1
|
Maeki M, Ishida A, Tokeshi M. Microfluidic technologies for protein crystallography: advances and applications. ANAL SCI 2025:10.1007/s44211-025-00767-z. [PMID: 40257729 DOI: 10.1007/s44211-025-00767-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 03/30/2025] [Indexed: 04/22/2025]
Abstract
Three-dimensional protein structure determination by X-ray crystallography is essential for understanding biological function and accelerating drug discovery. However, obtaining high-quality protein crystals remains a significant bottleneck. The conventional crystallization methods are often labor-intensive, require large sample volumes, and offer limited control over the crystallization environment. This review summarizes the application of microfluidic technologies to protein crystallography with a focus on their advantages over the conventional crystallization methods. Microfluidic devices enable nanoliter-scale sample handling, precise control over crystallization conditions, and high-throughput screening, addressing major limitations of the conventional approaches. This review introduces various microfluidic platforms, including droplet-based and microwell-based systems, for protein crystallization, crystal growth control, and on-chip X-ray diffraction analysis. The review also covers the use of microfluidics for creating diffusion-controlled crystal growth environments, real-time crystal growth measurement, on-chip X-ray diffraction measurement, and room-temperature X-ray crystallography with automated data processing.
Collapse
Affiliation(s)
- Masatoshi Maeki
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-Ku, Sapporo, 060-8628, Japan.
- RIKEN, SPring-8 Center, 1-1-1 Kouto, Sayo-Cho, Sayo-Gun, Hyogo, 679-5148, Japan.
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, 305-0801, Japan.
| | - Akihiko Ishida
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-Ku, Sapporo, 060-8628, Japan
| | - Manabu Tokeshi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-Ku, Sapporo, 060-8628, Japan
| |
Collapse
|
2
|
Li M, Dong S. A Robust Normally Closed Pneumatic Valve for Integrated Microfluidic Flow Control. MICROMACHINES 2024; 16:34. [PMID: 39858690 PMCID: PMC11767356 DOI: 10.3390/mi16010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025]
Abstract
Accurate fluid management in microfluidic-based point-of-care testing (POCT) devices is critical. Fluids must be gated and directed in precise sequences to facilitate desired biochemical reactions and signal detection. Pneumatic valves are widely utilized for fluid gating due to their flexibility and simplicity. However, the development of reliable normally closed pneumatic valves remains challenging, despite their increasing demand in advanced POCT applications to prevent uncontrolled fluid flow. Existing normally closed valves often suffer from poor reliability and lack precise control over fluid opening pressure, due to the uncontrolled stretching of the elastomer during assembly. In this study, we propose and develop a robust method for normally closed valves. By precisely controlling the pre-stretching of the elastomer, we achieve reliable valve closure and accurate control of the opening pressure. A robust normally closed valve was designed and fabricated, and its pneumatic opening pressure was systematically studied. Experimental validations were conducted to demonstrate the reliability and effectiveness of the proposed design.
Collapse
Affiliation(s)
- Minggan Li
- Zepto Life Technology Inc., 1000 Westgate Drive, St. Paul, MN 55114, USA
| | | |
Collapse
|
3
|
Yan Y, Wang J, Lu X, Yuan W, Zhang X. Nucleation-Supersaturation Dual-Drive Crystallization Strategy Enables Efficient Protein Crystallization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307924. [PMID: 38072771 DOI: 10.1002/smll.202307924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/30/2023] [Indexed: 12/21/2023]
Abstract
A rational crystallization strategy is essential to obtain high-quality protein crystals, yet the established methods suffer from different limitations arising from the single regulation on either nucleation or supersaturation. Herein, a nucleation-supersaturation dual-driven crystallization (DDC) strategy that realizes synergistic regulation of heterogeneous nucleation sites and solution supersaturation based on dual surface and confinement effects for efficient protein crystallization is reported. This strategy relies on a p(PEGDA-co-DMAA) hydrogel template with pre-filled NaCl under designed concentrations. Once dropping hen egg white lysozyme (HEWL) protein solution on the hydrogel, the wrinkled surface provides numerous nucleation sites, while the internal structure regulates the solution supersaturation in the crystallization region through diffusion. Finally, DDC strategy can create high-quality HEWL crystals with large sizes (100-300 µm), well-defined morphologies (hexagon and tetragon), and a significantly accelerated nucleation time (9-12 times faster than that achieved using the conventional hanging drop method). It also performs well at wider protein concentrations (10-50 mg mL-1) and categories (e.g., achieving fast crystallization and large-size crystals of trypsin), therefore demonstrating clear advantages and great potential for efficiently fabricating protein crystals desirable for diverse applications.
Collapse
Affiliation(s)
- Yizhen Yan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuechun Lu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiangyang Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
4
|
Wang Y, Gao Y, Song Y. Microfluidics-Based Urine Biopsy for Cancer Diagnosis: Recent Advances and Future Trends. ChemMedChem 2022; 17:e202200422. [PMID: 36040297 DOI: 10.1002/cmdc.202200422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/23/2022] [Indexed: 11/08/2022]
Abstract
Urine biopsy, allowing for the detection, analysis and monitoring of numerous cancer-associated urinary biomarkers to provide insights into cancer occurrence, progression and metastasis, has emerged as an attractive liquid biopsy strategy with enormous advantages over traditional tissue biopsy, such as noninvasiveness, large sample volume, and simple sampling operation. Microfluidics enables precise manipulation of fluids in a tiny chip and exhibits outstanding performance in urine biopsy owing to its minimization, low cost, high integration, high throughput and low sample consumption. Herein, we review recent advances in microfluidic techniques employed in urine biopsy for cancer detection. After briefly summarizing the major urinary biomarkers used for cancer diagnosis, we provide an overview of the typical microfluidic techniques utilized to develop urine biopsy devices. Some prospects along with the major challenges to be addressed for the future of microfluidic-based urine biopsy are also discussed.
Collapse
Affiliation(s)
- Yanping Wang
- Nanjing University of Science and Technology, Sino-French Engineer School, CHINA
| | - Yanfeng Gao
- Nanjing University, College of Engineering and Applied Sciences, CHINA
| | - Yujun Song
- Nanjing University, Biomedical Engineering, 22 Hankou Road, 210093, Nanjing, CHINA
| |
Collapse
|
5
|
Iyer V, Yang Z, Ko J, Weissleder R, Issadore D. Advancing microfluidic diagnostic chips into clinical use: a review of current challenges and opportunities. LAB ON A CHIP 2022; 22:3110-3121. [PMID: 35674283 PMCID: PMC9798730 DOI: 10.1039/d2lc00024e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Microfluidic diagnostic (μDX) technologies miniaturize sensors and actuators to the length-scales that are relevant to biology: the micrometer scale to interact with cells and the nanometer scale to interrogate biology's molecular machinery. This miniaturization allows measurements of biomarkers of disease (cells, nanoscale vesicles, molecules) in clinical samples that are not detectable using conventional technologies. There has been steady progress in the field over the last three decades, and a recent burst of activity catalyzed by the COVID-19 pandemic. In this time, an impressive and ever-growing set of technologies have been successfully validated in their ability to measure biomarkers in clinical samples, such as blood and urine, with sensitivity and specificity not possible using conventional tests. Despite our field's many accomplishments to date, very few of these technologies have been successfully commercialized and brought to clinical use where they can fulfill their promise to improve medical care. In this paper, we identify three major technological trends in our field that we believe will allow the next generation of μDx to have a major impact on the practice of medicine, and which present major opportunities for those entering the field from outside disciplines: 1. the combination of next generation, highly multiplexed μDx technologies with machine learning to allow complex patterns of multiple biomarkers to be decoded to inform clinical decision points, for which conventional biomarkers do not necessarily exist. 2. The use of micro/nano devices to overcome the limits of binding affinity in complex backgrounds in both the detection of sparse soluble proteins and nucleic acids in blood and rare circulating extracellular vesicles. 3. A suite of recent technologies that obviate the manual pre-processing and post-processing of samples before they are measured on a μDX chip. Additionally, we discuss economic and regulatory challenges that have stymied μDx translation to the clinic, and highlight strategies for successfully navigating this challenging space.
