1
|
Alexandrescu AT, Dregni AJ, Teschke CM. NMR detection and conformational dependence of two, three, and four-bond isotope shifts due to deuteration of backbone amides. JOURNAL OF BIOMOLECULAR NMR 2023; 77:93-109. [PMID: 37093339 PMCID: PMC10724557 DOI: 10.1007/s10858-023-00414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
NMR isotope shifts occur due to small differences in nuclear shielding when nearby atoms are different isotopes. For molecules dissolved in 1:1 H2O:D2O, the resulting mixture of N-H and N-D isotopes leads to a small splitting of resonances from adjacent nuclei. We used multidimensional NMR to measure isotope shifts for the proteins CUS-3iD and CspA. We observed four-bond 4∆N(ND) isotope shifts in high-resolution 2D 15N-TROSY experiments of the perdeuterated proteins that correlate with the torsional angle psi. Three-bond 3∆C'(ND) isotope shifts detected in H(N)CO spectra correlate with the intraresidue H-O distance, and to a lesser extent with the dihedral angle phi. The conformational dependence of the isotope shifts agree with those previously reported in the literature. Both the 4∆N(ND) and 3∆C'(ND) isotope shifts are sensitive to distances between the atoms giving rise to the isotope shifts and the atoms experiencing the splitting, however, these distances are strongly correlated with backbone dihedral angles making it difficult to resolve distance from stereochemical contributions to the isotope shift. H(NCA)CO spectra were used to measure two-bond 2∆C'(ND) isotope shifts and [D]/[H] fractionation factors. Neither parameter showed significant differences for hydrogen-bonded sites, or changes over a 25° temperature range, suggesting they are not sensitive to hydrogen bonding. Finally, the quartet that arises from the combination of 2∆C'(ND) and 3∆C'(ND) isotope shifts in H(CA)CO spectra was used to measure synchronized hydrogen exchange for the sequence neighbors A315-S316 in the protein CUS-3iD. In many of our experiments we observed minor resonances due to the 10% D2O used for the sample deuterium lock, indicating isotope shifts can be a source of spectral heterogeneity in standard NMR experiments. We suggest that applications of isotope shifts such as conformational analysis and correlated hydrogen exchange could benefit from the larger magnetic fields becoming available.
Collapse
Affiliation(s)
- Andrei T Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269-3125, USA.
| | - Aurelio J Dregni
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Carolyn M Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269-3125, USA
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269-3060, USA
| |
Collapse
|
2
|
Reber KP, Sivey JD, Vollmuth M, Gujarati PD. Synthesis of
13
C‐Labeled Parabens from Isotopically Enriched Phenols Using the Houben–Hoesch Reaction. J Labelled Comp Radiopharm 2022; 65:254-263. [DOI: 10.1002/jlcr.3992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022]
Affiliation(s)
| | - John D. Sivey
- Department of Chemistry Towson University Towson MD USA
| | | | - Priyansh D. Gujarati
- Department of Chemistry Towson University Towson MD USA
- Department of Chemistry University of Oxford Oxford UK
| |
Collapse
|
3
|
Lin CY, Muñoz AL, Laremore TN, Silakov A, Krebs C, Boal AK, Bollinger JM. Use of Noncanonical Tyrosine Analogues to Probe Control of Radical Intermediates during Endoperoxide Installation by Verruculogen Synthase (FtmOx1). ACS Catal 2022; 12:6968-6979. [PMID: 37744570 PMCID: PMC10516331 DOI: 10.1021/acscatal.2c01037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Important bioactive natural products, including prostaglandin H2 and artemisinin, contain reactive endoperoxides. Known enzymatic pathways for endoperoxide installation require multiple hydrogen-atom transfers (HATs). For example, iron(II)- and 2-oxoglutarate-dependent verruculogen synthase (FtmOx1; EC 1.14.11.38) mediates HAT from aliphatic C21 of fumitremorgin B, capture of O2 by the C21 radical (C21•), addition of the peroxyl radical (C21-O-O•) to olefinic C27, and HAT to the resultant C26•. Recent studies proposed conflicting roles for FtmOx1 tyrosine residues, Tyr224 and Tyr68, in the HATs from C21 and to C26•. Here, analysis of variant proteins bearing a ring-halogenated tyrosine or (amino)phenylalanine in place of either residue establishes that Tyr68 is the hydrogen donor to C26•, while Tyr224 has no essential role. The radicals that accumulate rapidly in FtmOx1 variants bearing a HAT-competent tyrosine analog at position 68 exhibit hypsochromically shifted absorption and, in cases of fluorine substitution, 19F-coupled electron-paramagnetic-resonance (EPR) spectra. By contrast, functional Tyr224-substituted variants generate radicals with unaltered light-absorption and EPR signatures as they produce verruculogen. The alternative major product of the Tyr68Phe variant, which forms competitively with verruculogen also in wild-type FtmOx1 in 2H2O and in the variant with the less readily oxidized 2,3-F2Tyr at position 68, is identified by mass spectrometry and isotopic labeling as the 26-hydroxy-21,27-endoperoxide compound formed after capture of another equivalent of O2 by the longer lived C26•. The results highlight the considerable chemical challenges the enzyme must navigate in averting both oxygen rebound and a second O2 coupling to obtain verruculogen selectively over other possible products.
