1
|
Zhou S, Zhang ZJ, Yu JQ. Copper-catalysed dehydrogenation or lactonization of C(sp 3)-H bonds. Nature 2024; 629:363-369. [PMID: 38547926 DOI: 10.1038/s41586-024-07341-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/21/2024] [Indexed: 05/03/2024]
Abstract
Cytochrome P450 enzymes are known to catalyse bimodal oxidation of aliphatic acids via radical intermediates, which partition between pathways of hydroxylation and desaturation1,2. Developing analogous catalytic systems for remote C-H functionalization remains a significant challenge3-5. Here, we report the development of Cu(I)-catalysed bimodal dehydrogenation/lactonization reactions of synthetically common N-methoxyamides through radical abstractions of the γ-aliphatic C-H bonds. The feasibility of switching from dehydrogenation to lactonization is also demonstrated by altering reaction conditions. The use of a readily available amide as both radical precursor and internal oxidant allows for the development of redox-neutral C-H functionalization reactions with methanol as the sole side product. These C-H functionalization reactions using a Cu(I) catalyst with loading as low as 0.5 mol.% is applied to the diversification of a wide range of aliphatic acids including drug molecules and natural products. The exceptional compatibility of this catalytic system with a wide range of oxidatively sensitive functionality demonstrates the unique advantage of using a simple amide substrate as a mild internal oxidant.
Collapse
Affiliation(s)
- Shupeng Zhou
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Zi-Jun Zhang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
2
|
Zhang SY, Tang SB, Jiang YX, Zhu RY, Wang ZX, Long B, Su J. Mechanism of the Visible-Light-Promoted C(sp 3)-H Oxidation via Uranyl Photocatalysis. Inorg Chem 2024; 63:2418-2430. [PMID: 38264973 DOI: 10.1021/acs.inorgchem.3c03347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Uranyl cation, as an emerging photocatalyst, has been successfully applied to synthetic chemistry in recent years and displayed remarkable catalytic ability under visible light. However, the molecular-level reaction mechanisms of uranyl photocatalysis are unclear. Here, we explore the mechanism of the stepwise benzylic C-H oxygenation of typical alkyl-substituted aromatics (i.e., toluene, ethylbenzene, and cumene) via uranyl photocatalysis using theoretical and experimental methods. Theoretical calculation results show that the most favorable reaction path for uranyl photocatalytic oxidation is as follows: first, hydrogen atom transfer (HAT) from the benzyl position to form a carbon radical ([R•]), then oxygen addition ([R•] + O2 → [ROO•]), then radical-radical combination ([ROO•] + [R•] → [ROOR] → 2[RO•]), and eventually [RO•] reduction to produce alcohols, of which 2° alcohol would further be oxidized to ketones and 1° would be stepwise-oxygenated to acids. The results of the designed verification experiments and the capture of reactive intermediates were consistent with those of theoretical calculations and the previously reported research that the active benzylic C-H would be stepwise-oxygenated in the presence of uranyl. This work deepens our understanding of the HAT mechanism of uranyl photocatalysis and provides important theoretical support for the relevant application of uranyl photocatalysts in organic transformation.
Collapse
Affiliation(s)
- Shu-Yun Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Song-Bai Tang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yan-Xin Jiang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Ru-Yu Zhu
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Zi-Xin Wang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Bo Long
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, P. R. China
| | - Jing Su
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
3
|
Zhu C, Jiang W, Ma D. Copper-Catalyzed Intramolecular Aldehyde-Ketone Nucleophilic Additions for the Synthesis of Chromans Bearing a Tertiary Alcohol Motif. J Org Chem 2023. [PMID: 38152030 DOI: 10.1021/acs.joc.3c02365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The synthesis of chroman-3-ol derivatives via intramolecular nucleophilic additions has been established. Aldehydes can be used as alkyl carbanion equivalents via reductive polarity reversal which is facilitated by a copper catalyst and N-heterocyclic carbene ligand under mild conditions. The key to success is the difference in reaction activity between aldehydes and ketones. Finally, this methodology also can be used to construct other cyclic structures containing tertiary alcohols including tetraline, cyclohexane, indan, and 9,10-dihydrophenanthrene.
Collapse
Affiliation(s)
- Chenghao Zhu
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Wenbo Jiang
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Da Ma
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China
| |
Collapse
|
4
|
Wen C, Li T, Huang Z, Kang QK. Oxidative Dehydrogenation of Alkanes through Homogeneous Base Metal Catalysis. CHEM REC 2023; 23:e202300146. [PMID: 37283443 DOI: 10.1002/tcr.202300146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/25/2023] [Indexed: 06/08/2023]
Abstract
Preparing valuable olefins from cheap and abundant alkane resources has long been a challenging task in organic synthesis, which mainly suffers from harsh reaction conditions and narrow scopes. Homogeneous transition metals catalyzed dehydrogenation of alkanes has attracted much attention for its excellent catalytic activities under relatively milder conditions. Among them, base metal catalyzed oxidative alkane dehydrogenation has emerged as a viable strategy for olefin synthesis for its usage of cheap catalysts, compatibility with various functional groups, and low reaction temperature. In this review, we discuss recent development of base metal catalyzed alkane dehydrogenation under oxidative conditions and their application in constructing complex molecules.
