1
|
Shahriar I, Kamra M, Kanduluru AK, Campbell CL, Nguyen TH, Srinivasarao M, Low PS. Targeted recruitment of immune effector cells for rapid eradication of influenza virus infections. Proc Natl Acad Sci U S A 2024; 121:e2408469121. [PMID: 39348541 PMCID: PMC11474073 DOI: 10.1073/pnas.2408469121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/19/2024] [Indexed: 10/02/2024] Open
Abstract
Despite much research, considerable data suggest that influenza virus remains a serious health problem because i) the effectiveness of current vaccines ranges only from 19% to 60%, ii) available therapies remain ineffective in advanced stages of disease, iii) death rates vary between 25,000 and 72,000/year in the United States, and iv) avian influenza strains are now being transmitted to dairy cattle that in turn are infecting humans. To address these concerns, we have developed zanDR, a bispecific small molecule that binds and inhibits viral neuraminidase expressed on both free virus and virus-infected cells and recruits naturally occurring anti-rhamnose and anti-dinitrophenyl (DNP) antibodies with rhamnose and DNP haptens. Because the neuraminidase inhibition replicates the chemotherapeutic mechanism of zanamivir and oseltamivir, while rhamnose and DNP recruit endogenous antibodies much like an anti-influenza vaccine, zanDR reproduces most of the functions of current methods of protection against influenza virus infections. Importantly, studies on cells in culture demonstrate that both of the above protective mechanisms remain highly functional in the zanDR conjugate, while studies in lethally infected mice with advanced-stage disease establish that a single intranasal dose of zanDR not only yields 100% protection but also reduces lung viral loads faster and ~1,000× more thoroughly than current antiviral therapies. Since zanDR also lowers secretion of proinflammatory cytokines and protects against virus-induced damage to the lungs better than current therapies, we suggest that combining an immunotherapy with a chemotherapy in single pharmacological agent constitutes a promising approach for treating the more challenging forms of influenza.
Collapse
Affiliation(s)
- Imrul Shahriar
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
- Eradivir Inc., West Lafayette, IN47906
| | - Mohini Kamra
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
| | - Ananda Kumar Kanduluru
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
- Eradivir Inc., West Lafayette, IN47906
| | - Charity Lynn Campbell
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
- Eradivir Inc., West Lafayette, IN47906
| | - Thanh Hiep Nguyen
- Department of Biological Sciences, Purdue University, West Lafayette, IN47907
| | - Madduri Srinivasarao
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
- Eradivir Inc., West Lafayette, IN47906
| | - Philip S. Low
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
| |
Collapse
|
2
|
Tagawa H, Saeki R, Yamamoto C, Tanito K, Tanaka C, Munekawa S, Nii T, Kishimura A, Murakami H, Mori T, Katayama Y. The effect of Fc region affinity of protein-based antibody-recruiting molecules on antibody-dependent cellular cytotoxicity. RSC Adv 2024; 14:22860-22866. [PMID: 39040702 PMCID: PMC11262565 DOI: 10.1039/d4ra03391d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/06/2024] [Indexed: 07/24/2024] Open
Abstract
Previously, we reported anticancer molecules, Fc-binding antibody-recruiting molecules (Fc-ARMs), which crosslink proteins on cancer cells with endogenous immunoglobulin Gs (IgGs) via their Fc region. The mobilized IgGs on cancer cells can accommodate natural killer cells to induce antibody-dependent cellular cytotoxicity (ADCC). Because previous Fc-ARMs utilized Fc-binding peptides, their affinity to IgGs is weak, which resulted in the limited induction capability of ADCC. Previous Fc-ARMs also unitized small molecular ligands to cancer cells, which limited their universal applicability to any cancer cells. A recent study reported that protein-based Fc-ARMs might overcome the issues associated with non-proteinous Fc-ARMs. Here, we examined the universality of a protein-based Fc-ARM by replacing its tumor-binding domain with a human epidermal growth factor receptor 2 (HER2)-specific affibody (ZHER2:342). We also examined the requirement of its Fc-binding domain affinity. We found that the Fc-ARMs accepted an affibody as a tumor-binding domain to induce ADCC. Furthermore, the required residence time of the complex between Fc-ARM and IgG was ∼102 min, which was comparable to that when monoclonal antibodies bind to their specific antigens. However, we found that the extent of ADCC induced by Fc-ARM was lower than that of conventional IgG-mediated ADCC, indicating that further enhancement of the affinity of the antibody-binding terminus and tumor-binding terminus of Fc-ARM may be needed to achieve ADCC equivalent to that of conventional IgG-mediated ADCC.
Collapse
Affiliation(s)
- Hiroshi Tagawa
- Graduate School of Systems Life Sciences, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Riku Saeki
- Graduate School of Systems Life Sciences, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Chihaya Yamamoto
- Graduate School of Systems Life Sciences, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Kenta Tanito
- Graduate School of Systems Life Sciences, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Chihiro Tanaka
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Shoki Munekawa
- Graduate School of Systems Life Sciences, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Teruki Nii
- Graduate School of Systems Life Sciences, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Akihiro Kishimura
- Graduate School of Systems Life Sciences, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- Center for Future Chemistry, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- International Research Center for Molecular Systems, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Hiroshi Murakami
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Takeshi Mori
- Graduate School of Systems Life Sciences, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- Center for Future Chemistry, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Yoshiki Katayama
- Graduate School of Systems Life Sciences, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- Center for Future Chemistry, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
3
|
Singh S, Tian W, Severance ZC, Chaudhary SK, Anokhina V, Mondal B, Pergu R, Singh P, Dhawa U, Singha S, Choudhary A. Proximity-inducing modalities: the past, present, and future. Chem Soc Rev 2023; 52:5485-5515. [PMID: 37477631 DOI: 10.1039/d2cs00943a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Living systems use proximity to regulate biochemical processes. Inspired by this phenomenon, bifunctional modalities that induce proximity have been developed to redirect cellular processes. An emerging example of this class is molecules that induce ubiquitin-dependent proteasomal degradation of a protein of interest, and their initial development sparked a flurry of discovery for other bifunctional modalities. Recent advances in this area include modalities that can change protein phosphorylation, glycosylation, and acetylation states, modulate gene expression, and recruit components of the immune system. In this review, we highlight bifunctional modalities that perform functions other than degradation and have great potential to revolutionize disease treatment, while also serving as important tools in basic research to explore new aspects of biology.
Collapse
Affiliation(s)
- Sameek Singh
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Wenzhi Tian
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Zachary C Severance
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Santosh K Chaudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Viktoriya Anokhina
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Basudeb Mondal
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Rajaiah Pergu
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Prashant Singh
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Uttam Dhawa
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Santanu Singha
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
4
|
Dzigba P, Rylski AK, Angera IJ, Banahene N, Kavunja HW, Greenlee-Wacker MC, Swarts BM. Immune Targeting of Mycobacteria through Cell Surface Glycan Engineering. ACS Chem Biol 2023; 18:1548-1556. [PMID: 37306676 PMCID: PMC10782841 DOI: 10.1021/acschembio.3c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mycobacteria and other organisms in the order Mycobacteriales cause a range of significant human diseases, including tuberculosis, leprosy, diphtheria, Buruli ulcer, and non-tuberculous mycobacterial (NTM) disease. However, the intrinsic drug tolerance engendered by the mycobacterial cell envelope undermines conventional antibiotic treatment and contributes to acquired drug resistance. Motivated by the need to augment antibiotics with novel therapeutic approaches, we developed a strategy to specifically decorate mycobacterial cell surface glycans with antibody-recruiting molecules (ARMs), which flag bacteria for binding to human-endogenous antibodies that enhance macrophage effector functions. Mycobacterium-specific ARMs consisting of a trehalose targeting moiety and a dinitrophenyl hapten (Tre-DNPs) were synthesized and shown to specifically incorporate into outer-membrane glycolipids of Mycobacterium smegmatis via trehalose metabolism, enabling recruitment of anti-DNP antibodies to the mycobacterial cell surface. Phagocytosis of Tre-DNP-modified M. smegmatis by macrophages was significantly enhanced in the presence of anti-DNP antibodies, demonstrating proof-of-concept that our strategy can augment the host immune response. Because the metabolic pathways responsible for cell surface incorporation of Tre-DNPs are conserved in all Mycobacteriales organisms but absent from other bacteria and humans, the reported tools may be enlisted to interrogate host-pathogen interactions and develop immune-targeting strategies for diverse mycobacterial pathogens.