Collapse
Affiliation(s)
- Chi-Yun Lin
- Department of Chemistry, The Pennsylvania State University; University Park, PA 16802, USA
| | - Angel L. Muñoz
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University; University Park, PA 16802, USA
| | - Tatiana N. Laremore
- Huck Institutes of the Life Sciences, The Pennsylvania State University; University Park, PA 16802, USA
| | - Alexey Silakov
- Department of Chemistry, The Pennsylvania State University; University Park, PA 16802, USA
| | - Carsten Krebs
- Department of Chemistry, The Pennsylvania State University; University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University; University Park, PA 16802, USA
| | - Amie K. Boal
- Department of Chemistry, The Pennsylvania State University; University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University; University Park, PA 16802, USA
| | - J. Martin Bollinger
- Department of Chemistry, The Pennsylvania State University; University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University; University Park, PA 16802, USA
| |
Collapse
|
4
|
Takeda M, Miyanoiri Y, Terauchi T, Kainosho M. Conformational features and ionization states of Lys side chains in a protein studied using the stereo-array isotope labeling (SAIL) method. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:223-237. [PMID: 37904773 PMCID: PMC10539808 DOI: 10.5194/mr-2-223-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/13/2021] [Indexed: 11/01/2023]
Abstract
Although both the hydrophobic aliphatic chain and hydrophilic ζ -amino group of the Lys side chain presumably contribute to the structures and functions of proteins, the dual nature of the Lys residue has not been fully investigated using NMR spectroscopy, due to the lack of appropriate methods to acquire comprehensive information on its long consecutive methylene chain. We describe herein a robust strategy to address the current situation, using various isotope-aided NMR technologies. The feasibility of our approach is demonstrated for the Δ + PHS/V66K variant of staphylococcal nuclease (SNase), which contains 21 Lys residues, including the engineered Lys-66 with an unusually low pK a of ∼ 5.6. All of the NMR signals for the 21 Lys residues were sequentially and stereospecifically assigned using the stereo-array isotope-labeled Lys (SAIL-Lys), [U-13 C,15 N; β 2 ,γ 2 ,δ 2 ,ε 3 -D4 ]-Lys. The complete set of assigned 1 H, 13 C, and 15 N NMR signals for the Lys side-chain moieties affords useful structural information. For example, the set includes the characteristic chemical shifts for the 13 Cδ , 13 Cε , and 15 Nζ signals for Lys-66, which has the deprotonated ζ -amino group, and the large upfield shifts for the 1 H and 13 C signals for the Lys-9, Lys-28, Lys-84, Lys-110, and Lys-133 side chains, which are indicative of nearby aromatic rings. The 13 Cε and 15 Nζ chemical shifts of the SNase variant selectively labeled with either [ε -13 C;ε ,ε -D2 ]-Lys or SAIL-Lys, dissolved in H2 O and D2 O, showed that the deuterium-induced shifts for Lys-66 were substantially different from those of the other 20 Lys residues. Namely, the deuterium-induced shifts of the 13 Cε and 15 Nζ signals depend on the ionization states of the ζ -amino group, i.e., - 0.32 ppm for Δ δ 13 Cε [Nζ D3 + -Nζ H3 + ] vs. - 0.21 ppm for Δ δ 13 Cε [Nζ D2 -Nζ H2 ] and - 1.1 ppm for Δ δ 15 Nζ [Nζ D3 + -Nζ H3 + ] vs. - 1.8 ppm for Δ δ 15 Nζ [Nζ D2 -Nζ H2 ]. Since the 1D 13 C NMR spectrum of a protein selectively labeled with [ε -13 C;ε ,ε -D2 ]-Lys shows narrow (> 2 Hz) and well-dispersed 13 C signals, the deuterium-induced shift difference of 0.11 ppm for the protonated and deprotonated ζ -amino groups, which corresponds to 16.5 Hz at a field strength of 14 T (150 MHz for 13 C), could be accurately measured. Although the isotope shift difference itself may not be absolutely decisive to distinguish the ionization state of the ζ -amino group, the 13 Cδ , 13 Cε , and 15 Nζ signals for a Lys residue with a deprotonated ζ -amino group are likely to exhibit distinctive chemical shifts as compared to the normal residues with protonated ζ -amino groups. Therefore, the isotope shifts would provide a useful auxiliary index for identifying Lys residues with deprotonated ζ -amino groups at physiological pH levels.
Collapse
Affiliation(s)
- Mitsuhiro Takeda
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
- Department of Structural BioImaging, Faculty of Life Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Yohei Miyanoiri
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
- Research Center for State-of-the-Art Functional Protein Analysis, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tsutomu Terauchi
- SAIL Technologies Co., Inc., 2008-2 Wada, Tama-city, Tokyo, 206-0001, Japan
- Graduate School of Science, Tokyo Metropolitan University, 1-1
Minami-ohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Masatsune Kainosho
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
- Graduate School of Science, Tokyo Metropolitan University, 1-1
Minami-ohsawa, Hachioji, Tokyo, 192-0397, Japan
| |
Collapse
|
5
|
Sakakibara Y, Osada K, Uraki Y, Ubukata M, Shigetomi K. Direct deuteration of hinokitiol and its mechanistic study. Biosci Biotechnol Biochem 2021; 85:215-222. [PMID: 33590006 DOI: 10.1093/bbb/zbaa031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/05/2020] [Indexed: 11/14/2022]
Abstract
Hinokitiol has a broad antibacterial activity against bacteria and fungi. While its biosynthetic pathway has been intensively studied, its dynamics in natural environments, such as biodegradation pathway, remain unclear. In this study, the authors report a direct deuterium labeling of hinokitiol as a traceable molecular probe to serve those studies. Hinokitiol was subjected to the H2-Pd/C-D2O conditions and deuterated hinokitiol was obtained with excellent deuteration efficiencies and in moderate yield. The 1H and 2H NMR spectra indicated that all ring- and aliphatic hydrogens except that on C-6 were substituted by deuterium. According to the substrate scope and computational chemistry, deuteration on tropolone ring was suggested to proceed via D+-mediated process, and which was supported by the results of the experiment with trifluoroacetic acid and Pd(TPP)4. On the other hand, the deuteration on aliphatic group was predicted to be catalyzed by Pd(II) species.
Collapse
Affiliation(s)
| | - Kota Osada
- School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yasumitsu Uraki
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Makoto Ubukata
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Kengo Shigetomi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
6
|
Hansen PE. Isotope effects on chemical shifts in the study of hydrogen bonded biological systems. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 120-121:109-117. [PMID: 33198966 DOI: 10.1016/j.pnmrs.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
This review deals with biological systems and with deuterium isotope effects on chemical shifts caused by the replacement of OH, NH or SH protons by deuterons. Hydrogen bonding is clearly of central importance. Isotope effects on chemical shifts seems very suitable for use in studies of structures and reactions in the interior of proteins, as exchange of the label can be expected to be slow. One-bond deuterium isotope effects on 15N chemical shifts, and two-bond effects on 1H chemical shifts for N(D)Hx systems can be used to gauge hydrogen bond strength in proteins as well as in salt bridges. Solvent isotope effects on 19F chemical shifts show promise in monitoring solvent access. Equilibrium isotope effects need in some cases to be taken into account. Schemes for calculation of deuterium isotope effects on chemical shifts are discussed and it is demonstrated how calculations may be used in the study of complex biological systems.
Collapse
Affiliation(s)
- Poul Erik Hansen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark.
| |
Collapse
|
7
|
Kariev AM, Green ME. Quantum Calculation of Proton and Other Charge Transfer Steps in Voltage Sensing in the Kv1.2 Channel. J Phys Chem B 2019; 123:7984-7998. [DOI: 10.1021/acs.jpcb.9b05448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alisher M. Kariev
- Department of Chemistry and Biochemistry, City College of New York, New York, New York 10011, United States
| | - Michael E. Green
- Department of Chemistry and Biochemistry, City College of New York, New York, New York 10011, United States
| |
Collapse
|
8
|
Stable-Isotope-Aided NMR Spectroscopy. MODERN MAGNETIC RESONANCE 2018. [PMCID: PMC7123952 DOI: 10.1007/978-3-319-28388-3_48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Battistel MD, Azurmendi HF, Freedberg DI. Glycan OH Exchange Rate Determination in Aqueous Solution: Seeking Evidence for Transient Hydrogen Bonds. J Phys Chem B 2017; 121:683-695. [PMID: 27995788 DOI: 10.1021/acs.jpcb.6b10594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrogen bonds (Hbonds) are important stabilizing forces in biomolecules. However, for glycans in aqueous solution, direct NMR detection of Hbonds is elusive because of their transient nature. Here, we present Isotope-based Natural-abundance TOtal correlation eXchange SpectroscopY (INTOXSY), a new 1H-13C heteronuclear single quantum coherence-total correlation spectroscopy based method, to extract OH groups' exchange rate constants (kex) for molecules in natural 13C abundance and show that OH Hbonds can be inferred from "slower" H/D kex. We evaluate kex measured with INTOXSY in light of those extracted with line-shape analysis. Subsequently, we use a set of common glycans to establish a kex reference basis set and to infer the existence of transient Hbonds involving OH donor groups. Then, we report kex values for a series of mono- and disaccharides, as well as for oligosaccharides sialyl Lewis X and β-cyclodextrin, and compare the results with those from the reference set to extract Hbond information. Finally, we utilize NMR experimental data in conjunction with molecular dynamics simulations to establish donor and acceptor Hbond pairs. Our exchange rate measurements indicate that OH/OD exchange rates, kHD, values <10 s-1 are consistent with transient Hbond OH groups and potential acceptor groups can be uncovered through MD simulations.
