1
|
Li S, Zhang S, Feng N, Zhang N, Zhu Y, Liu Y, Wang W, Xin X. Chiral Inversion and Recovery of Supramolecular Luminescent Copper Nanocluster Hydrogels Triggered by Polyethyleneimine and Polyoxometalates. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52324-52333. [PMID: 36416052 DOI: 10.1021/acsami.2c16428] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Construction of controllable chiroptical supramolecular luminescence systems is of great significance for developing intelligent chiral luminescence materials with precise and effective regulation and understanding chirality-switching phenomena in biological systems, which has attracted extensive attention. Because chiral metal nanoclusters (NCs) can provide facilities for the study of nanoscale chiral effects, in this study, we select chiral glutathione-stabilized copper NCs (G-SH-Cu NCs) to construct a supramolecular luminescent hydrogel with achiral branched polyethyleneimine (PEI) and polyoxometalates [Na9(EuW10O36)·32H2O, denoted as EuW10]. Thus, a chiral property precise controlled system was constructed by self-assembly. Interestingly, the addition of PEI to G-SH-Cu NC solution induced the formation of luminescent hydrogels with chiral inversion, while further addition of EuW10 not only enhanced the luminescence of the hydrogel but also recovered the chiroptical properties. The chiral inversion behavior is possibly ascribed to the hydrogen bond interaction/electrostatic interaction between G-SH-Cu NCs and PEI in the chiral inversion process, while the competition of hydrogen bonding interaction (between G-SH-Cu NCs and PEI) and electrostatic interaction (between PEI and EuW10) was accountable for the chiral recovery process. Manipulation of chirality inversion in the metal NC-containing coassemblies is rare, while this work establishes a feasible strategy to modulate the chiral inversion behavior of Cu NCs, which not only produces new physicochemical properties of metal NCs through synergistic behavior but also offers a feasible way to realize the potential application of chiroptical materials.
Collapse
Affiliation(s)
- Shulin Li
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shanshan Zhang
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Ning Feng
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Na Zhang
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yu Zhu
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yuhao Liu
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wenjuan Wang
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xia Xin
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
2
|
Panthi G, Park M. Synthesis of metal nanoclusters and their application in Hg 2+ ions detection: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127565. [PMID: 34736203 DOI: 10.1016/j.jhazmat.2021.127565] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Mercuric (Hg2+) ions released from human activities, natural phenomena, and industrial sources are regarded as the global pollutant of world's water. Hg2+ ions contaminated water has several adverse effects on human health and the environment even at low concentrations. Therefore, rapid and cost-effective method is urgently required for the detection of Hg2+ ions in water. Although, the current analytical methods applied for the detection of Hg2+ ions provide low detection limit, they are time consuming, require expensive equipment, and are not suitable for in-situ analysis. Metal nanoclusters (MNCs) consisting of several to ten metal atoms are important transition missing between single atoms and plasmonic metal nanoparticles. In addition, sub-nanometer sized MNCs possess unique electronic structures and the subsequent unusual optical, physical, and chemical properties. Because of these novel properties, MNCs as a promising material have attracted considerable attention for the construction of selective and sensitive sensors to monitor water quality. Hence this review is focused on recent advances on synthesis strategies, and optical and chemical properties of various MNCs including their applications to develop optical assay for Hg2+ ions in aqueous solutions.
Collapse
Affiliation(s)
- Gopal Panthi
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju, Chonbuk 55338, Republic of Korea.
| | - Mira Park
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju, Chonbuk 55338, Republic of Korea; Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju, Chonbuk 55338, Republic of Korea.
| |
Collapse
|
3
|
Ma S, Ahn J, Moon J. Chiral Perovskites for Next-Generation Photonics: From Chirality Transfer to Chiroptical Activity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005760. [PMID: 33885185 DOI: 10.1002/adma.202005760] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/09/2020] [Indexed: 06/12/2023]
Abstract
Organic-inorganic hybrid halide perovskites (OIHPs) are commonly used as prototypical materials for various applications, including photovoltaics, photodetectors, and light-emitting devices. Since the chiroptical properties of OIHPs are deciphered in 2017, chiral OIHPs have been rediscovered as new hybrid systems comprising chiral organic molecules and achiral inorganic octahedral layers. Owing to their exceptional optoelectrical properties and structural flexibility, chiral OIHPs have received a considerable amount of attention in chiral photonics, chiroptoelectronics, spintronics, and ferroelectrics. Despite their intriguing chiral properties, the transfer mechanism from chiral molecules to achiral semiconductors has not been extensively investigated. Furthermore, an in-depth understanding of the origin of chiroptical activity is still elusive. In this review article, recent advances in the chiroptical activities of chiral OIHPs and polarization-based devices adopting chiral OIHPs are comprehensively discussed, and insight into the underlying chirality transfer mechanism based on theoretical considerations is provided. This comprehensive survey, with an emphasis on the chirality transfer mechanism, will help readers understand the chiroptical properties of OIHPs, which are crucial for the development of spin-based photonic and optoelectronic devices. Additionally, promising strategies to exploit the potential of chiral OIHPs are also discussed.
Collapse
Affiliation(s)
- Sunihl Ma
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jihoon Ahn
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jooho Moon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
4
|
Shinjo N, Takano S, Tsukuda T. Effects of
π‐Electron
Systems on Optical Activity of Au
11
Clusters Protected by Chiral Diphosphines. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Naoaki Shinjo
- Department of Chemistry Graduate School of Science, The University of Tokyo, 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐0033 Japan
| | - Shinjiro Takano
- Department of Chemistry Graduate School of Science, The University of Tokyo, 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐0033 Japan
| | - Tatsuya Tsukuda
- Department of Chemistry Graduate School of Science, The University of Tokyo, 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐0033 Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB) Kyoto University, Katsura Kyoto 615‐8520 Japan
| |
Collapse
|
5
|
Huang JH, Si Y, Dong XY, Wang ZY, Liu LY, Zang SQ, Mak TCW. Symmetry Breaking of Atomically Precise Fullerene-like Metal Nanoclusters. J Am Chem Soc 2021; 143:12439-12444. [PMID: 34355894 DOI: 10.1021/jacs.1c05568] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Here we report a neutral fullerene-like core-shell homosilver Ag13@Ag20 nanocluster that is fully protected by an achiral bidentate thiolate ligand (9,12-dimercapto-1,2-closo-carborane, C2B10H10S2H2), which crystallizes in centrosymmetric space group R3̅. Continuous Cu doping in the dodecahedral shell first induced symmetry breaking to generate chiral Ag13@Ag20-nCun (6 ≥ n ≥ 2) containing two acetonitrile ligands in space group P212121, and then produced symmetric all-thiolated Ag13@Ag20-nCun (20 ≥ n ≥ 13) in the higher space group Im3̅. The selectively copper-doped Ag13@Ag20-nCun (6 ≥ n ≥ 2) cluster has its structure reorganized to a lower symmetry that shows chiroptical activity. Moreover, structural distortion of Ag13@Ag20-nCun (6 ≥ n ≥ 2) further expanded in chiral R-/S-propylene oxide, which induced a more prominent core-based CD response. This work revealed a novel mechanism of chirality generation at the atomic level through asymmetric shell-doping of metal nanoclusters, which provides new insight into the origin of chirality in inorganic nanostructures.