Collapse
Affiliation(s)
- Priscilla Dzigba
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Department of Biology, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, MI, 48859 United States
| | - Adrian K. Rylski
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Isaac J. Angera
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Nicholas Banahene
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, MI, 48859 United States
| | - Herbert W. Kavunja
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Mallary C. Greenlee-Wacker
- Department of Biology, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Benjamin M. Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, MI, 48859 United States
| |
Collapse
|
5
|
DuPont M, Visca H, Moshnikova A, Engelman DM, Reshetnyak YK, Andreev OA. Tumor treatment by pHLIP-targeted antigen delivery. Front Bioeng Biotechnol 2023; 10:1082290. [PMID: 36686229 PMCID: PMC9853002 DOI: 10.3389/fbioe.2022.1082290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
Targeted antigen delivery allows activation of the immune system to kill cancer cells. Here we report the targeted delivery of various epitopes, including a peptide, a small molecule, and a sugar, to tumors by pH Low Insertion Peptides (pHLIPs), which respond to surface acidity and insert to span the membranes of metabolically activated cancer and immune cells within tumors. Epitopes linked to the extracellular ends of pH Low Insertion Peptide peptides were positioned at the surfaces of tumor cells and were recognized by corresponding anti-epitope antibodies. Special attention was devoted to the targeted delivery of the nine residue HA peptide epitope from the Flu virus hemagglutinin. The HA sequence is not present in the human genome, and immunity is readily developed during viral infection or immunization with KLH-HA supplemented with adjuvants. We tested and refined a series of double-headed HA-pHLIP agents, where two HA epitopes were linked to a single pH Low Insertion Peptide peptide via two Peg12 or Peg24 polymers, which enable HA epitopes to engage both antibody binding sites. HA-epitopes positioned at the surfaces of tumor cells remain exposed to the extracellular space for 24-48 h and are then internalized. Different vaccination schemes and various adjuvants, including analogs of FDA approved adjuvants, were tested in mice and resulted in a high titer of anti-HA antibodies. Anti-HA antibody binds HA-pHLIP in blood and travels as a complex leading to significant tumor targeting with no accumulation in organs and to hepatic clearance. HA-pHLIP agents induced regression of 4T1 triple negative breast tumor and B16F10 MHC-I negative melanoma tumors in immunized mice. The therapeutic efficacy potentially is limited by the drop of the level of anti-HA antibodies in the blood to background level after three injections of HA-pHLIP. We hypothesize that additional boosts would be required to keep a high titer of anti-HA antibodies to enhance efficacy. pH Low Insertion Peptide-targeted antigen therapy may provide an opportunity to treat tumors unresponsive to T cell based therapies, having a small number of neo-antigens, or deficient in MHC-I presentation at the surfaces of cancer cells either alone or in combination with other approaches.
Collapse
Affiliation(s)
- Michael DuPont
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Hannah Visca
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Anna Moshnikova
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Donald M. Engelman
- Department of Molecular Biophysics and Biochemistry, Yale, New Haven, CT, United States
| | - Yana K. Reshetnyak
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Oleg A. Andreev
- Physics Department, University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
6
|
Martí-Marí O, Martínez-Gualda B, Fernández-Barahona I, Mills A, Abdelnabi R, Noppen S, Neyts J, Schols D, Camarasa MJ, Herranz F, Gago F, San-Félix A. Organotropic dendrons with high potency as HIV-1, HIV-2 and EV-A71 cell entry inhibitors. Eur J Med Chem 2022; 237:114414. [DOI: 10.1016/j.ejmech.2022.114414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/26/2022]
|
7
|
Hribernik N, Chiodo F, Pieters R, Bernardi A. Rhamnose-based glycomimetic for recruitment of endogenous anti-rhamnose antibodies. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Le AV, Xu M, Yang T, Barrows L, Fontaine DF, Huo S, Jakobsche CE. Contrasting solution-state properties within a family of amyloid-binding molecular tools. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Charles WZ, Faries CR, Street YT, Flowers LS, McNaughton B. Antibody‐Recruitment as a Therapeutic Strategy: A Brief History and Recent Advances. Chembiochem 2022; 23:e202200092. [DOI: 10.1002/cbic.202200092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/20/2022] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | | | - Brian McNaughton
- Delaware State University Delaware Institute for Science and Technology 1200 N Dupont Hwy 19901 Dover UNITED STATES
| |
Collapse
|
10
|
Parashar S, Gupta V, Bhatnagar R, Kausar A. A clickable folic acid-rhamnose conjugate for selective binding to cancer cells. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
11
|
The Genesis and Future Prospects of Small Molecule HIV-1 Attachment Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:45-64. [DOI: 10.1007/978-981-16-8702-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Dietlin-Auril V, Lecerf M, Depinay S, Noé R, Dimitrov JD. Interaction with 2,4-dinitrophenol correlates with polyreactivity, self-binding, and stability of clinical-stage therapeutic antibodies. Mol Immunol 2021; 140:233-239. [PMID: 34773862 DOI: 10.1016/j.molimm.2021.10.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 11/28/2022]
Abstract
Therapeutic antibodies should cover particular physicochemical and functional requirements for successful entry into clinical practice. Numerous experimental and computational approaches have been developed for early identification of different unfavourable features of antibodies. Immune repertoires of healthy humans contain a fraction of antibodies that recognize nitroarenes. These antibodies have been demonstrated to manifest antigen-binding polyreactivity. Here we observed that >20 % of 112 clinical stage therapeutic antibodies show pronounced binding to 2,4-dinitrophenol conjugated to albumin. This interaction predicts a number of unfavourable functional and physicochemical features of antibodies such as polyreactivity, tendency for self-association, stability and expression yields. Based on these findings we proposed a simple approach that may add to the armamentarium of assays for early identification of developability liabilities of antibodies intended for therapeutic use.
Collapse
Affiliation(s)
- Valentin Dietlin-Auril
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006, Paris, France
| | - Maxime Lecerf
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006, Paris, France
| | - Stephanie Depinay
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006, Paris, France
| | - Rémi Noé
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006, Paris, France
| | - Jordan D Dimitrov
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006, Paris, France.
| |
Collapse
|
13
|
Lin H, Zhou K, Li D, Hong H, Xie Y, Gong L, Shen Y, Zhou Z, Shi J, Wu Z. Dinitrophenol-Hyaluronan Conjugates as Multivalent Antibody-Recruiting Glycopolymers for Targeted Cancer Immunotherapy. ChemMedChem 2021; 16:2960-2968. [PMID: 34235861 DOI: 10.1002/cmdc.202100313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/28/2021] [Indexed: 11/11/2022]
Abstract
Multivalent antibody-recruiting glycopolymers (MARGs) composed of hyaluronic acid (HA) grafted with multiple copies of dinitrophenol (DNP) were developed for targeted cancer immunotherapy. Structure-activity studies demonstrated that the MARGs were able to specifically recognize CD44-positive cancer cells and displayed remarkable antibody-recruiting capacities and tumor cell killing activities dependent on the introduced multivalent effect and the length of PEG linker. One of the MARGs, HA-[PEG3 -DNP]8 , showed the best capacity for clustering anti-DNP antibodies onto CD44-positive cancer cells and displayed potent in vitro anti-cancer activity by triggering complement dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC). Moreover, we found that HA-[PEG3 -DNP]8 significantly inhibited the xenograft tumor growth of Babl/c nude mice bearing triple negative breast cancer cells, while it did not cause detectable histological cytotoxicity. Given the easy access of this type of natural glycopolymer and the practical synthesis approach, these MARGs provide promising immunotherapeutics for cancer immunotherapy.
Collapse
Affiliation(s)
- Han Lin
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Kun Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Dan Li
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yuntian Xie
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Liang Gong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yu Shen
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jie Shi
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
14
|
Liu X, Luo W, Zhang B, Lee YG, Shahriar I, Srinivasarao M, Low PS. Design of Neuraminidase-Targeted Imaging and Therapeutic Agents for the Diagnosis and Treatment of Influenza Virus Infections. Bioconjug Chem 2021; 32:1548-1553. [PMID: 34161726 DOI: 10.1021/acs.bioconjchem.1c00255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The last step in influenza virus replication involves the assembly of viral components on the infected cell's plasma membrane followed by budding of intact virus from the host cell surface. Because viral neuraminidase and hemagglutinin are both inserted into the host cell's membrane during this process, influenza virus-infected cells are distinguished from uninfected cells by the presence of viral neuraminidase and hemagglutinin on their cell surfaces. In an effort to exploit this difference in cell surface markers for development of diagnostic and therapeutic agents, we have modified an influenza neuraminidase inhibitor, zanamivir, for targeting of attached imaging and therapeutic agents selectively to influenza viruses and virus-infected cells. We have designed here a zanamivir-conjugated rhodamine dye that allows visual monitoring of binding, internalization, and intracellular trafficking of the fluorescence-labeled neuraminidase in virus-infected cells. We also synthesize a zanamivir-99mTc radioimaging conjugate that permits whole body imaging of the virus's biodistribution and abundance in infected mice. Finally, we create both a zanamivir-targeted cytotoxic drug (i.e., zanamivir-tubulysin B) and a viral neuraminidase-targeted CAR T cell and demonstrate that they are both able to kill viral neuraminidase-expressing cells without damaging healthy cells. Taken together, these data suggest that the influenza virus neuraminidase inhibitor, zanamivir, can be exploited to improve the diagnosis, imaging, and treatment of influenza virus infections.
Collapse
Affiliation(s)
- Xin Liu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Weichuan Luo
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Boning Zhang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yong Gu Lee
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Imrul Shahriar
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Madduri Srinivasarao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
15
|
Kapcan E, Lake B, Yang Z, Zhang A, Miller MS, Rullo AF. Covalent Stabilization of Antibody Recruitment Enhances Immune Recognition of Cancer Targets. Biochemistry 2021; 60:1447-1458. [PMID: 33930269 DOI: 10.1021/acs.biochem.1c00127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antibody recruiting molecules (ARMs) represent an important class of "proximity-inducing" chemical tools with therapeutic potential. ARMs function by simultaneously binding to a hapten-specific serum antibody (Ab) (e.g., anti-dinitrophenyl (DNP)) and a cancer cell surface protein, enforcing their proximity. ARM anticancer efficacy depends on the formation of ARM:Ab complexes on the cancer cell surface, which activate immune cell recognition and elimination of the cancer cell. Problematically, ARM function in human patients may be limited by conditions that drive the dissociation of ARM:Ab complexes, namely, intrinsically low binding affinity and/or low concentrations of anti-hapten antibodies in human serum. To address this potential limitation, we previously developed a covalent ARM (cARM) chemical tool that eliminates the ARM:antibody equilibrium through a covalent linkage. In the current study, we set out to determine to what extent maximizing the stability of ARM:antibody complexes via cARMs enhances target immune recognition. We observe cARMs significantly increase target immune recognition relative to ARMs across a range of therapeutically relevant antibody concentrations. These results demonstrate that ARM therapeutic function can be dramatically enhanced by increasing the kinetic stability of ARM:antibody complexes localized on cancer cells. Our findings suggest that a) high titres/concentrations of target antibody in human serum are not neccessary and b) saturative antibody recruitment to cancer cells not sufficient, to achieve maximal ARM therapeutic function.