Collapse
Affiliation(s)
- Marcos D Battistel
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, Food and Drug Administration , 10903 New Hampshire Avenue, Silver Spring, Maryland 20903, United States
| | - Hugo F Azurmendi
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, Food and Drug Administration , 10903 New Hampshire Avenue, Silver Spring, Maryland 20903, United States
| | - Darón I Freedberg
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, Food and Drug Administration , 10903 New Hampshire Avenue, Silver Spring, Maryland 20903, United States
| |
Collapse
|
10
|
Dajnowicz S, Seaver S, Hanson BL, Fisher SZ, Langan P, Kovalevsky AY, Mueser TC. Visualizing the Bohr effect in hemoglobin: neutron structure of equine cyanomethemoglobin in the R state and comparison with human deoxyhemoglobin in the T state. Acta Crystallogr D Struct Biol 2016; 72:892-903. [PMID: 27377386 PMCID: PMC4932920 DOI: 10.1107/s2059798316009049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/03/2016] [Indexed: 11/17/2022] Open
Abstract
Neutron crystallography provides direct visual evidence of the atomic positions of deuterium-exchanged H atoms, enabling the accurate determination of the protonation/deuteration state of hydrated biomolecules. Comparison of two neutron structures of hemoglobins, human deoxyhemoglobin (T state) and equine cyanomethemoglobin (R state), offers a direct observation of histidine residues that are likely to contribute to the Bohr effect. Previous studies have shown that the T-state N-terminal and C-terminal salt bridges appear to have a partial instead of a primary overall contribution. Four conserved histidine residues [αHis72(EF1), αHis103(G10), αHis89(FG1), αHis112(G19) and βHis97(FG4)] can become protonated/deuterated from the R to the T state, while two histidine residues [αHis20(B1) and βHis117(G19)] can lose a proton/deuteron. αHis103(G10), located in the α1:β1 dimer interface, appears to be a Bohr group that undergoes structural changes: in the R state it is singly protonated/deuterated and hydrogen-bonded through a water network to βAsn108(G10) and in the T state it is doubly protonated/deuterated with the network uncoupled. The very long-term H/D exchange of the amide protons identifies regions that are accessible to exchange as well as regions that are impermeable to exchange. The liganded relaxed state (R state) has comparable levels of exchange (17.1% non-exchanged) compared with the deoxy tense state (T state; 11.8% non-exchanged). Interestingly, the regions of non-exchanged protons shift from the tetramer interfaces in the T-state interface (α1:β2 and α2:β1) to the cores of the individual monomers and to the dimer interfaces (α1:β1 and α2:β2) in the R state. The comparison of regions of stability in the two states allows a visualization of the conservation of fold energy necessary for ligand binding and release.
Collapse
Affiliation(s)
- Steven Dajnowicz
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, USA
| | - Sean Seaver
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, USA
| | - B. Leif Hanson
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, USA
| | - S. Zoë Fisher
- Scientific Activities Division, Science Directorate, European Spallation Source, PO Box 176, 221 00 Lund, Sweden
| | - Paul Langan
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, USA
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Andrey Y. Kovalevsky
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, USA
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Timothy C. Mueser
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
11
|
Yang CJ, Takeda M, Terauchi T, Jee J, Kainosho M. Differential Large-Amplitude Breathing Motions in the Interface of FKBP12–Drug Complexes. Biochemistry 2015; 54:6983-95. [DOI: 10.1021/acs.biochem.5b00820] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Chun-Jiun Yang
- Department
of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 minami-ohsawa, Hachioji,
Tokyo 192-0397, Japan
| | - Mitsuhiro Takeda
- Structural
Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya 464-8602, Japan
| | - Tsutomu Terauchi
- Department
of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 minami-ohsawa, Hachioji,
Tokyo 192-0397, Japan
| | - JunGoo Jee
- Department
of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 minami-ohsawa, Hachioji,
Tokyo 192-0397, Japan
| | - Masatsune Kainosho
- Department
of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 minami-ohsawa, Hachioji,
Tokyo 192-0397, Japan
- Structural
Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
12
|
Affiliation(s)
- Mathias A.S. Hass
- Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Frans A.A. Mulder
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark;
| |
Collapse
|
13
|
Ear A, Amand S, Blanchard F, Blond A, Dubost L, Buisson D, Nay B. Direct biosynthetic cyclization of a distorted paracyclophane highlighted by double isotopic labelling of l-tyrosine. Org Biomol Chem 2015; 13:3662-6. [DOI: 10.1039/c5ob00114e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The biosynthesis of pyrrocidines was investigated using a double (18O,13C) labelling of l-tyrosine. It shows that the phenolic 18O is incorporated during aryl ether bond formation.