Collapse
Affiliation(s)
- Vasant Iyer
- Electrical and Systems Engineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Zijian Yang
- Mechanical Engineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jina Ko
- Bioengineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital/Harvard Medical School, 185 Cambridge Street, Boston, Massachusetts, USA
| | - David Issadore
- Electrical and Systems Engineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Bioengineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Liu X, Li X, Wu N, Luo Y, Zhang J, Yu Z, Shen F. Formation and Parallel Manipulation of Gradient Droplets on a Self-Partitioning SlipChip for Phenotypic Antimicrobial Susceptibility Testing. ACS Sens 2022; 7:1977-1984. [PMID: 35815869 DOI: 10.1021/acssensors.2c00734] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Flexible, robust, and user-friendly screening systems with a large dynamic range are highly desired in scientific research, industrial development, and clinical diagnostics. Droplet-based microfluidic systems with gradient concentrations of chemicals have been demonstrated as promising tools to provide confined microenvironments for screening tests with small reaction volumes. However, the generation and manipulation of gradient droplets, such as droplet merging, generally require sophisticated fluidic manipulation systems, potentially limiting their application in decentralized settings. We present a gradient-droplet SlipChip (gd-SlipChip) microfluidic device that enables instrument-free gradient droplet formation and parallel manipulation. The device can establish a gradient profile by free interfacial diffusion in a continuous fluidic channel. With a simple slipping step, gradient droplets can be generated by a surface tension-driven self-partitioning process. Additional reagents can be introduced in parallel to these gradient droplets with further slipping operations to initiate screening tests of the droplets over a large concentration range. To profile the concentration in the gradient droplets, we establish a numerical simulation model and verify it with hydrogen chloride (HCl) diffusion, as tested with a dual-color pH indicator (methyl orange and aniline blue). As a proof of concept, we tested this system with a gradient concentration of nitrofurantoin for the phenotypic antimicrobial susceptibility testing (AST) of Escherichia coli. The results of our gd-SlipChip-based AST on both reference and clinical strains of E. coli can be indicated by the bacterial growth profile within 3 h and are consistent with the clinical culture-based AST.
Collapse
Affiliation(s)
- Xu Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Xiang Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Nannan Wu
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200433, China
| | - Yang Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Jiajie Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Ziqing Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| |
Collapse
|
7
|
Wang Y, Gao Y, Yin Y, Pan Y, Wang Y, Song Y. Nanomaterial-assisted microfluidics for multiplex assays. Mikrochim Acta 2022; 189:139. [PMID: 35275267 DOI: 10.1007/s00604-022-05226-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
Simultaneous detection of different biomarkers from a single specimen in a single test, allowing more rapid, efficient, and low-cost analysis, is of great significance for accurate diagnosis of disease and efficient monitoring of therapy. Recently, developments in microfabrication and nanotechnology have advanced the integration of nanomaterials in microfluidic devices toward multiplex assays of biomarkers, combining both the advantages of microfluidics and the unique properties of nanomaterials. In this review, we focus on the state of the art in multiplexed detection of biomarkers based on nanomaterial-assisted microfluidics. Following an overview of the typical microfluidic analytical techniques and the most commonly used nanomaterials for biochemistry analysis, we highlight in detail the nanomaterial-assisted microfluidic strategies for different biomarkers. These highly integrated platforms with minimum sample consumption, high sensitivity and specificity, low detection limit, enhanced signals, and reduced detection time have been extensively applied in various domains and show great potential in future point-of-care testing and clinical diagnostics.
Collapse
Affiliation(s)
- Yanping Wang
- Sino-French Engineer School, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yi Yin
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yongchun Pan
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yuzhen Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Yujun Song
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
8
|
Kim D, Olympiou C, McCoy CP, Irwin NJ, Rimer JD. Time-Resolved Dynamics of Struvite Crystallization: Insights from the Macroscopic to Molecular Scale. Chemistry 2020; 26:3555-3563. [PMID: 31742800 DOI: 10.1002/chem.201904347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/05/2019] [Indexed: 12/14/2022]
Abstract
The crystallization of magnesium ammonium phosphate hexahydrate (struvite) often occurs under conditions of fluid flow, yet the dynamics of struvite growth under these relevant environments has not been previously reported. In this study, we use a microfluidic device to evaluate the anisotropic growth of struvite crystals at variable flow rates and solution supersaturation. We show that bulk crystallization under quiescent conditions yields irreproducible data owing to the propensity of struvite to adopt defects in its crystal lattice, as well as fluctuations in pH that markedly impact crystal growth rates. Studies in microfluidic channels allow for time-resolved analysis of seeded growth along all three principle crystallographic directions and under highly controlled environments. After having first identified flow rates that differentiate diffusion and reaction limited growth regimes, we operated solely in the latter regime to extract the kinetic rates of struvite growth along the [100], [010], and [001] directions. In situ atomic force microscopy was used to obtain molecular level details of surface growth mechanisms. Our findings reveal a classical pathway of crystallization by monomer addition with the expected transition from growth by screw dislocations at low supersaturation to that of two-dimensional layer generation and spreading at high supersaturation. Collectively, these studies present a platform for assessing struvite crystallization under flow conditions and demonstrate how this approach is superior to measurements under quiescent conditions.
Collapse
Affiliation(s)
- Doyoung Kim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
| | - Chara Olympiou
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Colin P McCoy
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Nicola J Irwin
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Jeffrey D Rimer
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
| |
Collapse
|
9
|
Lyu W, Yu M, Qu H, Yu Z, Du W, Shen F. Slip-driven microfluidic devices for nucleic acid analysis. BIOMICROFLUIDICS 2019; 13:041502. [PMID: 31312285 PMCID: PMC6625959 DOI: 10.1063/1.5109270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/01/2019] [Indexed: 05/17/2023]
Abstract
Slip-driven microfluidic devices can manipulate fluid by the relative movement of microfluidic plates that are in close contact. Since the demonstration of the first SlipChip device, many slip-driven microfluidic devices with different form factors have been developed, including SlipPAD, SlipDisc, sliding stripe, and volumetric bar chart chip. Slip-driven microfluidic devices can be fabricated from glass, quartz, polydimethylsiloxane, paper, and plastic with various fabrication methods: etching, casting, wax printing, laser cutting, micromilling, injection molding, etc. The slipping operation of the devices can be performed manually, by a micrometer with a base station, or autonomously, by a clockwork mechanism. A variety of readout methods other than fluorescence microscopy have been demonstrated, including both fluorescence detection and colorimetric detection by mobile phones, direct visual detection, and real-time fluorescence imaging. This review will focus on slip-driven microfluidic devices for nucleic acid analysis, including multiplex nucleic acid detection, digital nucleic acid quantification, real-time nucleic acid amplification, and sample-in-answer-out nucleic acid analysis. Slip-driven microfluidic devices present promising approaches for both life science research and clinical molecular diagnostics.