Collapse
|
16
|
Sasaki K, Muguruma K, Osawa R, Fukuda A, Taniguchi A, Kishimura A, Hayashi Y, Mori T, Katayama Y. Synthesis and biological evaluation of a monocyclic Fc-binding antibody-recruiting molecule for cancer immunotherapy. RSC Med Chem 2021; 12:406-409. [PMID: 34046623 PMCID: PMC8130626 DOI: 10.1039/d0md00337a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/10/2021] [Indexed: 11/21/2022] Open
Abstract
Antibody-recruiting molecules (ARMs) are bispecific molecules composed of an antibody-binding motif and a target-binding motif that redirect endogenous antibodies to target cells to elicit immune responses. To enhance the translational potential of ARMs, it is crucial to design antibody/target-binding motifs that have strong affinity and are easy to synthesize. Here, we synthesized a novel Fc-binding ARM (Fc-ARM) that targets folate receptor (FR)-positive cancer cells, Reo-3, using a recently developed monocyclic peptide 15-Lys8Leu, which binds strongly to the Fc region of an antibody. Reo-3 bound to the Fc region of the antibody with a K d of 5.8 nM, and recruited a clinically used antibody mixture to attack FR-positive IGROV-1 cells as efficiently as Fc-ARM2, in which a bicyclic Fc-binding peptide was used. These results indicate that 15-Lys8Leu, which can be synthesized readily, is suitable for various applications including the development of Fc-ARMs.
Collapse
Affiliation(s)
- Koichi Sasaki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University Fukuoka 819-0395 Japan
| | - Kyohei Muguruma
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences Tokyo 192-0392 Japan
| | - Rento Osawa
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences Tokyo 192-0392 Japan
| | - Akane Fukuda
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences Tokyo 192-0392 Japan
| | - Atsuhiko Taniguchi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences Tokyo 192-0392 Japan
| | - Akihiro Kishimura
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University Fukuoka 819-0395 Japan
- Graduate School of Systems Life Sciences, Kyushu University Fukuoka 819-0395 Japan
- International Research Center for Molecular Systems, Kyushu University Fukuoka 819-0395 Japan
| | - Yoshio Hayashi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences Tokyo 192-0392 Japan
| | - Takeshi Mori
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University Fukuoka 819-0395 Japan
- Graduate School of Systems Life Sciences, Kyushu University Fukuoka 819-0395 Japan
| | - Yoshiki Katayama
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University Fukuoka 819-0395 Japan
- Graduate School of Systems Life Sciences, Kyushu University Fukuoka 819-0395 Japan
- International Research Center for Molecular Systems, Kyushu University Fukuoka 819-0395 Japan
- Department of Biomedical Engineering, Chung Yuan Christian University Taoyuan Taiwan
| |
Collapse
|
17
|
Hong H, Li C, Gong L, Wang J, Li D, Shi J, Zhou Z, Huang Z, Wu Z. Universal endogenous antibody recruiting nanobodies capable of triggering immune effectors for targeted cancer immunotherapy. Chem Sci 2021; 12:4623-4630. [PMID: 34163726 PMCID: PMC8179521 DOI: 10.1039/d0sc05332e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/07/2021] [Indexed: 01/21/2023] Open
Abstract
Developing monoclonal antibodies (mAbs) for cancer immunotherapy is expensive and complicated. Nanobodies are small antibodies possessing favorable pharmacological properties compared with mAbs, but have limited anticancer efficacy due to the lack of an Fc region and poor pharmacokinetics. In this context, engineered universal endogenous antibody-recruiting nanobodies (UEAR Nbs), as a general and cost-effective approach, were developed to generate functional antibody-like nanobodies that could recapitulate the Fc biological functions for cancer immunotherapy. The UEAR Nbs, composed of the IgG binding domain and nanobody, were recombinantly expressed in E. coli and could recruit endogenous IgGs onto the cancer cell surface and trigger potent immune responses to kill cancer cells in vitro. Moreover, it was proved that UEAR Nbs displayed significantly improved half-lives in vivo. The in vivo antitumor efficacy of UEAR Nbs was demonstrated in a murine model using EGFR positive triple-negative breast cancer (TNBC).
Collapse
Affiliation(s)
- Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 China
| | - Chen Li
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 China
| | - Liang Gong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 China
| | - Jinfeng Wang
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 China
| | - Dan Li
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 China
| | - Jie Shi
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 China
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University Wuxi 214062 China
- Laboratory of Cancer Epigenetics, School of Medicine, Jiangnan University Wuxi 214122 China
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 China
| |
Collapse
|
18
|
A universal dual mechanism immunotherapy for the treatment of influenza virus infections. Nat Commun 2020; 11:5597. [PMID: 33154358 PMCID: PMC7645797 DOI: 10.1038/s41467-020-19386-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Seasonal influenza epidemics lead to 3–5 million severe infections and 290,000–650,000 annual global deaths. With deaths from the 1918 influenza pandemic estimated at >50,000,000 and future pandemics anticipated, the need for a potent influenza treatment is critical. In this study, we design and synthesize a bifunctional small molecule by conjugating the neuraminidase inhibitor, zanamivir, with the highly immunogenic hapten, dinitrophenyl (DNP), which specifically targets the surface of free virus and viral-infected cells. We show that this leads to simultaneous inhibition of virus release, and immune-mediated elimination of both free virus and virus-infected cells. Intranasal or intraperitoneal administration of a single dose of drug to mice infected with 100x MLD50 virus is shown to eradicate advanced infections from representative strains of both influenza A and B viruses. Since treatments of severe infections remain effective up to three days post lethal inoculation, our approach may successfully treat infections refractory to current therapies. In this study, the authors combine an anti-viral drug and immune system inducer to treat influenza A and B viral infections in vitro and in vivo. They show that the compound outperforms zanamivir alone as it is still able to clear infection three days post infection, and it can be administered via different routes without reduced efficacy.
Collapse
|
19
|
Uvyn A, De Geest BG. Multivalent Antibody-Recruiting Macromolecules: Linking Increased Binding Affinity with Enhanced Innate Immune Killing. Chembiochem 2020; 21:3036-3043. [PMID: 32497371 PMCID: PMC7116353 DOI: 10.1002/cbic.202000261] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/02/2020] [Indexed: 12/17/2022]
Abstract
Antibody-recruiting molecules (ARMs) are a novel class of immunotherapeutics. They are capable of introducing antibodies onto disease-relevant targets such as cancer cells, bacterial cells or viruses. This can induce antibody-mediated immune responses such as antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC) and antibody-dependent phagocytosis (ADCP), which can kill the pathogen. In contrast to the classic ARMs, multivalent ARMs could offer the advantage of increasing the efficiency of antibody recruitment and subsequent innate immune killing. Such compounds consist of multiple target-binding termini (TBT) and/or antibody-binding termini (ABT). Those multivalent interactions are able to convert low binding affinities into increased binding avidities. This minireview summarizes the current status of multivalent ARMs and gives insight into possible benefits, hurdles still to be overcome and future perspectives.
Collapse
Affiliation(s)
- Annemiek Uvyn
- A. Uvyn, Prof. Dr. B. G. De Geest, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent, Belgium
| | - Bruno G. De Geest
- A. Uvyn, Prof. Dr. B. G. De Geest, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent, Belgium
| |
Collapse
|
20
|
Vermisoglou E, Panáček D, Jayaramulu K, Pykal M, Frébort I, Kolář M, Hajdúch M, Zbořil R, Otyepka M. Human virus detection with graphene-based materials. Biosens Bioelectron 2020; 166:112436. [PMID: 32750677 PMCID: PMC7375321 DOI: 10.1016/j.bios.2020.112436] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
Our recent experience of the COVID-19 pandemic has highlighted the importance of easy-to-use, quick, cheap, sensitive and selective detection of virus pathogens for the efficient monitoring and treatment of virus diseases. Early detection of viruses provides essential information about possible efficient and targeted treatments, prolongs the therapeutic window and hence reduces morbidity. Graphene is a lightweight, chemically stable and conductive material that can be successfully utilized for the detection of various virus strains. The sensitivity and selectivity of graphene can be enhanced by its functionalization or combination with other materials. Introducing suitable functional groups and/or counterparts in the hybrid structure enables tuning of the optical and electrical properties, which is particularly attractive for rapid and easy-to-use virus detection. In this review, we cover all the different types of graphene-based sensors available for virus detection, including, e.g., photoluminescence and colorimetric sensors, and surface plasmon resonance biosensors. Various strategies of electrochemical detection of viruses based on, e.g., DNA hybridization or antigen-antibody interactions, are also discussed. We summarize the current state-of-the-art applications of graphene-based systems for sensing a variety of viruses, e.g., SARS-CoV-2, influenza, dengue fever, hepatitis C virus, HIV, rotavirus and Zika virus. General principles, mechanisms of action, advantages and drawbacks are presented to provide useful information for the further development and construction of advanced virus biosensors. We highlight that the unique and tunable physicochemical properties of graphene-based nanomaterials make them ideal candidates for engineering and miniaturization of biosensors.