Collapse
Affiliation(s)
- Jia-Hong Huang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yubing Si
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xi-Yan Dong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.,College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Zhao-Yang Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Li-Ying Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Thomas C W Mak
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.,Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR 999077, China
| |
Collapse
|
6
|
Gu W, Zhao Y, Zhuang S, Zha J, Dong J, You Q, Gan Z, Xia N, Li J, Deng H, Wu Z. Unravelling the Structure of a Medium‐Sized Metalloid Gold Nanocluster and its Filming Property. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Wanmiao Gu
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HIPS Chinese Academy of Sciences Hefei 230031 P. R. China
- Department of Materials Science and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Yan Zhao
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HIPS Chinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei 230601 P. R. China
| | - Shengli Zhuang
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HIPS Chinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei 230601 P. R. China
| | - Jun Zha
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HIPS Chinese Academy of Sciences Hefei 230031 P. R. China
- Department of Materials Science and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Jingwu Dong
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HIPS Chinese Academy of Sciences Hefei 230031 P. R. China
- Department of Materials Science and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Qing You
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HIPS Chinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei 230601 P. R. China
| | - Zibao Gan
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HIPS Chinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei 230601 P. R. China
| | - Nan Xia
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HIPS Chinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei 230601 P. R. China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life Sciences School of Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics School of Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HIPS Chinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei 230601 P. R. China
| |
Collapse
|
7
|
Gu W, Zhao Y, Zhuang S, Zha J, Dong J, You Q, Gan Z, Xia N, Li J, Deng H, Wu Z. Unravelling the Structure of a Medium-Sized Metalloid Gold Nanocluster and its Filming Property. Angew Chem Int Ed Engl 2021; 60:11184-11189. [PMID: 33635550 DOI: 10.1002/anie.202100879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 01/25/2023]
Abstract
Unravelling the structure of thiolated metalloid gold nanoclusters in the medium-sized range by single crystal X-ray crystallography (SCXC) is challenging. Herein, we successfully synthesized a novel Au67 (SR)35 nanocluster, and unravelled its single crystal structure by SCXC, which features a mix-structured Au48 kernel protected by one Au4 (SR)5 staple and fifteen Au(SR)2 staples. Unprecedentedly, this structure can be thermally induced to aggregate into larger nanoparticles and self-deposit to form a gold nanoparticles film onto the walls of a vial or other substrates such as quartz, mica or ceramic, which can be developed into a facile, substrate-universal and scalable filming method. The film exhibits high sensitivity, uniformity and recyclability as a surface-enhanced Raman scattering (SERS) substrate and can be applied for detecting multiple organic pollutants.
Collapse
Affiliation(s)
- Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yan Zhao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Shengli Zhuang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Jun Zha
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jingwu Dong
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Zibao Gan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Nan Xia
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
8
|
Shichibu Y, Ogawa Y, Sugiuchi M, Konishi K. Chiroptical activity of Au 13 clusters: experimental and theoretical understanding of the origin of helical charge movements. NANOSCALE ADVANCES 2021; 3:1005-1011. [PMID: 36133296 PMCID: PMC9416943 DOI: 10.1039/d0na00833h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/05/2020] [Indexed: 05/07/2023]
Abstract
Ligand-protected gold clusters with an asymmetric nature have emerged as a novel class of chiral compounds, but the origins of their chiroptical activities associated with helical charge movements in electronic transitions remain unexplored. Herein, we perform experimental and theoretical studies on the structures and chiroptical properties of Au13 clusters protected by mono- and di-phosphine ligands. Based on the experimental reevaluation of diphosphine-ligated Au13 clusters, we show that these surface ligands slightly twist the Au13 cores from a true icosahedron to generate intrinsic chirality in the gold frameworks. Theoretical investigation of a monophosphine-ligated cluster model reproduced the experimentally observed circular dichroism (CD) spectrum, indicating that such a torsional twist of the Au13 core, rather than the surrounding chiral environment by helically arranged diphosphine ligands, contributes to the appearance of the chiroptical response. We also show that the calculated CD signals are dependent on the degree of asymmetry (torsion angle between the two equatorial Au5 pentagons), and provide a visual understanding of the origin of helical charge movements with transition-moment and transition-density analyses. This work provides novel insights into the chiroptical activities of ligand-protected metal clusters with intrinsically chiral cores.
Collapse
Affiliation(s)
- Yukatsu Shichibu
- Graduate School of Environmental Science, Hokkaido University North 10 West 5 Sapporo 060-0810 Japan
- Faculty of Environmental Earth Science, Hokkaido University North 10 West 5 Sapporo 060-0810 Japan
| | - Yuri Ogawa
- Graduate School of Environmental Science, Hokkaido University North 10 West 5 Sapporo 060-0810 Japan
| | - Mizuho Sugiuchi
- Graduate School of Environmental Science, Hokkaido University North 10 West 5 Sapporo 060-0810 Japan
| | - Katsuaki Konishi
- Graduate School of Environmental Science, Hokkaido University North 10 West 5 Sapporo 060-0810 Japan
- Faculty of Environmental Earth Science, Hokkaido University North 10 West 5 Sapporo 060-0810 Japan
| |
Collapse
|
9
|
Cao Z, Gao H, Qiu M, Jin W, Deng S, Wong KY, Lei D. Chirality Transfer from Sub-Nanometer Biochemical Molecules to Sub-Micrometer Plasmonic Metastructures: Physiochemical Mechanisms, Biosensing, and Bioimaging Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907151. [PMID: 33252162 DOI: 10.1002/adma.201907151] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/21/2020] [Indexed: 05/05/2023]
Abstract
Determining the structural chirality of biomolecules is of vital importance in bioscience and biomedicine. Conventional methods for characterizing molecular chirality, e.g., circular dichroism (CD) spectroscopy, require high-concentration specimens due to the weak electronic CD signals of biomolecules such as amino acids. Artificially designed chiral plasmonic metastructures exhibit strong intrinsic chirality. However, the significant size mismatch between metastructures and biomolecules makes the former unsuitable for chirality-recognition-based molecular discrimination. Fortunately, constructing metallic architectures through molecular self-assembly allows chirality transfer from sub-nanometer biomolecules to sub-micrometer, intrinsically achiral plasmonic metastructures by means of either near-field interaction or chirality inheritance, resulting in hybrid systems with CD signals orders of magnitude larger than that of pristine biomolecules. This exotic property provides a new means to determine molecular chirality at extremely low concentrations (ideally at the single-molecule level). Herein, three strategies of chirality transfer from sub-nanometer biomolecules to sub-micrometer metallic metastructures are analyzed. The physiochemical mechanisms responsible for chirality transfer are elaborated and new fascinating opportunities for employing plasmonic metastructures in chirality-based biosensing and bioimaging are outlined.
Collapse
Affiliation(s)
- Zhaolong Cao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Han Gao
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Meng Qiu
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Wei Jin
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Shaozhi Deng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Kwok-Yin Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Dangyuan Lei
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
10
|
Krishnadas KR, Sementa L, Medves M, Fortunelli A, Stener M, Fürstenberg A, Longhi G, Bürgi T. Chiral Functionalization of an Atomically Precise Noble Metal Cluster: Insights into the Origin of Chirality and Photoluminescence. ACS NANO 2020; 14:9687-9700. [PMID: 32672935 DOI: 10.1021/acsnano.0c01183] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We probe the origin of photoluminescence of an atomically precise noble metal cluster, Ag24Au1(DMBT)18 (DMBT = 2,4-dimethylbenzenethiolate), and the origin of chirality in its chirally functionalized derivatives, Ag24Au1(R/S-BINAS)x(DMBT)18-2x, with x = 1-7 (R/S-BINAS = R/S-1,1'-[binaphthalene]-2,2'-dithiol), using chiroptical spectroscopic measurements and density functional theory (DFT) calculations. Combination of chiroptical and luminescence spectroscopies to understand the nature of electronic transitions has not been applied to such molecule-like metal clusters. In order to impart chirality to the achiral Ag24Au1(DMBT)18 cluster, the chiral ligand, R/S-BINAS, was incorporated into it. A series of clusters, Ag24Au1(R/S-BINAS)x(DMBT)18-2x, with x = 1-7, were synthesized. We demonstrate that the low-energy electronic transitions undergo an unexpected achiral to chiral and back to achiral transition from pure Ag24Au1(DMBT)18 to Ag24Au1(R/S-BINAS)x(DMBT)18-2x, by increasing the number of BINAS ligands. The UV/vis, luminescence, circular dichroism, and circularly polarized luminescence spectroscopic measurements, in conjunction with DFT calculations, suggest that the photoluminescence in Ag24Au1(DMBT)18 and its chirally functionalized derivatives originates from the transitions involving the whole Ag24Au1S18 framework and not merely from the icosahedral Ag12Au1 core. These results suggest that the chiroptical signatures and photoluminescence in these cluster systems cannot be solely attributed to any one of the structural components, that is, the metal core or the protecting metal-ligand oligomeric units, but rather to their interaction and that the ligand shell plays a crucial role. Our work demonstrates that chiroptical spectroscopic techniques such as circular dichroism and circularly polarized luminescence represent useful tools to understand the nature of electronic transitions in ligand-protected metal clusters and that this approach can be utilized for gaining deeper insights into the structure-property relationships of the electronic transitions of such molecule-like clusters.