Collapse
Affiliation(s)
- Chenxi Wen
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Ting Li
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Zheng Huang
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qi-Kai Kang
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
5
|
Study of Cyclohexane and Methylcyclohexane Functionalization Promoted by Manganese(III) Compounds. INORGANICS 2023. [DOI: 10.3390/inorganics11030105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Alkane functionalization using safe and low-energy processes is of great interest to industry and academia. Aiming to contribute to the process of saturated hydrocarbon functionalization, we have studied a set of three manganese(III) complexes as catalysts for promoting the oxidation of saturated hydrocarbons (cyclohexane and methylcyclohexane) in the presence of hydrogen peroxide or trichloroisocyanuric acid (TCCA). The mononuclear manganese(III) compounds were prepared using the ligands H2LMet4 (6,6’-((1,4-diazepane-1,4-diyl)bis(methylene))bis(2,4-dimethylphenol), H2salen (2,2’-((1E,1’E)-(ethane-1,2-diylbis(azaneylylidene))bis(methaneylylidene))diphenol) and H2salan (2,2’-((ethane-1,2-diylbis(azanediyl))bis(methylene))diphenol). The catalytic processes were carried out in acetonitrile at 25 and 50 °C for 24 h. The increase in the temperature was important to get a better conversion. The compounds did not promote cyclohexane oxidation in the presence of H2O2. However, they were active in the presence of TCCA, employing a ratio of 1000:333:1 equivalents of the substrate:TCCA:catalyst. The best catalytic activity was shown by the compound [Mn(salen)Cl], reaching conversions of 14.5 ± 0.3% (25 °C) and 26.3 ± 1.1% (50 °C) (yield for chlorocyclohexane) and up to 12.1 ± 0.5% (25 °C) and 29.8 ± 2.2% (50 °C) (total yield for the mixture of the products 1-chloro-4-methylcyclohexane, 3-methylcyclohexene and 1-methylcyclohexene). The interaction of the catalysts with TCCA was studied using electron paramagnetic resonance (EPR), suggesting that the catalysts [Mn(LMet4)Cl] and [Mn(salan)Cl] act via a different mechanism from that observed for [Mn(salen)Cl].
Collapse
|
6
|
Eisenstein O. From the Felkin‐Anh Rule to the Grignard Reaction: an Almost Circular 50 Year Adventure in the World of Molecular Structures and Reaction Mechanisms with Computational Chemistry**. Isr J Chem 2022. [DOI: 10.1002/ijch.202100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Odile Eisenstein
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, 34095 France Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences University of Oslo Oslo 0315 Norway
| |
Collapse
|
7
|
Chow CF, Lam CS, Lau KC, Gong CB. Waste-to-Energy: Production of Fuel Gases from Plastic Wastes. Polymers (Basel) 2021; 13:polym13213672. [PMID: 34771229 PMCID: PMC8588166 DOI: 10.3390/polym13213672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
A new mechanochemical method was developed to convert polymer wastes, polyethylene (PE), polypropylene (PP), and polyvinyl chloride (PVC), to fuel gases (H2, CH4, and CO) under ball-milling with KMnO4 at room temperature. By using various solid-state characterizations (XPS, SEM, EDS, FTIR, and NMR), and density functional theory calculations, it was found that the activation followed the hydrogen atom transfer (HAT) mechanism. Two metal oxidant molecules were found to abstract two separate hydrogen atoms from the α-CH and β-CH units of substrates, [-βCH2-αCH(R)-]n, where R = H in PE, R = γCH3 in PP, and R = Cl in PVC, resulting in a di-radical, [-βCH•-αC•(R)-]. Subsequently, the two unpaired electrons of the di-radical were recombined into an alkene intermediate, [-βCH = αC(R)-], which underwent further oxidation to produce H2, CH4, and CO gases.
Collapse
Affiliation(s)
- Cheuk-Fai Chow
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Hong Kong, China
- Correspondence: ; Tel.: +852-29487671
| | - Chow-Shing Lam
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong, China; (C.-S.L.); (K.-C.L.)
| | - Kai-Chung Lau
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong, China; (C.-S.L.); (K.-C.L.)
| | - Cheng-Bin Gong
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China;
| |
Collapse
|
8
|
Ma Z, Nakatani N, Hada M. Insights into the electronic structure and mechanism of norcarane hydroxylation by OxoMn(V) porphyrin complexes: A density functional theory study. J Comput Chem 2021; 42:1920-1928. [PMID: 34448235 DOI: 10.1002/jcc.26715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 11/05/2022]
Abstract
Norcarane hydroxylation by neutral [PorMn(V)O-L] (L═OH- , F- ) and cationic [PorMn(V)O-L]+ (L═H2 O, imidazole) oxoMn(V) porphyrin complex models has been investigated by density functional theory calculations to better understand the reaction mechanism and electronic structure. We found that the energy barriers of norcarane hydroxylation by cationic oxoMn(V) porphyrin complexes are lower than those by neutral oxoMn(V) porphyrin complexes. This indicates that cationic oxoMn(V) porphyrin complexes enhance norcarane hydroxylation compared with neutral oxoMn(V) porphyrin complexes. According to electronic structure analysis, in the C─H activation step, electron transfer occurs through initial interaction between the σCH and rich-oxygen π(Mn═O) orbitals to form real donor orbitals, followed by transfer to the acceptor π*(Mn═O) orbitals. Moreover, single electron shifts from norcarane (CH) to Mn atom during C─H activation. The positive charge of the cationic complex stabilizes the acceptor orbital more than the donor orbital, reducing the energy gap between these orbitals, thus lowering the reaction barrier.
