1
|
Wu FJ, Rieder PS, Abiko LA, Rößler P, Gossert AD, Häussinger D, Grzesiek S. Nanobody GPS by PCS: An Efficient New NMR Analysis Method for G Protein Coupled Receptors and Other Large Proteins. J Am Chem Soc 2022; 144:21728-21740. [DOI: 10.1021/jacs.2c09692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Feng-Jie Wu
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Pascal S. Rieder
- Department of Chemistry, University of Basel, CH-4056 Basel, Switzerland
| | | | - Philip Rößler
- Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Daniel Häussinger
- Department of Chemistry, University of Basel, CH-4056 Basel, Switzerland
| | | |
Collapse
|
2
|
Mühlberg L, Alarcin T, Maass T, Creutznacher R, Küchler R, Mallagaray A. Ligand-induced structural transitions combined with paramagnetic ions facilitate unambiguous NMR assignments of methyl groups in large proteins. JOURNAL OF BIOMOLECULAR NMR 2022; 76:59-74. [PMID: 35397749 PMCID: PMC9247001 DOI: 10.1007/s10858-022-00394-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
NMR spectroscopy allows the study of biomolecules in close-to-native conditions. Structural information can be inferred from the NMR spectra when an assignment is available. Protein assignment is usually a time-consuming task, being specially challenging in the case of large, supramolecular systems. Here, we present an extension of existing state-of-the-art strategies for methyl group assignment that partially overcomes signal overlapping and other difficulties associated to isolated methyl groups. Our approach exploits the ability of proteins to populate two or more conformational states, allowing for unique NOE restraints in each protein conformer. The method is compatible with automated assignment algorithms, granting assignments beyond the limits of a single protein state. The approach also benefits from long-range structural restraints obtained from metal-induced pseudocontact shifts (PCS) and paramagnetic relaxation enhancements (PREs). We illustrate the method with the complete assignment of the 199 methyl groups of a MILproSVproSAT methyl-labeled sample of the UDP-glucose pyrophosphorylase enzyme from Leishmania major (LmUGP). Protozoan parasites of the genus Leishmania causes Leishmaniasis, a neglected disease affecting over 12 million people worldwide. LmUGP is responsible for the de novo biosynthesis of uridine diphosphate-glucose, a precursor in the biosynthesis of the dense surface glycocalyx involved in parasite survival and infectivity. NMR experiments with LmUGP and related enzymes have the potential to unravel new insights in the host resistance mechanisms used by Leishmania major. Our efforts will help in the development of selective and efficient drugs against Leishmania.
Collapse
Affiliation(s)
- Lars Mühlberg
- Institute for Chemistry and Metabolomics, Centre for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Tuncay Alarcin
- Institute for Chemistry and Metabolomics, Centre for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Thorben Maass
- Institute for Chemistry and Metabolomics, Centre for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Robert Creutznacher
- Institute for Chemistry and Metabolomics, Centre for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Richard Küchler
- Institute for Chemistry and Metabolomics, Centre for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Alvaro Mallagaray
- Institute for Chemistry and Metabolomics, Centre for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| |
Collapse
|
3
|
Maass T, Westermann LT, Creutznacher R, Mallagaray A, Dülfer J, Uetrecht C, Peters T. Assignment of Ala, Ile, Leu proS, Met, and Val proS methyl groups of the protruding domain of murine norovirus capsid protein VP1 using methyl-methyl NOEs, site directed mutagenesis, and pseudocontact shifts. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:97-107. [PMID: 35050443 PMCID: PMC9068638 DOI: 10.1007/s12104-022-10066-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/12/2022] [Indexed: 05/14/2023]
Abstract
The protruding domain (P-domain) of the murine norovirus (MNV) capsid protein VP1 is essential for infection. It mediates receptor binding and attachment of neutralizing antibodies. Protein NMR studies into interactions of the P-domain with ligands will yield insights not easily available from other biophysical techniques and will extend our understanding of MNV attachment to host cells. Such studies require at least partial NMR assignments. Here, we describe the assignment of about 70% of the Ala, Ile, LeuproS, Met, and ValproS methyl groups. An unfavorable distribution of methyl group resonance signals prevents complete assignment based exclusively on 4D HMQC-NOESY-HMQC experiments, yielding assignment of only 55 out of 100 methyl groups. Therefore, we created point mutants and measured pseudo contact shifts, extending and validating assignments based on methyl-methyl NOEs. Of note, the P-domains are present in two different forms caused by an approximate equal distribution of trans- and cis-configured proline residues in position 361.
Collapse
Affiliation(s)
- Thorben Maass
- Center of Structural and Cell Biology in Medicine (CSCM), Institute of Chemistry and Metabolomics, University of Luebeck, Ratzeburger Allee 160, 23562, Luebeck, Germany
| | - Leon Torben Westermann
- Center of Structural and Cell Biology in Medicine (CSCM), Institute of Chemistry and Metabolomics, University of Luebeck, Ratzeburger Allee 160, 23562, Luebeck, Germany
| | - Robert Creutznacher
- Center of Structural and Cell Biology in Medicine (CSCM), Institute of Chemistry and Metabolomics, University of Luebeck, Ratzeburger Allee 160, 23562, Luebeck, Germany
| | - Alvaro Mallagaray
- Center of Structural and Cell Biology in Medicine (CSCM), Institute of Chemistry and Metabolomics, University of Luebeck, Ratzeburger Allee 160, 23562, Luebeck, Germany
| | - Jasmin Dülfer
- Leibniz Institute for Experimental Virology (HPI), 20251, Hamburg, Germany
| | - Charlotte Uetrecht
- Leibniz Institute for Experimental Virology (HPI), 20251, Hamburg, Germany
- School of Life Sciences, University of Siegen, 57076 Siegen & Centre for Structural Systems Biology (CSSB), & Deutsches Elektronensynchrotron (DESY), 22607 Hamburg & European XFEL GmbH, 22869, Schenefeld, Germany
| | - Thomas Peters
- Center of Structural and Cell Biology in Medicine (CSCM), Institute of Chemistry and Metabolomics, University of Luebeck, Ratzeburger Allee 160, 23562, Luebeck, Germany.