Collapse
Affiliation(s)
- Alexandre Ear
- Muséum National d'Histoire Naturelle and Centre National de la Recherche Scientifique (joint unit UMR 7245 CNRS-MNHN)
- 75005 Paris
- France
| | - Séverine Amand
- Muséum National d'Histoire Naturelle and Centre National de la Recherche Scientifique (joint unit UMR 7245 CNRS-MNHN)
- 75005 Paris
- France
| | - Florent Blanchard
- Institut de Chimie des Substances Naturelles (ICSN
- CNRS)
- 91198 Gif-sur-Yvette Cedex
- France
| | - Alain Blond
- Muséum National d'Histoire Naturelle and Centre National de la Recherche Scientifique (joint unit UMR 7245 CNRS-MNHN)
- 75005 Paris
- France
| | - Lionel Dubost
- Muséum National d'Histoire Naturelle and Centre National de la Recherche Scientifique (joint unit UMR 7245 CNRS-MNHN)
- 75005 Paris
- France
| | - Didier Buisson
- Muséum National d'Histoire Naturelle and Centre National de la Recherche Scientifique (joint unit UMR 7245 CNRS-MNHN)
- 75005 Paris
- France
| | - Bastien Nay
- Muséum National d'Histoire Naturelle and Centre National de la Recherche Scientifique (joint unit UMR 7245 CNRS-MNHN)
- 75005 Paris
- France
| |
Collapse
|
14
|
Dellero Y, Mauve C, Boex-Fontvieille E, Flesch V, Jossier M, Tcherkez G, Hodges M. Experimental evidence for a hydride transfer mechanism in plant glycolate oxidase catalysis. J Biol Chem 2014; 290:1689-98. [PMID: 25416784 DOI: 10.1074/jbc.m114.618629] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In plants, glycolate oxidase is involved in the photorespiratory cycle, one of the major fluxes at the global scale. To clarify both the nature of the mechanism and possible differences in glycolate oxidase enzyme chemistry from C3 and C4 plant species, we analyzed kinetic parameters of purified recombinant C3 (Arabidopsis thaliana) and C4 (Zea mays) plant enzymes and compared isotope effects using natural and deuterated glycolate in either natural or deuterated solvent. The (12)C/(13)C isotope effect was also investigated for each plant glycolate oxidase protein by measuring the (13)C natural abundance in glycolate using natural or deuterated glycolate as a substrate. Our results suggest that several elemental steps were associated with an hydrogen/deuterium isotope effect and that glycolate α-deprotonation itself was only partially rate-limiting. Calculations of commitment factors from observed kinetic isotope effect values support a hydride transfer mechanism. No significant differences were seen between C3 and C4 enzymes.
Collapse
Affiliation(s)
- Younès Dellero
- From the Institut de Biologie des Plantes, CNRS UMR8618, Saclay Plant Sciences, Bâtiment 630, Université Paris Sud, 91405 Orsay Cedex, France
| | - Caroline Mauve
- From the Institut de Biologie des Plantes, CNRS UMR8618, Saclay Plant Sciences, Bâtiment 630, Université Paris Sud, 91405 Orsay Cedex, France, Plateforme Métabolisme-Métabolome, Saclay Plant Sciences, Institut de Biologie des Plantes, Bâtiment 630, 91405 Orsay Cedex, France, and
| | - Edouard Boex-Fontvieille
- From the Institut de Biologie des Plantes, CNRS UMR8618, Saclay Plant Sciences, Bâtiment 630, Université Paris Sud, 91405 Orsay Cedex, France
| | - Valérie Flesch
- From the Institut de Biologie des Plantes, CNRS UMR8618, Saclay Plant Sciences, Bâtiment 630, Université Paris Sud, 91405 Orsay Cedex, France
| | - Mathieu Jossier
- From the Institut de Biologie des Plantes, CNRS UMR8618, Saclay Plant Sciences, Bâtiment 630, Université Paris Sud, 91405 Orsay Cedex, France
| | - Guillaume Tcherkez
- From the Institut de Biologie des Plantes, CNRS UMR8618, Saclay Plant Sciences, Bâtiment 630, Université Paris Sud, 91405 Orsay Cedex, France, Plateforme Métabolisme-Métabolome, Saclay Plant Sciences, Institut de Biologie des Plantes, Bâtiment 630, 91405 Orsay Cedex, France, and Institut Universitaire de France, 103 Boulevard Saint-Michel, 75005 Paris, France
| | - Michael Hodges
- From the Institut de Biologie des Plantes, CNRS UMR8618, Saclay Plant Sciences, Bâtiment 630, Université Paris Sud, 91405 Orsay Cedex, France,
| |
Collapse
|
15
|
Platzer G, Okon M, McIntosh LP. pH-dependent random coil (1)H, (13)C, and (15)N chemical shifts of the ionizable amino acids: a guide for protein pK a measurements. JOURNAL OF BIOMOLECULAR NMR 2014; 60:109-129. [PMID: 25239571 DOI: 10.1007/s10858-014-9862-y] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/09/2014] [Indexed: 06/03/2023]
Abstract
The pK a values and charge states of ionizable residues in polypeptides and proteins are frequently determined via NMR-monitored pH titrations. To aid the interpretation of the resulting titration data, we have measured the pH-dependent chemical shifts of nearly all the (1)H, (13)C, and (15)N nuclei in the seven common ionizable amino acids (X = Asp, Glu, His, Cys, Tyr, Lys, and Arg) within the context of a blocked tripeptide, acetyl-Gly-X-Gly-amide. Alanine amide and N-acetyl alanine were used as models of the N- and C-termini, respectively. Together, this study provides an essentially complete set of pH-dependent intra-residue and nearest-neighbor reference chemical shifts to help guide protein pK a measurements. These data should also facilitate pH-dependent corrections in algorithms used to predict the chemical shifts of random coil polypeptides. In parallel, deuterium isotope shifts for the side chain (15)N nuclei of His, Lys, and Arg in their positively-charged and neutral states were also measured. Along with previously published results for Asp, Glu, Cys, and Tyr, these deuterium isotope shifts can provide complementary experimental evidence for defining the ionization states of protein residues.
Collapse
Affiliation(s)
- Gerald Platzer
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | | | | |
Collapse
|
16
|
Oltrogge LM, Wang Q, Boxer SG. Ground-state proton transfer kinetics in green fluorescent protein. Biochemistry 2014; 53:5947-57. [PMID: 25184668 PMCID: PMC4172208 DOI: 10.1021/bi500147n] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Proton
transfer plays an important role in the optical properties
of green fluorescent protein (GFP). While much is known about excited-state
proton transfer reactions (ESPT) in GFP occurring on ultrafast time
scales, comparatively little is understood about the factors governing
the rates and pathways of ground-state proton transfer. We have utilized
a specific isotopic labeling strategy in combination with one-dimensional 13C nuclear magnetic resonance (NMR) spectroscopy to install
and monitor a 13C directly adjacent to the GFP chromophore
ionization site. The chemical shift of this probe is highly sensitive
to the protonation state of the chromophore, and the resulting spectra
reflect the thermodynamics and kinetics of the proton transfer in
the NMR line shapes. This information is complemented by time-resolved
NMR, fluorescence correlation spectroscopy, and steady-state absorbance
and fluorescence measurements to provide a picture of chromophore
ionization reactions spanning a wide time domain. Our findings indicate
that proton transfer in GFP is described well by a two-site model
in which the chromophore is energetically coupled to a secondary site,
likely the terminal proton acceptor of ESPT, Glu222. Additionally,
experiments on a selection of GFP circular permutants suggest an important
role played by the structural dynamics of the seventh β-strand
in gating proton transfer from bulk solution to the buried chromophore.
