alcobendas, Madrid Spain
| |
Collapse
|
32
|
Dahanayake JN, Kasireddy C, Ellis JM, Hildebrandt D, Hull OA, Karnes JP, Morlan D, Mitchell-Koch KR. Evaluating electronic structure methods for accurate calculation of 19 F chemical shifts in fluorinated amino acids. J Comput Chem 2017; 38:2605-2617. [PMID: 28833293 DOI: 10.1002/jcc.24919] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/16/2017] [Accepted: 08/03/2017] [Indexed: 01/17/2023]
Abstract
The ability of electronic structure methods (11 density functionals, HF, and MP2 calculations; two basis sets and two solvation models) to accurately calculate the 19 F chemical shifts of 31 structures of fluorinated amino acids and analogues with known experimental 19 F NMR spectra has been evaluated. For this task, BHandHLYP, ωB97X, and Hartree-Fock with scaling factors (provided within) are most accurate. Additionally, the accuracy of methods to calculate relative changes in fluorine shielding across 23 sets of structural variants, such as zwitterionic amino acids versus side chains only, was also determined. This latter criterion may be a better indicator of reliable methods for the ultimate goal of assigning and interpreting chemical shifts of fluorinated amino acids in proteins. It was found that MP2 and M062X calculations most accurately assess changes in shielding among analogues. These results serve as a guide for computational developments to calculate 19 F chemical shifts in biomolecular environments. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jayangika N Dahanayake
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, Kansas, 67260-0051
| | - Chandana Kasireddy
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, Kansas, 67260-0051
| | - Jonathan M Ellis
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, Kansas, 67260-0051
| | - Derek Hildebrandt
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, Kansas, 67260-0051
| | - Olivia A Hull
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, Kansas, 67260-0051
| | - Joseph P Karnes
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, Kansas, 67260-0051
| | - Dylan Morlan
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, Kansas, 67260-0051
| | - Katie R Mitchell-Koch
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, Kansas, 67260-0051
| |
Collapse
|
33
|
Dalvit C, Santi S, Neier R. A Ligand‐Based NMR Screening Approach for the Identification and Characterization of Inhibitors and Promoters of Amyloid Peptide Aggregation. ChemMedChem 2017; 12:1458-1463. [DOI: 10.1002/cmdc.201700319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/20/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Claudio Dalvit
- Department of ChemistryUniversity of Neuchatel Avenue de Bellevaux 51 2000 Neuchatel Switzerland
| | - Sara Santi
- Department of ChemistryUniversity of Neuchatel Avenue de Bellevaux 51 2000 Neuchatel Switzerland
| | - Reinhard Neier
- Department of ChemistryUniversity of Neuchatel Avenue de Bellevaux 51 2000 Neuchatel Switzerland
| |
Collapse
|
34
|
Calle LP, Espinosa JF. An improved 19 F-CPMG scheme for detecting binding of polyfluorinated molecules to biological receptors. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:355-358. [PMID: 27661784 DOI: 10.1002/mrc.4531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/18/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Luis Pablo Calle
- Centro de Investigación Lilly, Avda. de la Industria 30, 28108, Alcobendas, Madrid, Spain
| | - Juan Félix Espinosa
- Centro de Investigación Lilly, Avda. de la Industria 30, 28108, Alcobendas, Madrid, Spain
| |
Collapse
|
35
|
Vulpetti A, Randl S, Rüdisser S, Ostermann N, Erbel P, Mac Sweeney A, Zoller T, Salem B, Gerhartz B, Cumin F, Hommel U, Dalvit C, Lorthiois E, Maibaum J. Structure-Based Library Design and Fragment Screening for the Identification of Reversible Complement Factor D Protease Inhibitors. J Med Chem 2017; 60:1946-1958. [PMID: 28157311 DOI: 10.1021/acs.jmedchem.6b01684] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chronic dysregulation of alternative complement pathway activation has been associated with diverse clinical disorders including age-related macular degeneration and paroxysmal nocturnal hemoglobinurea. Factor D is a trypsin-like serine protease with a narrow specificity for arginine in the P1 position, which catalyzes the first enzymatic reaction of the amplification loop of the alternative pathway. In this article, we describe two hit finding approaches leading to the discovery of new chemical matter for this pivotal protease of the complement system: in silico active site mapping for hot spot identification to guide rational structure-based design and NMR screening of focused and diverse fragment libraries. The wealth of information gathered by these complementary approaches enabled the identification of ligands binding to different subpockets of the latent Factor D conformation and was instrumental for understanding the binding requirements for the generation of the first known potent noncovalent reversible Factor D inhibitors.