Collapse
Affiliation(s)
- Zhifeng Ma
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Japan
| | - Naoki Nakatani
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Japan
| | - Masahiko Hada
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Japan
| |
Collapse
|
9
|
Vennelakanti V, Nandy A, Kulik HJ. The Effect of Hartree-Fock Exchange on Scaling Relations and Reaction Energetics for C–H Activation Catalysts. Top Catal 2021. [DOI: 10.1007/s11244-021-01482-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Mandal SC, Pathak B. Identifying the preferential pathways of CO 2 capture and hydrogenation to methanol over an Mn(I)-PNP catalyst: a computational study. Dalton Trans 2021; 50:9598-9609. [PMID: 34160489 DOI: 10.1039/d1dt01208h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CO2 hydrogenation to CH3OH is a crucial conversion for several purposes. Density functional theory (DFT) studies have been performed to explore the mechanistic pathways of newly reported CO2 capture and hydrogenation to methanol. The present study describes the multistep transformation of CO2 to methanol. In this case we have introduced 2-amino-1-propanol to capture CO2 and hydrogenation of the CO2 captured product (oxazolidinone) in the presence of an active Mn(i)-PNP based catalyst. All the plausible pathways for oxazolidinone hydrogenation to methanol have been explored in detail. Here, hydride and proton transfer steps are very important for oxazolidinone hydrogenation, whereas heterolytic H2 cleavage is the most important step for the regeneration of the catalyst. Our detailed study shows that C-N bond hydrogenation followed by C-O and C[double bond, length as m-dash]O bond hydrogenations or C-O bond hydrogenation followed by C-N and C[double bond, length as m-dash]O bond hydrogenations are the most favourable pathways for oxazolidinone hydrogenation to methanol with a total reaction free energy barrier of 36.9 kcal mol-1 for both the pathways in the presence of a Mn(i)-PNP catalyst.
Collapse
Affiliation(s)
- Shyama Charan Mandal
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| |
Collapse
|
11
|
Shen Y, Li L, Xiao X, Yang S, Hua Y, Wang Y, Zhang YW, Zhang Y. Site-Specific Photochemical Desaturation Enables Divergent Syntheses of Illicium Sesquiterpenes. J Am Chem Soc 2021; 143:3256-3263. [DOI: 10.1021/jacs.1c00525] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yang Shen
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Linbin Li
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiaoxia Xiao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Sihan Yang
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuhui Hua
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yinglu Wang
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yun-wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yandong Zhang
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
12
|
Dobereiner GE, Hazari N, Schley ND. Pioneers and Influencers in Organometallic Chemistry: Professor Robert Crabtree’s Storied Career via an Unusual Journey to the Ivy League. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Graham E. Dobereiner
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Nilay Hazari
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, Unites States
| | - Nathan D. Schley
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
13
|
Liu N, Chen X, Jin L, Yang YF, She YB. A mechanistic study of the manganese porphyrin-catalyzed C–H isocyanation reaction. Org Chem Front 2021. [DOI: 10.1039/d0qo01442g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The favourable radical rebound pathway is NCO-rebound from the Mn(TMP)(NCO)2 complex due to the stronger trans effect of the axial ligand NCO and the electron-donating aryl substituents on the porphyrin ligand.
Collapse
Affiliation(s)
- Ning Liu
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- China
| | - Xiahe Chen
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- China
| | - Liyuan Jin
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- China
| | - Yun-Fang Yang
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- China
| | - Yuan-Bin She
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- China
| |
Collapse
|
14
|
Jin L, Wang Q, Chen X, Liu N, Fang X, Yang YF, She YB. Computational Studies on the Mechanism and Origin of the Different Regioselectivities of Manganese Porphyrin-Catalyzed C-H Bond Hydroxylation and Amidation of Equilenin Acetate. J Org Chem 2020; 85:14879-14889. [PMID: 33225704 DOI: 10.1021/acs.joc.0c01444] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The manganese porphyrin-catalyzed C-H bond hydroxylation and amidation of equilenin acetate developed by Breslow and his co-worker have been investigated with density functional theory (DFT) calculations. The hydroxylation of C(sp2)-H bond of equilenin acetate leading to the 6-hydroxylated product is more favorable than the hydroxylation of C(sp3)-H bond of equilenin acetate, leading to the 11β-hydroxylation product. The computational results suggest that the C(sp2)-H bond hydroxylation of equilenin acetate undergoes an oxygen-atom-transfer mechanism, which is more favorable than the C(sp3)-H bond hydroxylation undergoing the hydrogen-atom-abstraction/oxygen-rebound (HAA/OR) mechanism by 1.6 kcal/mol. That is why, the 6-hydroxylated product is the major product and the 11β-hydroxylated product is the minor product. In contrast, the 11β-amidated product is the only observed product in manganese porphyrin-catalyzed amidation reaction. The benzylic amidation undergoes a hydrogen-atom-abstraction/nitrogen-rebound (HAA/NR) mechanism, in which hydrogen atom abstraction is followed by nitrogen rebound, leading to the 11β-amidated product. The benzylic C(sp3)-H bond amidation at the C-11 position is more favorable than aromatic amidation at the C-6 position by 4.9 kcal/mol. Therefore, the DFT computational results are consistent with the experiments that manganese porphyrin-catalyzed C-H bond hydroxylation and amidation of equilenin acetate have different regioselectivities.
Collapse
Affiliation(s)
- Liyuan Jin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Qunmin Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiahe Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ning Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiaoli Fang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yun-Fang Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yuan-Bin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
15
|
Sun S, Yang Y, Zhao R, Zhang D, Liu L. Site- and Enantiodifferentiating C(sp 3)-H Oxidation Enables Asymmetric Access to Structurally and Stereochemically Diverse Saturated Cyclic Ethers. J Am Chem Soc 2020; 142:19346-19353. [PMID: 33140964 DOI: 10.1021/jacs.0c09636] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A manganese-catalyzed site- and enantiodifferentiating oxidation of C(sp3)-H bonds in saturated cyclic ethers has been described. The mild and practical method is applicable to a range of tetrahydrofurans, tetrahydropyrans, and medium-sized cyclic ethers with multiple stereocenters and diverse substituent patterns in high efficiency with extremely efficient site- and enantiodiscrimination. Late-stage application in complex biological active molecules was further demonstrated. Mechanistic studies by combined experiments and computations elucidated the reaction mechanism and origins of stereoselectivity. The ability to employ ether substrates as the limiting reagent, together with a broad substrate scope, and a high level of chiral recognition, represent a valuable demonstration of the utility of asymmetric C(sp3)-H oxidation in complex molecule synthesis.