Collapse
Affiliation(s)
- Luke M Oltrogge
- Department of Chemistry, Stanford University , Stanford, California 94305-5012, United States
| | | | | |
Collapse
|
17
|
Saggu M, Carter B, Zhou X, Faries K, Cegelski L, Holten D, Boxer SG, Kirmaier C. Putative hydrogen bond to tyrosine M208 in photosynthetic reaction centers from Rhodobacter capsulatus significantly slows primary charge separation. J Phys Chem B 2014; 118:6721-32. [PMID: 24902471 PMCID: PMC4064694 DOI: 10.1021/jp503422c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
Slow, ∼50
ps, P* → P+HA– electron
transfer is observed in Rhodobacter
capsulatus reaction centers (RCs) bearing the native
Tyr residue at M208 and the single amino acid change of isoleucine
at M204 to glutamic acid. The P* decay kinetics are unusually homogeneous
(single exponential) at room temperature. Comparative solid-state
NMR of [4′-13C]Tyr labeled wild-type and M204E RCs
show that the chemical shift of Tyr M208 is significantly altered
in the M204E mutant and in a manner consistent with formation of a
hydrogen bond to the Tyr M208 hydroxyl group. Models based on RC crystal
structure coordinates indicate that if such a hydrogen bond is formed
between the Glu at M204 and the M208 Tyr hydroxyl group, the −OH
would be oriented in a fashion expected (based on the calculations
by Alden et al., J. Phys. Chem.1996, 100, 16761–16770) to destabilize P+BA– in free energy. Alteration
of the environment of Tyr M208 and BA by Glu M204 via this
putative hydrogen bond has a powerful influence on primary charge
separation.
Collapse
Affiliation(s)
- Miguel Saggu
- Department of Chemistry, Stanford University , Stanford, California 94305-5012, United States
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Takeda M, Miyanoiri Y, Terauchi T, Yang CJ, Kainosho M. Use of H/D isotope effects to gather information about hydrogen bonding and hydrogen exchange rates. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 241:148-154. [PMID: 24656087 DOI: 10.1016/j.jmr.2013.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/02/2013] [Accepted: 10/04/2013] [Indexed: 06/03/2023]
Abstract
Polar side-chains in proteins play important roles in forming and maintaining three-dimensional structures, and thus participate in various biological functions. Until recently, most protein NMR studies have focused on the non-exchangeable protons of amino acid residues. The exchangeable protons attached to polar groups, such as hydroxyl (OH), sulfhydryl (SH), and amino (NH2) groups, have mostly been ignored, because in many cases these hydrogen atoms exchange too quickly with water protons, making NMR observations impractical. However, in certain environments, such as deep within the hydrophobic interior of a protein, or in a strong hydrogen bond to other polar groups or interacting ligands, the protons attached to polar groups may exhibit slow hydrogen exchange rates and thus become NMR accessible. To explore the structural and biological implications of the interactions involving polar side-chains, we have developed versatile NMR methods to detect such cases by observing the line shapes of (13)C NMR signals near the polar groups, which are affected by deuterium-proton isotope shifts in a mixture of H2O and D2O. These methods allow the detection of polar side-chains with slow hydrogen-deuterium exchange rates, and therefore provide opportunities to retrieve information about the polar side-chains, which might otherwise be overlooked by conventional NMR experiments. Future prospects of applications using deuterium-proton isotope shifts to retrieve missing structural and dynamic information of proteins are discussed.
Collapse
Affiliation(s)
- Mitsuhiro Takeda
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yohei Miyanoiri
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Tsutomu Terauchi
- Center for Priority Areas, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji 192-0397, Japan; SAIL Technologies Co., Inc., 1-40 Suehiro-cho 1-chome, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Chun-Jiun Yang
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Masatsune Kainosho
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan; Center for Priority Areas, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji 192-0397, Japan.
| |
Collapse
|
19
|
Tugarinov V. Indirect use of deuterium in solution NMR studies of protein structure and hydrogen bonding. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 77:49-68. [PMID: 24411830 DOI: 10.1016/j.pnmrs.2013.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/15/2013] [Indexed: 06/03/2023]
Abstract
A description of the utility of deuteration in protein NMR is provided with an emphasis on quantitative evaluation of the effects of deuteration on a number of NMR parameters of proteins: (1) chemical shifts, (2) scalar coupling constants, (3) relaxation properties (R1 and R2 rates) of nuclei directly attached to one or more deuterons as well as protons of methyl groups in a highly deuterated environment, (4) scalar relaxation of 15N and 13C nuclei in 15N-D and 13C-D spin systems as a measure of hydrogen bonding strength, and (5) NOE-based applications of deuteration in NMR studies of protein structure. The discussion is restricted to the 'indirect' use of deuterium in the sense that the description of NMR parameters and properties of the nuclei affected by nearby deuterons (15N, 13C, 1H) is provided rather than those of deuterium itself.
Collapse
Affiliation(s)
- Vitali Tugarinov
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
20
|
Sajiki H. Development of deuterium labeling method based on the heterogeneous platinum group metal-catalyzed C-H activation. YAKUGAKU ZASSHI 2013; 133:1177-93. [PMID: 24189559 DOI: 10.1248/yakushi.13-00218] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Deuterium (D) labeled compounds are utilized in various scientific fields such as mechanistic elucidation of reactions, preparation of new functional materials, tracers for microanalysis, deuterium labeled heavy drugs and so on. Although the H-D exchange reaction is a straightforward method to produce deuterated organic compounds, many precedent methods require expensive deuterium gas and/or harsh reaction conditions. A part of our leading research agendas is intended to the development of novel and functional heterogeneous platinum-group catalysts and the reclamation of unknown functionalities of existing heterogeneous platinum-group catalysts. During the course of the study, benzylic positions of substrates were site-selectively deuterated under mild and palladium-on-carbon (Pd/C)-catalyzed hydrogenation conditions in heavy water (D2O). Heat conditions promoted the H-D exchange reactivity and facilitated the H-D exchange reaction at not only the benzylic sites but also inactive C-H bonds and heterocyclic nuclei. It is noteworthy that platinum-on-carbon (Pt/C) indicated a quite high affinity toward aromatic nuclei, and the H-D exchange reaction was strongly enhanced by the use of Pt/C as a catalyst under milder conditions. The mixed use of Pd/C and Pt/C was found to be more efficient in the H-D exchange reaction compared to the independent use of Pd/C or Pt/C. Furthermore, simple alkanes could also be efficiently deuterated under rhodium-on-carbon (Rh/C)-catalyzed conditions. The use of ruthenium-on-carbon (Ru/C) enabled the regiospecific and efficient deuterium incorporation at α-positions of alcohols and results were applied as a regio- and stereoselective multi-deuteration method of sugar derivatives.
Collapse
Affiliation(s)
- Hironao Sajiki
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University
| |
Collapse
|
21
|
Tugarinov V. Four-bond deuterium isotope effects on the chemical shifts of amide nitrogens in proteins. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2013; 51:722-728. [PMID: 24038445 DOI: 10.1002/mrc.4007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 07/19/2013] [Accepted: 08/18/2013] [Indexed: 06/02/2023]
Abstract
An approach towards precision NMR measurements of four-bond deuterium isotope effects on the chemical shifts of backbone amide nitrogen nuclei in proteins is described. Three types of four-bond (15) N deuterium isotope effects are distinguished depending on the site of proton-to-deuterium substitution: (4)ΔN(N(i-1)D), (4)ΔN(N(i+1)D) and (4)ΔN(Cβ,(i-1)D). All the three types of isotope shifts are quantified in the (partially) deuterated protein ubiquitin. The (4)ΔN(N(i+1)D) and (4)ΔN(C(β,i-1)D) effects are by far the largest in magnitude and vary between 16 and 75 ppb and -18 and 46 ppb, respectively. A semi-quantitative correlation between experimental (4)ΔN(N(i+1)D) and (4)ΔN(C(β,i-1)D) values and the distances between nitrogen nuclei and the sites of (1)H-to-D substitution is noted. The largest isotope shifts in both cases correspond to the shortest inter-nuclear distances.