Collapse
Affiliation(s)
- Weiyuan Lyu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Mengchao Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Haijun Qu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | | | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
- Author to whom correspondence should be addressed:
| |
Collapse
|
10
|
Li Y, Xuan J, Hu R, Zhang P, Lou X, Yang Y. Microfluidic triple-gradient generator for efficient screening of chemical space. Talanta 2019; 204:569-575. [PMID: 31357335 DOI: 10.1016/j.talanta.2019.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/27/2019] [Accepted: 06/06/2019] [Indexed: 12/22/2022]
Abstract
Generation of a combinatorial gradient for multiple chemicals is essential for studies of biochemical stimuli, chemoattraction, protein crystallization and others. While currently available platforms require complex design/settings to obtain a double-gradient chemical matrix, we herein report for the first time a simple triple-gradient matrix (TGM) device for efficient screening of chemical space. The TGM device is composed of two glass slides and works following the concept of SlipChip. The device utilizes XYZ space to distribute three chemicals and establishes a chemical gradient matrix within 5 min. The established matrix contains 24 or 104 screening conditions depending on the device used, which covers a concentration range of [0.117-1, 0.117-1 and 0.686-1] and [0.0830-1, 0.0830-1, 0.686-1] respectively for the three chemicals. With the triple gradients built simultaneously, this TGM device provides order-of-magnitude improvement in screening efficiency over existing single- or double-gradient generators. As a proof of concept, we applied the device to screen the crystallization conditions for two model proteins of lysozyme and trypsin and confirmed the crystal structures using X-ray diffraction. Furthermore, we successfully obtained the crystallization condition of adhesin competence repressor, a protein that senses the alterations in intracellular zinc concentrations. We expect the TGM system to be widely used as an analytical platform for material synthesis and chemical screening beyond for protein crystallization.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.
| | - Jie Xuan
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT 84602, USA
| | - Rui Hu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Pengchao Zhang
- Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Xiaohua Lou
- Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.
| |
Collapse
|
11
|
Tona RM, McDonald TAO, Akhavein N, Larkin JD, Lai D. Microfluidic droplet liquid reactors for active pharmaceutical ingredient crystallization by diffusion controlled solvent extraction. LAB ON A CHIP 2019; 19:2127-2137. [PMID: 31114833 DOI: 10.1039/c9lc00204a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A novel method for crystallization utilizing solvent/antisolvent extraction in microfluidic droplet liquid reactors has been developed for rapid and low-cost screening of crystal polymorphism (i.e. molecular crystallographic arrangement or internal structure) and habit (i.e. crystallographic shape or external structure). The method involves a ternary solvent system consisting of a dispersed phase of two miscible fluids, one in which the active pharmaceutical ingredient (API) is soluble (solvent) and one in which the API is insoluble (antisolvent). The solvent/antisolvent dispersed phase is immiscible with a third continuous phase. Crystallization of an API, GSK1, was controlled within droplets by altering the rate of solvent extraction from droplets into the continuous phase, thereby decreasing API solubility. Crystal size, habit, and population per droplet were directly impacted by the solvent's rate of extraction. Single crystals were grown in individual droplets by slow extraction of solvent into the surrounding continuous phase, which occurs when crystal growth gradually reduces API concentration such that it is maintained within the metastable zone throughout extraction. Rapid extraction of solvent from droplets results in API concentration significantly exceeding its metastable limit, producing a greater number of crystal nuclei compared to slow extraction conditions. When holding constant solubilized API mass per droplet, crystal sizes were larger for slow extraction rates (l = 96.3, w = 16.6 μm) compared to fast extraction rates (l = 48.8, w = 9.5 μm) as a result of crystal growth occurring on fewer crystal nuclei per droplet. Crystal habit can be controlled by adjusting the solvent extraction rate and consequently the saturation, where minimal saturation resulted in a rhombohedral habit and comparatively higher saturation resulted in an acicular habit with a higher aspect ratio. Antisolvents were tested using two hydrophobic APIs demonstrating the method's capability for rapidly identifying favorable crystal morphologies for downstream manufacturability using miniscule amounts of API.
Collapse
Affiliation(s)
- Robert M Tona
- Advanced Manufacturing Technologies, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA 19406, USA.
| | | | | | | | | |
Collapse
|
12
|
Microfluidic Technologies and Platforms for Protein Crystallography. Bioanalysis 2019. [DOI: 10.1007/978-981-13-6229-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
13
|
Li X, Zhang D, Zhang H, Guan Z, Song Y, Liu R, Zhu Z, Yang C. Microwell Array Method for Rapid Generation of Uniform Agarose Droplets and Beads for Single Molecule Analysis. Anal Chem 2018; 90:2570-2577. [PMID: 29350029 DOI: 10.1021/acs.analchem.7b04040] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Compartmentalization of aqueous samples in uniform emulsion droplets has proven to be a useful tool for many chemical, biological, and biomedical applications. Herein, we introduce an array-based emulsification method for rapid and easy generation of monodisperse agarose-in-oil droplets in a PDMS microwell array. The microwells are filled with agarose solution, and subsequent addition of hot oil results in immediate formation of agarose droplets due to the surface-tension of the liquid solution. Because droplet size is determined solely by the array unit dimensions, uniform droplets with preselectable diameters ranging from 20 to 100 μm can be produced with relative standard deviations less than 3.5%. The array-based droplet generation method was used to perform digital PCR for absolute DNA quantitation. The array-based droplet isolation and sol-gel switching property of agarose enable formation of stable beads by chilling the droplet array at -20 °C, thus, maintaining the monoclonality of each droplet and facilitating the selective retrieval of desired droplets. The monoclonality of droplets was demonstrated by DNA sequencing and FACS analysis, suggesting the robustness and flexibility of the approach for single molecule amplification and analysis. We believe our approach will lead to new possibilities for a great variety of applications, such as single-cell gene expression studies, aptamer selection, and oligonucleotide analysis.
Collapse
Affiliation(s)
- Xingrui Li
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University , Xiamen 361005, People's Republic of China
| | - Dongfeng Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University , Xiamen 361005, People's Republic of China
| | - Huimin Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University , Xiamen 361005, People's Republic of China
| | - Zhichao Guan
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University , Xiamen 361005, People's Republic of China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University , Xiamen 361005, People's Republic of China.,The MOE Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Biological Science and Engineering, Fuzhou University , Fuzhou 350116, People's Republic of China
| | - Ruochen Liu
- Department of Chemistry and Chemical Biology, Rutgers University , Piscataway, New Jersey United States
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University , Xiamen 361005, People's Republic of China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University , Xiamen 361005, People's Republic of China
| |
Collapse
|
14
|
Zhou X, Zhou X, Zheng B. Stacking chip for quantitative bioanalysis. Talanta 2017; 175:483-487. [PMID: 28842021 DOI: 10.1016/j.talanta.2017.07.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 11/17/2022]
Abstract
This paper describes a microwell-based microdevice for performing quantitative bioanalysis. This microdevice combined the passive pumping by degassed polydimethylsiloxane (PDMS) with serial operations including solution dispensing, plates splitting and plates stacking. We name this microdevice "stacking chip". To use the stacking chip in quantitative bioanalysis, nanoliter solutions were first dispensed into the microwells through the degassed PDMS microchannels. Next, we split the microwell and microchannel plates assisted by the application of one drop of silicone oil, which resulted in a microwell array containing the reagent solutions. Microreactor arrays were formed by stacking the two microwell arrays containing the reagent solutions. With this microdevice, the enzymatic kinetics of alkaline phosphatase during the dissociation of the fluorescein diphosphate was measured and analyzed by the Michaelis-Menten model. The stacking chip is simple to fabricate and operate, and amenable to automation for high throughput analysis.
Collapse
Affiliation(s)
- Xiaohu Zhou
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Bo Zheng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
15
|
Shi HH, Xiao Y, Ferguson S, Huang X, Wang N, Hao HX. Progress of crystallization in microfluidic devices. LAB ON A CHIP 2017; 17:2167-2185. [PMID: 28585942 DOI: 10.1039/c6lc01225f] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Microfluidic technology provides a unique environment for the investigation of crystallization processes at the nano or meso scale. The convenient operation and precise control of process parameters, at these scales of operation enabled by microfluidic devices, are attracting significant and increasing attention in the field of crystallization. In this paper, developments and applications of microfluidics in crystallization research including: crystal nucleation and growth, polymorph and cocrystal screening, preparation of nanocrystals, solubility and metastable zone determination, are summarized and discussed. The materials used in the construction and the structure of these microfluidic devices are also summarized and methods for measuring and modelling crystal nucleation and growth process as well as the enabling analytical methods are also briefly introduced. The low material consumption, high efficiency and precision of microfluidic crystallizations are of particular significance for active pharmaceutical ingredients, proteins, fine chemicals, and nanocrystals. Therefore, it is increasingly adopted as a mainstream technology in crystallization research and development.