Collapse
Affiliation(s)
- Shutao Sun
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.,School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Yiying Yang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Ran Zhao
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Dongju Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lei Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.,School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
16
|
Ansari M, Senthilnathan D, Rajaraman G. Deciphering the origin of million-fold reactivity observed for the open core diiron [HO-Fe III-O-Fe IV[double bond, length as m-dash]O] 2+ species towards C-H bond activation: role of spin-states, spin-coupling, and spin-cooperation. Chem Sci 2020; 11:10669-10687. [PMID: 33209248 PMCID: PMC7654192 DOI: 10.1039/d0sc02624g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/16/2020] [Indexed: 01/26/2023] Open
Abstract
High-valent metal-oxo species have been characterised as key intermediates in both heme and non-heme enzymes that are found to perform efficient aliphatic hydroxylation, epoxidation, halogenation, and dehydrogenation reactions. Several biomimetic model complexes have been synthesised over the years to mimic both the structure and function of metalloenzymes. The diamond-core [Fe2(μ-O)2] is one of the celebrated models in this context as this has been proposed as the catalytically active species in soluble methane monooxygenase enzymes (sMMO), which perform the challenging chemical conversion of methane to methanol at ease. In this context, a report of open core [HO(L)FeIII-O-FeIV(O)(L)]2+ (1) gains attention as this activates C-H bonds a million-fold faster compared to the diamond-core structure and has the dual catalytic ability to perform hydroxylation as well as desaturation with organic substrates. In this study, we have employed density functional methods to probe the origin of the very high reactivity observed for this complex and also to shed light on how this complex performs efficient hydroxylation and desaturation of alkanes. By modelling fifteen possible spin-states for 1 that could potentially participate in the reaction mechanism, our calculations reveal a doublet ground state for 1 arising from antiferromagnetic coupling between the quartet FeIV centre and the sextet FeIII centre, which regulates the reactivity of this species. The unusual stabilisation of the high-spin ground state for FeIV[double bond, length as m-dash]O is due to the strong overlap of with the orbital, reducing the antibonding interactions via spin-cooperation. The electronic structure features computed for 1 are consistent with experiments offering confidence in the methodology chosen. Further, we have probed various mechanistic pathways for the C-H bond activation as well as -OH rebound/desaturation of alkanes. An extremely small barrier height computed for the first hydrogen atom abstraction by the terminal FeIV[double bond, length as m-dash]O unit was found to be responsible for the million-fold activation observed in the experiments. The barrier height computed for -OH rebound by the FeIII-OH unit is also smaller suggesting a facile hydroxylation of organic substrates by 1. A strong spin-cooperation between the two iron centres also reduces the barrier for second hydrogen atom abstraction, thus making the desaturation pathway competitive. Both the spin-state as well as spin-coupling between the two metal centres play a crucial role in dictating the reactivity for species 1. By exploring various mechanistic pathways, our study unveils the fact that the bridged μ-oxo group is a poor electrophile for both C-H activation as well for -OH rebound. As more and more evidence is gathered in recent years for the open core geometry of sMMO enzymes, the idea of enhancing the reactivity via an open-core motif has far-reaching consequences.
Collapse
Affiliation(s)
- Mursaleem Ansari
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India .
| | - Dhurairajan Senthilnathan
- Center for Computational Chemistry , CRD , PRIST University , Vallam , Thanjavur , Tamilnadu 613403 , India
| | - Gopalan Rajaraman
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India .
| |
Collapse
|
17
|
Ottenbacher RV, Talsi EP, Bryliakov KP. Highly enantioselective undirected catalytic hydroxylation of benzylic CH2 groups with H2O2. J Catal 2020. [DOI: 10.1016/j.jcat.2020.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Liu Y, Shi J, Liu Y. Mechanistic Insights into the Oxidative Ring Expansion from Penicillin N to Deacetoxycephalosporin C Catalyzed by a Nonheme Iron(II) and α-KG-Dependent Oxygenase. Inorg Chem 2020; 59:12218-12231. [PMID: 32822181 DOI: 10.1021/acs.inorgchem.0c01211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deacetoxycephalosporin C synthase (DAOCS) is a nonheme iron(II) and 2-oxoglutarate (α-KG)-dependent oxygenase that catalyzes the oxidative ring expansion of penicillin N (penN) to deacetoxycephalosporin C (DAOC). Earlier reported crystal structures of DAOCS indicated that the substrate penicillin binds at the same site of succinate, leading to the proposal of the unusual "ping-pong" mechanism. However, more recent data provided evidence of the formation of ternary DAOCS·α-KG·penN complex, and thus DAOCS should follow the usual consensus mechanism of α-KG-dependent nonheme iron(II) oxygenases. Nevertheless, how DAOCS catalyzes the ring expansion is unknown. In this paper, on the basis of the crystal structure, we constructed two reactant models and performed a series of combined quantum mechanics/molecular mechanics (QM/MM) calculations to illuminate the catalysis of DAOCS. The binding mode of substrate was found to be crucial in determining which hydrogen atom in two methyl groups is first abstracted and whether the second H-abstraction to be abstracted in the final desaturation step locates in a suitable orientation. The highly reactive FeIV-oxo species prefers to abstract a hydrogen atom from one of two methyl groups in penN to trigger the ring arrangement. After the H-abstraction, the generated methylene radical intermediate can easily initiate the ring arrangement. First, the C-S bond cleaves to generate a thiyl radical, which is in concert with the formation of the terminal C═C double bond; the newly generated thiyl radical then rapidly shifts to the more stable tertiary C atom to complete ring expansion. In the final step, the FeIII-OH species abstracts the second hydrogen to give the desaturated DAOC product. During the catalysis, no active site residue is directly involved in the chemistry, which implies that the other pocket residues except the coordinate ones with iron play a role only in anchoring the substrate.