Collapse
Affiliation(s)
- Vitali Tugarinov
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
22
|
Wagh SJ, Chowdhury R, Mukhopadhyay S, Ghosh SK. A facile synthesis of 5,5-dideutero-4-dimethyl(phenyl)silyl-6-undecyl-tetrahydropyran-2-one as a deuterium labeled synthon for (−)-tetrahydrolipstatin and (+)-δ-hexadecanolide. J Labelled Comp Radiopharm 2013; 56:649-54. [DOI: 10.1002/jlcr.3081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/17/2013] [Accepted: 05/28/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Sandip J. Wagh
- Bio-Organic Division; Bhabha Atomic Research Centre; Trombay Mumbai 400085 India
| | - Raghunath Chowdhury
- Bio-Organic Division; Bhabha Atomic Research Centre; Trombay Mumbai 400085 India
| | - Sulekha Mukhopadhyay
- Chemical Engineering Division; Bhabha Atomic Research Centre; Trombay Mumbai 400085 India
| | - Sunil K. Ghosh
- Bio-Organic Division; Bhabha Atomic Research Centre; Trombay Mumbai 400085 India
| |
Collapse
|
23
|
Zhang D, Tugarinov V. Accurate measurements of the effects of deuteration at backbone amide positions on the chemical shifts of ¹⁵N, ¹³Cα, ¹³Cβ, ¹³CO and ¹Hα nuclei in proteins. JOURNAL OF BIOMOLECULAR NMR 2013; 56:169-182. [PMID: 23612994 DOI: 10.1007/s10858-013-9733-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/18/2013] [Indexed: 06/02/2023]
Abstract
An approach towards accurate NMR measurements of deuterium isotope effects on the chemical shifts of all backbone nuclei in proteins ((15)N, (13)Cα, (13)CO, (1)Hα) and (13)Cβ nuclei arising from (1)H-to-D substitutions at amide nitrogen positions is described. Isolation of molecular species with a defined protonation/deuteration pattern at successive backbone nitrogen positions in the polypeptide chain allows quantifying all deuterium isotope shifts of these nuclei from the first to the fourth order. Some of the deuterium isotope shifts measured in the proteins ubiquitin and GB1 can be interpreted in terms of backbone geometry via empirical relationships describing their dependence on (φ; ψ) backbone dihedral angles. Because of their relatively large variability and notable dependence on the protein secondary structure, the two- and three-bond (13)Cα isotope shifts, (2)ΔCα(NiD) and (3)ΔCα(Ni+1D), and three-bond (13)Cβ isotope shifts, (3)ΔCβ(NiD), are useful reporters of the local geometry of the protein backbone.
Collapse
Affiliation(s)
- Daoning Zhang
- Department of Chemistry and Biochemistry, University of Maryland, Biomolecular Sci. Bldg./CBSO, College Park, MD 20742, USA
| | | |
Collapse
|
24
|
Sawama Y, Yabe Y, Iwata H, Fujiwara Y, Monguchi Y, Sajiki H. Stereo- and Regioselective Direct Multi-Deuterium-Labeling Methods for Sugars. Chemistry 2012; 18:16436-42. [DOI: 10.1002/chem.201202852] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Indexed: 11/08/2022]
|
25
|
Sun H, Tugarinov V. Precision Measurements of Deuterium Isotope Effects on the Chemical Shifts of Backbone Nuclei in Proteins: Correlations with Secondary Structure. J Phys Chem B 2012; 116:7436-48. [DOI: 10.1021/jp304300n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hechao Sun
- Department
of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Vitali Tugarinov
- Department
of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
26
|
Oktaviani NA, Pool TJ, Kamikubo H, Slager J, Scheek RM, Kataoka M, Mulder FAA. Comprehensive determination of protein tyrosine pKa values for photoactive yellow protein using indirect 13C NMR spectroscopy. Biophys J 2012; 102:579-86. [PMID: 22325281 DOI: 10.1016/j.bpj.2011.12.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/23/2011] [Accepted: 12/05/2011] [Indexed: 10/14/2022] Open
Abstract
Upon blue-light irradiation, the bacterium Halorhodospira halophila is able to modulate the activity of its flagellar motor and thereby evade potentially harmful UV radiation. The 14 kDa soluble cytosolic photoactive yellow protein (PYP) is believed to be the primary mediator of this photophobic response, and yields a UV/Vis absorption spectrum that closely matches the bacterium's motility spectrum. In the electronic ground state, the para-coumaric acid (pCA) chromophore of PYP is negatively charged and forms two short hydrogen bonds to the side chains of Glu-46 and Tyr-42. The resulting acid triad is central to the marked pH dependence of the optical-absorption relaxation kinetics of PYP. Here, we describe an NMR approach to sequence-specifically follow all tyrosine side-chain protonation states in PYP from pH 3.41 to 11.24. The indirect observation of the nonprotonated (13)C(γ) resonances in sensitive and well-resolved two-dimensional (13)C-(1)H spectra proved to be pivotal in this effort, as observation of other ring-system resonances was hampered by spectral congestion and line-broadening due to ring flips. We observe three classes of tyrosine residues in PYP that exhibit very different pK(a) values depending on whether the phenolic side chain is solvent-exposed, buried, or hydrogen-bonded. In particular, our data show that Tyr-42 remains fully protonated in the pH range of 3.41-11.24, and that pH-induced changes observed in the photocycle kinetics of PYP cannot be caused by changes in the charge state of Tyr-42. It is therefore very unlikely that the pCA chromophore undergoes changes in its electrostatic interactions in the electronic ground state.