Collapse
Affiliation(s)
- Anna Vulpetti
- Novartis Institutes for BioMedical Research, Novartis Pharma AG , Novartis Campus, CH-4056 Basel, Switzerland
| | - Stefan Randl
- Novartis Institutes for BioMedical Research, Novartis Pharma AG , Novartis Campus, CH-4056 Basel, Switzerland
| | - Simon Rüdisser
- Novartis Institutes for BioMedical Research, Novartis Pharma AG , Novartis Campus, CH-4056 Basel, Switzerland
| | - Nils Ostermann
- Novartis Institutes for BioMedical Research, Novartis Pharma AG , Novartis Campus, CH-4056 Basel, Switzerland
| | - Paul Erbel
- Novartis Institutes for BioMedical Research, Novartis Pharma AG , Novartis Campus, CH-4056 Basel, Switzerland
| | - Aengus Mac Sweeney
- Novartis Institutes for BioMedical Research, Novartis Pharma AG , Novartis Campus, CH-4056 Basel, Switzerland
| | - Thomas Zoller
- Novartis Institutes for BioMedical Research, Novartis Pharma AG , Novartis Campus, CH-4056 Basel, Switzerland
| | - Bahaa Salem
- Novartis Institutes for BioMedical Research, Novartis Pharma AG , Novartis Campus, CH-4056 Basel, Switzerland
| | - Bernd Gerhartz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG , Novartis Campus, CH-4056 Basel, Switzerland
| | - Frederic Cumin
- Novartis Institutes for BioMedical Research, Novartis Pharma AG , Novartis Campus, CH-4056 Basel, Switzerland
| | - Ulrich Hommel
- Novartis Institutes for BioMedical Research, Novartis Pharma AG , Novartis Campus, CH-4056 Basel, Switzerland
| | - Claudio Dalvit
- Novartis Institutes for BioMedical Research, Novartis Pharma AG , Novartis Campus, CH-4056 Basel, Switzerland
| | - Edwige Lorthiois
- Novartis Institutes for BioMedical Research, Novartis Pharma AG , Novartis Campus, CH-4056 Basel, Switzerland
| | - Jürgen Maibaum
- Novartis Institutes for BioMedical Research, Novartis Pharma AG , Novartis Campus, CH-4056 Basel, Switzerland
| |
Collapse
|
36
|
Dalvit C, Piotto M. 19 F NMR transverse and longitudinal relaxation filter experiments for screening: a theoretical and experimental analysis. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:106-114. [PMID: 27514284 DOI: 10.1002/mrc.4500] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
Ligand-based 19 F NMR screening represents an efficient approach for performing binding assays. The high sensitivity of the methodology to receptor binding allows the detection of weak affinity ligands. The observable NMR parameters that are typically used are the 19 F transverse relaxation rate and isotropic chemical shift. However, there are few cases where the 19 F longitudinal relaxation rate should also be used. A theoretical and experimental analysis of the 19 F NMR transverse and longitudinal relaxation rates at different magnetic fields is presented along with proposed methods for improving the sensitivity and dynamic range of these experiments applied to fragment-based screening. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Claudio Dalvit
- Faculty of Science, University of Neuchatel, Neuchatel, Switzerland
- IDD/SDI, Sanofi, Vitry-sur-Seine, France
| | | |
Collapse
|
37
|
Kim Y, Liu M, Hilty C. Parallelized Ligand Screening Using Dissolution Dynamic Nuclear Polarization. Anal Chem 2016; 88:11178-11183. [PMID: 27723298 DOI: 10.1021/acs.analchem.6b03382] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protein-ligand interactions are frequently screened using nuclear magnetic resonance (NMR) spectroscopy. The dissociation constant (KD) of a ligand of interest can be determined via a spin-spin relaxation measurement of a reporter ligand in a single scan when using hyperpolarization by means of dissolution dynamic nuclear polarization (D-DNP). Despite