Collapse
Affiliation(s)
- Huan-Huan Shi
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | |
Collapse
|
16
|
Huynh T, Daddysman MK, Bao Y, Selewa A, Kuznetsov A, Philipson LH, Scherer NF. Correlative imaging across microscopy platforms using the fast and accurate relocation of microscopic experimental regions (FARMER) method. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:053702. [PMID: 28571460 PMCID: PMC6910601 DOI: 10.1063/1.4982818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/18/2017] [Indexed: 05/29/2023]
Abstract
Imaging specific regions of interest (ROIs) of nanomaterials or biological samples with different imaging modalities (e.g., light and electron microscopy) or at subsequent time points (e.g., before and after off-microscope procedures) requires relocating the ROIs. Unfortunately, relocation is typically difficult and very time consuming to achieve. Previously developed techniques involve the fabrication of arrays of features, the procedures for which are complex, and the added features can interfere with imaging the ROIs. We report the Fast and Accurate Relocation of Microscopic Experimental Regions (FARMER) method, which only requires determining the coordinates of 3 (or more) conspicuous reference points (REFs) and employs an algorithm based on geometric operators to relocate ROIs in subsequent imaging sessions. The 3 REFs can be quickly added to various regions of a sample using simple tools (e.g., permanent markers or conductive pens) and do not interfere with the ROIs. The coordinates of the REFs and the ROIs are obtained in the first imaging session (on a particular microscope platform) using an accurate and precise encoded motorized stage. In subsequent imaging sessions, the FARMER algorithm finds the new coordinates of the ROIs (on the same or different platforms), using the coordinates of the manually located REFs and the previously recorded coordinates. FARMER is convenient, fast (3-15 min/session, at least 10-fold faster than manual searches), accurate (4.4 μm average error on a microscope with a 100x objective), and precise (almost all errors are <8 μm), even with deliberate rotating and tilting of the sample well beyond normal repositioning accuracy. We demonstrate this versatility by imaging and re-imaging a diverse set of samples and imaging methods: live mammalian cells at different time points; fixed bacterial cells on two microscopes with different imaging modalities; and nanostructures on optical and electron microscopes. FARMER can be readily adapted to any imaging system with an encoded motorized stage and can facilitate multi-session and multi-platform imaging experiments in biology, materials science, photonics, and nanoscience.
Collapse
Affiliation(s)
- Toan Huynh
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| | - Matthew K Daddysman
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| | - Ying Bao
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - Alan Selewa
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| | - Andrey Kuznetsov
- Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Louis H Philipson
- Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Norbert F Scherer
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
17
|
Liang YR, Zhu LN, Gao J, Zhao HX, Zhu Y, Ye S, Fang Q. 3D-Printed High-Density Droplet Array Chip for Miniaturized Protein Crystallization Screening under Vapor Diffusion Mode. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11837-11845. [PMID: 28306245 DOI: 10.1021/acsami.6b15933] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Here we describe the combination of three-dimensional (3D) printed chip and automated microfluidic droplet-based screening techniques for achieving massively parallel, nanoliter-scale protein crystallization screening under vapor diffusion mode. We fabricated high-density microwell array chips for sitting-drop vapor diffusion crystallization utilizing the advantage of the 3D-printing technique in producing high-aspect-ratio chips. To overcome the obstacle of 3D-printed microchips in performing long-term reactions caused by their porousness and gas permeability properties in chip body, we developed a two-step postprocessing method, including paraffin filling and parylene coating, to achieve high sealability and stability. We also developed a simple method especially suitable for controlling the vapor diffusion speed of nanoliter-scale droplets by changing the layer thickness of covering oil. With the above methods, 84 tests of nanoliter-scale protein crystallization under vapor diffusion mode were successfully achieved in the 7 × 12 droplet array chip with a protein consumption of 10 nL for each test, which is 20-100 times lower than that in the conventional large-volume screening system. Such a nanoliter-scale vapor diffusion system was applied to two model proteins with commercial precipitants and displayed advantages over that under microbatch mode. It identified more crystallization conditions, especially for the protein samples with lower concentrations.
Collapse
Affiliation(s)
- Yi-Ran Liang
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, and ‡Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| | - Li-Na Zhu
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, and ‡Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| | - Jie Gao
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, and ‡Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| | - Hong-Xia Zhao
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, and ‡Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| | - Ying Zhu
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, and ‡Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| | - Sheng Ye
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, and ‡Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, and ‡Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| |
Collapse
|
18
|
Robertson K. Using flow technologies to direct the synthesis and assembly of materials in solution. Chem Cent J 2017; 11:4. [PMID: 28101131 PMCID: PMC5215996 DOI: 10.1186/s13065-016-0229-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/02/2016] [Indexed: 02/08/2023] Open
Abstract
In the pursuit of materials with structure-related function, directing the assembly of materials is paramount. The resultant structure can be controlled by ordering of reactants, spatial confinement and control over the reaction/crystallisation times and stoichiometries. These conditions can be administered through the use of flow technologies as evidenced by the growing widespread application of microfluidics for the production of nanomaterials; the function of which is often dictated or circumscribed by size. In this review a range of flow technologies is explored for use in the control of self-assembled systems: including techniques for reagent ordering, mixing control and high-throughput optimisation. The examples given encompass organic, inorganic and biological systems and focus on control of shape, function, composition and size.Graphical abstract.
Collapse
Affiliation(s)
- K Robertson
- Department of Chemistry, University of Bath, Bath, BA2 7AY UK
| |
Collapse
|
19
|
Abstract
Digital nucleic acid amplification (Digital NAA) quantifies nucleic acid by compartmentalizing a sample of DNA or RNA into a large number of discrete partitions and performing parallel nucleic acid amplification, such as polymerase chain reaction (PCR) or isothermal amplification reactions. With the counts of positive wells, total number of wells, and volumes of wells, the concentration of the target nucleic acid in the sample can be quantified. Digital NAA is considered increasingly powerful for ultra-sensitive detection and accurate quantification of nucleic acid for biological research and potentially medical diagnostics. Here, we describe glass SlipChip devices to perform digital NAA without cumbersome manual manipulation or complex fluidic control systems.
Collapse
Affiliation(s)
- Feng Shen
- SlipChip Corporation, 230 Constitution Drive, Menlo Park, CA, 94025, USA.
| |
Collapse
|
20
|
Kaminski TS, Garstecki P. Controlled droplet microfluidic systems for multistep chemical and biological assays. Chem Soc Rev 2017; 46:6210-6226. [DOI: 10.1039/c5cs00717h] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Droplet microfluidics is a relatively new and rapidly evolving field of science focused on studying the hydrodynamics and properties of biphasic flows at the microscale, and on the development of systems for practical applications in chemistry, biology and materials science.
Collapse
Affiliation(s)
- T. S. Kaminski
- Institute of Physical Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - P. Garstecki
- Institute of Physical Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| |
Collapse
|
21
|
Ghazal A, Lafleur JP, Mortensen K, Kutter JP, Arleth L, Jensen GV. Recent advances in X-ray compatible microfluidics for applications in soft materials and life sciences. LAB ON A CHIP 2016; 16:4263-4295. [PMID: 27731448 DOI: 10.1039/c6lc00888g] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The increasingly narrow and brilliant beams at X-ray facilities reduce the requirements for both sample volume and data acquisition time. This creates new possibilities for the types and number of sample conditions that can be examined but simultaneously increases the demands in terms of sample preparation. Microfluidic-based sample preparation techniques have emerged as elegant alternatives that can be integrated directly into the experimental X-ray setup remedying several shortcomings of more traditional methods. We review the use of microfluidic devices in conjunction with X-ray measurements at synchrotron facilities in the context of 1) mapping large parameter spaces, 2) performing time resolved studies of mixing-induced kinetics, and 3) manipulating/processing samples in ways which are more demanding or not accessible on the macroscale. The review covers the past 15 years and focuses on applications where synchrotron data collection is performed in situ, i.e. directly on the microfluidic platform or on a sample jet from the microfluidic device. Considerations such as the choice of materials and microfluidic designs are addressed. The combination of microfluidic devices and measurements at large scale X-ray facilities is still emerging and far from mature, but it definitely offers an exciting array of new possibilities.