| |
Collapse
|
4
|
Müntener T, Joss D, Häussinger D, Hiller S. Pseudocontact Shifts in Biomolecular NMR Spectroscopy. Chem Rev 2022; 122:9422-9467. [PMID: 35005884 DOI: 10.1021/acs.chemrev.1c00796] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Paramagnetic centers in biomolecules, such as specific metal ions that are bound to a protein, affect the nuclei in their surrounding in various ways. One of these effects is the pseudocontact shift (PCS), which leads to strong chemical shift perturbations of nuclear spins, with a remarkably long range of 50 Å and beyond. The PCS in solution NMR is an effect originating from the anisotropic part of the dipole-dipole interaction between the magnetic momentum of unpaired electrons and nuclear spins. The PCS contains spatial information that can be exploited in multiple ways to characterize structure, function, and dynamics of biomacromolecules. It can be used to refine structures, magnify effects of dynamics, help resonance assignments, allows for an intermolecular positioning system, and gives structural information in sensitivity-limited situations where all other methods fail. Here, we review applications of the PCS in biomolecular solution NMR spectroscopy, starting from early works on natural metalloproteins, following the development of non-natural tags to chelate and attach lanthanoid ions to any biomolecular target to advanced applications on large biomolecular complexes and inside living cells. We thus hope to not only highlight past applications but also shed light on the tremendous potential the PCS has in structural biology.
Collapse
Affiliation(s)
- Thomas Müntener
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Daniel Joss
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| |
Collapse
|
5
|
Müntener T, Böhm R, Atz K, Häussinger D, Hiller S. NMR pseudocontact shifts in a symmetric protein homotrimer. JOURNAL OF BIOMOLECULAR NMR 2020; 74:413-419. [PMID: 32621004 PMCID: PMC7508745 DOI: 10.1007/s10858-020-00329-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
NMR pseudocontact shifts are a valuable tool for structural and functional studies of proteins. Protein multimers mediate key functional roles in biology, but methods for their study by pseudocontact shifts are so far not available. Paramagnetic tags attached to identical subunits in multimeric proteins cause a combined pseudocontact shift that cannot be described by the standard single-point model. Here, we report pseudocontact shifts generated simultaneously by three paramagnetic Tm-M7PyThiazole-DOTA tags to the trimeric molecular chaperone Skp and provide an approach for the analysis of this and related symmetric systems. The pseudocontact shifts were described by a "three-point" model, in which positions and parameters of the three paramagnetic tags were fitted. A good correlation between experimental data and predicted values was found, validating the approach. The study establishes that pseudocontact shifts can readily be applied to multimeric proteins, offering new perspectives for studies of large protein complexes by paramagnetic NMR spectroscopy.
Collapse
Affiliation(s)
- Thomas Müntener
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland
| | - Raphael Böhm
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland
| | - Kenneth Atz
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland.
| |
Collapse
|
6
|
Pritišanac I, Alderson TR, Güntert P. Automated assignment of methyl NMR spectra from large proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 118-119:54-73. [PMID: 32883449 DOI: 10.1016/j.pnmrs.2020.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 05/05/2023]
Abstract
As structural biology trends towards larger and more complex biomolecular targets, a detailed understanding of their interactions and underlying structures and dynamics is required. The development of methyl-TROSY has enabled NMR spectroscopy to provide atomic-resolution insight into the mechanisms of large molecular assemblies in solution. However, the applicability of methyl-TROSY has been hindered by the laborious and time-consuming resonance assignment process, typically performed with domain fragmentation, site-directed mutagenesis, and analysis of NOE data in the context of a crystal structure. In response, several structure-based automatic methyl assignment strategies have been developed over the past decade. Here, we present a comprehensive analysis of all available methods and compare their input data requirements, algorithmic strategies, and reported performance. In general, the methods fall into two categories: those that primarily rely on inter-methyl NOEs, and those that utilize methyl PRE- and PCS-based restraints. We discuss their advantages and limitations, and highlight the potential benefits from standardizing and combining different methods.
Collapse
Affiliation(s)
- Iva Pritišanac
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - T Reid Alderson
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Güntert
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany; Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland; Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
7
|
Müller-Hermes C, Creutznacher R, Mallagaray A. Complete assignment of Ala, Ile, Leu ProS, Met and Val ProS methyl groups of the protruding domain from human norovirus GII.4 Saga. BIOMOLECULAR NMR ASSIGNMENTS 2020; 14:123-130. [PMID: 31993958 PMCID: PMC7069894 DOI: 10.1007/s12104-020-09932-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/16/2020] [Indexed: 05/05/2023]
Abstract
Attachment of human noroviruses to histo blood group antigens (HBGAs) is thought to be essential for infection, although how this binding event promotes infection is unknown. Recent studies have shown that 60% of all GII.4 epidemic strains may undergo a spontaneous post-translational modification (PTM) in an amino acid located adjacent to the binding pocket for HBGAs. This transformation proceeds with an estimated half-life of 1-2 days under physiological conditions, dramatically affecting HBGA recognition. The surface-exposed position of this PTM and its sequence conservation suggests a relevant role in immune escape and host-cell recognition. As a first step towards the understanding of the biological implications of this PTM at atomic resolution, we report the complete assignment of methyl resonances of a MILProSVProSA methyl-labeled sample of a 72 kDa protruding domain from a GII.4 Saga human norovirus strain. Assignments were obtained from methyl-methyl NOESY experiments combined with site-directed mutagenesis and automated assignment. This data provides the basis for a detailed characterization of the PTM-driven modulation of immune recognition in human norovirus on a molecular level.
Collapse
Affiliation(s)
- Christoph Müller-Hermes
- Center of Structural and Cell Biology in Medicine (CSCM), Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Robert Creutznacher
- Center of Structural and Cell Biology in Medicine (CSCM), Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Alvaro Mallagaray
- Center of Structural and Cell Biology in Medicine (CSCM), Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| |
Collapse
|
8
|
Schütz S, Sprangers R. Methyl TROSY spectroscopy: A versatile NMR approach to study challenging biological systems. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 116:56-84. [PMID: 32130959 DOI: 10.1016/j.pnmrs.2019.09.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/09/2019] [Accepted: 09/25/2019] [Indexed: 05/21/2023]
Abstract
A major goal in structural biology is to unravel how molecular machines function in detail. To that end, solution-state NMR spectroscopy is ideally suited as it is able to study biological assemblies in a near natural environment. Based on methyl TROSY methods, it is now possible to record high-quality data on complexes that are far over 100 kDa in molecular weight. In this review, we discuss the theoretical background of methyl TROSY spectroscopy, the information that can be extracted from methyl TROSY spectra and approaches that can be used to assign methyl resonances in large complexes. In addition, we touch upon insights that have been obtained for a number of challenging biological systems, including the 20S proteasome, the RNA exosome, molecular chaperones and G-protein-coupled receptors. We anticipate that methyl TROSY methods will be increasingly important in modern structural biology approaches, where information regarding static structures is complemented with insights into conformational changes and dynamic intermolecular interactions.