nearly instantaneous signal acquisition, a limitation of D-DNP for the screening of protein-ligand interactions is the required polarization time on the order of tens of minutes. Here, we introduce a multiplexed NMR experiment, where a single hyperpolarized ligand sample is rapidly mixed with protein injected into two flow cells. NMR detection is achieved simultaneously on both channels, resulting in a chemical shift resolved spin relaxation measurement. Spectral resolution allows the use of reference compounds for accurate quantification of concentrations. Simultaneous use of two concentration ratios between protein and ligand broadens the range of KD that is accurately measurable in a single experiment to at least an order of magnitude. In a comparison of inhibitors for the protein trypsin, the average KD values of benzamidine and benzylamine were found to be 12.6 ± 1.4 μM and 207 ± 22 μM from three measurements, based on KD = 142 μM assumed known for the reporter ligand 4-(trifluoromethyl)benzene-1-carboximidamide. Typical confidence ranges at 95% evaluated for single experiments were (8.3 μM, 20 μM) and (151 μM, 328 μM). The multiplexed detection of two or more hyperpolarized samples increases throughput of D-DNP by the same factor, improving the applicability to most multipoint measurements that would traditionally be achieved using titrations.
Collapse
Affiliation(s)
- Yaewon Kim
- Department of Chemistry, Texas A&M University , College Station, Texas 77843-3255, United States
| | - Mengxiao Liu
- Department of Chemistry, Texas A&M University , College Station, Texas 77843-3255, United States
| | - Christian Hilty
- Department of Chemistry, Texas A&M University , College Station, Texas 77843-3255, United States
| |
Collapse
|
38
|
Norton RS, Leung EWW, Chandrashekaran IR, MacRaild CA. Applications of (19)F-NMR in Fragment-Based Drug Discovery. Molecules 2016; 21:molecules21070860. [PMID: 27438818 PMCID: PMC6273323 DOI: 10.3390/molecules21070860] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/21/2016] [Accepted: 06/21/2016] [Indexed: 11/16/2022] Open
Abstract
(19)F-NMR has proved to be a valuable tool in fragment-based drug discovery. Its applications include screening libraries of fluorinated fragments, assessing competition among elaborated fragments and identifying the binding poses of promising hits. By observing fluorine in both the ligand and the target protein, useful information can be obtained on not only the binding pose but also the dynamics of ligand-protein interactions. These applications of (19)F-NMR will be illustrated in this review with studies from our fragment-based drug discovery campaigns against protein targets in parasitic and infectious diseases.
Collapse
Affiliation(s)
- Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia.
| | - Eleanor W W Leung
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia.
| | - Indu R Chandrashekaran
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia.
| | - Christopher A MacRaild
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia.
| |
Collapse
|
39
|
Zhang Z, Koh CY, Ranade RM, Shibata S, Gillespie JR, Hulverson MA, Huang W, Nguyen J, Pendem N, Gelb MH, Verlinde CLMJ, Hol WGJ, Buckner FS, Fan E. 5-Fluoroimidazo[4,5-b]pyridine Is a Privileged Fragment That Conveys Bioavailability to Potent Trypanosomal Methionyl-tRNA Synthetase Inhibitors. ACS Infect Dis 2016; 2:399-404. [PMID: 27627628 PMCID: PMC5108244 DOI: 10.1021/acsinfecdis.6b00036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Fluorination
is a well-known strategy for improving the bioavailability of drug
molecules. However, its impact on efficacy is not easily predicted.