Collapse
Affiliation(s)
| | - Luca Sementa
- CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Marco Medves
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Alessandro Fortunelli
- CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Mauro Stener
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Alexandre Fürstenberg
- Département de Chimie Analytique et Minérale, Université de Genève 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Giovanna Longhi
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Thomas Bürgi
- Département de Chimie Physique, Université de Genève, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| |
Collapse
|
11
|
Yoshida H, Kumar J, Ehara M, Okajima Y, Asanoma F, Kawai T, Nakashima T. Impact of Enantiomeric Ligand Composition on the Photophysical Properties of Chiral Ag 29 Nanoclusters. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hiroto Yoshida
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Takayama, Ikoma, Nara 630-0192, Japan
| | - Jatish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science, Myodai-ji, Okazaki, Aichi 444-8585, Japan
| | - Yasuo Okajima
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Takayama, Ikoma, Nara 630-0192, Japan
| | - Fumio Asanoma
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Takayama, Ikoma, Nara 630-0192, Japan
| | - Tsuyoshi Kawai
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Takayama, Ikoma, Nara 630-0192, Japan
| | - Takuya Nakashima
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
12
|
Yoshida H, Ehara M, Priyakumar UD, Kawai T, Nakashima T. Enantioseparation and chiral induction in Ag 29 nanoclusters with intrinsic chirality. Chem Sci 2020; 11:2394-2400. [PMID: 34084402 PMCID: PMC8157427 DOI: 10.1039/c9sc05299b] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The optical activity of a metal nanocluster (NC) is induced either by an asymmetric arrangement of constituents or by a dissymmetric field of a chiral ligand layer. Herein, we unveil the origin of chirality in Ag29 NCs, which is attributed to the intrinsically chiral atomic arrangement. The X-ray crystal structure of a Ag29(BDT)12(TPP)4 NC (BDT: 1,3-benzenedithiol; TPP: triphenylphosphine) manifested the presence of intrinsic chirality in the outer shell capping the icosahedral achiral Ag13 core. The enantiomers of the Ag29(BDT)12(TPP)4 NC are separated by high-performance liquid chromatography (HPLC) using a chiral column for the first time, showing mirror-image circular dichroism (CD) spectra. The CD spectra are reproduced by time-dependent density functional theory (TDDFT) calculations based on enantiomeric Ag29 models with achiral 1,3-propanedithiolate ligands. The mechanism of chiral induction in the synthesis of Ag29(DHLA)12 (DHLA: α-dihydrolipoic acid) NCs with a chiral ligand system is further discussed with the aid of DFT calculations. The use of the enantiomeric DHLA ligand preferentially leads to a one-handed atomic arrangement which is more stable than the opposite one, inducing the enantiomeric excess in the population of intrinsically chiral Ag29 NCs with CD activity. Enantioseparation of Ag29 nanoclusters with intrinsic chirality was performed by chiral HPLC, affording a pair of fractions with mirror image CD spectra.![]()
Collapse
Affiliation(s)
- Hiroto Yoshida
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST) Ikoma Nara 630-01921 Japan
| | - Masahiro Ehara
- Institute for Molecular Science, Research Center for Computational Science Myodai-ji Okazaki 444-8585 Japan
| | - U Deva Priyakumar
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology Hyderabad 500032 India
| | - Tsuyoshi Kawai
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST) Ikoma Nara 630-01921 Japan
| | - Takuya Nakashima
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST) Ikoma Nara 630-01921 Japan
| |
Collapse
|
13
|
Utembe W. Chirality, a neglected physico-chemical property of nanomaterials? A mini-review on the occurrence and importance of chirality on their toxicity. Toxicol Lett 2019; 311:58-65. [DOI: 10.1016/j.toxlet.2019.04.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/03/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
|
14
|
Tian F, Chen R. Pd-Mediated Synthesis of Ag33 Chiral Nanocluster with Core–Shell Structure in T Point Group. J Am Chem Soc 2019; 141:7107-7114. [DOI: 10.1021/jacs.9b02162] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fan Tian
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China
| | - Rong Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China
| |
Collapse
|
15
|
Niihori Y, Yoshida K, Hossain S, Kurashige W, Negishi Y. Deepening the Understanding of Thiolate-Protected Metal Clusters Using High-Performance Liquid Chromatography. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180357] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yoshiki Niihori
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kana Yoshida
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Sakiat Hossain
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Wataru Kurashige
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
16
|
Wan Q, Xiao X, To W, Lu W, Chen Y, Low K, Che C. Counteranion‐ and Solvent‐Mediated Chirality Transfer in the Supramolecular Polymerization of Luminescent Platinum(II) Complexes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qingyun Wan
- HKU-CAS Joint Laboratory on New Materials State Key Laboratory of Synthetic Chemistry Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Xin‐Shan Xiao
- HKU-CAS Joint Laboratory on New Materials State Key Laboratory of Synthetic Chemistry Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Wai‐Pong To
- HKU-CAS Joint Laboratory on New Materials State Key Laboratory of Synthetic Chemistry Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Wei Lu
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Yong Chen
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Beijing 100190 China
| | - Kam‐Hung Low
- HKU-CAS Joint Laboratory on New Materials State Key Laboratory of Synthetic Chemistry Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Chi‐Ming Che
- HKU-CAS Joint Laboratory on New Materials State Key Laboratory of Synthetic Chemistry Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
- HKU Shenzhen Institute of Research and Innovation Shenzhen Guangdong 518053 China
| |
Collapse
|
17
|
Wan Q, Xiao X, To W, Lu W, Chen Y, Low K, Che C. Counteranion‐ and Solvent‐Mediated Chirality Transfer in the Supramolecular Polymerization of Luminescent Platinum(II) Complexes. Angew Chem Int Ed Engl 2018; 57:17189-17193. [DOI: 10.1002/anie.201811943] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Qingyun Wan
- HKU-CAS Joint Laboratory on New Materials State Key Laboratory of Synthetic Chemistry Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Xin‐Shan Xiao
- HKU-CAS Joint Laboratory on New Materials State Key Laboratory of Synthetic Chemistry Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Wai‐Pong To
- HKU-CAS Joint Laboratory on New Materials State Key Laboratory of Synthetic Chemistry Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Wei Lu
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Yong Chen
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Beijing 100190 China
| | - Kam‐Hung Low
- HKU-CAS Joint Laboratory on New Materials State Key Laboratory of Synthetic Chemistry Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Chi‐Ming Che
- HKU-CAS Joint Laboratory on New Materials State Key Laboratory of Synthetic Chemistry Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
- HKU Shenzhen Institute of Research and Innovation Shenzhen Guangdong 518053 China
| |
Collapse
|
18
|
Lu JE, Yang CH, Wang H, Yam C, Yu ZG, Chen S. Plasmonic circular dichroism of vesicle-like nanostructures by the template-less self-assembly of achiral Janus nanoparticles. NANOSCALE 2018; 10:14586-14593. [PMID: 30027984 DOI: 10.1039/c8nr05366a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Chiral nanostructures have been attracting extensive interest in recent years primarily because of the unique materials properties that can be exploited for diverse applications. In this study, gold Janus nanoparticles, with hexanethiolates and 3-mercapto-1,2-propanediol segregated on the two hemispheres of the metal cores (dia. 2.7 ± 0.4 nm), self-assembled into vesicle-like, hollow nanostructures in both water and organic media, and exhibited apparent plasmonic circular dichroism (PCD) absorption in the visible range. This was in contrast to individual Janus nanoparticles, bulk-exchange nanoparticles where the two ligands were homogeneously mixed on the nanoparticle surface, or nanoparticles capped with only one kind of ligand. The PCD signals were found to become intensified with increasing coverage of the 3-mercapto-1,2-propanediol ligands on the nanoparticle surface. This was accounted for by the dipolar property of the structurally asymmetrical Janus nanoparticles, and theoretical simulations based on first principles calculations showed that when the nanoparticle dipoles self-assembled onto the surface of a hollow sphere, a vertex was formed which gave rise to the unique chiral characteristics. The resulting chiral nanoparticle vesicles could be exploited for the separation of optical enantiomers, as manifested in the selective identification and separation of d-alanine from the l-isomer.