Collapse
Affiliation(s)
- Stefan Schütz
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Remco Sprangers
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany.
| |
Collapse
|
9
|
Whitaker AM, Naik MT, Mosser RE, Reinhart GD. Propagation of the Allosteric Signal in Phosphofructokinase from Bacillus stearothermophilus Examined by Methyl-Transverse Relaxation-Optimized Spectroscopy Nuclear Magnetic Resonance. Biochemistry 2019; 58:5294-5304. [PMID: 31478644 PMCID: PMC9924234 DOI: 10.1021/acs.biochem.9b00229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Phosphofructokinase from Bacillus stearothermophilus (BsPFK) is a 136 kDa homotetromeric enzyme. Binding of the substrate, fructose 6-phosphate (Fru-6-P), is allosterically regulated by the K-type inhibitor phosphoenolpyruvate (PEP). The allosteric coupling between the substrate and inhibitor is quantified by a standard coupling free energy that defines an equilibrium with the Fru-6-P-bound and PEP-bound complexes on one side and the apo form and ternary complex on the other. Methyl-transverse relaxation-optimized spectroscopy (Me-TROSY) nuclear magnetic resonance was employed to gain structural information about BsPFK in all four states of ligation relevant to the allosteric coupling. BsPFK was uniformly labeled with 15N and 2H and specifically labeled with δ-[13CH3]-isoleucine utilizing an isotopically labeled α-keto acid isoleucine precursor. Me-TROSY experiments were conducted on all four ligation states, and all 30 isoleucines, which are well dispersed throughout each subunit of the enzyme, are well-resolved in chemical shift correlation maps of 13C and 1H. Assignments for 17 isoleucines were determined through three-dimensional HMQC-NOESY experiments with [U-15N,2H];Ileδ1-[13CH3]-BsPFK and complementary HNCA and HNCOCA experiments with [U-2H,15N,13C]-BsPFK. The assignments allowed for the mapping of resonances representing isoleucine residues to a previously determined X-ray crystallography structure. This analysis, performed for all four states of ligation, has allowed specific regions of the enzyme influenced by the binding of allosteric ligands and those involved in the propagation of the allosteric effect to be identified and distinguished from one another.
Collapse
Affiliation(s)
| | | | | | - Gregory D. Reinhart
- Corresponding Author Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128. . Phone: (979) 862-2263
| |
Collapse
|
10
|
Pritišanac I, Würz JM, Alderson TR, Güntert P. Automatic structure-based NMR methyl resonance assignment in large proteins. Nat Commun 2019; 10:4922. [PMID: 31664028 PMCID: PMC6820720 DOI: 10.1038/s41467-019-12837-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/02/2019] [Indexed: 11/10/2022] Open
Abstract
Isotopically labeled methyl groups provide NMR probes in large, otherwise deuterated proteins. However, the resonance assignment constitutes a bottleneck for broader applicability of methyl-based NMR. Here, we present the automated MethylFLYA method for the assignment of methyl groups that is based on methyl-methyl nuclear Overhauser effect spectroscopy (NOESY) peak lists. MethylFLYA is applied to five proteins (28–358 kDa) comprising a total of 708 isotope-labeled methyl groups, of which 612 contribute NOESY cross peaks. MethylFLYA confidently assigns 488 methyl groups, i.e. 80% of those with NOESY data. Of these, 459 agree with the reference, 6 were different, and 23 were without reference assignment. MethylFLYA assigns significantly more methyl groups than alternative algorithms, has an average error rate of 1%, modest runtimes of 0.4–1.2 h, and can handle arbitrary isotope labeling patterns and data from other types of NMR spectra. The structures and dynamics of large proteins can be studied with methyl-based NMR but peak assignment is still challenging. Here the authors present MethylFLYA that allows automated assignment of methyl groups and apply it to five proteins with molecular weights in the range from 28 to 358 kDa.
Collapse
Affiliation(s)
- Iva Pritišanac
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Julia M Würz
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - T Reid Alderson
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - Peter Güntert
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany. .,Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland. .,Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
11
|
Proudfoot A, Frank AO, Frommlet A, Lingel A. Selective Methyl Labeling of Proteins: Enabling Structural and Mechanistic Studies As Well As Drug Discovery Applications by Solution-State NMR. Methods Enzymol 2018; 614:1-36. [PMID: 30611421 DOI: 10.1016/bs.mie.2018.08.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Escherichia coli expression protocols for selective labeling of methyl groups in proteins have been essential in expanding the size range of targets that can be studied by biomolecular NMR. Based on the initial work achieving selective labeling of isoleucine, leucine, and valine residues, additional methods were developed over the past years which enabled the individual and/or simultaneous combinatorial labeling of all methyl containing amino acids. Together with the introduction of new methyl-optimized NMR experiments, this now allows the detailed characterization of protein-ligand interactions as well as mechanistic and dynamic processes of protein-protein complexes up to 1MDa in size. In this chapter, we provide a general introduction to selective labeling of proteins using E. coli-based expression systems, describe the considerations taken into account prior to the selective labeling of a protein, and include the protocols used to produce such proteins. An overview of applications using selectively labeled proteins with an emphasis on examples relevant to the drug discovery process is then presented.