Collapse
Affiliation(s)
- Aghiad Ghazal
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| | - Josiane P Lafleur
- Dept. of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Kell Mortensen
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| | - Jörg P Kutter
- Dept. of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Lise Arleth
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| | - Grethe V Jensen
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
22
|
Derzsi L, Kaminski TS, Garstecki P. Antibiograms in five pipetting steps: precise dilution assays in sub-microliter volumes with a conventional pipette. LAB ON A CHIP 2016; 16:893-901. [PMID: 26805579 DOI: 10.1039/c5lc01151e] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We demonstrate a standalone microfluidic chip that allows us to carry out commonly executed antibiotic susceptibility assays in an array of nanoliter droplets. We eliminated the need for automation in performing an exemplary complicated liquid handling assay on a chip. Operations on droplets are hard-wired into the microfluidic chip. The liquid handling protocol can be executed with a simple and commonly available source of flow such as an automatic manual pipette. The system passively prepares a series of dilutions of a chemical compound and mixes them with portions of the sample. The precision of metering, merging, mixing, and splitting of discrete portions of liquid samples is rooted in the passive capillary action in microfluidic traps and not in the precision of dosing with a pipette. We show an exemplary use of the device in the determination of the minimum inhibitory concentration (MIC) of ampicillin against E. coli ATCC 25922.
Collapse
Affiliation(s)
- Ladislav Derzsi
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland. and University of Padova, Department of Physics and Astronomy, Via Marzolo 8, 35131 Padova, Italy
| | - Tomasz S Kaminski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Piotr Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
23
|
Abdallah BG, Roy-Chowdhury S, Fromme R, Fromme P, Ros A. Protein Crystallization in an Actuated Microfluidic Nanowell Device. CRYSTAL GROWTH & DESIGN 2016; 16:2074-2082. [PMID: 27683240 PMCID: PMC5036579 DOI: 10.1021/acs.cgd.5b01748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Protein crystallization is a major bottleneck of structure determination by X-ray crystallography, hampering the process by years in some cases. Numerous matrix screening trials using significant amounts of protein are often applied, while a systematic approach with phase diagram determination is prohibited for many proteins that can only be expressed in small amounts. Here, we demonstrate a microfluidic nanowell device implementing protein crystallization and phase diagram screening using nanoscale volumes of protein solution per trial. The device is made with cost-effective materials and is completely automated for efficient and economical experimentation. In the developed device, 170 trials can be realized with unique concentrations of protein and precipitant established by gradient generation and isolated by elastomeric valving for crystallization incubation. Moreover, this device can be further downscaled to smaller nanowell volumes and larger scale integration. The device was calibrated using a fluorescent dye and compared to a numerical model where concentrations of each trial can be quantified to establish crystallization phase diagrams. Using this device, we successfully crystallized lysozyme and C-phycocyanin, as visualized by compatible crystal imaging techniques such as bright-field microscopy, UV fluorescence, and second-order nonlinear imaging of chiral crystals. Concentrations yielding observed crystal formation were quantified and used to determine regions of the crystallization phase space for both proteins. Low sample consumption and compatibility with a variety of proteins and imaging techniques make this device a powerful tool for systematic crystallization studies.
Collapse
Affiliation(s)
- Bahige G. Abdallah
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Shatabdi Roy-Chowdhury
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Raimund Fromme
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Alexandra Ros
- Corresponding Author: Phone: 1-480-965-5323. Fax: 1-480-965-7954.
| |
Collapse
|
24
|
Goyal S, Economou AE, Papadopoulos T, Horstman EM, Zhang GGZ, Gong Y, Kenis PJA. Solvent compatible microfluidic platforms for pharmaceutical solid form screening. RSC Adv 2016. [DOI: 10.1039/c5ra26426j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The use of SIFEL in the crystallization fluid layers renders the microfluidic crystallization array compatible with solvents such as tetrahydrofuran, acetonitrile, chloroform, hexane, and toluene.
Collapse
Affiliation(s)
- Sachit Goyal
- The Dow Chemical Company
- Polyurethanes R&D
- Freeport
- USA
- Department of Chemical & Biomolecular Engineering
| | - Aristotle E. Economou
- Department of Chemical & Biomolecular Engineering
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Theodore Papadopoulos
- Department of Chemical & Biomolecular Engineering
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Elizabeth M. Horstman
- Department of Chemical & Biomolecular Engineering
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Geoff G. Z. Zhang
- Drug Product Development
- Research and Development
- AbbVie Inc
- North Chicago
- USA
| | - Yuchuan Gong
- Drug Product Development
- Research and Development
- AbbVie Inc
- North Chicago
- USA
| | - Paul J. A. Kenis
- Department of Chemical & Biomolecular Engineering
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| |
Collapse
|
25
|
Maeki M, Yamazaki S, Pawate AS, Ishida A, Tani H, Yamashita K, Sugishima M, Watanabe K, Tokeshi M, Kenis PJA, Miyazaki M. A microfluidic-based protein crystallization method in 10 micrometer-sized crystallization space. CrystEngComm 2016. [DOI: 10.1039/c6ce01671e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
26
|
MAEKI M, YAMAGUCHI H, TOKESHI M, MIYAZAKI M. Microfluidic Approaches for Protein Crystal Structure Analysis. ANAL SCI 2016; 32:3-9. [DOI: 10.2116/analsci.32.3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Masatoshi MAEKI
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University
- Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology
| | | | - Manabu TOKESHI
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University
| | - Masaya MIYAZAKI
- Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology
| |
Collapse
|
27
|
Gavira JA. Current trends in protein crystallization. Arch Biochem Biophys 2015; 602:3-11. [PMID: 26747744 DOI: 10.1016/j.abb.2015.12.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 10/24/2022]
Abstract
UNLABELLED Proteins belong to the most complex colloidal system in terms of their physicochemical properties, size and conformational-flexibility. This complexity contributes to their great sensitivity to any external change and dictate the uncertainty of crystallization. The need of 3D models to understand their functionality and interaction mechanisms with other neighbouring (macro)molecules has driven the tremendous effort put into the field of crystallography that has also permeated other fields trying to shed some light into reluctant-to-crystallize proteins. This review is aimed at revising protein crystallization from a regular-laboratory point of view. It is also devoted to highlight the latest developments and achievements to produce, identify and deliver high-quality protein crystals for XFEL, Micro-ED or neutron diffraction. The low likelihood of protein crystallization is rationalized by considering the intrinsic polypeptide nature (folded state, surface charge, etc) followed by a description of the standard crystallization methods (batch, vapour diffusion and counter-diffusion), including high throughput advances. Other methodologies aimed at determining protein features in solution (NMR, SAS, DLS) or to gather structural information from single particles such as Cryo-EM are also discussed. Finally, current approaches showing the convergence of different structural biology techniques and the cross-methodologies adaptation to tackle the most difficult problems, are presented. SYNOPSIS Current advances in biomacromolecules crystallization, from nano crystals for XFEL and Micro-ED to large crystals for neutron diffraction, are covered with special emphasis in methodologies applicable at laboratory scale.
Collapse
Affiliation(s)
- José A Gavira
- Laboratorio de Estudios Cristalográficos, IACT (CSIC-UGR), Avda. de las Palmeras, 4. 18100 Armilla, Granada, Spain
| |
Collapse
|
28
|
Microfluidic Slipchip-based Reaction Microarray with Dual Concentration Gradient. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1016/s1872-2040(15)60868-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Lyubimov AY, Murray TD, Koehl A, Araci IE, Uervirojnangkoorn M, Zeldin OB, Cohen AE, Soltis SM, Baxter EL, Brewster AS, Sauter NK, Brunger AT, Berger JM. Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:928-40. [PMID: 25849403 PMCID: PMC4388268 DOI: 10.1107/s1399004715002308] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/03/2015] [Indexed: 11/10/2022]
Abstract
X-ray free-electron lasers (XFELs) promise to enable the collection of interpretable diffraction data from samples that are refractory to data collection at synchrotron sources. At present, however, more efficient sample-delivery methods that minimize the consumption of microcrystalline material are needed to allow the application of XFEL sources to a wide range of challenging structural targets of biological importance. Here, a microfluidic chip is presented in which microcrystals can be captured at fixed, addressable points in a trap array from a small volume (<10 µl) of a pre-existing slurry grown off-chip. The device can be mounted on a standard goniostat for conducting diffraction experiments at room temperature without the need for flash-cooling. Proof-of-principle tests with a model system (hen egg-white lysozyme) demonstrated the high efficiency of the microfluidic approach for crystal harvesting, permitting the collection of sufficient data from only 265 single-crystal still images to permit determination and refinement of the structure of the protein. This work shows that microfluidic capture devices can be readily used to facilitate data collection from protein microcrystals grown in traditional laboratory formats, enabling analysis when cryopreservation is problematic or when only small numbers of crystals are available. Such microfluidic capture devices may also be useful for data collection at synchrotron sources.