Collapse
Affiliation(s)
- Eleni Vermisoglou
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic
| | - David Panáček
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic; Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, Czech Republic
| | - Kolleboyina Jayaramulu
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic; Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India
| | - Martin Pykal
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic
| | - Ivo Frébort
- Centre of the Region Haná (CRH), Faculty of Science, Palacký University Olomouc, Czech Republic
| | - Milan Kolář
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine (UMTM), Faculty of Medicine and Dentistry, Palacký University Olomouc, Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic.
| |
Collapse
|
21
|
Lim RM, Rong L, Zhen A, Xie J. A Universal CAR-NK Cell Targeting Various Epitopes of HIV-1 gp160. ACS Chem Biol 2020; 15:2299-2310. [PMID: 32667183 DOI: 10.1021/acschembio.0c00537] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Engineering T cells and natural killer (NK) cells with anti-HIV chimeric antigen receptors (CAR) has emerged as a promising strategy to eradicate HIV-infected cells. However, current anti-HIV CARs are limited by targeting a single epitope of the HIV envelope glycoprotein gp160, which cannot counter the enormous diversity and mutability of viruses. Here, we report the development of a universal CAR-NK cell, which recognizes 2,4-dinitrophenyl (DNP) and can subsequently be redirected to target various epitopes of gp160 using DNP-conjugated antibodies as adaptor molecules. We show that this CAR-NK cell can recognize and kill mimic HIV-infected cell lines expressing subtypes B and C gp160. We additionally find that anti-gp160 antibodies targeting membrane-distal epitopes (including V1/V2, V3, and CD4bs) are more likely to activate universal CAR-NK cells against gp160+ target cells, compared with those targeting membrane-proximal epitopes located in the gp41 MPER. Finally, we confirm that HIV-infected primary human CD4+ T cells can be effectively killed using the same approach. Given that numerous anti-gp160 antibodies with different antigen specificities are readily available, this modular universal CAR-NK cell platform can potentially overcome HIV diversity, thus providing a promising strategy to eradicate HIV-infected cells.
Collapse
Affiliation(s)
- Rebecca M. Lim
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Liang Rong
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Anjie Zhen
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, California 90095, United States
| | - Jianming Xie
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
22
|
Ta AN, Tennyson RL, Aceveda DC, McNaughton BR. Disparities between Antibody Occupancy, Orientation, and Cytotoxicity in Immunotherapy. Chembiochem 2020; 21:2435-2439. [PMID: 32274876 DOI: 10.1002/cbic.202000083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/09/2020] [Indexed: 11/07/2022]
Abstract
We report fusion proteins designed to bind spatially distinct epitopes on the extracellular portion of HER2, a breast cancer biomarker and established therapeutic target, and recruit IgG (either anti-His6 or serum IgG) to the cell surface. When the proteins were incubated with anti-His6 antibody and various concentrations of a single HER2-binding protein His6 fusion, we observed interference and a decrease in antibody recruitment at HER2-binding protein concentrations exceeding ∼30 nM. In contrast, concomitant treatment with two or three distinct HER2-binding protein His6 fusions, and anti-His6 , results in increased antibody recruitment, even at relatively high HER2-binding protein concentration. In some instances, increased antibody recruitment leads to increased antibody-dependent cellular cytotoxicity (ADCC) activity. While a fusion protein consisting of a HER2-binding nanobody and Sac7d, a protein evolved to recognize the Fc domain of IgG, binds IgG from serum, antibody recruitment does not lead to ADCC activity. Rationales for these disparities are provided. Collectively, our findings have implications for the design of efficacious targeted immunotherapeutic biologics, and ensembles thereof.
Collapse
Affiliation(s)
- Angeline N Ta
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Rachel L Tennyson
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Diane C Aceveda
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Brian R McNaughton
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- Delaware Institute for Science & Technology, Delaware State University, Dover, DE 19901, USA
| |
Collapse
|
23
|
Lake B, Serniuck N, Kapcan E, Wang A, Rullo AF. Covalent Immune Recruiters: Tools to Gain Chemical Control Over Immune Recognition. ACS Chem Biol 2020; 15:1089-1095. [PMID: 32100991 DOI: 10.1021/acschembio.0c00112] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Unprecedented progress made in the treatment of cancer using the body's own immune system has encouraged the development of synthetic molecule based immunotherapeutics. An emerging class of these compounds, called Antibody Recruiting Molecules (ARMs) or Antibody Engagers (AEs), functions by reversibly binding antibodies naturally present in human serum and recruiting these to cancer cells. The recruited antibodies then engage immune cells to form quaternary complexes that drive cancer erradication. Despite their promise, the requirement to form quaternary complexes governed by multiple equilibria complicates an understanding of their in vivo efficacy. Particularly problematic are low endogenous serum antibody concentrations and rapid clearance of AEs from circulation. Here we describe a new class of trifunctional chemical tools we call covalent immune recruiters (CIRs). CIRs covalently label specific serum antibodies in a selective manner with a target protein binding ligand. CIRs thereby exert well-defined control over antibody recruitment and simplify quaternary complex equilibium, enabling probing of the resultant effects on immune recognition. We demonstrate CIRs can selectively covalently label anti-DNP IgG, a natural human antibody, directly in human serum to drive efficient immune cell recognition of targets. We expect CIRs will be useful tools to probe how quaternary complex stability impacts the immune recognition of cancer in vivo, revealing new design principles to guide the development of future AEs.
Collapse
Affiliation(s)
- Benjamin Lake
- McMaster Immunology Research Center (MIRC), Department of Pathology and Molecular Medicine, and Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Nickolas Serniuck
- McMaster Immunology Research Center (MIRC), Department of Pathology and Molecular Medicine, and Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Eden Kapcan
- McMaster Immunology Research Center (MIRC), Department of Pathology and Molecular Medicine, and Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Alex Wang
- McMaster Immunology Research Center (MIRC), Department of Pathology and Molecular Medicine, and Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Anthony F. Rullo
- McMaster Immunology Research Center (MIRC), Department of Pathology and Molecular Medicine, and Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
24
|
Gerry CJ, Schreiber SL. Unifying principles of bifunctional, proximity-inducing small molecules. Nat Chem Biol 2020; 16:369-378. [PMID: 32198490 PMCID: PMC7312755 DOI: 10.1038/s41589-020-0469-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/07/2020] [Indexed: 01/14/2023]
Abstract
Nature uses a variety of tools to mediate the flow of information in cells, many of which control distances between key biomacromolecules. Researchers have thus generated compounds whose activities stem from interactions with two (or more) proteins simultaneously. In this Perspective, we describe how these 'bifunctional' small molecules facilitate the study of an increasingly wide range of complex biological phenomena and enable the drugging of otherwise challenging therapeutic targets and processes. Despite their structural and functional differences, all bifunctional molecules employ Nature's strategy of altering interactomes and inducing proximity to modulate biology. They therefore exhibit a shared set of chemical and biophysical principles that have not yet been appreciated fully. By highlighting these commonalities-and their wide-ranging consequences-we hope to chip away at the artificial barriers that threaten to constrain this interdisciplinary field. Doing so promises to yield remarkable benefits for biological research and therapeutics discovery.
Collapse
Affiliation(s)
- Christopher J Gerry
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
- Vertex Pharmaceuticals, Boston, MA, USA
| | - Stuart L Schreiber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
25
|
Wehr J, Sikorski EL, Bloch E, Feigman MS, Ferraro NJ, Baybutt TR, Snook AE, Pires MM, Thévenin D. pH-Dependent Grafting of Cancer Cells with Antigenic Epitopes Promotes Selective Antibody-Mediated Cytotoxicity. J Med Chem 2020; 63:3713-3722. [PMID: 32196345 DOI: 10.1021/acs.jmedchem.0c00016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A growing class of immunotherapeutics work by redirecting components of the immune system to recognize markers on the surface of cancer cells. However, such modalities will remain confined to a relatively small subgroup of patients because of the lack of universal targetable tumor biomarkers among all patients. Here, we designed a unique class of agents that exploit the inherent acidity of solid tumors to selectively graft cancer cells with immuno-engager epitopes. Our targeting approach is based on pHLIP, a unique peptide that selectively targets tumors in vivo by anchoring to cancer cell surfaces in a pH-dependent manner. We established that pHLIP-antigen conjugates trigger the recruitment of antibodies to the surface of cancer cells and induce cytotoxicity by peripheral blood mononuclear and engineered NK cells. These results indicate that these agents have the potential to be applicable to treating a wide range of solid tumors and to circumvent problems associated with narrow windows of selectivity.