On the basis of inhibitor-bound protein crystal structures, we found
a beneficial fluorination spot for inhibitors targeting methionyl-tRNA
synthetase of Trypanosoma brucei. In
particular, incorporating 5-fluoroimidazo[4,5-b]pyridine
into inhibitors leads to central nervous system bioavailability and
maintained or even improved efficacy.
Collapse
Affiliation(s)
- Zhongsheng Zhang
- Department of Biochemistry, University of Washington, 1705 N.E. Pacific Street, Seattle, Washington 98195, United States
| | - Cho Yeow Koh
- Department of Biochemistry, University of Washington, 1705 N.E. Pacific Street, Seattle, Washington 98195, United States
| | - Ranae M. Ranade
- Department of Medicine, Division of Allergy
and Infectious Diseases, and the Center for Emerging and Re-emerging
Infectious Diseases (CERID), University of Washington, 750 Republican
Street, Seattle, Washington 98109, United States
| | - Sayaka Shibata
- Department of Biochemistry, University of Washington, 1705 N.E. Pacific Street, Seattle, Washington 98195, United States
| | - J. Robert Gillespie
- Department of Medicine, Division of Allergy
and Infectious Diseases, and the Center for Emerging and Re-emerging
Infectious Diseases (CERID), University of Washington, 750 Republican
Street, Seattle, Washington 98109, United States
| | - Matthew A. Hulverson
- Department of Medicine, Division of Allergy
and Infectious Diseases, and the Center for Emerging and Re-emerging
Infectious Diseases (CERID), University of Washington, 750 Republican
Street, Seattle, Washington 98109, United States
| | - Wenlin Huang
- Department of Biochemistry, University of Washington, 1705 N.E. Pacific Street, Seattle, Washington 98195, United States
| | - Jasmine Nguyen
- Department of Biochemistry, University of Washington, 1705 N.E. Pacific Street, Seattle, Washington 98195, United States
| | - Nagendar Pendem
- Department of Chemistry, Bagley Hall, University of Washington, Seattle, Washington 98195, United States
| | - Michael H. Gelb
- Department of Chemistry, Bagley Hall, University of Washington, Seattle, Washington 98195, United States
| | - Christophe L. M. J. Verlinde
- Department of Biochemistry, University of Washington, 1705 N.E. Pacific Street, Seattle, Washington 98195, United States
| | - Wim G. J. Hol
- Department of Biochemistry, University of Washington, 1705 N.E. Pacific Street, Seattle, Washington 98195, United States
| | - Frederick S. Buckner
- Department of Medicine, Division of Allergy
and Infectious Diseases, and the Center for Emerging and Re-emerging
Infectious Diseases (CERID), University of Washington, 750 Republican
Street, Seattle, Washington 98109, United States
| | - Erkang Fan
- Department of Biochemistry, University of Washington, 1705 N.E. Pacific Street, Seattle, Washington 98195, United States
| |
Collapse
|
40
|
Dalvit C, Vulpetti A. Weak Intermolecular Hydrogen Bonds with Fluorine: Detection and Implications for Enzymatic/Chemical Reactions, Chemical Properties, and Ligand/Protein Fluorine NMR Screening. Chemistry 2016; 22:7592-601. [DOI: 10.1002/chem.201600446] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Claudio Dalvit
- Faculty of Science University of Neuchâtel 2000 Neuchâtel Switzerland
- Sanofi, LG-CR/SDI/SBB 94403 Vitry-sur-Seine France
| | - Anna Vulpetti
- Novartis Institutes for Biomedical Research, Global Discovery Chemistry, CADD 4002 Basel Switzerland
| |
Collapse
|
41
|
Boulton S, Melacini G. Advances in NMR Methods To Map Allosteric Sites: From Models to Translation. Chem Rev 2016; 116:6267-304. [PMID: 27111288 DOI: 10.1021/acs.chemrev.5b00718] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The last five years have witnessed major developments in the understanding of the allosteric phenomenon, broadly defined as coupling between remote molecular sites. Such advances have been driven not only by new theoretical models and pharmacological applications of allostery, but also by progress in the experimental approaches designed to map allosteric sites and transitions. Among these techniques, NMR spectroscopy has played a major role given its unique near-atomic resolution and sensitivity to the dynamics that underlie allosteric couplings. Here, we highlight recent progress in the NMR methods tailored to investigate allostery with the goal of offering an overview of which NMR approaches are best suited for which allosterically relevant questions. The picture of the allosteric "NMR toolbox" is provided starting from one of the simplest models of allostery (i.e., the four-state thermodynamic cycle) and continuing to more complex multistate mechanisms. We also review how such an "NMR toolbox" has assisted the elucidation of the allosteric molecular basis for disease-related mutations and the discovery of novel leads for allosteric drugs. From this overview, it is clear that NMR plays a central role not only in experimentally validating transformative theories of allostery, but also in tapping the full translational potential of allosteric systems.