Collapse
Affiliation(s)
- Andrew Proudfoot
- Structural and Biophysical Chemistry, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, CA, United States
| | - Andreas O Frank
- Structural and Biophysical Chemistry, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, CA, United States
| | - Alexandra Frommlet
- Structural and Biophysical Chemistry, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, CA, United States
| | - Andreas Lingel
- Structural and Biophysical Chemistry, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, CA, United States; Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland.
| |
Collapse
|
12
|
O'Rourke KF, Axe JM, D'Amico RN, Sahu D, Boehr DD. Millisecond Timescale Motions Connect Amino Acid Interaction Networks in Alpha Tryptophan Synthase. Front Mol Biosci 2018; 5:92. [PMID: 30467546 PMCID: PMC6236060 DOI: 10.3389/fmolb.2018.00092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/18/2018] [Indexed: 11/13/2022] Open
Abstract
Tryptophan synthase is a model system for understanding allosteric regulation within enzyme complexes. Amino acid interaction networks were previously delineated in the isolated alpha subunit (αTS) in the absence of the beta subunit (βTS). The amino acid interaction networks were different between the ligand-free enzyme and the enzyme actively catalyzing turnover. Previous X-ray crystallography studies indicated only minor localized changes when ligands bind αTS, and so, structural changes alone could not explain the changes to the amino acid interaction networks. We hypothesized that the network changes could instead be related to changes in conformational dynamics. As such, we conducted nuclear magnetic resonance relaxation studies on different substrate- and products-bound complexes of αTS. Specifically, we collected 15N R2 relaxation dispersion data that reports on microsecond-to-millisecond timescale motion of backbone amide groups. These experiments indicated that there are conformational exchange events throughout αTS. Substrate and product binding change specific motional pathways throughout the enzyme, and these pathways connect the previously identified network residues. These pathways reach the αTS/βTS binding interface, suggesting that the identified dynamic networks may also be important for communication with the βTS subunit.
Collapse
Affiliation(s)
- Kathleen F O'Rourke
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - Jennifer M Axe
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - Rebecca N D'Amico
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - Debashish Sahu
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
13
|
Pritišanac I, Würz JM, Güntert P. Fully automated assignment of methyl resonances of a 36 kDa protein dimer from sparse NOESY data. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1742-6596/1036/1/012008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Flügge F, Peters T. Complete assignment of Ala, Ile, Leu, Met and Val methyl groups of human blood group A and B glycosyltransferases using lanthanide-induced pseudocontact shifts and methyl-methyl NOESY. JOURNAL OF BIOMOLECULAR NMR 2018; 70:245-259. [PMID: 29700756 DOI: 10.1007/s10858-018-0183-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/21/2018] [Indexed: 05/05/2023]
Abstract
Human blood group A and B glycosyltransferases (GTA, GTB) are highly homologous glycosyltransferases. A number of high-resolution crystal structures is available showing that these enzymes convert from an open conformation into a catalytically active closed conformation upon substrate binding. However, the mechanism of glycosyltransfer is still under debate, and the precise nature as well as the time scales of conformational transitions are unknown. NMR offers a variety of experiments to shine more light on these unresolved questions. Therefore, in a first step we have assigned all methyl resonance signals in MILVA labeled samples of GTA and GTB, still a challenging task for 70 kDa homodimeric proteins. Assignments were obtained from methyl-methyl NOESY experiments, and from measurements of lanthanide-induced pseudocontact shifts (PCS) using high resolution crystal structures as templates. PCSs and chemical shift perturbations, induced by substrate analogue binding, suggest that the fully closed state is not adopted in the presence of lanthanide ions.
Collapse
Affiliation(s)
- Friedemann Flügge
- Institute for Chemistry and Metabolomics, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Thomas Peters
- Institute for Chemistry and Metabolomics, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| |
Collapse
|
15
|
Lescanne M, Skinner SP, Blok A, Timmer M, Cerofolini L, Fragai M, Luchinat C, Ubbink M. Methyl group assignment using pseudocontact shifts with PARAssign. JOURNAL OF BIOMOLECULAR NMR 2017; 69:183-195. [PMID: 29181729 PMCID: PMC5736784 DOI: 10.1007/s10858-017-0136-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/25/2017] [Indexed: 05/03/2023]
Abstract
A new version of the program PARAssign has been evaluated for assignment of NMR resonances of the 76 methyl groups in leucines, isoleucines and valines in a 25 kDa protein, using only the structure of the protein and pseudocontact shifts (PCS) generated with a lanthanoid tag at up to three attachment sites. The number of reliable assignments depends strongly on two factors. The principle axes of the magnetic susceptibility tensors of the paramagnetic centers should not be parallel so as to avoid correlated PCS. Second, the fraction of resonances in the spectrum of a paramagnetic sample that can be paired with the diamagnetic counterparts is critical for the assignment. With the data from two tag positions a reliable assignment could be obtained for 60% of the methyl groups and for many of the remaining resonances the number of possible assignments is limited to two or three. With a single tag, reliable assignments can be obtained for methyl groups with large PCS near the tag. It is concluded that assignment of methyl group resonances by paramagnetic tagging can be particularly useful in combination with some additional data, such as from mutagenesis or NOE-based experiments. Approaches to yield the best assignment results with PCS generating tags are discussed.
Collapse
Affiliation(s)
- Mathilde Lescanne
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Simon P. Skinner
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Department of Molecular and Cell Biology, Leicester Institute for Structural- and Chemical Biology, University of Leicester, Lancaster Road, Leicester, LE1 7RH UK
- Present Address: School of Molecular and Cellular Biology, Faculty of Biological Sciences & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT UK
| | - Anneloes Blok
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Monika Timmer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Linda Cerofolini
- Giotto Biotech, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, FI Italy
| | - Marco Fragai
- Giotto Biotech, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, FI Italy
- Magnetic Resonance Center - CERM, University of Florence, Via Sacconi 6, 50019 Sesto Fiorentino, FI Italy
| | - Claudio Luchinat
- Giotto Biotech, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, FI Italy
- Magnetic Resonance Center - CERM, University of Florence, Via Sacconi 6, 50019 Sesto Fiorentino, FI Italy
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
16
|
Pritišanac I, Degiacomi MT, Alderson TR, Carneiro MG, AB E, Siegal G, Baldwin AJ. Automatic Assignment of Methyl-NMR Spectra of Supramolecular Machines Using Graph Theory. J Am Chem Soc 2017; 139:9523-9533. [DOI: 10.1021/jacs.6b11358] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Iva Pritišanac
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QZ, U.K
| | - Matteo T. Degiacomi
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QZ, U.K
| | - T. Reid Alderson
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QZ, U.K
| | - Marta G. Carneiro
- ZoBio BV, BioPartner 2 building,
J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Eiso AB
- ZoBio BV, BioPartner 2 building,
J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Gregg Siegal
- ZoBio BV, BioPartner 2 building,
J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Andrew J. Baldwin
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QZ, U.K
| |
Collapse
|
17
|
Vallurupalli P, Sekhar A, Yuwen T, Kay LE. Probing conformational dynamics in biomolecules via chemical exchange saturation transfer: a primer. JOURNAL OF BIOMOLECULAR NMR 2017; 67:243-271. [PMID: 28317074 DOI: 10.1007/s10858-017-0099-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/20/2017] [Indexed: 05/25/2023]
Abstract
Although Chemical Exchange Saturation Transfer (CEST) type NMR experiments have been used to study chemical exchange processes in molecules since the early 1960s, there has been renewed interest in the past several years in using this approach to study biomolecular conformational dynamics. The methodology is particularly powerful for the study of sparsely populated, transiently formed conformers that are recalcitrant to investigation using traditional biophysical tools, and it is complementary to relaxation dispersion and magnetization transfer experiments that have traditionally been used to study chemical exchange processes. Here we discuss the concepts behind the CEST experiment, focusing on practical aspects as well, we review some of the pulse sequences that have been developed to characterize protein and RNA conformational dynamics, and we discuss a number of examples where the CEST methodology has provided important insights into the role of dynamics in biomolecular function.