Collapse
Affiliation(s)
- Jia En Lu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Kang X, Chong H, Zhu M. Au 25(SR) 18: the captain of the great nanocluster ship. NANOSCALE 2018; 10:10758-10834. [PMID: 29873658 DOI: 10.1039/c8nr02973c] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Noble metal nanoclusters are in the intermediate state between discrete atoms and plasmonic nanoparticles and are of significance due to their atomically accurate structures, intriguing properties, and great potential for applications in various fields. In addition, the size-dependent properties of nanoclusters construct a platform for thoroughly researching the structure (composition)-property correlations, which is favorable for obtaining novel nanomaterials with enhanced physicochemical properties. Thus far, more than 100 species of nanoclusters (mono-metallic Au or Ag nanoclusters, and bi- or tri-metallic alloy nanoclusters) with crystal structures have been reported. Among these nanoclusters, Au25(SR)18-the brightest molecular star in the nanocluster field-is capable of revealing the past developments and prospecting the future of the nanoclusters. Since being successfully synthesized (in 1998, with a 20-year history) and structurally determined (in 2008, with a 10-year history), Au25(SR)18 has stimulated the interest of chemists as well as material scientists, due to the early discovery, easy preparation, high stability, and easy functionalization and application of this molecular star. In this review, the preparation methods, crystal structures, physicochemical properties, and practical applications of Au25(SR)18 are summarized. The properties of Au25(SR)18 range from optics and chirality to magnetism and electrochemistry, and the property-oriented applications include catalysis, chemical imaging, sensing, biological labeling, biomedicine and beyond. Furthermore, the research progress on the Ag-based M25(SR)18 counterpart (i.e., Ag25(SR)18) is included in this review due to its homologous composition, construction and optical absorption to its gold-counterpart Au25(SR)18. Moreover, the alloying methods, metal-exchange sites and property alternations based on the templated Au25(SR)18 are highlighted. Finally, some perspectives and challenges for the future research of the Au25(SR)18 nanocluster are proposed (also holding true for all members in the nanocluster field). This review is directed toward the broader scientific community interested in the metal nanocluster field, and hopefully opens up new horizons for scientists studying nanomaterials. This review is based on the publications available up to March 2018.
Collapse
Affiliation(s)
- Xi Kang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Institute of Physical Science and Information Technology and AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | | | | |
Collapse
|
20
|
Jin S, Xu F, Du W, Kang X, Chen S, Zhang J, Li X, Hu D, Wang S, Zhu M. Isomerism in Au-Ag Alloy Nanoclusters: Structure Determination and Enantioseparation of [Au 9Ag 12(SR) 4(dppm) 6X 6] 3. Inorg Chem 2018; 57:5114-5119. [PMID: 29624376 DOI: 10.1021/acs.inorgchem.8b00183] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Revealing structural isomerism in a nanocluster remains significant but challenging. Herein, we have obtained a pair of structural isomers, [Au9Ag12(SR)4(dppm)6X6]3+-C and [Au9Ag12(SR)4(dppm)6X6]3+-Ac [dppm = bis(diphenyphosphino)methane; HSR = 1-adamantanethiol/ tert-butylmercaptan; X = Br/Cl; C stands for one of the structural isomers being chiral; Ac stands for another being achiral], that show different structures as well as different chiralities. These structures are determined by single-crystal X-ray diffraction and further confirmed by high-resolution electrospray ionization mass spectrometry. On the basis of the isomeric structures, the most important finding is the different arrangements of the Au5Ag8@Au4 metal core, leading to changes in the overall shape of the cluster, which is responsible for structural isomerism. Meanwhile, the two enantiomers of [Au9Ag12(SR)4(dppm)6X6]3+-C are separated by high-performance liquid chromatography. Our work will contribute to a deeper understanding of the structural isomerism in noble-metal nanoclusters and enrich the chiral nanocluster.
Collapse
Affiliation(s)
- Shan Jin
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials & AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei , Anhui 230601 , China
| | - Fengqing Xu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials & AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei , Anhui 230601 , China
| | - Wenjun Du
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials & AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei , Anhui 230601 , China
| | - Xi Kang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials & AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei , Anhui 230601 , China
| | - Shuang Chen
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials & AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei , Anhui 230601 , China
| | - Jun Zhang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials & AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei , Anhui 230601 , China
| | - Xiaowu Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials & AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei , Anhui 230601 , China
| | - Daqiao Hu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials & AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei , Anhui 230601 , China
| | - Shuxin Wang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials & AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei , Anhui 230601 , China
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials & AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei , Anhui 230601 , China
| |
Collapse
|
21
|
Wei J, Guo Y, Li J, Yuan M, Long T, Liu Z. Optically Active Ultrafine Au–Ag Alloy Nanoparticles Used for Colorimetric Chiral Recognition and Circular Dichroism Sensing of Enantiomers. Anal Chem 2017; 89:9781-9787. [DOI: 10.1021/acs.analchem.7b01723] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jianjia Wei
- Key Laboratory of Luminescent and Real-Time
Analytical Chemistry, Ministry of Education, College of
Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Yanjia Guo
- Key Laboratory of Luminescent and Real-Time
Analytical Chemistry, Ministry of Education, College of
Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Jizhou Li
- Key Laboratory of Luminescent and Real-Time
Analytical Chemistry, Ministry of Education, College of
Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Mengke Yuan
- Key Laboratory of Luminescent and Real-Time
Analytical Chemistry, Ministry of Education, College of
Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Tengfei Long
- Key Laboratory of Luminescent and Real-Time
Analytical Chemistry, Ministry of Education, College of
Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Zhongde Liu
- Key Laboratory of Luminescent and Real-Time
Analytical Chemistry, Ministry of Education, College of
Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| |
Collapse
|
22
|
Liu XJ, Hamilton IP. A series of intrinsically chiral gold nanocage structures. NANOSCALE 2017; 9:10321-10326. [PMID: 28702649 DOI: 10.1039/c7nr02868g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a series of intrinsically chiral gold nanocage structures, Au9n+6, which are stable for n ≥ 2. These structures consist of an Au9n tube which is capped with Au3 units at each end. Removing the Au3 caps, we obtain a series of intrinsically chiral gold nanotube structures, Au9n, which are stable for n ≥ 4. The intrinsic chirality of these structures results from the helicity of the gold strands which form the tube and not because an individual Au atom is a chiral center. The symmetry of these structures is C3 and substructures of gold hexagons with a gold atom in the middle are particularly prominent. We focus on the properties of Au42 (C3) and Au105 (C3) which are the two smallest gold nanocage structures to be completely tiled by these Au7 "golden-eye" substructures. Our main focus is on Au42 (C3) since gold clusters in the 40-50 atom regime are currently being investigated in gas phase experiments. We show that the intrinsically chiral Au42 cage structure is energetically comparable with previously reported achiral cage and compact Au42 structures. Cage structures are of particular interest because species can be encapsulated (and stabilized) inside the cage and we provide strong evidence that Au6@Au42 (C3) is the global minimum Au48 structure. The intrinsically chiral gold nanocage structures, which exhibit a range of size-related properties, have potential applications in chiral catalysis and as components in nanostructured devices.