Collapse
Affiliation(s)
- Stephen Boulton
- Department of Chemistry and Chemical Biology Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main St. W., Hamilton L8S 4M1, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main St. W., Hamilton L8S 4M1, Canada
| |
Collapse
|
42
|
Jordan JB, Whittington DA, Bartberger MD, Sickmier EA, Chen K, Cheng Y, Judd T. Fragment-Linking Approach Using 19F NMR Spectroscopy To Obtain Highly Potent and Selective Inhibitors of β-Secretase. J Med Chem 2016; 59:3732-49. [DOI: 10.1021/acs.jmedchem.5b01917] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- John B. Jordan
- Therapeutic Discovery, Amgen, Inc. One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Douglas A. Whittington
- Therapeutic Discovery, Amgen, Inc. One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Michael D. Bartberger
- Therapeutic Discovery, Amgen, Inc. One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - E. Allen Sickmier
- Therapeutic Discovery, Amgen, Inc. One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Kui Chen
- Therapeutic Discovery, Amgen, Inc. One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Yuan Cheng
- Therapeutic Discovery, Amgen, Inc. One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Ted Judd
- Therapeutic Discovery, Amgen, Inc. One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| |
Collapse
|
43
|
Peng C, Frommlet A, Perez M, Cobas C, Blechschmidt A, Dominguez S, Lingel A. Fast and Efficient Fragment-Based Lead Generation by Fully Automated Processing and Analysis of Ligand-Observed NMR Binding Data. J Med Chem 2016; 59:3303-10. [DOI: 10.1021/acs.jmedchem.6b00019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chen Peng
- Mestrelab Research S.L., Feliciano
Barrera 9B − Baixo, 15706 Santiago de Compostela, Spain
| | - Alexandra Frommlet
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Manuel Perez
- Mestrelab Research S.L., Feliciano
Barrera 9B − Baixo, 15706 Santiago de Compostela, Spain
| | - Carlos Cobas
- Mestrelab Research S.L., Feliciano
Barrera 9B − Baixo, 15706 Santiago de Compostela, Spain
| | - Anke Blechschmidt
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Santiago Dominguez
- Mestrelab Research S.L., Feliciano
Barrera 9B − Baixo, 15706 Santiago de Compostela, Spain
| | - Andreas Lingel
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| |
Collapse
|
44
|
Stark JL, Eghbalnia HR, Lee W, Westler WM, Markley JL. NMRmix: A Tool for the Optimization of Compound Mixtures in 1D (1)H NMR Ligand Affinity Screens. J Proteome Res 2016; 15:1360-8. [PMID: 26965640 PMCID: PMC4820789 DOI: 10.1021/acs.jproteome.6b00121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
NMR ligand affinity screening is
a powerful technique that is routinely
used in drug discovery or functional genomics to directly detect protein–ligand
binding events. Binding events can be identified by monitoring differences
in the 1D 1H NMR spectrum of a compound with and without
protein. Although a single NMR spectrum can be collected within a
short period (2—10 min per sample), one-by-one screening of
a protein against a library of hundreds or thousands of compounds
requires a large amount of spectrometer time and a large quantity
of protein. Therefore, compounds are usually evaluated in mixtures
ranging in size from 3 to 20 compounds to improve the efficiency of
these screens in both time and material. Ideally, the NMR signals
from individual compounds in the mixture should not overlap so that
spectral changes can be associated with a particular compound. We
have developed a software tool, NMRmix, to assist in creating ideal
mixtures from a large panel of compounds with known chemical shifts.