Collapse
Affiliation(s)
| | - Ashok Sekhar
- Departments of Molecular Genetics, Biochemistry and Chemistry, University of Toronto, Toronto, ON, Canada
| | - Tairan Yuwen
- Departments of Molecular Genetics, Biochemistry and Chemistry, University of Toronto, Toronto, ON, Canada
| | - Lewis E Kay
- Departments of Molecular Genetics, Biochemistry and Chemistry, University of Toronto, Toronto, ON, Canada.
- Hospital for Sick Children, Program in Molecular Structure and Function, Toronto, ON, Canada.
| |
Collapse
|
18
|
Proudfoot A, Frank AO, Ruggiu F, Mamo M, Lingel A. Facilitating unambiguous NMR assignments and enabling higher probe density through selective labeling of all methyl containing amino acids. JOURNAL OF BIOMOLECULAR NMR 2016; 65:15-27. [PMID: 27130242 DOI: 10.1007/s10858-016-0032-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/19/2016] [Indexed: 05/05/2023]
Abstract
The deuteration of proteins and selective labeling of side chain methyl groups has greatly enhanced the molecular weight range of proteins and protein complexes which can be studied using solution NMR spectroscopy. Protocols for the selective labeling of all six methyl group containing amino acids individually are available, however to date, only a maximum of five amino acids have been labeled simultaneously. Here, we describe a new methodology for the simultaneous, selective labeling of all six methyl containing amino acids using the 115 kDa homohexameric enzyme CoaD from E. coli as a model system. The utility of the labeling protocol is demonstrated by efficiently and unambiguously assigning all methyl groups in the enzymatic active site using a single 4D (13)C-resolved HMQC-NOESY-HMQC experiment, in conjunction with a crystal structure. Furthermore, the six fold labeled protein was employed to characterize the interaction between the substrate analogue (R)-pantetheine and CoaD by chemical shift perturbations, demonstrating the benefit of the increased probe density.
Collapse
Affiliation(s)
- Andrew Proudfoot
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, CA, 94608, USA
| | - Andreas O Frank
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, CA, 94608, USA
| | - Fiorella Ruggiu
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, CA, 94608, USA
| | - Mulugeta Mamo
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, CA, 94608, USA
| | - Andreas Lingel
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, CA, 94608, USA.
| |
Collapse
|
19
|
Rosenzweig R, Kay LE. Solution NMR Spectroscopy Provides an Avenue for the Study of Functionally Dynamic Molecular Machines: The Example of Protein Disaggregation. J Am Chem Soc 2015; 138:1466-77. [PMID: 26651836 DOI: 10.1021/jacs.5b11346] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solution-based NMR spectroscopy has been an important tool for studying the structure and dynamics of relatively small proteins and protein complexes with aggregate molecular masses under approximately 50 kDa. The development of new experiments and labeling schemes, coupled with continued improvements in hardware, has significantly reduced this size limitation, enabling atomic-resolution studies of molecular machines in the 1 MDa range. In this Perspective, some of the important advances are highlighted in the context of studies of molecular chaperones involved in protein disaggregation. New insights into the structural biology of disaggregation obtained from NMR studies are described, focusing on the unique capabilities of the methodology for obtaining atomic-resolution descriptions of dynamic systems.
Collapse
Affiliation(s)
- Rina Rosenzweig
- Departments of Molecular Genetics, Biochemistry, and Chemistry, The University of Toronto , Toronto, Ontario, Canada M5S 1A8
| | - Lewis E Kay
- Departments of Molecular Genetics, Biochemistry, and Chemistry, The University of Toronto , Toronto, Ontario, Canada M5S 1A8.,Program in Molecular Structure and Function, Hospital for Sick Children , 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| |
Collapse
|
20
|
Wiesner S, Sprangers R. Methyl groups as NMR probes for biomolecular interactions. Curr Opin Struct Biol 2015; 35:60-7. [DOI: 10.1016/j.sbi.2015.08.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/26/2015] [Accepted: 08/28/2015] [Indexed: 11/26/2022]
|
21
|
Kim J, Wang Y, Li G, Veglia G. A Semiautomated Assignment Protocol for Methyl Group Side Chains in Large Proteins. Methods Enzymol 2015; 566:35-57. [PMID: 26791975 PMCID: PMC5040217 DOI: 10.1016/bs.mie.2015.08.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The developments of biosynthetic specific labeling strategies for side-chain methyl groups have allowed structural and dynamic characterization of very large proteins and protein complexes. However, the assignment of the methyl-group resonances remains an Achilles' heel for NMR, as the experiments designed to correlate side chains to the protein backbone become rather insensitive with the increase of the transverse relaxation rates. In this chapter, we outline a semiempirical approach to assign the resonances of methyl-group side chains in large proteins. This method requires a crystal structure or an NMR ensemble of conformers as an input, together with NMR data sets such as nuclear Overhauser effects (NOEs) and paramagnetic relaxation enhancements (PREs), to be implemented in a computational protocol that provides a probabilistic assignment of methyl-group resonances. As an example, we report the protocol used in our laboratory to assign the side chains of the 42-kDa catalytic subunit of the cAMP-dependent protein kinase A. Although we emphasize the labeling of isoleucine, leucine, and valine residues, this method is applicable to other methyl group side chains such as those of alanine, methionine, and threonine, as well as reductively methylated cysteine side chains.