Collapse
Affiliation(s)
- X J Liu
- Department of Chemistry, Wilfrid Laurier University, Waterloo, N2L 3C5, Ontario, Canada
| | - I P Hamilton
- Department of Chemistry, Wilfrid Laurier University, Waterloo, N2L 3C5, Ontario, Canada
| |
Collapse
|
23
|
Zeng C, Jin R. Chiral Gold Nanoclusters: Atomic Level Origins of Chirality. Chem Asian J 2017; 12:1839-1850. [DOI: 10.1002/asia.201700023] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/30/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Chenjie Zeng
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Rongchao Jin
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
| |
Collapse
|
24
|
Ma W, Xu L, de Moura AF, Wu X, Kuang H, Xu C, Kotov NA. Chiral Inorganic Nanostructures. Chem Rev 2017; 117:8041-8093. [DOI: 10.1021/acs.chemrev.6b00755] [Citation(s) in RCA: 485] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - André F. de Moura
- Department
of Chemistry, Federal University of São Carlos, CP 676, CEP 13.565-905, São Carlos, SP, Brazil
| | | | | | | | | |
Collapse
|
25
|
Darling GR, Forster M, Lin C, Liu N, Raval R, Hodgson A. Chiral segregation driven by a dynamical response of the adsorption footprint to the local adsorption environment: bitartrate on Cu(110). Phys Chem Chem Phys 2017; 19:7617-7623. [DOI: 10.1039/c7cp00622e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bitartrate, a strongly bound chiral modifier, is able to restructure its adsorption footprint on Cu(110) in response to local adsorbates.
Collapse
Affiliation(s)
- G. R. Darling
- Surface Science Research Centre and Department of Chemistry
- University of Liverpool
- Liverpool L69 3BX
- UK
| | - M. Forster
- Surface Science Research Centre and Department of Chemistry
- University of Liverpool
- Liverpool L69 3BX
- UK
| | - C. Lin
- Surface Science Research Centre and Department of Chemistry
- University of Liverpool
- Liverpool L69 3BX
- UK
| | - N. Liu
- Surface Science Research Centre and Department of Chemistry
- University of Liverpool
- Liverpool L69 3BX
- UK
| | - R. Raval
- Surface Science Research Centre and Department of Chemistry
- University of Liverpool
- Liverpool L69 3BX
- UK
| | - A. Hodgson
- Surface Science Research Centre and Department of Chemistry
- University of Liverpool
- Liverpool L69 3BX
- UK
| |
Collapse
|
26
|
Yuan M, Guo Y, Wei J, Li J, Long T, Liu Z. Optically active blue-emitting carbon dots to specifically target the Golgi apparatus. RSC Adv 2017. [DOI: 10.1039/c7ra09271g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A pair of optically active carbon dots were prepared, which could specifically target and directly illuminate the Golgi apparatus.
Collapse
Affiliation(s)
- Mengke Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400716
| | - Yanjia Guo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400716
| | - Jianjia Wei
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400716
| | - Jizhou Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400716
| | - Tengfei Long
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400716
| | - Zhongde Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400716
| |
Collapse
|
27
|
Takano S, Tsukuda T. Amplification of the Optical Activity of Gold Clusters by the Proximity of BINAP. J Phys Chem Lett 2016; 7:4509-4513. [PMID: 27784158 DOI: 10.1021/acs.jpclett.6b02294] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Despite recent progress in the synthesis and characterization of optically active gold clusters, the factor determining optical rotatory strength has not been clarified due to the lack of structurally resolved, enantiomerically pure Au clusters. We addressed this issue by studying the correlation between the optical activity and geometrical structures of two types of Au clusters that were protected by chiral diphosphines: [Au11(R/S-DIOP)4Cl2]+ (DIOP = 1,4-bis(diphenylphosphino)-2,3-o-isopropylidene-2,3-butanediol) and [Au8(R/S-BINAP)3(PPh3)2]2+ (BINAP = 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl). [Au8(BINAP)3(PPh3)2]2+ showed stronger rotatory strengths than [Au11(DIOP)4Cl2]+ in the visible region, while the Hausdorff chirality measure calculated from the crystal data indicated that the Au core of the former is less chiral than that of the latter. We propose that the optical activity in the Au core-based transition due to the deformed core is further amplified by chiral arrangement of the binaphthyl moiety near the Au core.
Collapse
Affiliation(s)
- Shinjiro Takano
- Department of Chemistry, School of Science, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, School of Science, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Elements Strategy Initiative for Catalysis and Batteries (ESICB), Kyoto University , Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
28
|
Yasukawa T, Miyamura H, Kobayashi S. Chiral Ligand-Modified Metal Nanoparticles as Unique Catalysts for Asymmetric C–C Bond-Forming Reactions: How Are Active Species Generated? ACS Catal 2016. [DOI: 10.1021/acscatal.6b02446] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tomohiro Yasukawa
- Department of Chemistry,
School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Miyamura
- Department of Chemistry,
School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shu̅ Kobayashi
- Department of Chemistry,
School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
29
|
Jin R, Zeng C, Zhou M, Chen Y. Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. Chem Rev 2016; 116:10346-413. [DOI: 10.1021/acs.chemrev.5b00703] [Citation(s) in RCA: 1953] [Impact Index Per Article: 244.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Chenjie Zeng
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Meng Zhou
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yuxiang Chen
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
30
|
Hidalgo F, Noguez C. How to control optical activity in organic-silver hybrid nanoparticles. NANOSCALE 2016; 8:14457-14466. [PMID: 27406401 DOI: 10.1039/c6nr02372j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The mechanisms that originate and control optical activity in organic-metal hybrid nanoparticles (NPs) are identified using a time-perturbed density functional theory. Electronic circular dichroism (CD) is studied in terms of the intrinsic chirality of the ligands, the number of ligands and the induced chirality by the arrangement of the ligands on the NP. Left-handed cysteine and achiral methylthio ligands adsorbed on an icosahedral silver NP are investigated. The analysis of CD allows the identification of the spectral regions when the induced chirality by the ligand array dominates over the intrinsic chirality of the ligands, determining conditions for CD control and enlargement. These results would be significant in the discussion of experimental CD spectra of organic-metal hybrid NPs, which might allow the development of new strategies to improve the sensitivity of chiroptical spectroscopies for the identification of bio and organic molecules.