Collapse
Affiliation(s)
- Janessa Wehr
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Eden L Sikorski
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Elizabeth Bloch
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Mary S Feigman
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Noel J Ferraro
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Trevor R Baybutt
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Marcos M Pires
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Damien Thévenin
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
26
|
Sasaki K, Harada M, Miyashita Y, Tagawa H, Kishimura A, Mori T, Katayama Y. Fc-binding antibody-recruiting molecules exploit endogenous antibodies for anti-tumor immune responses. Chem Sci 2020; 11:3208-3214. [PMID: 34122826 PMCID: PMC8157400 DOI: 10.1039/d0sc00017e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Redirecting endogenous antibodies in the bloodstream to tumor cells using synthetic molecules is a promising approach to trigger anti-tumor immune responses. However, current molecular designs only enable the use of a small fraction of endogenous antibodies, limiting the therapeutic potential. Here, we report Fc-binding antibody-recruiting molecules (Fc-ARMs) as the first example addressing this issue. Fc-ARMs are composed of an Fc-binding peptide and a targeting ligand, enabling the exploitation of endogenous antibodies through constant affinity to the Fc region of antibodies, whose sequence is conserved in contrast to the Fab region. We show that Fc-ARM targeting folate receptor-α (FR-α) redirects a clinically used antibody mixture to FR-α+ cancer cells, resulting in cancer cell lysis by natural killer cells in vitro. Fc-ARMs successfully interacted with antibodies in vivo and accumulated in tumors. Furthermore, Fc-ARMs recruited antibodies to suppress tumor growth in a mouse model. Thus, Fc-ARMs have the potential to be a novel class of cancer immunotherapeutic agents. Fc-binding antibody-recruiting molecules provide robust and sufficient opportunities to employ endogenous antibodies for anti-tumor immune responses.![]()
Collapse
Affiliation(s)
- Koichi Sasaki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University Fukuoka 819-0395 Japan
| | - Minori Harada
- Graduate School of Systems Life Sciences, Kyushu University Fukuoka 819-0395 Japan
| | - Yoshiki Miyashita
- Graduate School of Systems Life Sciences, Kyushu University Fukuoka 819-0395 Japan
| | - Hiroshi Tagawa
- Graduate School of Systems Life Sciences, Kyushu University Fukuoka 819-0395 Japan
| | - Akihiro Kishimura
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University Fukuoka 819-0395 Japan .,Graduate School of Systems Life Sciences, Kyushu University Fukuoka 819-0395 Japan.,International Research Center for Molecular Systems, Kyushu University Fukuoka 819-0395 Japan
| | - Takeshi Mori
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University Fukuoka 819-0395 Japan .,Graduate School of Systems Life Sciences, Kyushu University Fukuoka 819-0395 Japan
| | - Yoshiki Katayama
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University Fukuoka 819-0395 Japan .,Graduate School of Systems Life Sciences, Kyushu University Fukuoka 819-0395 Japan.,International Research Center for Molecular Systems, Kyushu University Fukuoka 819-0395 Japan.,Department of Biomedical Engineering, Chung Yuan Christian University Taoyuan Taiwan
| |
Collapse
|
27
|
Liet B, Laigre E, Goyard D, Todaro B, Tiertant C, Boturyn D, Berthet N, Renaudet O. Multifunctional Glycoconjugates for Recruiting Natural Antibodies against Cancer Cells. Chemistry 2019; 25:15508-15515. [PMID: 31613028 PMCID: PMC6916168 DOI: 10.1002/chem.201903327] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/05/2019] [Indexed: 01/04/2023]
Abstract
We have developed a fully synthetic and multifunctional antibody-recruiting molecule (ARM) to guide natural antibodies already present in the blood stream against cancer cells without pre-immunization. Our ARM is composed of antibody and tumor binding modules (i.e., ABM and TBM) displaying clustered rhamnose and cyclo-RGD, respectively. By using a stepwise approach, we have first demonstrated the importance of multivalency for efficient recognition with naturel IgM and αv β3 integrin expressing M21 tumor cell line. Once covalently conjugated by click chemistry, we confirmed by flow cytometry and confocal microscopy that the recognition properties of both the ABM and TBM are conserved, and more importantly, that the resulting ARM promotes the formation of a ternary complex between natural IgM and cancer cells, which is required for the stimulation of the cytotoxic immune response in vivo. Due to the efficiency of the synthetic process, a larger diversity of heterovalent ligands could be easily explored by using the same multivalent approach and could open new perspectives in this field.
Collapse
Affiliation(s)
- Benjamin Liet
- DCM, UMR 5250Université Grenoble Alpes, CNRS38000GrenobleFrance
| | - Eugénie Laigre
- DCM, UMR 5250Université Grenoble Alpes, CNRS38000GrenobleFrance
| | - David Goyard
- DCM, UMR 5250Université Grenoble Alpes, CNRS38000GrenobleFrance
| | - Biagio Todaro
- DCM, UMR 5250Université Grenoble Alpes, CNRS38000GrenobleFrance
| | - Claire Tiertant
- DCM, UMR 5250Université Grenoble Alpes, CNRS38000GrenobleFrance
| | - Didier Boturyn
- DCM, UMR 5250Université Grenoble Alpes, CNRS38000GrenobleFrance
| | | | | |
Collapse
|
28
|
Motati DR, Uredi D, Watkins EB. The Discovery and Development of Oxalamide and Pyrrole Small Molecule Inhibitors of gp120 and HIV Entry - A Review. Curr Top Med Chem 2019; 19:1650-1675. [PMID: 31424369 DOI: 10.2174/1568026619666190717163959] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/14/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus type-1 (HIV-1) is the causative agent responsible for the acquired immunodeficiency syndrome (AIDS) pandemic. More than 60 million infections and 25 million deaths have occurred since AIDS was first identified in the early 1980s. Advances in available therapeutics, in particular combination antiretroviral therapy, have significantly improved the treatment of HIV infection and have facilitated the shift from high mortality and morbidity to that of a manageable chronic disease. Unfortunately, none of the currently available drugs are curative of HIV. To deal with the rapid emergence of drug resistance, off-target effects, and the overall difficulty of eradicating the virus, an urgent need exists to develop new drugs, especially against targets critically important for the HIV-1 life cycle. Viral entry, which involves the interaction of the surface envelope glycoprotein, gp120, with the cellular receptor, CD4, is the first step of HIV-1 infection. Gp120 has been validated as an attractive target for anti-HIV-1 drug design or novel HIV detection tools. Several small molecule gp120 antagonists are currently under investigation as potential entry inhibitors. Pyrrole, piperazine, triazole, pyrazolinone, oxalamide, and piperidine derivatives, among others, have been investigated as gp120 antagonist candidates. Herein, we discuss the current state of research with respect to the design, synthesis and biological evaluation of oxalamide derivatives and five-membered heterocycles, namely, the pyrrole-containing small molecule as inhibitors of gp120 and HIV entry.
Collapse
Affiliation(s)
- Damoder Reddy Motati
- Department of Pharmaceutical Sciences, Center for Pharmacometrics and Molecular Discovery, College of Pharmacy, Union University, Jackson, Tennessee 38305, United States
| | - Dilipkumar Uredi
- Department of Pharmaceutical Sciences, Center for Pharmacometrics and Molecular Discovery, College of Pharmacy, Union University, Jackson, Tennessee 38305, United States
| | - E Blake Watkins
- Department of Pharmaceutical Sciences, Center for Pharmacometrics and Molecular Discovery, College of Pharmacy, Union University, Jackson, Tennessee 38305, United States
| |
Collapse
|
29
|
Wu G, Zhao T, Kang D, Zhang J, Song Y, Namasivayam V, Kongsted J, Pannecouque C, De Clercq E, Poongavanam V, Liu X, Zhan P. Overview of Recent Strategic Advances in Medicinal Chemistry. J Med Chem 2019; 62:9375-9414. [PMID: 31050421 DOI: 10.1021/acs.jmedchem.9b00359] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introducing novel strategies, concepts, and technologies that speed up drug discovery and the drug development cycle is of great importance both in the highly competitive pharmaceutical industry as well as in academia. This Perspective aims to present a "big-picture" overview of recent strategic innovations in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Yuning Song
- Department of Clinical Pharmacy , Qilu Hospital of Shandong University , 250012 Ji'nan , China
| | - Vigneshwaran Namasivayam
- Pharmaceutical Institute, Pharmaceutical Chemistry II , University of Bonn , 53121 Bonn , Germany
| | - Jacob Kongsted
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Vasanthanathan Poongavanam
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| |
Collapse
|
30
|
Jiang X, Yu J, Zhou Z, Kongsted J, Song Y, Pannecouque C, De Clercq E, Kang D, Poongavanam V, Liu X, Zhan P. Molecular design opportunities presented by solvent‐exposed regions of target proteins. Med Res Rev 2019; 39:2194-2238. [PMID: 31002405 DOI: 10.1002/med.21581] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 03/09/2019] [Accepted: 03/16/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Xiangyi Jiang
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University Jinan Shandong People's Republic of China
| | - Ji Yu
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University Jinan Shandong People's Republic of China
| | - Zhongxia Zhou
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University Jinan Shandong People's Republic of China
| | - Jacob Kongsted
- Department of Physics, Chemistry and PharmacyUniversity of Southern Denmark Odense Denmark
| | - Yuning Song
- Department of Clinical PharmacyQilu Hospital of Shandong University Jinan China
| | - Christophe Pannecouque
- Rega Institute for Medical ResearchLaboratory of Virology and Chemotherapy Leuven Belgium
| | - Erik De Clercq
- Rega Institute for Medical ResearchLaboratory of Virology and Chemotherapy Leuven Belgium
| | - Dongwei Kang
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University Jinan Shandong People's Republic of China
| | | | - Xinyong Liu
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University Jinan Shandong People's Republic of China
| | - Peng Zhan
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University Jinan Shandong People's Republic of China
| |
Collapse
|
31
|
Feigman MS, Kim S, Pidgeon SE, Yu Y, Ongwae GM, Patel DS, Regen S, Im W, Pires MM. Synthetic Immunotherapeutics against Gram-negative Pathogens. Cell Chem Biol 2018; 25:1185-1194.e5. [PMID: 29983273 PMCID: PMC6195440 DOI: 10.1016/j.chembiol.2018.05.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/06/2018] [Accepted: 05/29/2018] [Indexed: 12/11/2022]
Abstract
While traditional drug discovery continues to be an important platform for the search of new antibiotics, alternative approaches should also be pursued to complement these efforts. We herein designed a class of molecules that decorate bacterial cell surfaces with the goal of re-engaging components of the immune system toward Escherichia coli and Pseudomonas aeruginosa. More specifically, conjugates were assembled using polymyxin B (an antibiotic that inherently attaches to the surface of Gram-negative pathogens) and antigenic epitopes that recruit antibodies found in human serum. We established that the spacer length played a significant role in hapten display within the bacterial cell surface, a result that was confirmed both experimentally and via molecular dynamics simulations. Most importantly, we demonstrated the specific killing of bacteria by our agent in the presence of human serum. By enlisting the immune system, these agents have the potential to pave the way for a potent antimicrobial modality.