Collapse
Affiliation(s)
- Nur Alia Oktaviani
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
27
|
Takeda M, Terauchi T, Kainosho M. Conformational analysis by quantitative NOE measurements of the β-proton pairs across individual disulfide bonds in proteins. JOURNAL OF BIOMOLECULAR NMR 2012; 52:127-139. [PMID: 22131165 DOI: 10.1007/s10858-011-9587-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 11/08/2011] [Indexed: 05/31/2023]
Abstract
NOEs between the β-protons of cysteine residues across disulfide bonds in proteins provide direct information on the connectivities and conformations of these important cross-links, which are otherwise difficult to investigate. With conventional [U-(13)C, (15)N]-proteins, however, fast spin diffusion processes mediated by strong dipolar interactions between geminal β-protons prohibit the quantitative measurements and thus the analyses of long-range NOEs across disulfide bonds. We describe a robust approach for alleviating such difficulties, by using proteins selectively labeled with an equimolar mixture of (2R, 3S)-[β-(13)C; α,β-(2)H(2)] Cys and (2R, 3R)-[β-(13)C; α,β-(2)H(2)] Cys, but otherwise fully deuterated. Since either one of the prochiral methylene protons, namely β2 (proS) or β3 (proR), is always replaced with a deuteron and no other protons remain in proteins prepared by this labeling scheme, all four of the expected NOEs for the β-protons across disulfide bonds could be measured without any spin diffusion interference, even with long mixing times. Therefore, the NOEs for the β2 and β3 pairs across each of the disulfide bonds could be observed at high sensitivity, even though they are 25% of the theoretical maximum for each pair. With the NOE information, the disulfide bond connectivities can be unambiguously established for proteins with multiple disulfide bonds. In addition, the conformations around disulfide bonds, namely χ(2) and χ(3), can be determined based on the precise proton distances of the four β-proton pairs, by quantitative measurements of the NOEs across the disulfide bonds. The feasibility of this method is demonstrated for bovine pancreatic trypsin inhibitor, which has three disulfide bonds.
Collapse
Affiliation(s)
- Mitsuhiro Takeda
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | | | | |
Collapse
|
28
|
Takeda M, Kainosho M. 1.12 Labeling Techniques. COMPREHENSIVE BIOPHYSICS 2012. [PMCID: PMC7151895 DOI: 10.1016/b978-0-12-374920-8.00116-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The current status of isotope-assisted multidimensional nuclear magnetic resonance (NMR) spectroscopy for protein structural studies is reviewed. After introducing various classic isotope labeling methods, some new emerging technologies, such as the stereo-array isotope labeling method, are described. The concomitant development of advanced stable isotope labeling strategies, NMR instrumentation, sophisticated NMR measurements, spectral analysis, and structural calculation algorithms is essential to overcome the current limitations restricting the use of protein NMR spectroscopy.
Collapse
|
29
|
Miyanoiri Y, Takeda M, Kainosho M. Stereo-Array Isotope Labeling Method for Studying Protein Structure and Dynamics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 992:83-93. [DOI: 10.1007/978-94-007-4954-2_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
30
|
Unkefer CJ, Martinez RA. The use of stable isotope labelling for the analytical chemistry of drugs. Drug Test Anal 2011; 4:303-7. [DOI: 10.1002/dta.361] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 08/12/2011] [Accepted: 08/13/2011] [Indexed: 11/10/2022]
Affiliation(s)
- Clifford J. Unkefer
- Los Alamos National Laboratory; National Stable Isotope Resource; Los Alamos; NM; USA
| | | |
Collapse
|
31
|
Miyanoiri Y, Takeda M, Jee J, Ono AM, Okuma K, Terauchi T, Kainosho M. Alternative SAIL-Trp for robust aromatic signal assignment and determination of the χ(2) conformation by intra-residue NOEs. JOURNAL OF BIOMOLECULAR NMR 2011; 51:425-35. [PMID: 21947837 DOI: 10.1007/s10858-011-9568-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 09/05/2011] [Indexed: 05/20/2023]
Abstract
Tryptophan (Trp) residues are frequently found in the hydrophobic cores of proteins, and therefore, their side-chain conformations, especially the precise locations of the bulky indole rings, are critical for determining structures by NMR. However, when analyzing [U-(13)C,(15)N]-proteins, the observation and assignment of the ring signals are often hampered by excessive overlaps and tight spin couplings. These difficulties have been greatly alleviated by using stereo-array isotope labeled (SAIL) proteins, which are composed of isotope-labeled amino acids optimized for unambiguous side-chain NMR assignment, exclusively through the (13)C-(13)C and (13)C-(1)H spin coupling networks (Kainosho et al. in Nature 440:52-57, 2006). In this paper, we propose an alternative type of SAIL-Trp with the [ζ2,ζ3-(2)H(2); δ1,ε3,η2-(13)C(3); ε1-(15)N]-indole ring ([(12)C (γ,) ( 12) C(ε2)] SAIL-Trp), which provides a more robust way to correlate the (1)H(β), (1)H(α), and (1)H(N) to the (1)H(δ1) and (1)H(ε3) through the intra-residue NOEs. The assignment of the (1)H(δ1)/(13)C(δ1) and (1)H(ε3)/(13)C(ε3) signals can thus be transferred to the (1)H(ε1)/(15)N(ε1) and (1)H(η2)/(13)C(η2) signals, as with the previous type of SAIL-Trp, which has an extra (13)C at the C(γ) of the ring. By taking advantage of the stereospecific deuteration of one of the prochiral β-methylene protons, which was (1)H(β2) in this experiment, one can determine the side-chain conformation of the Trp residue including the χ(2) angle, which is especially important for Trp residues, as they can adopt three preferred conformations. We demonstrated the usefulness of [(12)C(γ),(12)C(ε2)] SAIL-Trp for the 12 kDa DNA binding domain of mouse c-Myb protein (Myb-R2R3), which contains six Trp residues.
Collapse
Affiliation(s)
- Yohei Miyanoiri
- Graduate School of Science, Structural Biology Research Center, Nagoya University, Furo-cho, Chikusa-ku, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Baturin SJ, Okon M, McIntosh LP. Structure, dynamics, and ionization equilibria of the tyrosine residues in Bacillus circulans xylanase. JOURNAL OF BIOMOLECULAR NMR 2011; 51:379-394. [PMID: 21912982 DOI: 10.1007/s10858-011-9564-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 08/26/2011] [Indexed: 05/31/2023]
Abstract
We have developed NMR spectroscopic methods to investigate the tyrosines within Bacillus circulans xylanase (BcX). Four slowly exchanging buried tyrosine hydroxyl protons with chemical shifts between 7.5 and 12.5 ppm were found using a long-range (13)C-HSQC experiment that exploits the (3)J(CH) coupling between the ring (1)H(η) and (13)C(ε) nuclei. The NMR signals from these protons were assigned via (13)C-tyrosine selective labelling and a suite of scalar and (13)C,(15)N-filtered/edited NOE correlation spectra. Of the fifteen tyrosines in BcX, only the buried Tyr79 and Tyr105 showed four distinct, rather than two averaged, signals from ring (13)C-(1)H pairs, indicative of slow flipping on the chemical shift timescale. Ring flipping rate constants of ~10 and ~0.2 s(-1) were measured for the two residues, respectively, using a (13)C longitudinal exchange experiment. The hydrogen bonding properties of the Tyr79 and Tyr105 hydroxyls were also defined by complementary NOE and J-coupling measurements. The (1)H(η) hydrogen-deuterium exchange rate constants of the buried tyrosines were determined from (13)C/(15)N-filtered spectra recorded as a function of pH. These exchange rate constants correspond to estimated protection factors of ~10(4)-10(8) relative to a random coil tyrosine. The phenolic sidechain pK (a) values were also measured by monitoring their pH-dependent (13)C(ζ) chemical shifts via (1)H(ε/δ)((13)C(ε))(13)C(ζ) correlation spectra. Exposed tyrosines had unperturbed pK (a) values of ~10.2, whereas buried residues remained predominantly neutral at or even above pH 11. Combined with selective isotope labelling, these NMR experiments should prove useful for investigating the structural and electrostatic properties of tyrosines in many interesting proteins.