Input to NMRmix consists of an 1H NMR peak list for each
compound, a user-defined overlap threshold, and additional user-defined
parameters if default settings are not used. NMRmix utilizes a simulated
annealing algorithm to optimize the composition of the mixtures to
minimize spectral peak overlaps so that each compound in the mixture
is represented by a maximum number of nonoverlapping chemical shifts.
A built-in graphical user interface simplifies data import and visual
evaluation of the results.
Collapse
Affiliation(s)
- Jaime L Stark
- National Magnetic Resonance Facility at Madison, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Hamid R Eghbalnia
- National Magnetic Resonance Facility at Madison, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Woonghee Lee
- National Magnetic Resonance Facility at Madison, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - William M Westler
- National Magnetic Resonance Facility at Madison, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - John L Markley
- National Magnetic Resonance Facility at Madison, University of Wisconsin , Madison, Wisconsin 53706, United States
| |
Collapse
|
45
|
Kasireddy C, Bann JG, Mitchell-Koch KR. Demystifying fluorine chemical shifts: electronic structure calculations address origins of seemingly anomalous (19)F-NMR spectra of fluorohistidine isomers and analogues. Phys Chem Chem Phys 2015; 17:30606-12. [PMID: 26524669 PMCID: PMC4643390 DOI: 10.1039/c5cp05502d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Fluorine NMR spectroscopy is a powerful tool for studying biomolecular structure, dynamics, and ligand binding, yet the origins of (19)F chemical shifts are not well understood. Herein, we use electronic structure calculations to describe the changes in (19)F chemical shifts of 2F- and 4F-histidine/(5-methyl)-imidazole upon acid titration. While the protonation of the 2F species results in a deshielded chemical shift, protonation of the 4F isomer results in an opposite, shielded chemical shift. The deshielding of 2F-histidine/(5-methyl)-imidazole upon protonation can be rationalized by concomitant decreases in charge density on fluorine and a reduced dipole moment. These correlations do not hold for 4F-histidine/(5-methyl)-imidazole, however. Molecular orbital calculations reveal that for the 4F species, there are no lone pair electrons on the fluorine until protonation. Analysis of a series of 4F-imidazole analogues, all with delocalized fluorine electron density, indicates that the deshielding of (19)F chemical shifts through substituent effects correlates with increased C-F bond polarity. In summary, the delocalization of fluorine electrons in the neutral 4F species, with gain of a lone pair upon protonation may help explain the difficulty in developing a predictive framework for fluorine chemical shifts. Ideas debated by chemists over 40 years ago, regarding fluorine's complex electronic effects, are shown to have relevance for understanding and predicting fluorine NMR spectra.
Collapse
Affiliation(s)
- Chandana Kasireddy
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260-0051, USA.
| | - James G Bann
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260-0051, USA.
| | - Katie R Mitchell-Koch
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260-0051, USA.
| |
Collapse
|
46
|
Pollock J, Borkin D, Lund G, Purohit T, Dyguda-Kazimierowicz E, Grembecka J, Cierpicki T. Rational Design of Orthogonal Multipolar Interactions with Fluorine in Protein-Ligand Complexes. J Med Chem 2015; 58:7465-74. [PMID: 26288158 PMCID: PMC4584387 DOI: 10.1021/acs.jmedchem.5b00975] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Multipolar interactions involving
fluorine and the protein backbone
have been frequently observed in protein–ligand complexes.