Collapse
Affiliation(s)
- Jonggul Kim
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yingjie Wang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Geoffrey Li
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gianluigi Veglia
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
22
|
Xiao Y, Warner LR, Latham MP, Ahn NG, Pardi A. Structure-Based Assignment of Ile, Leu, and Val Methyl Groups in the Active and Inactive Forms of the Mitogen-Activated Protein Kinase Extracellular Signal-Regulated Kinase 2. Biochemistry 2015; 54:4307-19. [PMID: 26132046 DOI: 10.1021/acs.biochem.5b00506] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Resonance assignments are the first step in most NMR studies of protein structure, function, and dynamics. Standard protein assignment methods employ through-bond backbone experiments on uniformly (13)C/(15)N-labeled proteins. For larger proteins, this through-bond assignment procedure often breaks down due to rapid relaxation and spectral overlap. The challenges involved in studies of larger proteins led to efficient methods for (13)C labeling of side chain methyl groups, which have favorable relaxation properties and high signal-to-noise. These methyls are often still assigned by linking them to the previously assigned backbone, thus limiting the applications for larger proteins. Here, a structure-based procedure is described for assignment of (13)C(1)H3-labeled methyls by comparing distance information obtained from three-dimensional methyl-methyl nuclear Overhauser effect (NOE) spectroscopy with the X-ray structure. The Ile, Leu, or Val (ILV) methyl type is determined by through-bond experiments, and the methyl-methyl NOE data are analyzed in combination with the known structure. A hierarchical approach was employed that maps the largest observed "NOE-methyl cluster" onto the structure. The combination of identification of ILV methyl type with mapping of the NOE-methyl clusters greatly simplifies the assignment process. This method was applied to the inactive and active forms of the 42-kDa ILV (13)C(1)H3-methyl labeled extracellular signal-regulated kinase 2 (ERK2), leading to assignment of 60% of the methyls, including 90% of Ile residues. A series of ILV to Ala mutants were analyzed, which helped confirm the assignments. These assignments were used to probe the local and long-range effects of ligand binding to inactive and active ERK2.
Collapse
Affiliation(s)
- Yao Xiao
- †Department of Chemistry and Biochemistry and ‡BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Lisa R Warner
- †Department of Chemistry and Biochemistry and ‡BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Michael P Latham
- †Department of Chemistry and Biochemistry and ‡BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Natalie G Ahn
- †Department of Chemistry and Biochemistry and ‡BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Arthur Pardi
- †Department of Chemistry and Biochemistry and ‡BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
23
|
Methyl-specific isotopic labeling: a molecular tool box for solution NMR studies of large proteins. Curr Opin Struct Biol 2015; 32:113-22. [DOI: 10.1016/j.sbi.2015.03.009] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/02/2015] [Accepted: 03/23/2015] [Indexed: 11/23/2022]
|
24
|
Nematollahi LA, Garza-Garcia A, Bechara C, Esposito D, Morgner N, Robinson CV, Driscoll PC. Flexible stoichiometry and asymmetry of the PIDDosome core complex by heteronuclear NMR spectroscopy and mass spectrometry. J Mol Biol 2014; 427:737-752. [PMID: 25528640 PMCID: PMC4332690 DOI: 10.1016/j.jmb.2014.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/14/2014] [Accepted: 11/22/2014] [Indexed: 11/24/2022]
Abstract
Homotypic death domain (DD)–DD interactions are important in the assembly of oligomeric signaling complexes such as the PIDDosome that acts as a platform for activation of caspase-2-dependent apoptotic signaling. The structure of the PIDDosome core complex exhibits an asymmetric three-layered arrangement containing five PIDD-DDs in one layer, five RAIDD-DDs in a second layer and an additional two RAIDD-DDs. We addressed complex formation between PIDD-DD and RAIDD-DD in solution using heteronuclear nuclear magnetic resonance (NMR) spectroscopy, nanoflow electrospray ionization mass spectrometry and size-exclusion chromatography with multi-angle light scattering. The DDs assemble into complexes displaying molecular masses in the range 130–158 kDa and RAIDD-DD:PIDD-DD stoichiometries of 5:5, 6:5 and 7:5. These data suggest that the crystal structure is representative of only the heaviest species in solution and that two RAIDD-DDs are loosely attached to the 5:5 core. Two-dimensional 1H,15N-NMR experiments exhibited signal loss upon complexation consistent with the formation of high-molecular-weight species. 13C-Methyl-transverse relaxation optimized spectroscopy measurements of the PIDDosome core exhibit signs of differential line broadening, cross-peak splitting and chemical shift heterogeneity that reflect the presence of non-equivalent sites at interfaces within an asymmetric complex. Experiments using a mutant RAIDD-DD that forms a monodisperse 5:5 complex with PIDD-DD show that the spectroscopic signature derives from the quasi- but non-exact equivalent environments of each DD. Since this characteristic was previously demonstrated for the complex between the DDs of CD95 and FADD, the NMR data for this system are consistent with the formation of a structure homologous to the PIDDosome core. The PIDDosome core particle that has been crystallized as a 7:5 complex displays heterogeneous stoichiometry in solution. Methyl-transverse relaxation optimized spectroscopy NMR spectra for the complex suggest that individual PIDD-DDs and RAIDD-DDs experience non-equivalent environments in the PIDDosome core. A mutant PIDDosome core particle that is monodisperse displays similar NMR features, suggesting that the complexity of the spectra is a reflection of the absence of formal symmetry consistent with the crystal structure. The NMR characteristics are reminiscent of those reported for the complex formed between the DDs of CD95 and FADD, suggesting that this latter complex has similar architecture to the PIDDosome core.