Collapse
Affiliation(s)
- Artem Y. Lyubimov
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
- Department of Neurology and Neurological Science, Stanford University, Stanford, CA 94305, USA
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
- Department of Photon Science, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Thomas D. Murray
- Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Antoine Koehl
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Ismail Emre Araci
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Monarin Uervirojnangkoorn
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
- Department of Neurology and Neurological Science, Stanford University, Stanford, CA 94305, USA
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
- Department of Photon Science, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Oliver B. Zeldin
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
- Department of Neurology and Neurological Science, Stanford University, Stanford, CA 94305, USA
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
- Department of Photon Science, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Aina E. Cohen
- SLAC National Accelerator Laboratory, Stanford, CA 94305, USA
| | | | | | - Aaron S. Brewster
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nicholas K. Sauter
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Axel T. Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
- Department of Neurology and Neurological Science, Stanford University, Stanford, CA 94305, USA
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
- Department of Photon Science, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - James M. Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
30
|
Chang CW, Peng CC, Liao WH, Tung YC. Polydimethylsiloxane SlipChip for mammalian cell culture applications. Analyst 2015; 140:7355-65. [DOI: 10.1039/c5an00547g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A polydimethylsiloxane (PDMS) SlipChip for in vitro mammalian cell culture applications, including multiple-treatment assays, cell co-culture, and cytokine detection assays.
Collapse
Affiliation(s)
- Chia-Wen Chang
- Research Center for Applied Sciences
- Academia Sinica
- Taipei 11529
- Taiwan
| | - Chien-Chung Peng
- Research Center for Applied Sciences
- Academia Sinica
- Taipei 11529
- Taiwan
| | - Wei-Hao Liao
- Research Center for Applied Sciences
- Academia Sinica
- Taipei 11529
- Taiwan
| | - Yi-Chung Tung
- Research Center for Applied Sciences
- Academia Sinica
- Taipei 11529
- Taiwan
| |
Collapse
|
31
|
Liu X, Yi Q, Han Y, Liang Z, Shen C, Zhou Z, Sun JL, Li Y, Du W, Cao R. A robust microfluidic device for the synthesis and crystal growth of organometallic polymers with highly organized structures. Angew Chem Int Ed Engl 2014; 54:1846-50. [PMID: 25504832 DOI: 10.1002/anie.201411008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Indexed: 01/07/2023]
Abstract
A simple and robust microfluidic device was developed to synthesize organometallic polymers with highly organized structures. The device is compatible with organic solvents. Reactants are loaded into pairs of reservoirs connected by a 15 cm long microchannel prefilled with solvents, thus allowing long-term counter diffusion for self-assembly of organometallic polymers. The process can be monitored, and the resulting crystalline polymers are harvested without damage. The device was used to synthesize three insoluble silver acetylides as single crystals of X-ray diffraction quality. Importantly, for the first time, the single-crystal structure of silver phenylacetylide was determined. The reported approach may have wide applications, such as crystallization of membrane proteins, synthesis and crystal growth of organic, inorganic, and polymeric coordination compounds, whose single crystals cannot be obtained using traditional methods.
Collapse
Affiliation(s)
- Xiao Liu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062 (China); Department of Chemistry, Renmin University of China, Beijing 100872 (China)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Liu X, Yi Q, Han Y, Liang Z, Shen C, Zhou Z, Sun JL, Li Y, Du W, Cao R. A Robust Microfluidic Device for the Synthesis and Crystal Growth of Organometallic Polymers with Highly Organized Structures. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201411008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Shen C, Xu P, Huang Z, Cai D, Liu SJ, Du W. Bacterial chemotaxis on SlipChip. LAB ON A CHIP 2014; 14:3074-80. [PMID: 24968180 DOI: 10.1039/c4lc00213j] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This paper describes a simple and reusable microfluidic SlipChip device for studying bacterial chemotaxis based on free interface diffusion. The device consists of two glass plates with reconfigurable microwells and ducts, which can set up 20 parallel chemotaxis units as duplicates. In each unit, three nanoliter microwells and connecting ducts were assembled for pipette loading of a chemoeffector solution, bacterial suspension, and 1X PBS buffer solution. By a simple slipping operation, three microwells were disconnected from other units and interconnected by the ducts, which allowed the formation of diffusion concentration gradients of the chemoeffector for inducing cell migration from the cell microwell towards the other two microwells. The migration of cells in the microwells was monitored and accurately counted to evaluate chemotaxis. Moreover, the migrated cells were easily collected by pipetting for further studies after a slip step to reconnect the chemoeffector microwells. The performance of the device was characterized by comparing chemotaxis of two Escherichia coli species, using aspartic acid as the attractant and nitrate sulfate as the repellent. It also enables the separation of bacterial species from a mixture, based on the difference of chemotactic abilities, and collection of the cells with strong chemotactic phenomena for further studies off the chip.
Collapse
Affiliation(s)
- Chaohua Shen
- Department of Chemistry, Renmin University of China, 100872 Beijing, China
| | | | | | | | | | | |
Collapse
|
34
|
Ma L, Datta SS, Karymov MA, Pan Q, Begolo S, Ismagilov RF. Individually addressable arrays of replica microbial cultures enabled by splitting SlipChips. Integr Biol (Camb) 2014; 6:796-805. [PMID: 24953827 PMCID: PMC4131746 DOI: 10.1039/c4ib00109e] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Isolating microbes carrying genes of interest from environmental samples is important for applications in biology and medicine. However, this involves the use of genetic assays that often require lysis of microbial cells, which is not compatible with the goal of obtaining live cells for isolation and culture. This paper describes the design, fabrication, biological validation, and underlying physics of a microfluidic SlipChip device that addresses this challenge. The device is composed of two conjoined plates containing 1000 microcompartments, each comprising two juxtaposed wells, one on each opposing plate. Single microbial cells are stochastically confined and subsequently cultured within the microcompartments. Then, we split each microcompartment into two replica droplets, both containing microbial culture, and then controllably separate the two plates while retaining each droplet within each well. We experimentally describe the droplet retention as a function of capillary pressure, viscous pressure, and viscosity of the aqueous phase. Within each pair of replicas, one can be used for genetic analysis, and the other preserves live cells for growth. This microfluidic approach provides a facile way to cultivate anaerobes from complex communities. We validate this method by targeting, isolating, and culturing Bacteroides vulgatus, a core gut anaerobe, from a clinical sample. To date, this methodology has enabled isolation of a novel microbial taxon, representing a new genus. This approach could also be extended to the study of other microorganisms and even mammalian systems, and may enable targeted retrieval of solutions in applications including digital PCR, sequencing, single cell analysis, and protein crystallization.