Such fluorine–backbone interactions may substantially contribute
to the high affinity of small molecule inhibitors. Here we found that
introduction of trifluoromethyl groups into two different sites in
the thienopyrimidine class of menin–MLL inhibitors considerably
improved their inhibitory activity. In both cases, trifluoromethyl
groups are engaged in short interactions with the backbone of menin.
In order to understand the effect of fluorine, we synthesized a series
of analogues by systematically changing the number of fluorine atoms,
and we determined high-resolution crystal structures of the complexes
with menin. We found that introduction of fluorine at favorable geometry
for interactions with backbone carbonyls may improve the activity
of menin–MLL inhibitors as much as 5- to 10-fold. In order
to facilitate the design of multipolar fluorine–backbone interactions
in protein–ligand complexes, we developed a computational algorithm
named FMAP, which calculates fluorophilic sites in proximity to the
protein backbone. We demonstrated that FMAP could be used to rationalize
improvement in the activity of known protein inhibitors upon introduction
of fluorine. Furthermore, FMAP may also represent a valuable tool
for designing new fluorine substitutions and support ligand optimization
in drug discovery projects. Analysis of the menin–MLL inhibitor
complexes revealed that the backbone in secondary structures is particularly
accessible to the interactions with fluorine. Considering that secondary
structure elements are frequently exposed at protein interfaces, we
postulate that multipolar fluorine–backbone interactions may
represent a particularly attractive approach to improve inhibitors
of protein–protein interactions.
Collapse
Affiliation(s)
- Jonathan Pollock
- Department of Pathology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Dmitry Borkin
- Department of Pathology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - George Lund
- Department of Pathology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Trupta Purohit
- Department of Pathology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Edyta Dyguda-Kazimierowicz
- Molecular Modeling and Quantum Chemistry Group, Department of Chemistry, Wrocław University of Technology , Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
47
|
Successful generation of structural information for fragment-based drug discovery. Drug Discov Today 2015; 20:1104-11. [DOI: 10.1016/j.drudis.2015.04.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/12/2015] [Accepted: 04/20/2015] [Indexed: 12/25/2022]
|
48
|
Gedeck P, Lu Y, Skolnik S, Rodde S, Dollinger G, Jia W, Berellini G, Vianello R, Faller B, Lombardo F. Benefit of Retraining pKa Models Studied Using Internally Measured Data. J Chem Inf Model 2015; 55:1449-59. [DOI: 10.1021/acs.jcim.5b00172] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peter Gedeck
- Novartis Institute for Tropical Diseases Pte. Ltd., 10 Biopolis Road, #05-01 Chromos, Singapore 138670, Singapore
| | - Yipin Lu
- Novartis Institute for Biomedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Suzanne Skolnik
- Novartis Institute for Biomedical Research, 250 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Stephane Rodde
- Novartis Institute for Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Gavin Dollinger
- Novartis Institute for Biomedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Weiping Jia
- Novartis Institute for Biomedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Giuliano Berellini
- Novartis Institute for Biomedical Research, 250 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Riccardo Vianello
- Novartis Institute for Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Bernard Faller
- Novartis Institute for Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Franco Lombardo
- Novartis Institute for Biomedical Research, 250 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
49
|
Unione L, Xu B, Díaz D, Martín-Santamaría S, Poveda A, Sardinha J, Rauter AP, Blériot Y, Zhang Y, Cañada FJ, Sollogoub M, Jiménez-Barbero J. Conformational Plasticity in Glycomimetics: Fluorocarbamethyl-L-idopyranosides Mimic the Intrinsic Dynamic Behaviour of Natural Idose Rings. Chemistry 2015; 21:10513-21. [PMID: 26096911 DOI: 10.1002/chem.201501249] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/08/2015] [Indexed: 11/06/2022]
Abstract
Sugar function, structure and dynamics are intricately correlated. Ring flexibility is intrinsically related to biological activity; actually plasticity in L-iduronic rings modulates their interactions with biological receptors. However, the access to the experimental values of the energy barriers and free-energy difference for conformer interconversion in water solution has been elusive. Here, a new generation of fluorine-containing glycomimetics is presented. We have applied a combination of organic synthesis, NMR spectroscopy and computational methods to investigate the conformational behaviour of idose- and glucose-like rings. We have used low-temperature NMR spectroscopic experiments to slow down the conformational exchange of the idose-like rings. Under these conditions, the exchange rate becomes slow in the (19) F NMR spectroscopic chemical shift timescale and allows shedding light on the thermodynamic and kinetic features of the equilibrium. Despite the minimal structural differences between these compounds, a remarkable difference in their dynamic behaviour indeed occurs. The importance of introducing fluorine atoms in these sugars mimics is also highlighted. Only the use of (19) F NMR spectroscopic experiments has permitted the unveiling of key features of the conformational equilibrium that would have otherwise remained unobserved.