Collapse
Affiliation(s)
| | - Seonghoon Kim
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Sean E Pidgeon
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | - Yuming Yu
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | | | - Dhilon S Patel
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Steven Regen
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | - Wonpil Im
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Marcos M Pires
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA.
| |
Collapse
|
32
|
Hossain MK, Vartak A, Karmakar P, Sucheck SJ, Wall KA. Augmenting Vaccine Immunogenicity through the Use of Natural Human Anti-rhamnose Antibodies. ACS Chem Biol 2018; 13:2130-2142. [PMID: 29916701 PMCID: PMC6103300 DOI: 10.1021/acschembio.8b00312] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Utilizing
natural antibodies to augment vaccine immunogenicity
is a promising approach toward cancer immunotherapy. Anti-rhamnose
(anti-Rha) antibodies are some of the most common natural anti-carbohydrate
antibodies present in human serum. Therefore, rhamnose can be utilized
as a targeting moiety for a rhamnose-containing vaccine to prepare
an effective vaccine formulation. It was shown previously that anti-Rha
antibody generated in mice binds effectively with Rha-conjugated vaccine
and is picked up by antigen presenting cells (APCs) through stimulatory
Fc receptors. This leads to the effective uptake and processing of
antigen and eventually presentation by major histocompatibility complex
(MHC) molecules. In this article, we show that natural human anti-Rha
antibodies can also be used in a similar mechanism and immunogenicity
can be enhanced by targeting Rha-conjugated antigens. In doing so,
we have purified human anti-Rha antibodies from human serum using
a rhamnose affinity column. In vitro, human anti-Rha
antibodies are shown to enhance the uptake of a model antigen, Rha-ovalbumin
(Rha-Ova), by APCs. In vivo, they improved the priming
of CD4+ T cells to Rha-Ova in comparison to non-anti-Rha human antibodies.
Additionally, increased priming of both CD4+ and CD8+ T cells toward
the cancer antigen MUC1-Tn was observed in mice that received human
anti-Rha antibodies prior to vaccination with a rhamnose-modified
MUC1-Tn cancer vaccine. The vaccine conjugate contained Pam3CysSK4, a Toll-like receptor (TLR) agonist linked via copper-free cycloaddition chemistry to a 20-amino-acid
glycopeptide derived from the tumor marker MUC-1 containing the tumor-associated
carbohydrate antigen α-N-acetyl galactosamine
(GalNAc). The primed CD8+ T cells released IFN-γ and killed
tumor cells. Therefore, we have confirmed that human anti-Rha antibodies
can be effectively utilized as a targeting moiety for making an effective
vaccine.
Collapse
Affiliation(s)
- Md Kamal Hossain
- Dept. of Medicinal and Biological Chemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Abhishek Vartak
- Dept. of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Partha Karmakar
- Dept. of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Steven J. Sucheck
- Dept. of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Katherine A. Wall
- Dept. of Medicinal and Biological Chemistry, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
33
|
Li S, Yu B, Wang J, Zheng Y, Zhang H, Walker MJ, Yuan Z, Zhu H, Zhang J, Wang PG, Wang B. Biomarker-Based Metabolic Labeling for Redirected and Enhanced Immune Response. ACS Chem Biol 2018; 13:1686-1694. [PMID: 29792670 DOI: 10.1021/acschembio.8b00350] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Installation of an antibody-recruiting moiety on the surface of disease-relevant cells can lead to the selective destruction of targets by the immune system. Such an approach can be an alternative strategy to traditional chemotherapeutics in cancer therapy and possibly other diseases. Herein we describe the development of a new strategy to selectively label targets with an antibody-recruiting moiety through its covalent and stable installation, complementing existing methods of employing reversible binding. This is achieved through selective delivery of 1,3,4- O-acetyl- N-azidoacetylmannosamine (Ac3ManNAz) to folate receptor-overexpressing cells using an Ac3ManNAz-folate conjugate via a cleavable linker. As such, Ac3ManNAz is converted to cell surface glycan bearing an azido group, which serves as an anchor to introduce l-rhamnose (Rha), a hapten, via a click reaction with aza-dibenzocyclooctyne (DBCO)-Rha. We tested this method in several cell lines including KB, HEK-293, and MCF7 and were able to demonstrate the following: 1) Rha can be selectively installed to the folate receptor overexpressing cell surface and 2) the Rha installed on the target surface can recruit anti-rhamnose (anti-Rha) antibodies, leading to the destruction of target cells via complement-dependent cytotoxicity (CDC) and antibody-dependent cellular phagocytosis (ADCP).
Collapse
Affiliation(s)
- Shanshan Li
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Bingchen Yu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jiajia Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Yueqin Zheng
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Huajie Zhang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Glycochemistry Glycobiology, Shandong University, Jinan, Shandong 250100, People’s Republic of China
| | - Margaret J. Walker
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - He Zhu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jun Zhang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Peng George Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
34
|
A Simple Platform for the Rapid Development of Antimicrobials. Sci Rep 2017; 7:17610. [PMID: 29242618 PMCID: PMC5730575 DOI: 10.1038/s41598-017-17941-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/29/2017] [Indexed: 11/09/2022] Open
Abstract
Recent infectious outbreaks highlight the need for platform technologies that can be quickly deployed to develop therapeutics needed to contain the outbreak. We present a simple concept for rapid development of new antimicrobials. The goal was to produce in as little as one week thousands of doses of an intervention for a new pathogen. We tested the feasibility of a system based on antimicrobial synbodies. The system involves creating an array of 100 peptides that have been selected for broad capability to bind and/or kill viruses and bacteria. The peptides are pre-screened for low cell toxicity prior to large scale synthesis. Any pathogen is then assayed on the chip to find peptides that bind or kill it. Peptides are combined in pairs as synbodies and further screened for activity and toxicity. The lead synbody can be quickly produced in large scale, with completion of the entire process in one week.
Collapse
|
35
|
Chirkin E, Muthusamy V, Mann P, Roemer T, Nantermet PG, Spiegel DA. Neutralization of Pathogenic Fungi with Small-Molecule Immunotherapeutics. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Egor Chirkin
- Department of Chemistry; Yale University; 225 Prospect Street New Haven CT 06511 USA
| | - Viswanathan Muthusamy
- Department of Chemistry; Yale University; 225 Prospect Street New Haven CT 06511 USA
| | - Paul Mann
- Merck & Co., Inc.; 2000 Galloping Hill Road Kenilworth NJ 07033 USA
| | - Terry Roemer
- Prokaryotics, Inc.; 1000 Morris Ave, STEM Bldg., Suite 5-13 Union NJ 07083 USA
| | | | - David A. Spiegel
- Department of Chemistry; Yale University; 225 Prospect Street New Haven CT 06511 USA
| |
Collapse
|
36
|
Chirkin E, Muthusamy V, Mann P, Roemer T, Nantermet PG, Spiegel DA. Neutralization of Pathogenic Fungi with Small-Molecule Immunotherapeutics. Angew Chem Int Ed Engl 2017; 56:13036-13040. [PMID: 28793176 DOI: 10.1002/anie.201707536] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/08/2017] [Indexed: 12/16/2022]
Abstract
Systemic fungal infections represent an important public health concern, and new antifungal agents are highly desirable. Herein, we describe the design, synthesis, and biological evaluation of a novel class of antifungal compounds called antibody-recruiting molecules targeting fungi (ARM-Fs). Our approach relies on the use of non-peptidic small molecules, which selectively bind fungal cells and recruit endogenous antibodies to their surfaces, resulting in immune-mediated clearance. Using the opportunistic fungal pathogen Candida albicans as a model, we identified a highly specific bifunctional molecule able to mediate the engulfment and phagocytosis of C. albicans cells by human immune cells in biologically relevant functional assays. This work represents a novel therapeutic approach to treating fungal illness with significant potential to complement and/or combine with existing treatment strategies.
Collapse
Affiliation(s)
- Egor Chirkin
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT, 06511, USA
| | - Viswanathan Muthusamy
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT, 06511, USA
| | - Paul Mann
- Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Terry Roemer
- Prokaryotics, Inc., 1000 Morris Ave, STEM Bldg., Suite 5-13, Union, NJ, 07083, USA
| | | | - David A Spiegel
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT, 06511, USA
| |
Collapse
|
37
|
Light Guided In-vivo Activation of Innate Immune Cells with Photocaged TLR 2/6 Agonist. Sci Rep 2017; 7:8074. [PMID: 28808328 PMCID: PMC5556111 DOI: 10.1038/s41598-017-08520-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/10/2017] [Indexed: 11/09/2022] Open
Abstract
The complexity of the immune system creates challenges in exploring its importance and robustness. To date, there have been few techniques developed to manipulate individual components of the immune system in an in vivo environment. Here we show a light-based dendritic cell (DC) activation allowing spatial and temporal control of immune activation in vivo. Additionally, we show time dependent changes in RNA profiles of the draining lymph node, suggesting a change in cell profile following DC migration and indicating that the cells migrating have been activated towards antigen presentation.