Collapse
Affiliation(s)
- Francisco Hidalgo
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, Cd. de México C.P. 01000, Mexico.
| | | |
Collapse
|
31
|
|
32
|
Long T, Guo Y, Lin M, Yuan M, Liu Z, Huang C. Optically active red-emitting Cu nanoclusters originating from complexation and redox reaction between copper(ii) and d/l-penicillamine. NANOSCALE 2016; 8:9764-9770. [PMID: 27118654 DOI: 10.1039/c6nr01492e] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Despite a significant surge in the number of investigations into both optically active Au and Ag nanostructures, there is currently only limited knowledge about optically active Cu nanoclusters (CuNCs) and their potential applications. Here, we have succeeded in preparing a pair of optically active red-emitting CuNCs on the basis of complexation and redox reaction between copper(ii) and penicillamine (Pen) enantiomers, in which Pen serves as both a reducing agent and a stabilizing ligand. Significantly, the CuNCs feature unique aggregation induced emission (AIE) characteristics and therefore can serve as pH stimuli-responsive functional materials. Impressively, the ligand chirality plays a dramatic role for the creation of brightly emissive CuNCs, attributed to the conformation of racemic Pen being unfavorable for the electrostatic interaction, and thus suppressing the formation of cluster aggregates. In addition, the clusters display potential toward cytoplasmic staining and labelling due to the high photoluminescence (PL) quantum yields (QYs) and remarkable cellular uptake, in spite that no chirality-dependent effects in autophagy and subcellular localization are observed in the application of chiral cluster enantiomer-based cell imaging.
Collapse
Affiliation(s)
- Tengfei Long
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Yanjia Guo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Min Lin
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Mengke Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Zhongde Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Chengzhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
33
|
Yao H, Iwatsu M. Water-Soluble Phosphine-Protected Au₁₁ Clusters: Synthesis, Electronic Structure, and Chiral Phase Transfer in a Synergistic Fashion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3284-93. [PMID: 26986535 DOI: 10.1021/acs.langmuir.6b00539] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Synthesis of atomically precise, water-soluble phosphine-protected gold clusters is still currently limited probably due to a stability issue. We here present the synthesis, magic-number isolation, and exploration of the electronic structures as well as the asymmetric conversion of triphenylphosphine monosulfonate (TPPS)-protected gold clusters. Electrospray ionization mass spectrometry and elemental analysis result in the primary formation of Au11(TPPS)9Cl undecagold cluster compound. Magnetic circular dichroism (MCD) spectroscopy clarifies that extremely weak transitions are present in the low-energy region unresolved in the UV-vis absorption, which can be due to the Faraday B-terms based on the magnetically allowed transitions in the cluster. Asymmetric conversion without changing the nuclearity is remarkable by the chiral phase transfer in a synergistic fashion, which yields a rather small anisotropy factor (g-factor) of at most (2.5-7.0) × 10(-5). Quantum chemical calculations for model undecagold cluster compounds are then used to evaluate the optical and chiroptical responses induced by the chiral phase transfer. On this basis, we find that the Au core distortion is ignorable, and the chiral ion-pairing causes a slight increase in the CD response of the Au11 cluster.
Collapse
Affiliation(s)
- Hiroshi Yao
- Graduate School of Material Science, University of Hyogo , 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Mana Iwatsu
- Graduate School of Material Science, University of Hyogo , 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| |
Collapse
|
34
|
Choi JK, Haynie BE, Tohgha U, Pap L, Elliott KW, Leonard BM, Dzyuba SV, Varga K, Kubelka J, Balaz M. Chirality Inversion of CdSe and CdS Quantum Dots without Changing the Stereochemistry of the Capping Ligand. ACS NANO 2016; 10:3809-3815. [PMID: 26938741 DOI: 10.1021/acsnano.6b00567] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
L-cysteine derivatives induce and modulate the optical activity of achiral cadmium selenide (CdSe) and cadmium sulfide (CdS) quantum dots (QDs). Remarkably, N-acetyl-L-cysteine-CdSe and L-homocysteine-CdSe as well as N-acetyl-L-cysteine-CdS and L-cysteine-CdS showed "mirror-image" circular dichroism (CD) spectra regardless of the diameter of the QDs. This is an example of the inversion of the CD signal of QDs by alteration of the ligand's structure, rather than inversion of the ligand's absolute configuration. Non-empirical quantum chemical simulations of the CD spectra were able to reproduce the experimentally observed sign patterns and demonstrate that the inversion of chirality originated from different binding arrangements of N-acetyl-L-cysteine and L-homocysteine-CdSe to the QD surface. These efforts may allow the prediction of the ligand-induced chiroptical activity of QDs by calculating the specific binding modes of the chiral capping ligands. Combined with the large pool of available chiral ligands, our work opens a robust approach to the rational design of chiral semiconducting nanomaterials.
Collapse
Affiliation(s)
- Jung Kyu Choi
- Department of Chemistry, University of Wyoming , Laramie, Wyoming 82071, United States
| | - Benjamin E Haynie
- Department of Chemistry, University of Wyoming , Laramie, Wyoming 82071, United States
| | - Urice Tohgha
- Department of Chemistry, University of Wyoming , Laramie, Wyoming 82071, United States
| | - Levente Pap
- Department of Chemistry, University of Wyoming , Laramie, Wyoming 82071, United States
| | - K Wade Elliott
- Department of Chemistry, University of Wyoming , Laramie, Wyoming 82071, United States
| | - Brian M Leonard
- Department of Chemistry, University of Wyoming , Laramie, Wyoming 82071, United States
| | - Sergei V Dzyuba
- Department of Chemistry and Biochemistry, Texas Christian University , Fort Worth, Texas 76129, United States
| | - Krisztina Varga
- Department of Chemistry, University of Wyoming , Laramie, Wyoming 82071, United States
| | - Jan Kubelka
- Department of Chemistry, University of Wyoming , Laramie, Wyoming 82071, United States
| | - Milan Balaz
- Underwood International College, Integrated Science & Engineering Division, Yonsei University , Seoul 03722, Republic of Korea
| |
Collapse
|
35
|
Petty JT, Sergev OO, Ganguly M, Rankine IJ, Chevrier DM, Zhang P. A Segregated, Partially Oxidized, and Compact Ag10 Cluster within an Encapsulating DNA Host. J Am Chem Soc 2016; 138:3469-77. [PMID: 26924556 PMCID: PMC6118400 DOI: 10.1021/jacs.5b13124] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Silver clusters develop within DNA strands and become optical chromophores with diverse electronic spectra and wide-ranging emission intensities. These studies consider a specific cluster that absorbs at 400 nm, has low emission, and exclusively develops with single-stranded oligonucleotides. It is also a chameleon-like chromophore that can be transformed into different highly emissive fluorophores. We describe four characteristics of this species and conclude that it is highly oxidized yet also metallic. One, the cluster size was determined via electrospray ionization mass spectrometry. A common silver mass is measured with different oligonucleotides and thereby supports a Ag10 cluster. Two, the cluster charge was determined by mass spectrometry and Ag L3-edge X-ray absorption near-edge structure spectroscopy. Respectively, the conjugate mass and the integrated white-line intensity support a partially oxidized cluster with a +6 and +6.5 charge, respectively. Three, the cluster chirality was gauged by circular dichroism spectroscopy. This chirality changes with the length and sequence of its DNA hosts, and these studies identified a dispersed binding site with ∼20 nucleobases. Four, the structure of this complex was investigated via Ag K-edge extended X-ray absorption fine structure spectroscopy. A multishell fitting analysis identified three unique scattering environments with corresponding bond lengths, coordination numbers, and Debye-Waller factors for each. Collectively, these findings support the following conclusion: a Ag10(+6) cluster develops within a 20-nucleobase DNA binding site, and this complex segregates into a compact, metal-like silver core that weakly links to an encapsulating silver-DNA shell. We consider different models that account for silver-silver coordination within the core.
Collapse
Affiliation(s)
- Jeffrey T. Petty
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Orlin O. Sergev
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Mainak Ganguly
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Ian J. Rankine
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Daniel M. Chevrier
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Peng Zhang
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
36
|
Niihori Y, Uchida C, Kurashige W, Negishi Y. High-resolution separation of thiolate-protected gold clusters by reversed-phase high-performance liquid chromatography. Phys Chem Chem Phys 2016; 18:4251-65. [DOI: 10.1039/c5cp04660b] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This perspective summarizes our work on high-resolution separation of thiolate-protected gold clusters using reversed-phase high-performance liquid chromatography, new findings obtained by those separation, and future prospects for this field.