Collapse
Affiliation(s)
- Luca Unione
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain).,Infectious Disease Programme, CIC bioGUNE, 48160 Derio, Bizkaia (Spain)
| | - Bixue Xu
- Sorbonne Universités, UPMC Univ Paris 06, Institut Universitaire de France, UMR CNRS 8232, IPCM, 4, place Jussieu, 75005 Paris (France).,Present address: The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 202 Shachong South Road, Guiyang, 550002 (P. R. China)
| | - Dolores Díaz
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain)
| | - Sonsoles Martín-Santamaría
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain)
| | - Ana Poveda
- Infectious Disease Programme, CIC bioGUNE, 48160 Derio, Bizkaia (Spain)
| | - João Sardinha
- Sorbonne Universités, UPMC Univ Paris 06, Institut Universitaire de France, UMR CNRS 8232, IPCM, 4, place Jussieu, 75005 Paris (France).,Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Edifício C8, 1749-016 Lisboa (Portugal)
| | - Amelia Pilar Rauter
- Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Edifício C8, 1749-016 Lisboa (Portugal)
| | - Yves Blériot
- Université de Poitiers, UMR CNRS 7285, IC2MP, Equipe Synthèse organique, Groupe Glycochimie, 4, avenue Michel Brunet, 86022 Poitiers Cedex (France)
| | - Yongmin Zhang
- Sorbonne Universités, UPMC Univ Paris 06, Institut Universitaire de France, UMR CNRS 8232, IPCM, 4, place Jussieu, 75005 Paris (France)
| | - F Javier Cañada
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain)
| | - Matthieu Sollogoub
- Sorbonne Universités, UPMC Univ Paris 06, Institut Universitaire de France, UMR CNRS 8232, IPCM, 4, place Jussieu, 75005 Paris (France).
| | - Jesus Jiménez-Barbero
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain). .,Infectious Disease Programme, CIC bioGUNE, 48160 Derio, Bizkaia (Spain). .,IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain).
| |
Collapse
|
50
|
Sakuma C, Kurita JI, Furihata K, Tashiro M. Achievement of 1 H-19 F heteronuclear experiments using the conventional spectrometer with a shared single high band amplifier. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2015; 53:327-329. [PMID: 25808615 DOI: 10.1002/mrc.4210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
The (1)H-(19) F heteronuclear NMR experiments were achieved using the conventional spectrometer equipped with a single high band amplifier and a (1)H/(19)F/(13) C double-tuned probe. Although double high band amplifiers are generally required to perform such experiments, a simple modification of pathway in the conventional spectrometer was capable of acquiring various (1)H-(19)F heteronuclear spectra. The efficiency of the present technique was demonstrated in an application for (19)F{(1)H} and (1)H{(19)F} saturation transfer difference experiments.
Collapse
Affiliation(s)
- Chiseko Sakuma
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | | | | | | |
Collapse
|