Collapse
Affiliation(s)
- Lily A Nematollahi
- Division of Molecular Structure, Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Acely Garza-Garcia
- Division of Molecular Structure, Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Chérine Bechara
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Diego Esposito
- Division of Molecular Structure, Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Nina Morgner
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Carol V Robinson
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Paul C Driscoll
- Division of Molecular Structure, Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
25
|
Chao FA, Kim J, Xia Y, Milligan M, Rowe N, Veglia G. FLAMEnGO 2.0: an enhanced fuzzy logic algorithm for structure-based assignment of methyl group resonances. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 245:17-23. [PMID: 24915505 PMCID: PMC4161213 DOI: 10.1016/j.jmr.2014.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 05/03/2023]
Abstract
We present an enhanced version of the FLAMEnGO (Fuzzy Logic Assignment of Methyl Group) software, a structure-based method to assign methyl group resonances in large proteins. FLAMEnGO utilizes a fuzzy logic algorithm coupled with Monte Carlo sampling to obtain a probability-based assignment of the methyl group resonances. As an input, FLAMEnGO requires either the protein X-ray structure or an NMR structural ensemble including data such as methyl-methyl NOESY, paramagnetic relaxation enhancement (PRE), methine-methyl TOCSY data. Version 2.0 of this software (FLAMEnGO 2.0) has a user-friendly graphic interface and presents improved modules that enable the input of partial assignments and additional NMR restraints. We tested the performance of FLAMEnGO 2.0 on maltose binding protein (MBP) as well as the C-subunit of the cAMP-dependent protein kinase A (PKA-C). FLAMEnGO 2.0 can be used as a standalone method or to assist in the completion of partial resonance assignments and can be downloaded at www.chem.umn.edu/groups/veglia/forms/flamengo2-form.html.
Collapse
Affiliation(s)
- Fa-An Chao
- Department of Biochemistry, Molecular Biology, & Biophysics, University of Minnesota, Minneapolis, MN 55445, United States
| | - Jonggul Kim
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55445, United States
| | - Youlin Xia
- Department of Biochemistry, Molecular Biology, & Biophysics, University of Minnesota, Minneapolis, MN 55445, United States
| | - Michael Milligan
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55445, United States
| | - Nancy Rowe
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55445, United States
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, & Biophysics, University of Minnesota, Minneapolis, MN 55445, United States; Department of Chemistry, University of Minnesota, Minneapolis, MN 55445, United States.
| |
Collapse
|
26
|
Carlomagno T. Present and future of NMR for RNA-protein complexes: a perspective of integrated structural biology. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 241:126-136. [PMID: 24656085 DOI: 10.1016/j.jmr.2013.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/14/2013] [Accepted: 10/16/2013] [Indexed: 06/03/2023]
Abstract
Nucleic acids are gaining enormous importance as key molecules in almost all biological processes. Most nucleic acids do not act in isolation but are generally associated with proteins to form high-molecular-weight nucleoprotein complexes. In this perspective article I focus on the structural studies of supra-molecular ribonucleoprotein (RNP) assemblies in solution by a combination of state-of-the-art TROSY-based NMR experiments and other structural biology techniques. I discuss ways how to combine sparse NMR data with low-resolution structural information from small-angle scattering, fluorescence and electron paramagnetic resonance spectroscopy to obtain the structure of large RNP particles by an integrated structural biology approach. In the last section I give a perspective for the study of RNP complexes by solid-state NMR.
Collapse
Affiliation(s)
- Teresa Carlomagno
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
| |
Collapse
|
27
|
Hass MAS, Ubbink M. Structure determination of protein–protein complexes with long-range anisotropic paramagnetic NMR restraints. Curr Opin Struct Biol 2014; 24:45-53. [DOI: 10.1016/j.sbi.2013.11.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/22/2013] [Accepted: 11/22/2013] [Indexed: 10/25/2022]
|
28
|
Tugarinov V, Venditti V, Clore GM. A NMR experiment for simultaneous correlations of valine and leucine/isoleucine methyls with carbonyl chemical shifts in proteins. JOURNAL OF BIOMOLECULAR NMR 2014; 58:1-8. [PMID: 24346684 PMCID: PMC3974575 DOI: 10.1007/s10858-013-9803-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 12/06/2013] [Indexed: 05/20/2023]
Abstract
A methyl-detected 'out-and-back' NMR experiment for obtaining simultaneous correlations of methyl resonances of valine and isoleucine/leucine residues with backbone carbonyl chemical shifts, SIM-HMCM(CGCBCA)CO, is described. The developed pulse-scheme serves the purpose of convenience in recording a single data set for all Ile(δ1), Leu(δ) and Val(γ) (ILV) methyl positions instead of acquiring two separate spectra selective for valine or leucine/isoleucine residues. The SIM-HMCM(CGCBCA)CO experiment can be used for ILV methyl assignments in moderately sized protein systems (up to ~100 kDa) where the backbone chemical shifts of (13)C(α), (13)Cβ and (13)CO are known from prior NMR studies and where some losses in sensitivity can be tolerated for the sake of an overall reduction in NMR acquisition time.
Collapse
|
29
|
Abstract
Solution nuclear magnetic resonance spectroscopy is usually only used to study proteins with molecular weight not exceeding about 50 kDa. This size limit has been lifted significantly in recent years, thanks to the development of labelling methods and the application of transverse-relaxation optimized spectroscopy (TROSY). In particular, methyl-specific labelling and methyl-TROSY have been shown to be effective for supramolecular systems as large as about 1 MDa. In this chapter we review the available methods for labelling different kinds of methyl groups and the assignment strategies in very large protein systems. Several proteins are selected as examples to show how NMR helps to reveal the details of structure, interaction and dynamics of these proteins.
Collapse
Affiliation(s)
- Yingqi Xu
- Division of Molecular Biosciences, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | | |
Collapse
|
30
|
Xu Y, Matthews S. MAP-XSII: an improved program for the automatic assignment of methyl resonances in large proteins. JOURNAL OF BIOMOLECULAR NMR 2013; 55:179-87. [PMID: 23292498 DOI: 10.1007/s10858-012-9700-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 12/20/2012] [Indexed: 05/20/2023]
Abstract
NMR studies of large proteins have gathered much interest in recent years, especially after methyl-transverse relaxation optimized spectroscopy was successfully applied to systems as large as ~1 MDa in molecular weight. However, to fully take advantage of these spectra, there is a need for convenient and robust methods for making resonance assignments rapidly. Here, we present an improved version of our program MAP-XS (methyl assignment prediction from X-ray structure) for the automatic assignment of methyl peaks, based on nuclear Overhauser effects (NOE) correlations and chemical shifts together with available structures. No manual analysis of the NOE data is needed in this new version, which helps to further accelerate the assignment process. A refined algorithm as well as more efficient sampling produces results from single runs of MAP-XSII using unanalyzed NOE data are comparable to those achieved by the old version using manually curated data with every NOE peak correctly attributed to the two related methyl peaks; in addition, checking the results from multiple parallel runs against each other provides an effective mechanism for getting rid of the wrong assignments while keeping the correct ones, which significantly improves the reliability of final assignments. The new program is tested against three different proteins and delivers ~95 % correct assignments; positive results are also achieved for tests using different cut-off distances for NOEs, structures of lower resolutions, and ambiguous residue types.