Collapse
Affiliation(s)
- Yaru Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Junyou Shi
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
19
|
Lee H, Anwer H, Park JW. Graphene quantum dots on stainless-steel nanotubes for enhanced photocatalytic degradation of phenanthrene under visible light. CHEMOSPHERE 2020; 246:125761. [PMID: 31927369 DOI: 10.1016/j.chemosphere.2019.125761] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/16/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
A novel nanocomposite of stainless-steel nanotubes with graphene quantum dots (SSNT@GQD) was synthesized to degrade phenanthrene photocatalytically under visible light. Photocatalytic performance of bare stainless-steel nanotubes (SSNT) is not satisfactory due to the fast recombination of photoinduced electron-hole pairs. This phenomenon was effectively overcome by inclusion of GQDs and addition of persulfate as an external electron acceptor to improve charge separation. The pseudo-first-order rate constant of phenanthrene degradation by SSNT@GQD with persulfate under visible light was 0.0211 ± 0.0006 min-1, about 42 times higher than that of persulfate and visible light, 0.0005 ± 0.0000 min-1. Effects of different water quality parameters were investigated, including levels of initial pH, natural organic matters, bicarbonate, and chloride. Sulfate radicals, superoxide radicals, and photo-generated holes were the key reactive species in this photocatalytic process. Based on the analysis of intermediates using purge and trap-GC-MS, possible photocatalytic degradation pathways of phenanthrene in this process were proposed. The SSNT@GQD showed high figure of merit (99.5 without persulfate and 78.7 with persulfate) and quantum yield (1.56 × 10-5 molecules photon-1 without persulfate and 4.64 × 10-5 molecules photon-1 with persulfate), indicating that this material has excellent potential for practical photocatalysis applications.
Collapse
Affiliation(s)
- Hanuk Lee
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - Hassan Anwer
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - Jae-Woo Park
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea.
| |
Collapse
|
20
|
Sarkar P, Ahmed A, Ray JK. Suzuki cross coupling followed by cross dehydrogenative coupling: An efficient one pot synthesis of Phenanthrenequinones and analogues. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
21
|
Bo CB, Bu Q, Li X, Ma G, Wei D, Guo C, Dai B, Liu N. Highly Active and Robust Ruthenium Complexes Based on Hemilability of Hybrid Ligands for C–H Oxidation. J Org Chem 2020; 85:4324-4334. [DOI: 10.1021/acs.joc.0c00025] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chun-Bo Bo
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, People’s Republic of China
| | - Qingqing Bu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, People’s Republic of China
| | - Xue Li
- College of Chemistry and Molecular Engineering, Center of Computational Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, People’s Republic of China
| | - Ge Ma
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People’s Republic of China
| | - Donghui Wei
- College of Chemistry and Molecular Engineering, Center of Computational Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, People’s Republic of China
| | - Cheng Guo
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People’s Republic of China
| | - Bin Dai
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, People’s Republic of China
| | - Ning Liu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, People’s Republic of China
| |
Collapse
|
22
|
Balcells D, Clot E, Macgregor SA, Maseras F, Perrin L. A Career in Catalysis: Odile Eisenstein. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- David Balcells
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O.
Box 1033, Blindern, Oslo 0315, Norway
| | - Eric Clot
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - Stuart A. Macgregor
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007 Tarragona, Catalonia Spain
| | - Lionel Perrin
- Université de Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INSA Lyon, ICBMS, CNRS UMR 5246, Equipe ITEMM, Bât Lederer, 1 rue V, Grignard, 69622 Villeurbanne France
| |
Collapse
|
23
|
Ricciarelli D, Phung QM, Belpassi L, Harvey JN, Belanzoni P. Understanding the Reactivity of Mn-Oxo Porphyrins for Substrate Hydroxylation: Theoretical Predictions and Experimental Evidence Reconciled. Inorg Chem 2019; 58:7345-7356. [PMID: 31117625 DOI: 10.1021/acs.inorgchem.9b00476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Mn-oxo porphyrin (MnOP) mechanism for substrate hydroxylation is computationally studied with the aim to better understand reactivity in these systems. Theoretical studies suggest Mn(V)OP species to be very reactive intermediates with thermally accessible reaction barriers represented by low-spin/high-spin-crossover occurring in the Mn(V)OP oxidant, and kinetics for selected Mn(V)OP species indeed find high reactivity. On the other hand, MnOP complexes lead to modest yields in hydroxylation reactions of several different substrates, implying low rate constants and high reaction barriers. The resolution of this inconsistency is very important to understand the reactivity of Mn-oxo porphyrins and to improve the catalytic conditions. In this work we use the toluene hydroxylation by the Mn(V)OP(H2O)+ complex as a case study to gain deep insight into the reaction mechanism. Minimum energy crossing point (MECP) results on the H-abstraction process from toluene indicate a first crossover from a singlet to a triplet spin state of the Mn(V)OP(H2O)+ species with a thermally accessible barrier, followed by a very facile H-abstraction by the triplet complex. Issues concerning (i) the validation of the level of the density functional theory employed (BP86) to describe the singlet-triplet energy gap in the Mn(V)OP(H2O)+ system versus highly accurate DMRG-CASPT2/CC calculations, and (ii) the influence of the axial ligand (X = none, Cl-, CH3CN, OH-, and O2-) on MnOP reactivity, which models the different experimental conditions, are addressed. The ligand trans influence mainly controls the reactivity through the singlet-triplet energy gap modulation, with the porphyrin ruffling distortion also finely tuning it. Finally, a stepwise model for the H-abstraction process is proposed which allows a direct comparison between the calculated and experimentally measured Gibbs free activation energy barriers ( Zhang et al. J. Am. Chem. Soc. 2005 , 127 , 6573 - 6582 ). The low yields in catalysis are shown not to be due to low reactivity of Mn(V).