Collapse
Affiliation(s)
- Simon J Baturin
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | | | | |
Collapse
|
33
|
Takeda M, Jee J, Ono AM, Terauchi T, Kainosho M. Hydrogen Exchange Study on the Hydroxyl Groups of Serine and Threonine Residues in Proteins and Structure Refinement Using NOE Restraints with Polar Side-Chain Groups. J Am Chem Soc 2011; 133:17420-7. [DOI: 10.1021/ja206799v] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mitsuhiro Takeda
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - JunGoo Jee
- Center for Priority Areas, Graduate School of Science and Technology, Tokyo Metropolitan University, 1-1 minami-ohsawa, Hachioji 192-0397, Japan
| | - Akira M. Ono
- Center for Priority Areas, Graduate School of Science and Technology, Tokyo Metropolitan University, 1-1 minami-ohsawa, Hachioji 192-0397, Japan
| | - Tsutomu Terauchi
- Center for Priority Areas, Graduate School of Science and Technology, Tokyo Metropolitan University, 1-1 minami-ohsawa, Hachioji 192-0397, Japan
| | - Masatsune Kainosho
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Center for Priority Areas, Graduate School of Science and Technology, Tokyo Metropolitan University, 1-1 minami-ohsawa, Hachioji 192-0397, Japan
| |
Collapse
|
34
|
Hanashima S, Kato K, Yamaguchi Y. 13C-NMR quantification of proton exchange at LewisX hydroxyl groups in water. Chem Commun (Camb) 2011; 47:10800-2. [PMID: 21892456 DOI: 10.1039/c1cc13310a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NMR-based analysis of glycans by directly observing hydroxyl protons has been difficult because of their inherently fast exchange with water. We observed hydroxyl proton exchanges in a LewisX-LewisX interaction by using deuterium isotope shifts on (13)C-NMR. This strategy is suitable for analyzing weak interactions by identifying involved protons.
Collapse
Affiliation(s)
- Shinya Hanashima
- Structural Glycobiology Team, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, 351-0198 Saitama, Japan
| | | | | |
Collapse
|
35
|
Maity AN, Shaikh AC, Srimurugan S, Wu CJ, Chen C, Ke SC. Synthesis of 4-thia-[6-(13)C]lysine from [2- (13)C]glycine: access to site-directed isotopomers of 2-aminoethanol, 2-bromoethylamine and 4-thialysine. Amino Acids 2010; 42:309-15. [PMID: 21103898 DOI: 10.1007/s00726-010-0808-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 11/02/2010] [Indexed: 11/28/2022]
Abstract
4-Thialysine (S-(2-aminoethyl)-L: -cysteine) is an analog of lysine. It has been used as an alternative substrate for lysine in enzymatic reactions. Site-directed isotopomers are often needed for elucidation of mechanism of reactions. 4-Thialysine can be synthesized by reacting cysteine with 2-bromoethylamine, an important reagent in chemical-modification rescue (CMR) of proteins. Here, we present the synthesis of 4-thia-[6-(13)C]lysine, one of the isotopomers of 4-thialysine, from commercially available starting material [2-(13)C]glycine via formation of five intermediates including 2-amino[2-(13)C]ethanol and 2-bromo[1-(13)C]ethylamine. The compounds were characterized using various spectroscopic techniques. Moreover, we discuss that our strategy would provide access to site-directed isotopomers of 2-aminoethanol, 2-bromoethylamine and 4-thialysine. Biological activity of 4-thia-[6-(13)C]lysine was tested in the enzymatic reaction of lysine 5,6-aminomutase.
Collapse
|
36
|
Fujiwara Y, Iwata H, Sawama Y, Monguchi Y, Sajiki H. Method for regio-, chemo- and stereoselective deuterium labeling of sugars based on ruthenium-catalyzed C-H bond activation. Chem Commun (Camb) 2010; 46:4977-9. [PMID: 20544123 DOI: 10.1039/c0cc01197e] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and facile deuterium labeling of sugars has been achieved in a completely regio-, chemo- and stereoselective manner using the Ru/C-H(2)-D(2)O combination via C-H bond activation assisted by the coordination of Ru to the oxygen atom of the sugar-hydroxyl groups.
Collapse
Affiliation(s)
- Yuta Fujiwara
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | | | | | | | | |
Collapse
|
37
|
Takeda M, Jee J, Terauchi T, Kainosho M. Detection of the Sulfhydryl Groups in Proteins with Slow Hydrogen Exchange Rates and Determination of Their Proton/Deuteron Fractionation Factors Using the Deuterium-Induced Effects on the 13Cβ NMR Signals. J Am Chem Soc 2010; 132:6254-60. [DOI: 10.1021/ja101205j] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mitsuhiro Takeda
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan, and Center for Priority Areas, Graduate School of Science and Technology, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, 192-0397, Japan
| | - JunGoo Jee
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan, and Center for Priority Areas, Graduate School of Science and Technology, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, 192-0397, Japan
| | - Tsutomu Terauchi
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan, and Center for Priority Areas, Graduate School of Science and Technology, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, 192-0397, Japan
| | - Masatsune Kainosho
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan, and Center for Priority Areas, Graduate School of Science and Technology, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, 192-0397, Japan
| |
Collapse
|
38
|
Agarwal V, Linser R, Fink U, Faelber K, Reif B. Identification of Hydroxyl Protons, Determination of Their Exchange Dynamics, and Characterization of Hydrogen Bonding in a Microcrystallin Protein. J Am Chem Soc 2010; 132:3187-95. [DOI: 10.1021/ja910167q] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vipin Agarwal
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, D-13125 Berlin, Germany, and Charité Universitätsmedizin, D-10115 Berlin, Germany
| | - Rasmus Linser
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, D-13125 Berlin, Germany, and Charité Universitätsmedizin, D-10115 Berlin, Germany
| | - Uwe Fink
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, D-13125 Berlin, Germany, and Charité Universitätsmedizin, D-10115 Berlin, Germany
| | - Katja Faelber
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, D-13125 Berlin, Germany, and Charité Universitätsmedizin, D-10115 Berlin, Germany
| | - Bernd Reif
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, D-13125 Berlin, Germany, and Charité Universitätsmedizin, D-10115 Berlin, Germany
| |
Collapse
|
39
|
Yamaguchi Y, Kato K. Dynamics and Interactions of Glycoconjugates Probed by Stable-Isotope-Assisted NMR Spectroscopy. Methods Enzymol 2010; 478:305-22. [DOI: 10.1016/s0076-6879(10)78015-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|