Collapse
|
38
|
Bruce VJ, Ta AN, McNaughton BR. Minimalist Antibodies and Mimetics: An Update and Recent Applications. Chembiochem 2016; 17:1892-1899. [DOI: 10.1002/cbic.201600303] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Virginia J. Bruce
- Department of Chemistry; Colorado State University; Fort Collins CO 80523 USA
| | - Angeline N. Ta
- Department of Chemistry; Colorado State University; Fort Collins CO 80523 USA
| | - Brian R. McNaughton
- Department of Chemistry; Colorado State University; Fort Collins CO 80523 USA
- Department of Biochemistry and Molecular Biology; Colorado State University; Fort Collins CO 80523 USA
| |
Collapse
|
39
|
Gao P, Sun L, Zhou J, Li X, Zhan P, Liu X. Discovery of novel anti-HIV agents via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry-based approach. Expert Opin Drug Discov 2016; 11:857-71. [PMID: 27400283 DOI: 10.1080/17460441.2016.1210125] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION In recent years, a variety of new synthetic methodologies and concepts have been proposed in the search for new pharmaceutical lead structures and optimization. Notably, the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry approach has drawn great attention and has become a powerful tool for the generation of privileged medicinal skeletons in the discovery of anti-HIV agents. This is due to the high degree of reliability, complete specificity (chemoselectivity and regioselectivity), mild conditions, and the biocompatibility of the reactants. AREAS COVERED Herein, the authors describe the progress thus far on the discovery of novel anti-HIV agents via the CuAAC click chemistry-based approach. EXPERT OPINION CuAAC click chemistry is a proven protocol for synthesizing triazole products which could serve as basic pharmacophores, act as replacements of traditional scaffold or substituent modification, be a linker of dual-target or dual-site inhibitors and more for the discovery of novel anti-HIV agents. What's more, it also provides convenience and feasibility for dynamic combinatorial chemistry and in situ screening. It is envisioned that click chemistry will draw more attention and make more contributions in anti-HIV drug discovery in the future.
Collapse
Affiliation(s)
- Ping Gao
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| | - Lin Sun
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| | - Junsu Zhou
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| | - Xiao Li
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| | - Peng Zhan
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| | - Xinyong Liu
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| |
Collapse
|
40
|
Lin B, Wu X, Zhao H, Tian Y, Han J, Liu J, Han S. Redirecting immunity via covalently incorporated immunogenic sialic acid on the tumor cell surface. Chem Sci 2016; 7:3737-3741. [PMID: 29997860 PMCID: PMC6008587 DOI: 10.1039/c5sc04133c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 02/23/2016] [Indexed: 12/17/2022] Open
Abstract
Techniques eliciting anti-tumor immunity are of interest for immunotherapy. We herein report the covalent incorporation of a non-self immunogen into the tumor glycocalyx by metabolic oligosaccharide engineering with 2,4-dinitrophenylated sialic acid (DNPSia). This enables marked suppression of pulmonary metastasis and subcutaneous tumor growth of B16F10 melanoma cells in mice preimmunized to produce anti-DNP antibodies. Located on the exterior glycocalyx, DNPSia is well-positioned to recruit antibodies. Given the high levels of natural anti-DNP antibodies in humans and ubiquitous sialylation across many cancers, DNPSia offers a simplified route to redirect immunity against diverse tumors without recourse to preimmunization.
Collapse
Affiliation(s)
- Bijuan Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces , Department of Chemical Biology , College of Chemistry and Chemical Engineering , The Key Laboratory for Chemical Biology of Fujian Province , The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network , Xiamen University , Xiamen , 361005 , China . ; Tel: +86-0592-2181728
| | - Xuanjun Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces , Department of Chemical Biology , College of Chemistry and Chemical Engineering , The Key Laboratory for Chemical Biology of Fujian Province , The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network , Xiamen University , Xiamen , 361005 , China . ; Tel: +86-0592-2181728
| | - Hu Zhao
- State Key Laboratory for Physical Chemistry of Solid Surfaces , Department of Chemical Biology , College of Chemistry and Chemical Engineering , The Key Laboratory for Chemical Biology of Fujian Province , The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network , Xiamen University , Xiamen , 361005 , China . ; Tel: +86-0592-2181728
| | - Yunpeng Tian
- State Key Laboratory for Physical Chemistry of Solid Surfaces , Department of Chemical Biology , College of Chemistry and Chemical Engineering , The Key Laboratory for Chemical Biology of Fujian Province , The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network , Xiamen University , Xiamen , 361005 , China . ; Tel: +86-0592-2181728
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology , Innovation Center for Cell Signaling Network , School of Life Sciences , Xiamen University , Xiamen , 361005 , China
| | - Jian Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces , Department of Chemical Biology , College of Chemistry and Chemical Engineering , The Key Laboratory for Chemical Biology of Fujian Province , The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network , Xiamen University , Xiamen , 361005 , China . ; Tel: +86-0592-2181728
| | - Shoufa Han
- State Key Laboratory for Physical Chemistry of Solid Surfaces , Department of Chemical Biology , College of Chemistry and Chemical Engineering , The Key Laboratory for Chemical Biology of Fujian Province , The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network , Xiamen University , Xiamen , 361005 , China . ; Tel: +86-0592-2181728
| |
Collapse
|
41
|
Fura JM, Pidgeon SE, Birabaharan M, Pires MM. Dipeptide-Based Metabolic Labeling of Bacterial Cells for Endogenous Antibody Recruitment. ACS Infect Dis 2016; 2:302-309. [PMID: 27294199 PMCID: PMC4898660 DOI: 10.1021/acsinfecdis.6b00007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Indexed: 02/06/2023]
Abstract
![]()
The number of antibiotic-resistant
bacterial infections has increased
dramatically over the past decade. To combat these pathogens, novel
antimicrobial strategies must be explored and developed. We previously
reported a strategy based on hapten-modified cell wall analogues to
induce recruitment of endogenous antibodies to bacterial cell surfaces.
Cell surface remodeling using unnatural single d-amino acid
cell wall analogues led to modification at the C-terminus of the peptidoglycan
stem peptide. During peptidoglycan processing, installed hapten-displaying
amino acids can be subsequently removed by cell wall enzymes. Herein,
we disclose a two-step dipeptide peptidoglycan remodeling strategy
aimed at introducing haptens at an alternative site within the stem
peptide to improve retention and diminish removal by cell wall enzymes.
Through this redesigned strategy, we determined size constraints of
peptidoglycan remodeling and applied these constraints to attain hapten–linker
conjugates that produced high levels of antibody recruitment to bacterial
cell surfaces.
Collapse
Affiliation(s)
- Jonathan M. Fura
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Sean E. Pidgeon
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Morgan Birabaharan
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Marcos M. Pires
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
42
|
Gray MA, Tao RN, DePorter SM, Spiegel DA, McNaughton BR. A Nanobody Activation Immunotherapeutic that Selectively Destroys HER2-Positive Breast Cancer Cells. Chembiochem 2016; 17:155-8. [PMID: 26556305 PMCID: PMC5199233 DOI: 10.1002/cbic.201500591] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Indexed: 01/18/2023]
Abstract
We report a rationally designed nanobody activation immunotherapeutic that selectively redirects anti-dinitrophenyl (anti-DNP) antibodies to the surface of HER2-positive breast cancer cells, resulting in their targeted destruction by antibody-dependent cellular cytotoxicity. As nanobodies are relatively easy to express, stable, can be humanized, and can be evolved to potently and selectively bind virtually any disease-relevant cell surface receptor, we anticipate broad utility of this therapeutic strategy.
Collapse
Affiliation(s)
- Melissa A Gray
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ran N Tao
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT, 06511, USA
| | - Sandra M DePorter
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - David A Spiegel
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT, 06511, USA
| | - Brian R McNaughton
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA.
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CT, 80523, USA.
| |
Collapse
|
43
|
Li Y, Chen X, Wang B, Liu G, Tang Y, Miao P. DNA tetrahedron and star trigon nanostructures for target recycling detection of nucleic acid. Analyst 2016; 141:3239-41. [DOI: 10.1039/c6an00762g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We develop an electrochemical method for the target recycling detection of nuclei acid by constructing DNA tetrahedron and star trigon nanostructures.
Collapse
Affiliation(s)
- Yueran Li
- CAS Key Lab of Bio-Medical Diagnostics
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou
- China
| | - Xifeng Chen
- CAS Key Lab of Bio-Medical Diagnostics
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou
- China
| | - Bidou Wang
- CAS Key Lab of Bio-Medical Diagnostics
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou
- China
| | - Guangxing Liu
- CAS Key Lab of Bio-Medical Diagnostics
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou
- China
| | - Yuguo Tang
- CAS Key Lab of Bio-Medical Diagnostics
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou
- China
| | - Peng Miao
- CAS Key Lab of Bio-Medical Diagnostics
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou
- China
| |
Collapse
|
44
|
Zhan P, Pannecouque C, De Clercq E, Liu X. Anti-HIV Drug Discovery and Development: Current Innovations and Future Trends. J Med Chem 2015; 59:2849-78. [PMID: 26509831 DOI: 10.1021/acs.jmedchem.5b00497] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The early effectiveness of combinatorial antiretroviral therapy (cART) in the treatment of HIV infection has been compromised to some extent by rapid development of multidrug-resistant HIV strains, poor bioavailability, and cumulative toxicities, and so there is a need for alternative strategies of antiretroviral drug discovery and additional therapeutic agents with novel action modes or targets. From this perspective, we first review current strategies of antiretroviral drug discovery and optimization, with the aid of selected examples from the recent literature. We highlight the development of phosphate ester-based prodrugs as a means to improve the aqueous solubility of HIV inhibitors, and the introduction of the substrate envelope hypothesis as a new approach for overcoming HIV drug resistance. Finally, we discuss future directions for research, including opportunities for exploitation of novel antiretroviral targets, and the strategy of activation of latent HIV reservoirs as a means to eradicate the virus.