Collapse
Affiliation(s)
| | - Quan Manh Phung
- Department of Chemistry , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium.,Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa , Nagoya 464-8602 , Japan
| | - Leonardo Belpassi
- Consortium for Computational Molecular and Materials Sciences (CMS)2 , via Elce di Sotto 8 , 06123 Perugia , Italy
| | - Jeremy N Harvey
- Department of Chemistry , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Paola Belanzoni
- Consortium for Computational Molecular and Materials Sciences (CMS)2 , via Elce di Sotto 8 , 06123 Perugia , Italy
| |
Collapse
|
24
|
Lu Q, Song J, Wu P, Li C, Thiel W. Mechanistic Insights into the Directing Effect of Thr303 in Ethanol Oxidation by Cytochrome P450 2E1. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Qianqian Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, China
| | - Jinshuai Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, China
| | - Peng Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunsen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, China
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
25
|
Vaddypally S, Tomlinson W, O’Sullivan OT, Ding R, Van Vliet MM, Wayland BB, Hooper JP, Zdilla MJ. Activation of C–H, N–H, and O–H Bonds via Proton-Coupled Electron Transfer to a Mn(III) Complex of Redox-Noninnocent Octaazacyclotetradecadiene, a Catenated-Nitrogen Macrocyclic Ligand. J Am Chem Soc 2019; 141:5699-5709. [DOI: 10.1021/jacs.8b10250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shivaiah Vaddypally
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Warren Tomlinson
- Department of Physics, Naval Postgraduate School, 833 Dyer Road, Monterey, California 93943, United States
| | - Owen T. O’Sullivan
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Ran Ding
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Megan M. Van Vliet
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Bradford B. Wayland
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Joseph P. Hooper
- Department of Physics, Naval Postgraduate School, 833 Dyer Road, Monterey, California 93943, United States
| | - Michael J. Zdilla
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
26
|
Wang C, Yang J, Meng X, Sun Y, Man X, Li J, Sun F. Manganese(ii)-catalysed dehydrogenative annulation involving C–C bond formation: highly regioselective synthesis of quinolines. Dalton Trans 2019; 48:4474-4478. [PMID: 30860245 DOI: 10.1039/c9dt00647h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An inexpensive nontoxic manganese(ii)-catalysed dehydrogenative annulation was developed for C–C bond formation.
Collapse
Affiliation(s)
- Chengniu Wang
- Medical school
- Institute of Reproductive Medicine
- Nantong University
- Nantong 226019
- China
| | - Jinfei Yang
- Medical school
- Institute of Reproductive Medicine
- Nantong University
- Nantong 226019
- China
| | - Xiao Meng
- Medical school
- Institute of Reproductive Medicine
- Nantong University
- Nantong 226019
- China
| | - Yufeng Sun
- Medical school
- Institute of Reproductive Medicine
- Nantong University
- Nantong 226019
- China
| | - Xuyan Man
- Medical school
- Institute of Reproductive Medicine
- Nantong University
- Nantong 226019
- China
| | - Jinxia Li
- Medical school
- Institute of Reproductive Medicine
- Nantong University
- Nantong 226019
- China
| | - Fei Sun
- Medical school
- Institute of Reproductive Medicine
- Nantong University
- Nantong 226019
- China
| |
Collapse
|
27
|
On how the binding cavity of AsqJ dioxygenase controls the desaturation reaction regioselectivity: a QM/MM study. J Biol Inorg Chem 2018; 23:795-808. [PMID: 29876666 PMCID: PMC6015105 DOI: 10.1007/s00775-018-1575-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/23/2018] [Indexed: 02/03/2023]
Abstract
The Fe(II)/2-oxoglutarate-dependent dioxygenase AsqJ from Aspergillus nidulans catalyses two pivotal steps in the synthesis of quinolone antibiotic 4'-methoxyviridicatin, i.e., desaturation and epoxidation of a benzodiazepinedione. The previous experimental results signal that, during the desaturation reaction, hydrogen atom transfer (HAT) from the benzylic carbon atom (C10) is a more likely step to initiate the reaction than the alternative HAT from the ring moiety (C3 atom). To unravel the origins of this regioselectivity and to explain why the observed reaction is desaturation and not the "default" hydroxylation, we performed a QM/MM study on the reaction catalysed by AsqJ. Herein, we report results that complement the experimental findings and suggest that HAT at the C10 position is the preferred reaction due to favourable interactions between the substrate and the binding cavity that compensate for the relatively high intrinsic barrier associated with the process. For the resultant radical intermediate, the desaturation/hydroxylation selectivity is governed by electronic properties of the reactants, i.e., the energy gap between the orbital that hosts the unpaired electron and the sigma orbital for the C-H bond as well as the gap between the orbitals mixing in transition state structures for each elementary step. Regiospecificity of the AsqJ dehydrogenation reaction is dictated by substrate-protein interactions. 82 × 44 mm (300 × 300 dpi).