Collapse
Affiliation(s)
- Yoshiki Niihori
- Department of Applied Chemistry
- Faculty of Science
- Tokyo University of Science
- Shinjuku-ku
- Japan
| | - Chihiro Uchida
- Department of Applied Chemistry
- Faculty of Science
- Tokyo University of Science
- Shinjuku-ku
- Japan
| | - Wataru Kurashige
- Department of Applied Chemistry
- Faculty of Science
- Tokyo University of Science
- Shinjuku-ku
- Japan
| | - Yuichi Negishi
- Department of Applied Chemistry
- Faculty of Science
- Tokyo University of Science
- Shinjuku-ku
- Japan
| |
Collapse
|
37
|
Pichugina DA, Kuz'menko NE, Shestakov AF. Ligand-protected gold clusters: the structure, synthesis and applications. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4493] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Fernando A, Weerawardene KLDM, Karimova NV, Aikens CM. Quantum Mechanical Studies of Large Metal, Metal Oxide, and Metal Chalcogenide Nanoparticles and Clusters. Chem Rev 2015; 115:6112-216. [PMID: 25898274 DOI: 10.1021/cr500506r] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Amendra Fernando
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | | | - Natalia V Karimova
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Christine M Aikens
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
39
|
Optical Properties and Chirality. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/b978-0-08-100086-1.00009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
40
|
Barcaro G, Sementa L, Fortunelli A, Stener M. Optical properties of nanoalloys. Phys Chem Chem Phys 2015; 17:27952-67. [DOI: 10.1039/c5cp00498e] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Optical absorption spectra of bare (left) and monolayer-protected (right) metal nanoalloys.
Collapse
Affiliation(s)
| | - Luca Sementa
- CNR-ICCOM & IPCF
- Consiglio Nazionale delle Ricerche
- Pisa
- Italy
| | | | - Mauro Stener
- Dipartimento di Scienze Chimiche e Farmaceutiche
- Università di Trieste
- Trieste
- Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali
| |
Collapse
|
41
|
Liu X, Hamilton IP. Helical gold nanorods as chiral recognition nanostructures: a relativistic density functional theory study. J Am Chem Soc 2014; 136:17757-61. [PMID: 25453899 DOI: 10.1021/ja5084267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We establish helical gold nanorods as the first examples of chiral recognition nanostructures by examining the simple chiral molecule CClHDT adsorbed on the helical Au40 nanorod. We calculate the vibrational circular dichroism (VCD) spectra of the R and S enantiomers of CClHDT adsorbed on the R (or S) enantiomer of Au40 using relativistic density functional theory. The highest adsorption energy is found when the Cl atom of CClHDT binds to a low-coordinated Au atom at the edge of Au40. There are three adsorption modes (essentially identical in energy) corresponding to three orientations of the HDT moiety. We show that, for each adsorption mode, the VCD spectra are distinctly different for the Au40(R)-ClHDT(R) and Au40(R)-CClHDT(S) complexes, and we give a qualitative explanation for this based on the principle of chirality transfer. For comparison with the results for Au40, we calculate the VCD spectra of the R and S enantiomers of CClHDT adsorbed on the achiral Au20 tetrahedral cluster. Again, there are three adsorption modes (essentially identical in energy) corresponding to three orientations of the HDT moiety. However, we show that, for each adsorption mode, the VCD spectra are mirror symmetric but otherwise essentially identical for the Au20-CClHDT(R) and Au20-CClHDT(S) complexes. Thus, the inherent chirality of the helical Au40 nanorod is essential for its chiral recognition functionality.
Collapse
Affiliation(s)
- Xiaojing Liu
- Department of Chemistry, Wilfrid Laurier University , Waterloo, N2L 3C5 Ontario, Canada
| | | |
Collapse
|
42
|
Nishigaki JI, Koyasu K, Tsukuda T. Chemically Modified Gold Superatoms and Superatomic Molecules. CHEM REC 2014; 14:897-909. [DOI: 10.1002/tcr.201402011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Indexed: 01/25/2023]
Affiliation(s)
- Jun-ichi Nishigaki
- Department of Chemistry; School of Science; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Kiichirou Koyasu
- Department of Chemistry; School of Science; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Tatsuya Tsukuda
- Department of Chemistry; School of Science; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB); Kyoto University; Katsura Kyoto 615-8520 Japan
| |
Collapse
|
43
|
Noguez C, Hidalgo F. Ab Initio Electronic Circular Dichroism of Fullerenes, Single-Walled Carbon Nanotubes, and Ligand-Protected Metal Nanoparticles. Chirality 2014; 26:553-62. [DOI: 10.1002/chir.22348] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 05/05/2014] [Accepted: 05/13/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Cecilia Noguez
- Instituto de Física; Universidad Nacional Autónoma de México; México D.F. México
| | - Francisco Hidalgo
- Instituto de Física; Universidad Nacional Autónoma de México; México D.F. México
| |
Collapse
|
44
|
Abstract
Over recent years, research on thiolate-protected gold clusters Au(m)(SR)n has gained significant interest. Milestones were the successful determination of a series of crystal structures (Au102(SR)44, Au25(SR)18, Au38(SR)24, Au36(SR)24, and Au28(SR)20). For Au102(SR)44, Au38(SR)24, and Au28(SR)20, intrinsic chirality was found. Strong Cotton effects (circular dichroism, CD) of gold clusters protected by chiral ligands have been reported a long time ago, indicating the transfer of chiral information from the ligand into the cluster core. Our lab has done extensive studies on chiral thiolate-protected gold clusters, including those protected with chiral ligands. We demonstrated that vibrational circular dichroism can serve as a useful tool for the determination of conformation of the ligand on the surface of the cluster. The first reports on crystal structures of Au102(SR)44 and Au38(SR)24 revealed the intrinsic chirality of these clusters. Their chirality mainly arises from the arrangement of the ligands on the surface of the cluster cores. As achiral ligands are used to stabilize the clusters, racemic mixtures are obtained. However, the separation of the enantiomers by HPLC was demonstrated which enabled the measurement of their CD spectra. Thermally induced inversion allows determination of the activation parameters for their racemization. The inversion demonstrates that the gold-thiolate interface is anything but fixed; in contrast, it is rather flexible. This result is of fundamental interest and needs to be considered in future applications. A second line of our research is the selective introduction of chiral, bidentate ligands into the ligand layer of intrinsically chiral gold clusters. The ligand exchange reaction is highly diastereoselective. The bidentate ligand connects two of the protecting units on the cluster surface and thus effectively stabilizes the cluster against thermally induced inversion. A minor (but significant) influence of chiral ligands to the CD spectra of the clusters is observed. The studied system represents the first example of an intrinsically chiral gold cluster with a defined number of exchanged ligands, full control over their regio- and stereochemistry. The methodology allows for the selective preparation of mixed-ligand cluster compounds and a thorough investigation of the influence of single ligands on the cluster's properties. Overall, the method enables even more detailed tailoring of properties. Still, central questions remain unanswered: (1) Is intrinsic chirality a ubiquitous feature of thiolate-protected gold clusters? (2) How does chirality transfer work? (3) What are the applications for chiral thiolate-protected gold clusters? In this Account, we summarize the main findings on chirality in thiolate-protected gold cluster of the past half decade. Emphasis is put on intrinsically chiral clusters and their structures, optical activity, and reactivity.