Collapse
Affiliation(s)
- Yingqi Xu
- Division of Molecular Biosciences, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | | |
Collapse
|
31
|
Hsp90 structure and function studied by NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:636-47. [PMID: 22155720 DOI: 10.1016/j.bbamcr.2011.11.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/24/2011] [Accepted: 11/28/2011] [Indexed: 11/22/2022]
Abstract
The molecular chaperone Hsp90 plays a crucial role in folding and maturation of regulatory proteins. Key aspects of Hsp90's molecular mechanism and its adenosine-5'-triphosphate (ATP)-controlled active cycle remain elusive. In particular the role of conformational changes during the ATPase cycle and the molecular basis of the interactions with substrate proteins are poorly understood. The dynamic nature of the Hsp90 machine designates nuclear magnetic resonance (NMR) spectroscopy as an attractive method to unravel both the chaperoning mechanism and interaction with partner proteins. NMR is particularly suitable to provide a dynamic picture of protein-protein interactions at atomic resolution. Hsp90 is rather a challenging protein for NMR studies, due to its high molecular weight and its structural flexibility. The recent technologic advances allowed overcoming many of the traditional obstacles. Here, we describe the different approaches that allowed the investigation of Hsp90 using state-of-the-art NMR methods and the results that were obtained. NMR spectroscopy contributed to understanding Hsp90's interaction with the co-chaperones p23, Aha1 and Cdc37. A particular exciting prospect of NMR, however, is the analysis of Hsp90 interaction with substrate proteins. Here, the ability of this method to contribute to the structural characterization of not fully folded proteins becomes crucial. Especially the interaction of Hsp90 with one of its natural clients, the tumour suppressor p53, has been intensively studied by NMR spectroscopy. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Collapse
|
32
|
Linser R. Side-chain to backbone correlations from solid-state NMR of perdeuterated proteins through combined excitation and long-range magnetization transfers. JOURNAL OF BIOMOLECULAR NMR 2011; 51:221-226. [PMID: 21822966 DOI: 10.1007/s10858-011-9531-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 07/11/2011] [Indexed: 05/31/2023]
Abstract
Proteins with excessive deuteration give access to proton detected solid-state NMR spectra of extraordinary resolution and sensitivity. The high spectral quality achieved after partial proton back-exchange has been shown to start a new era for backbone assignment, protein structure elucidation, characterization of protein dynamics, and access to protein parts undergoing motion. The large absence of protons at non-exchangeable sites, however, poses a serious hurdle for characterization of side chains, which play an important role especially for structural understanding of the protein core and the investigation of protein-protein and protein-ligand interactions, e.g. This has caused the perdeuteration approach to almost exclusively be amenable to backbone characterization only. In this work it is shown that a combination of isotropic (13)C mixing with long-range (1)H/(13)C magnetization transfers can be used effectively to also access complete sets of side-chain chemical shifts in perdeuterated proteins and correlate these with the protein backbone with high unambiguity and resolution. COmbined POlarization from long-Range transfers And Direct Excitation (COPORADE) allows this strategy to yield complete sets of aliphatic amino acid resonances with reasonable sensitivity.
Collapse
Affiliation(s)
- Rasmus Linser
- Analytical Centre and School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
33
|
Amero C, Asunción Durá M, Noirclerc-Savoye M, Perollier A, Gallet B, Plevin MJ, Vernet T, Franzetti B, Boisbouvier J. A systematic mutagenesis-driven strategy for site-resolved NMR studies of supramolecular assemblies. JOURNAL OF BIOMOLECULAR NMR 2011; 50:229-36. [PMID: 21626214 DOI: 10.1007/s10858-011-9513-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 05/06/2011] [Indexed: 05/20/2023]
Abstract
Obtaining sequence-specific assignments remains a major bottleneck in solution NMR investigations of supramolecular structure, dynamics and interactions. Here we demonstrate that resonance assignment of methyl probes in high molecular weight protein assemblies can be efficiently achieved by combining fast NMR experiments, residue-type-specific isotope-labeling and automated site-directed mutagenesis. The utility of this general and straightforward strategy is demonstrated through the characterization of intermolecular interactions involving a 468-kDa multimeric aminopeptidase, PhTET2.
Collapse
Affiliation(s)
- Carlos Amero
- Institut de Biologie Structurale Jean-Pierre Ebel, CNRS, Grenoble, France
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Religa TL, Ruschak AM, Rosenzweig R, Kay LE. Site-Directed Methyl Group Labeling as an NMR Probe of Structure and Dynamics in Supramolecular Protein Systems: Applications to the Proteasome and to the ClpP Protease. J Am Chem Soc 2011; 133:9063-8. [DOI: 10.1021/ja202259a] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Tomasz L. Religa
- Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Amy M. Ruschak
- Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Rina Rosenzweig
- Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Lewis E. Kay
- Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
35
|
Ruschak AM, Velyvis A, Kay LE. A simple strategy for ¹³C, ¹H labeling at the Ile-γ2 methyl position in highly deuterated proteins. JOURNAL OF BIOMOLECULAR NMR 2010; 48:129-135. [PMID: 20949307 DOI: 10.1007/s10858-010-9449-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 09/16/2010] [Indexed: 05/30/2023]
Abstract
A straightforward approach for the production of highly deuterated proteins labeled with ¹³C and ¹H at Ile-γ2 methyl positions is described. The utility of the methodology is illustrated with an application involving the half proteasome (360 kDa). High quality 2D Ile ¹³C(γ)²,¹H(γ)² HMQC data sets, exploiting the methyl-TROSY principle, are recorded with excellent sensitivity and resolution, that compare favorably with Ile ¹³C(δ)¹,¹H(δ)¹ spectra. This labeling scheme adds to a growing list of different approaches that are significantly impacting the utility of solution NMR spectroscopy in studies of supra-molecular systems.
Collapse
Affiliation(s)
- Amy M Ruschak
- Department of Molecular Genetics, The University of Toronto, ON, Canada
| | | | | |
Collapse
|