Collapse
|
28
|
Merlini ML, Britovsek GJP, Swart M, Belanzoni P. Understanding the Catalase-Like Activity of a Bioinspired Manganese(II) Complex with a Pentadentate NSNSN Ligand Framework. A Computational Insight into the Mechanism. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maria Letizia Merlini
- Laboratoire de Chimie et Biochimie Computationnelles, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Av. F.-A. Forel 2, CH-1015 Lausanne, Switzerland
| | - George J. P. Britovsek
- Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Marcel Swart
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Facultat de Ciències, 17003 Girona, Spain
- Institució Catalana de Recerca i Estudis Avançats ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Paola Belanzoni
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
- Istituto di Scienze e Tecnologie Molecolari del CNR CNR-ISTM, c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
- Consortium for Computational Molecular and Materials Sciences (CMS)2, via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
29
|
Shul'pin GB, Vinogradov MM, Shul'pina LS. Oxidative functionalization of C–H compounds induced by the extremely efficient osmium catalysts (a review). Catal Sci Technol 2018. [DOI: 10.1039/c8cy00659h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, osmium complexes have found applications not only in thecis-hydroxylation of olefins but also very efficient in the oxygenation of C–H compounds (saturated and aromatic hydrocarbons and alcohols) by hydrogen peroxide as well as organic peroxides.
Collapse
Affiliation(s)
- Georgiy B. Shul'pin
- Semenov Institute of Chemical Physics
- Russian Academy of Sciences
- Moscow
- Russia
- Plekhanov Russian University of Economics
| | - Mikhail M. Vinogradov
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russia
| | - Lidia S. Shul'pina
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russia
| |
Collapse
|
30
|
Milan M, Carboni G, Salamone M, Costas M, Bietti M. Tuning Selectivity in Aliphatic C–H Bond Oxidation of N-Alkylamides and Phthalimides Catalyzed by Manganese Complexes. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02151] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michela Milan
- QBIS
Research Group, Institut de Química Computacional i Catàlisi
(IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona, E-17071 Catalonia, Spain
| | - Giulia Carboni
- Dipartimento
di Scienze e Tecnologie Chimiche, Università “Tor Vergata”, Via della Ricerca Scientifica, 1 I-00133 Rome, Italy
| | - Michela Salamone
- Dipartimento
di Scienze e Tecnologie Chimiche, Università “Tor Vergata”, Via della Ricerca Scientifica, 1 I-00133 Rome, Italy
| | - Miquel Costas
- QBIS
Research Group, Institut de Química Computacional i Catàlisi
(IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona, E-17071 Catalonia, Spain
| | - Massimo Bietti
- Dipartimento
di Scienze e Tecnologie Chimiche, Università “Tor Vergata”, Via della Ricerca Scientifica, 1 I-00133 Rome, Italy
| |
Collapse
|
31
|
Zhan S, Mårtensson D, Purg M, Kamerlin SCL, Ahlquist MSG. Capturing the Role of Explicit Solvent in the Dimerization of RuV
(bda) Water Oxidation Catalysts. Angew Chem Int Ed Engl 2017; 56:6962-6965. [DOI: 10.1002/anie.201701488] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/23/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Shaoqi Zhan
- Division of Theoretical Chemistry & Biology; School of Biotechnology; KTH Royal Institute of Technology; 10691 Stockholm Sweden
| | - Daniel Mårtensson
- Division of Theoretical Chemistry & Biology; School of Biotechnology; KTH Royal Institute of Technology; 10691 Stockholm Sweden
| | - Miha Purg
- Department of Cell and Molecular Biology; Uppsala University; 75124 Uppsala Sweden
| | - Shina C. L. Kamerlin
- Department of Cell and Molecular Biology; Uppsala University; 75124 Uppsala Sweden
| | - Mårten S. G. Ahlquist
- Division of Theoretical Chemistry & Biology; School of Biotechnology; KTH Royal Institute of Technology; 10691 Stockholm Sweden
| |
Collapse
|
32
|
Zhan S, Mårtensson D, Purg M, Kamerlin SCL, Ahlquist MSG. Capturing the Role of Explicit Solvent in the Dimerization of RuV
(bda) Water Oxidation Catalysts. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Shaoqi Zhan
- Division of Theoretical Chemistry & Biology; School of Biotechnology; KTH Royal Institute of Technology; 10691 Stockholm Sweden
| | - Daniel Mårtensson
- Division of Theoretical Chemistry & Biology; School of Biotechnology; KTH Royal Institute of Technology; 10691 Stockholm Sweden
| | - Miha Purg
- Department of Cell and Molecular Biology; Uppsala University; 75124 Uppsala Sweden
| | - Shina C. L. Kamerlin
- Department of Cell and Molecular Biology; Uppsala University; 75124 Uppsala Sweden
| | - Mårten S. G. Ahlquist
- Division of Theoretical Chemistry & Biology; School of Biotechnology; KTH Royal Institute of Technology; 10691 Stockholm Sweden
| |
Collapse
|
33
|
Bao H, Xu Z, Wu D, Zhang H, Jin H, Liu Y. Copper(0)/Selectfluor System-Promoted Oxidative Carbon-Carbon Bond Cleavage/Annulation of o-Aryl Chalcones: An Unexpected Synthesis of 9,10-Phenanthraquinone Derivatives. J Org Chem 2017; 82:109-118. [PMID: 27933862 DOI: 10.1021/acs.joc.6b02212] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A general and efficient protocol for the synthesis of 9,10-phenanthraquinone derivatives has been successfully developed involving a copper(0)/Selectfluor system-promoted oxidative carbon-carbon bond cleavage/annulation of o-aryl chalcones. A variety of substituted 9,10-phenanthraquinones were synthesized in moderate to good yields under mild reaction conditions.