Collapse
Affiliation(s)
- Stefan Knoppe
- Département de Chimie
Physique, Université de Genève, 30 Quai Ernest-Ansermet, 1211 Genève 4, Switzerland
| | - Thomas Bürgi
- Département de Chimie
Physique, Université de Genève, 30 Quai Ernest-Ansermet, 1211 Genève 4, Switzerland
| |
Collapse
|
45
|
Hidalgo F, Noguez C, Olvera de la Cruz M. Metallic influence on the atomic structure and optical activity of ligand-protected nanoparticles: a comparison between Ag and Au. NANOSCALE 2014; 6:3325-3334. [PMID: 24519723 DOI: 10.1039/c3nr06202c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Using time-perturbed density functional theory the optical activity of metal-thiolate compounds formed by highly symmetric Ag and Au nanoparticles (NPs) and a methyl-thiol molecule is studied after performing atomic optimizations and electronic calculations upon adsorption. Many different sites and orientations of the adsorbed molecule on icosahedral Ag and Au NPs of 55 atoms are considered. Upon molecular adsorption atomic distortions on Au NPs are induced while not on Ag, which causes higher molecular adsorption energies in Au than in Ag. Structural distortions and the specific molecular adsorption site and orientation result in chiral metal-thiolate NPs. Ag and Au compounds with similar chirality, according to Hausdorff chirality measurements, show different optical activity signatures, where circular dichroism spectra of Au NPs are more intense. These dissimilarities are attributed in part to the differences in the electronic density of states, which are a consequence of relativistic effects and the atomic distortion. It is concluded that the optical activity of Ag and Au compounds is due to different mechanisms, while in Au it is mainly due to the atomic distortion of the metallic NPs induced after molecular adsorption, in Ag it is defined by the adsorption site and molecular orientation with respect to the NP symmetry.
Collapse
Affiliation(s)
- Francisco Hidalgo
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, Mexico D. F. 01000, Mexico.
| | | | | |
Collapse
|
46
|
Negishi Y. Toward the Creation of Functionalized Metal Nanoclusters and Highly Active Photocatalytic Materials Using Thiolate-Protected Magic Gold Clusters. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2014. [DOI: 10.1246/bcsj.20130288] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science and Photocatalysis International Research Center, Tokyo University of Science
| |
Collapse
|
47
|
Toubiana J, Medina L, Sasson Y. The Nature of the True Catalyst in Transfer Hydrogenation with Alcohol Donors Using (arene)<sub>2</sub>Ru<sub>2</sub>Cl<sub>4</sub>(II)/TsDPEN Precursor. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/mrc.2014.33010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Tohgha U, Deol KK, Porter AG, Bartko SG, Choi JK, Leonard BM, Varga K, Kubelka J, Muller G, Balaz M. Ligand induced circular dichroism and circularly polarized luminescence in CdSe quantum dots. ACS NANO 2013; 7:11094-102. [PMID: 24200288 PMCID: PMC3927652 DOI: 10.1021/nn404832f] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chiral thiol capping ligands L- and D-cysteines induced modular chiroptical properties in achiral cadmium selenide quantum dots (CdSe QDs). Cys-CdSe prepared from achiral oleic acid capped CdSe by postsynthetic ligand exchange displayed size-dependent electronic circular dichroism (CD) and circularly polarized luminescence (CPL). Opposite CPL signals were measured for the CdSe QDs capped with D- and L-cysteine. The CD profile and CD anisotropy varied with size of CdSe nanocrystals with largest anisotropy observed for CdSe nanoparticles of 4.4 nm. Magic angle spinning solid state NMR (MAS ssNMR) experiments suggested bidentate interaction between cysteine and the surface of CdSe. Time Dependent Density Functional Theory (TDDFT) calculations verified that attachment of L- and D-cysteine to the surface of model (CdSe)13 nanoclusters induces measurable opposite CD signals for the exitonic band of the nanocluster. The origin of the induced chirality is consistent with the hybridization of highest occupied CdSe molecular orbitals with those of the chiral ligand.
Collapse
Affiliation(s)
- Urice Tohgha
- University of Wyoming, Department of Chemistry, 1000 E. University Ave, Laramie, USA
| | - Kirandeep K. Deol
- Department of Chemistry, San José State University, San José, CA 95192-0101, USA
| | - Ashlin G. Porter
- University of Wyoming, Department of Chemistry, 1000 E. University Ave, Laramie, USA
| | - Samuel G. Bartko
- University of Wyoming, Department of Chemistry, 1000 E. University Ave, Laramie, USA
| | - Jung Kyu Choi
- University of Wyoming, Department of Chemistry, 1000 E. University Ave, Laramie, USA
| | - Brian M. Leonard
- University of Wyoming, Department of Chemistry, 1000 E. University Ave, Laramie, USA
| | - Krisztina Varga
- University of Wyoming, Department of Chemistry, 1000 E. University Ave, Laramie, USA
| | - Jan Kubelka
- University of Wyoming, Department of Chemistry, 1000 E. University Ave, Laramie, USA
| | - Gilles Muller
- Department of Chemistry, San José State University, San José, CA 95192-0101, USA
- Gilles Muller, Department of Chemistry, San José State University, San José, CA 95192-0101, USA. Fax: +1 408 924-4945; Tel: +1 408 924-5000;
| | - Milan Balaz
- University of Wyoming, Department of Chemistry, 1000 E. University Ave, Laramie, USA
- Corresponding Authors Milan Balaz, University of Wyoming, Department of Chemistry, 1000 E. University Ave, Laramie, USA. Fax: +1 307 766-2807; Tel: +1 307 766-4330;
| |
Collapse
|
49
|
Pei Y, Lin S, Su J, Liu C. Structure Prediction of Au44(SR)28: A Chiral Superatom Cluster. J Am Chem Soc 2013; 135:19060-3. [DOI: 10.1021/ja409788k] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yong Pei
- Department of Chemistry,
Key Laboratory of Environmentally Friendly Chemistry and Applications
of Ministry of Education, Xiangtan University, Hunan Province 411105, P. R. China
| | - Sisi Lin
- Department of Chemistry,
Key Laboratory of Environmentally Friendly Chemistry and Applications
of Ministry of Education, Xiangtan University, Hunan Province 411105, P. R. China
| | - Jingcang Su
- Department of Chemistry,
Key Laboratory of Environmentally Friendly Chemistry and Applications
of Ministry of Education, Xiangtan University, Hunan Province 411105, P. R. China
| | - Chunyan Liu
- Department of Chemistry,
Key Laboratory of Environmentally Friendly Chemistry and Applications
of Ministry of Education, Xiangtan University, Hunan Province 411105, P. R. China
| |
Collapse
|
50
|
Molina B, Sánchez-Castillo A, Knoppe S, Garzón IL, Bürgi T, Tlahuice-Flores A. Structures and chiroptical properties of the BINAS-monosubstituted Au38(SCH3)24 cluster. NANOSCALE 2013; 5:10956-62. [PMID: 24061047 DOI: 10.1039/c3nr03403h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The structure and optical properties of a set of R-1,1'-binaphthyl-2,2'-dithiol (R-BINAS) monosubstituted A-Au38(SCH3)24 clusters are studied by means of time dependent density functional theory (TD-DFT). While it was proposed earlier that BINAS selectively binds to monomer motifs (SR-Au-SR) covering the Au23 core, our calculations suggest a binding mode that bridges two dimer (SR-Au-SR-Au-RS) motifs. The more stable isomers show a negligible distortion induced by BINAS adsorption on the Au38(SCH3)24 cluster which is reflected by similar optical and Circular Dichroism (CD) spectra to those found for the parent cluster. The results furthermore show that BINAS adsorption does not enhance the CD signals of the Au38(SCH3)24 cluster.
Collapse
Affiliation(s)
- Bertha Molina
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-646, 04510 México D.F., Mexico
| | | | | | | | | | | |
Collapse
|