Collapse
Affiliation(s)
- Liang Ma
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Wang S, Chen S, Wang J, Xu P, Luo Y, Nie Z, Du W. Interface solution isoelectric focusing with in situ MALDI-TOF mass spectrometry. Electrophoresis 2014; 35:2528-33. [DOI: 10.1002/elps.201400083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/19/2014] [Accepted: 04/21/2014] [Indexed: 01/03/2023]
Affiliation(s)
- Shujun Wang
- Department of Chemistry; Renmin University of China; Beijing China
- State Key Laboratory of Microbial Resources; Institute of Microbiology; Chinese Academy of Sciences; Beijing China
| | - Suming Chen
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing China
| | - Jianing Wang
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing China
| | - Peng Xu
- State Key Laboratory of Microbial Resources; Institute of Microbiology; Chinese Academy of Sciences; Beijing China
| | - Yuanming Luo
- State Key Laboratory of Microbial Resources; Institute of Microbiology; Chinese Academy of Sciences; Beijing China
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources; Institute of Microbiology; Chinese Academy of Sciences; Beijing China
- Department of Chemistry; Renmin University of China; Beijing China
| |
Collapse
|
36
|
Nanoliter-scale protein crystallization and screening with a microfluidic droplet robot. Sci Rep 2014; 4:5046. [PMID: 24854085 PMCID: PMC5154416 DOI: 10.1038/srep05046] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/02/2014] [Indexed: 01/09/2023] Open
Abstract
Large-scale screening of hundreds or even thousands of crystallization conditions while with low sample consumption is in urgent need, in current structural biology research. Here we describe a fully-automated droplet robot for nanoliter-scale crystallization screening that combines the advantages of both automated robotics technique for protein crystallization screening and the droplet-based microfluidic technique. A semi-contact dispensing method was developed to achieve flexible, programmable and reliable liquid-handling operations for nanoliter-scale protein crystallization experiments. We applied the droplet robot in large-scale screening of crystallization conditions of five soluble proteins and one membrane protein with 35–96 different crystallization conditions, study of volume effects on protein crystallization, and determination of phase diagrams of two proteins. The volume for each droplet reactor is only ca. 4–8 nL. The protein consumption significantly reduces 50–500 fold compared with current crystallization stations.
Collapse
|
37
|
Wang X, Zhu C, Fu T, Ma Y. Critical lengths for the transition of bubble breakup in microfluidic T-junctions. Chem Eng Sci 2014. [DOI: 10.1016/j.ces.2014.02.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Zhao Y, Pereira F, deMello AJ, Morgan H, Niu X. Droplet-based in situ compartmentalization of chemically separated components after isoelectric focusing in a Slipchip. LAB ON A CHIP 2014; 14:555-561. [PMID: 24292781 DOI: 10.1039/c3lc51067k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Isoelectric focusing (IEF) is a powerful and widely used technique for protein separation and purification. There are many embodiments of microscale IEF that use capillary or microfluidic chips for the analysis of small sample volumes. Nevertheless, collecting the separated sample volumes without causing remixing remains a challenge. Herein, we describe a microfluidic Slipchip device that is able to efficiently compartmentalize focused analyte bands in situ into microdroplets. The device contains a microfluidic "zig-zag" separation channel that is composed of a sequence of wells formed in the two halves of the Slipchip. The analytes are focused in the channel and then compartmentalised into droplets by slipping the chip. Importantly, sample droplets can be analysed on chip or collected for subsequent analysis using electrophoresis or mass spectrometry for example. To demonstrate this approach, we perform IEF separation using standard markers and protein samples, with on-chip post-processing. Compared to alternative approaches for sample collection, the method avoids remixing, is scalable and is easily hyphenated with the other analytical methods.
Collapse
Affiliation(s)
- Yan Zhao
- Faculty of Physical Sciences and Engineering, and Institute for Life Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | | | | | | | | |
Collapse
|
39
|
Puigmartí-Luis J. Microfluidic platforms: a mainstream technology for the preparation of crystals. Chem Soc Rev 2014; 43:2253-71. [DOI: 10.1039/c3cs60372e] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
40
|
Zhu Y, Zhang YX, Cai LF, Fang Q. Sequential Operation Droplet Array: An Automated Microfluidic Platform for Picoliter-Scale Liquid Handling, Analysis, and Screening. Anal Chem 2013; 85:6723-31. [DOI: 10.1021/ac4006414] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ying Zhu
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058,
P.R. China
- State Key Laboratory
of Industrial
Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310058,
P.R. China
| | - Yun-Xia Zhang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058,
P.R. China
| | - Long-Fei Cai
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058,
P.R. China
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058,
P.R. China
| |
Collapse
|
41
|
Krauss IR, Merlino A, Vergara A, Sica F. An overview of biological macromolecule crystallization. Int J Mol Sci 2013; 14:11643-91. [PMID: 23727935 PMCID: PMC3709751 DOI: 10.3390/ijms140611643] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/08/2013] [Accepted: 05/20/2013] [Indexed: 12/11/2022] Open
Abstract
The elucidation of the three dimensional structure of biological macromolecules has provided an important contribution to our current understanding of many basic mechanisms involved in life processes. This enormous impact largely results from the ability of X-ray crystallography to provide accurate structural details at atomic resolution that are a prerequisite for a deeper insight on the way in which bio-macromolecules interact with each other to build up supramolecular nano-machines capable of performing specialized biological functions. With the advent of high-energy synchrotron sources and the development of sophisticated software to solve X-ray and neutron crystal structures of large molecules, the crystallization step has become even more the bottleneck of a successful structure determination. This review introduces the general aspects of protein crystallization, summarizes conventional and innovative crystallization methods and focuses on the new strategies utilized to improve the success rate of experiments and increase crystal diffraction quality.
Collapse
Affiliation(s)
- Irene Russo Krauss
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, Napoli I-80126, Italy; E-Mails: (I.R.K.); (A.M.); (A.V.)
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, Napoli I-80126, Italy; E-Mails: (I.R.K.); (A.M.); (A.V.)
- Institute of Biostructures and Bioimages, C.N.R, Via Mezzocannone 16, Napoli I-80134, Italy
| | - Alessandro Vergara
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, Napoli I-80126, Italy; E-Mails: (I.R.K.); (A.M.); (A.V.)
- Institute of Biostructures and Bioimages, C.N.R, Via Mezzocannone 16, Napoli I-80134, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, Napoli I-80126, Italy; E-Mails: (I.R.K.); (A.M.); (A.V.)
- Institute of Biostructures and Bioimages, C.N.R, Via Mezzocannone 16, Napoli I-80134, Italy
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-81-674-479; Fax: +39-81-674-090
| |
Collapse
|
42
|
Goyal S, Thorson MR, Schneider CL, Zhang GGZ, Gong Y, Kenis PJA. A microfluidic platform for evaporation-based salt screening of pharmaceutical parent compounds. LAB ON A CHIP 2013; 13:1708-1723. [PMID: 23478750 DOI: 10.1039/c3lc41271g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We describe a microfluidic platform to screen for salt forms of pharmaceutical compounds (PCs) via controlled evaporation. The platform enables on-chip combinatorial mixing of PC and salt former solutions in a 24-well array (~200 nL/well), which is a drastic reduction in the amount of PC needed per condition screened compared to traditional screening approaches that require ~100 μL/well. The reduced sample needs enable salt screening at a much earlier stage in the drug development process, when only limited quantities of PCs are available. Compatibility with (i) solvents commonly used in the pharmaceutical industry, and (ii) Raman spectroscopy for solid form identification was ensured by using a hybrid microfluidic platform. A thin layer of elastomeric PDMS was utilized to retain pneumatic valving capabilities. This layer is sandwiched between layers of cyclic-olefin copolymer, a material with low air and solvent permeability and low Raman background to yield a physically rigid and Raman compatible chip. A solvent-impermeable thiolene layer patterned with evaporation channels permits control over the rate of solvent evaporation. Control over the rate of solvent evaporation (2-15 nL h(-1)) results in consistent, known rates of increase in the supersaturation levels attained on-chip, and increases the probability for crystalline solids to form. The modular nature of the platform enables on-chip Raman and birefringence analysis of the solid forms. Model compounds, tamoxifen and ephedrine, were used to validate the platform's ability to screen for salts. On-chip Raman analysis helped to identify six different salts each of tamoxifen and ephedrine.