Collapse
Affiliation(s)
- Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44, West Culture Road, 250012, Jinan, Shandong, P. R. China
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Katholieke Universiteit Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44, West Culture Road, 250012, Jinan, Shandong, P. R. China
| |
Collapse
|
45
|
An Y, Bloom JWG, Wheeler SE. Quantifying the π-Stacking Interactions in Nitroarene Binding Sites of Proteins. J Phys Chem B 2015; 119:14441-50. [DOI: 10.1021/acs.jpcb.5b08126] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yi An
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Jacob W. G. Bloom
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Steven E. Wheeler
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| |
Collapse
|
46
|
Wang Y, Bai X, Wen W, Zhang X, Wang S. Ultrasensitive Electrochemical Biosensor for HIV Gene Detection Based on Graphene Stabilized Gold Nanoclusters with Exonuclease Amplification. ACS APPLIED MATERIALS & INTERFACES 2015; 7:18872-9. [PMID: 26252625 DOI: 10.1021/acsami.5b05857] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Because human immunodeficiency virus (HIV) has been one of the most terrible viruses in recent decades, early diagnosis of the HIV gene is of great importance for all scientists around the world. In our work, we developed a novel electrochemical biosensor based on one-step ultrasonic synthesized graphene stabilized gold nanocluster (GR/AuNC) modified glassy carbon electrode (GCE) with an exonuclease III (Exo III)-assisted target recycling amplification strategy for the detection of HIV DNA. It is the first time that GR/AuNCs have been used as biosensor platform and aptamer with cytosine-rich base set as capture probe to construct the biosensor. With the combination of cytosine-rich capture probe, good conductivity and high surfaces of GR/AuNCs, and Exo III-assisted target recycling amplification, we realized high sensitivity and good selectivity detection of target HIV DNA with a detection limit of 30 aM (S/N = 3). Furthermore, the proposed biosensor has a promising potential application for target detection in human serum analysis.
Collapse
Affiliation(s)
- Yijia Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University , Wuhan 430062, People's Republic of China
| | - Xiaoning Bai
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University , Wuhan 430062, People's Republic of China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University , Wuhan 430062, People's Republic of China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University , Wuhan 430062, People's Republic of China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University , Wuhan 430062, People's Republic of China
| |
Collapse
|
47
|
Swee LK, Lourido S, Bell GW, Ingram JR, Ploegh HL. One-step enzymatic modification of the cell surface redirects cellular cytotoxicity and parasite tropism. ACS Chem Biol 2015; 10:460-5. [PMID: 25360987 PMCID: PMC4478597 DOI: 10.1021/cb500462t] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Surface display of engineered proteins
has many useful applications.
The expression of a synthetic chimeric antigen receptor composed of
an extracellular tumor-specific antibody fragment linked to a cytosolic
activating motif in engineered T cells is now considered a viable
approach for the treatment of leukemias. The risk of de novo tumor development, inherent in the transfer of genetically engineered
cells, calls for alternative approaches for the functionalization
of the lymphocyte plasma membrane. We demonstrate the conjugation
of LPXTG-tagged probes and LPXTG-bearing proteins to endogenous acceptors
at the plasma membrane in a single step using sortase A. We successfully
conjugated biotin probes not only to mouse hematopoietic cells but
also to yeast cells, 293T cells, and Toxoplasma gondii. Installation of single domain antibodies on activated CD8 T cell
redirects cell-specific cytotoxicity to cells that bear the relevant
antigen. Likewise, conjugation of Toxoplasma gondii with single domain antibodies targets the pathogen to cells that
express the antigen recognized by these single domain antibodies.
This simple and robust enzymatic approach enables engineering of the
plasma membrane for research or therapy under physiological reaction
conditions that ensure the viability of the modified cells.
Collapse
Affiliation(s)
- Lee Kim Swee
- Whitehead Institute
for Biomedical Research, 9 Cambridge
Center, Cambridge, Massachusetts 02142, United States
| | - Sebastian Lourido
- Whitehead Institute
for Biomedical Research, 9 Cambridge
Center, Cambridge, Massachusetts 02142, United States
| | - George W. Bell
- Whitehead Institute
for Biomedical Research, 9 Cambridge
Center, Cambridge, Massachusetts 02142, United States
| | - Jessica R. Ingram
- Whitehead Institute
for Biomedical Research, 9 Cambridge
Center, Cambridge, Massachusetts 02142, United States
| | - Hidde L. Ploegh
- Whitehead Institute
for Biomedical Research, 9 Cambridge
Center, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
48
|
Lecerf M, Scheel T, Pashov AD, Jarossay A, Ohayon D, Planchais C, Mesnage S, Berek C, Kaveri SV, Lacroix-Desmazes S, Dimitrov JD. Prevalence and gene characteristics of antibodies with cofactor-induced HIV-1 specificity. J Biol Chem 2015; 290:5203-5213. [PMID: 25564611 DOI: 10.1074/jbc.m114.618124] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The healthy immune repertoire contains a fraction of antibodies that bind to various biologically relevant cofactors, including heme. Interaction of heme with some antibodies results in induction of new antigen binding specificities and acquisition of binding polyreactivity. In vivo, extracellular heme is released as a result of hemolysis or tissue damage; hence the post-translational acquisition of novel antigen specificities might play an important role in the diversification of the immunoglobulin repertoire and host defense. Here, we demonstrate that seronegative immune repertoires contain antibodies that gain reactivity to HIV-1 gp120 upon exposure to heme. Furthermore, a panel of human recombinant antibodies was cloned from different B cell subpopulations, and the prevalence of antibodies with cofactor-induced specificity for gp120 was determined. Our data reveal that upon exposure to heme, ∼24% of antibodies acquired binding specificity for divergent strains of HIV-1 gp120. Sequence analyses reveal that heme-sensitive antibodies do not differ in their repertoire of variable region genes and in most of the molecular features of their antigen-binding sites from antibodies that do not change their antigen binding specificity. However, antibodies with cofactor-induced gp120 specificity possess significantly lower numbers of somatic mutations in their variable region genes. This study contributes to the understanding of the significance of cofactor-binding antibodies in immunoglobulin repertoires and of the influence that the tissue microenvironment might have in shaping adaptive immune responses.
Collapse
Affiliation(s)
- Maxime Lecerf
- From the Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, UMR S 1138, F-75006 Paris, France,; the Université Paris Descartes, UMR S 1138, F-75006 Paris, France,; INSERM U1138, F-75006 Paris, France
| | - Tobias Scheel
- the Deutsches Rheuma-Forschungszentrum, Institut der Leibniz-Gemeinschaft, 10117 Berlin, Germany
| | - Anastas D Pashov
- the Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria, and
| | - Annaelle Jarossay
- From the Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, UMR S 1138, F-75006 Paris, France,; the Université Paris Descartes, UMR S 1138, F-75006 Paris, France,; INSERM U1138, F-75006 Paris, France
| | - Delphine Ohayon
- From the Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, UMR S 1138, F-75006 Paris, France,; the Université Paris Descartes, UMR S 1138, F-75006 Paris, France,; INSERM U1138, F-75006 Paris, France
| | - Cyril Planchais
- From the Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, UMR S 1138, F-75006 Paris, France,; the Université Paris Descartes, UMR S 1138, F-75006 Paris, France,; INSERM U1138, F-75006 Paris, France
| | - Stephane Mesnage
- the Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Claudia Berek
- the Deutsches Rheuma-Forschungszentrum, Institut der Leibniz-Gemeinschaft, 10117 Berlin, Germany
| | - Srinivas V Kaveri
- From the Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, UMR S 1138, F-75006 Paris, France,; the Université Paris Descartes, UMR S 1138, F-75006 Paris, France,; INSERM U1138, F-75006 Paris, France
| | - Sébastien Lacroix-Desmazes
- From the Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, UMR S 1138, F-75006 Paris, France,; the Université Paris Descartes, UMR S 1138, F-75006 Paris, France,; INSERM U1138, F-75006 Paris, France
| | - Jordan D Dimitrov
- From the Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, UMR S 1138, F-75006 Paris, France,; the Université Paris Descartes, UMR S 1138, F-75006 Paris, France,; INSERM U1138, F-75006 Paris, France,.
| |
Collapse
|
49
|
McEnaney PJ, Fitzgerald KJ, Zhang AX, Douglass EF, Shan W, Balog A, Kolesnikova MD, Spiegel DA. Chemically synthesized molecules with the targeting and effector functions of antibodies. J Am Chem Soc 2014; 136:18034-43. [PMID: 25514603 PMCID: PMC4291750 DOI: 10.1021/ja509513c] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Indexed: 12/21/2022]
Abstract
This article reports the design, synthesis, and evaluation of a novel class of molecules of intermediate size (approximately 7000 Da), which possess both the targeting and effector functions of antibodies. These compounds—called synthetic antibody mimics targeting prostate cancer (SyAM-Ps)—bind simultaneously to prostate-specific membrane antigen and Fc gamma receptor I, thus eliciting highly selective cancer cell phagocytosis. SyAMs have the potential to combine the advantages of both small-molecule and biologic therapies, and may address many drawbacks associated with available treatments for cancer and other diseases.
Collapse
Affiliation(s)
- Patrick J McEnaney
- Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06511, United States
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Newton MA, Di Michiel M, Ferri D, Fernàndez-Garcia M, Beale AM, Jacques SDM, Chupas PJ, Chapman KW. Catalytic Adventures in Space and Time Using High Energy X-rays. CATALYSIS SURVEYS FROM ASIA 2014. [DOI: 10.1007/s10563-014-9173-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|