Collapse
Affiliation(s)
- Sachit Goyal
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
43
|
Liu H, Li X, Crooks RM. Paper-Based SlipPAD for High-Throughput Chemical Sensing. Anal Chem 2013; 85:4263-7. [DOI: 10.1021/ac4008623] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hong Liu
- Department of Chemistry
and Biochemistry, The University of Texas at Austin, 105 East 24th Street,
Stop A5300, Austin, Texas 78712-1224, United States
| | - Xiang Li
- Department of Chemistry
and Biochemistry, The University of Texas at Austin, 105 East 24th Street,
Stop A5300, Austin, Texas 78712-1224, United States
| | - Richard M. Crooks
- Department of Chemistry
and Biochemistry, The University of Texas at Austin, 105 East 24th Street,
Stop A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
44
|
Schneider T, Kreutz J, Chiu DT. The potential impact of droplet microfluidics in biology. Anal Chem 2013; 85:3476-82. [PMID: 23495853 DOI: 10.1021/ac400257c] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Droplet microfluidics, which involves micrometer-sized emulsion droplets on a microfabricated platform, is an active research endeavor that evolved out of the larger field of microfluidics. Recently, this subfield of microfluidics has started to attract greater interest because researchers have been able to demonstrate applications of droplets as miniaturized laboratories for biological measurements. This perspective explores the recent developments and the potential future biological applications of droplet microfluidics.
Collapse
Affiliation(s)
- Thomas Schneider
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | | | | |
Collapse
|
45
|
Cvetković BZ, Puigmartí-Luis J, Schaffhauser D, Ryll T, Schmid S, Dittrich PS. Confined synthesis and integration of functional materials in sub-nanoliter volumes. ACS NANO 2013; 7:183-190. [PMID: 23211008 DOI: 10.1021/nn303632n] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We present a novel microchip-based approach to combine the synthesis, characterization, and utilization of different functional materials on a single platform. A two-layer microfluidic device comprising 10 parallel actuated reaction chambers with volumes of a few hundred picoliters is used to localize and confine the synthesis, while the surfaces of the reaction chambers comprise an electrode array for direct integration and further characterization of the created crystalline assemblies without the need for further manipulation or positioning devices. First we visualized and evaluated the dynamics of our method by monitoring the formation of a fluorescent metal-organic complex (Zn(bix)). Next, we induced the site-specific growth of two types of organic conductive crystals, AuTTF and AgTCNQ, directly onto the electrode arrays in one- and two-step reactions, respectively. The performance of the created AgTCNQ crystals as memory elements was thoroughly examined. Moreover, we proved for first time that AuTTF composites can be used as label-free sensing elements.
Collapse
Affiliation(s)
- Benjamin Z Cvetković
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
46
|
Genheden S. Are homology models sufficiently good for free-energy simulations? J Chem Inf Model 2012; 52:3013-21. [PMID: 23113602 DOI: 10.1021/ci300349s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this paper, I evaluate the usefulness of protein homology models in rigorous free-energy simulations to determine ligand affinities. Two templates were used to create models of the factor Xa protein and one template was used for dihydrofolate reductase from Plasmodium falciparum. Then, the relative free energies for several pairs of ligands were estimated using thermodynamic integration with the homology models as starting point of the simulation. These binding affinities were compared to affinities obtained when using published crystal structures as starting point of the simulations. Encouragingly, the differences between the affinities obtained when starting from either homology models or crystal structure were not statistical significant for a majority of the considered pairs of ligands. Differences between 1 and 2 kJ/mol were observed for the dihydrofolate reductase ligands and differences between 0 and 8 kJ/mol were observed for the factor Xa ligands. The largest difference for factor Xa was caused by an erroneous modeling of a loop region close to two of the ligands, and it was only observed when using one of the templates. Therefore, it is advisible to always use more than one template when creating homology models if they should be used in free-energy simulations.
Collapse
Affiliation(s)
- Samuel Genheden
- Division of Theoretical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
47
|
Zhu Y, Chen H, Du GS, Fang Q. Microfluidic droplet-array liquid-liquid chromatography based on droplet trapping technique. LAB ON A CHIP 2012; 12:4350-4354. [PMID: 22903271 DOI: 10.1039/c2lc40573c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We describe the first realization of liquid chromatographic separation in a droplet-based microfluidic system and develop a novel mode for microchip-based chromatography named as droplet-array liquid-liquid chromatography. In this system, two arrays of picoliter-scale droplets immobilized on both sidewalls of a microchannel with droplet trapping technique served as the stationary phase in chromatographic separation, while the other immiscible phase flowing in the microchannel served as the mobile phase. The chromatographic separation was achieved on the basis of multiple extraction and elution of analytes between the droplet array stationary phase and the mobile phase. The proof-of-concept study of the droplet-array LC system was performed in the separation of fluoranthene and benzo[b]fluoranthene. Under the optimum conditions, the two analytes were separated within 26 min with separation efficiencies of 112 μm and 119 μm plate height, respectively. The advantages of the present system include simple structure, low driving pressure, and relatively high sample capacity. It can also provide a useful platform for LC theory study and educational purposes by allowing the researchers and students to directly "see" the continuous extraction and elution process of a chromatographic separation.
Collapse
Affiliation(s)
- Ying Zhu
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | | | | | | |
Collapse
|
48
|
Yoshizawa S. Micro and nanotechnological tools for study of RNA. Biochimie 2012; 94:1588-94. [PMID: 22484393 DOI: 10.1016/j.biochi.2012.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 03/22/2012] [Indexed: 11/16/2022]
Abstract
Micro and nanotechnologies have originally contributed to engineering, especially in electronics. These technologies enable fabrication and assembly of materials at micrometer and nanometer scales and the manipulation of nano-objects. The power of these technologies has now been exploited in analyzes of biologically relevant molecules. In this review, the use of micro and nanotechnological tools in RNA research is described.
Collapse
Affiliation(s)
- Satoko Yoshizawa
- Centre de Génétique Moléculaire UPR 3404, CNRS, Université Paris-Sud, FRC3115 1 Ave de la Terrasse, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
49
|
Pompano RR, Platt CE, Karymov MA, Ismagilov RF. Control of initiation, rate, and routing of spontaneous capillary-driven flow of liquid droplets through microfluidic channels on SlipChip. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:1931-41. [PMID: 22233156 PMCID: PMC3271727 DOI: 10.1021/la204399m] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This Article describes the use of capillary pressure to initiate and control the rate of spontaneous liquid-liquid flow through microfluidic channels. In contrast to flow driven by external pressure, flow driven by capillary pressure is dominated by interfacial phenomena and is exquisitely sensitive to the chemical composition and geometry of the fluids and channels. A stepwise change in capillary force was initiated on a hydrophobic SlipChip by slipping a shallow channel containing an aqueous droplet into contact with a slightly deeper channel filled with immiscible oil. This action induced spontaneous flow of the droplet into the deeper channel. A model predicting the rate of spontaneous flow was developed on the basis of the balance of net capillary force with viscous flow resistance, using as inputs the liquid-liquid surface tension, the advancing and receding contact angles at the three-phase aqueous-oil-surface contact line, and the geometry of the devices. The impact of contact angle hysteresis, the presence or absence of a lubricating oil layer, and adsorption of surface-active compounds at liquid-liquid or liquid-solid interfaces were quantified. Two regimes of flow spanning a 10(4)-fold range of flow rates were obtained and modeled quantitatively, with faster (mm/s) flow obtained when oil could escape through connected channels as it was displaced by flowing aqueous solution, and slower (micrometer/s) flow obtained when oil escape was mostly restricted to a micrometer-scale gap between the plates of the SlipChip ("dead-end flow"). Rupture of the lubricating oil layer (reminiscent of a Cassie-Wenzel transition) was proposed as a cause of discrepancy between the model and the experiment. Both dilute salt solutions and complex biological solutions such as human blood plasma could be flowed using this approach. We anticipate that flow driven by capillary pressure will be useful for the design and operation of flow in microfluidic applications that do not require external power, valves, or pumps, including on SlipChip and other droplet- or plug-based microfluidic devices. In addition, this approach may be used as a sensitive method of evaluating interfacial tension, contact angles, and wetting phenomena on chip.
Collapse
Affiliation(s)
- Rebecca R Pompano
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | | | | | | |
Collapse
|
50
|
Thorson MR, Goyal S, Gong Y, Zhang GGZ, Kenis PJA. Microfluidic approach to polymorph screening through antisolvent crystallization. CrystEngComm 2012. [DOI: 10.1039/c2ce06167h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|