Collapse
Affiliation(s)
- Hanyang Bao
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology , Hangzhou 310014, People's Republic of China
| | - Zheng Xu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology , Hangzhou 310014, People's Republic of China
| | - Degui Wu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology , Hangzhou 310014, People's Republic of China
| | - Haifeng Zhang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology , Hangzhou 310014, People's Republic of China
| | - Hongwei Jin
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology , Hangzhou 310014, People's Republic of China
| | - Yunkui Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology , Hangzhou 310014, People's Republic of China
| |
Collapse
|
34
|
Strengths, Weaknesses, Opportunities and Threats: Computational Studies of Mn- and Fe-Catalyzed Epoxidations. Catalysts 2016. [DOI: 10.3390/catal7010002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
35
|
Huang X, Groves JT. Beyond ferryl-mediated hydroxylation: 40 years of the rebound mechanism and C-H activation. J Biol Inorg Chem 2016; 22:185-207. [PMID: 27909920 PMCID: PMC5350257 DOI: 10.1007/s00775-016-1414-3] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/03/2016] [Indexed: 11/24/2022]
Abstract
Since our initial report in 1976, the oxygen rebound mechanism has become the consensus mechanistic feature for an expanding variety of enzymatic C-H functionalization reactions and small molecule biomimetic catalysts. For both the biotransformations and models, an initial hydrogen atom abstraction from the substrate (R-H) by high-valent iron-oxo species (Fen=O) generates a substrate radical and a reduced iron hydroxide, [Fen-1-OH ·R]. This caged radical pair then evolves on a complicated energy landscape through a number of reaction pathways, such as oxygen rebound to form R-OH, rebound to a non-oxygen atom affording R-X, electron transfer of the incipient radical to yield a carbocation, R+, desaturation to form olefins, and radical cage escape. These various flavors of the rebound process, often in competition with each other, give rise to the wide range of C-H functionalization reactions performed by iron-containing oxygenases. In this review, we first recount the history of radical rebound mechanisms, their general features, and key intermediates involved. We will discuss in detail the factors that affect the behavior of the initial caged radical pair and the lifetimes of the incipient substrate radicals. Several representative examples of enzymatic C-H transformations are selected to illustrate how the behaviors of the radical pair [Fen-1-OH ·R] determine the eventual reaction outcome. Finally, we discuss the powerful potential of "radical rebound" processes as a general paradigm for developing novel C-H functionalization reactions with synthetic, biomimetic catalysts. We envision that new chemistry will continue to arise by bridging enzymatic "radical rebound" with synthetic organic chemistry.
Collapse
|
36
|
|
37
|
Cho KB, Hirao H, Shaik S, Nam W. To rebound or dissociate? This is the mechanistic question in C-H hydroxylation by heme and nonheme metal-oxo complexes. Chem Soc Rev 2016; 45:1197-210. [PMID: 26690848 DOI: 10.1039/c5cs00566c] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Enzymatic reactions that involve C-H bond activation of alkanes by high-valent iron-oxo species can be explained by the rebound mechanism (RM). Hydroxylation reactions of alkane substrates effected by the reactive compound I (Cpd I) species of cytochrome P450 enzymes are good examples. There was initially little doubt that the rebound paradigm could be carried over in the same form to the arena of synthetic nonheme high-valent iron-oxo or other metal-oxo complexes. However, the active reaction centres of these synthetic systems are not well-caged, in contrast to the active sites of enzymes; therefore, the relative importance of the radical dissociation pathway can become prominent. Indeed, accumulating experimental and theoretical evidence shows that introduction of the non-rebound mechanism (non-RM) is necessary to rationalise the different reactivity patterns observed for synthetic nonheme complexes. In this tutorial review, we discuss several specific examples involving the non-RM while making frequent comparisons to the RM, mainly from the perspective of computational chemistry. We also provide a technical guide to DFT calculations of RM and non-RM and to the interpretations of computational outcomes.
Collapse
Affiliation(s)
- Kyung-Bin Cho
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | - Hajime Hirao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Republic of Singapore.
| | - Sason Shaik
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel.
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
38
|
Yang T, Quesne MG, Neu HM, Cantú Reinhard FG, Goldberg DP, de Visser SP. Singlet versus Triplet Reactivity in an Mn(V)-Oxo Species: Testing Theoretical Predictions Against Experimental Evidence. J Am Chem Soc 2016; 138:12375-86. [PMID: 27545752 PMCID: PMC5228574 DOI: 10.1021/jacs.6b05027] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Discerning the factors that control the reactivity of high-valent metal-oxo species is critical to both an understanding of metalloenzyme reactivity and related transition metal catalysts. Computational studies have suggested that an excited higher spin state in a number of metal-oxo species can provide a lower energy barrier for oxidation reactions, leading to the conclusion that this unobserved higher spin state complex should be considered as the active oxidant. However, testing these computational predictions by experiment is difficult and has rarely been accomplished. Herein, we describe a detailed computational study on the role of spin state in the reactivity of a high-valent manganese(V)-oxo complex with para-Z-substituted thioanisoles and utilize experimental evidence to distinguish between the theoretical results. The calculations show an unusual change in mechanism occurs for the dominant singlet spin state that correlates with the electron-donating property of the para-Z substituent, while this change is not observed on the triplet spin state. Minimum energy crossing point calculations predict small spin-orbit coupling constants making the spin state change from low spin to high spin unlikely. The trends in reactivity for the para-Z-substituted thioanisole derivatives provide an experimental measure for the spin state reactivity in manganese-oxo corrolazine complexes. Hence, the calculations show that the V-shaped Hammett plot is reproduced by the singlet surface but not by the triplet state trend. The substituent effect is explained with valence bond models, which confirm a change from an electrophilic to a nucleophilic mechanism through a change of substituent.
Collapse
Affiliation(s)
- Tzuhsiung Yang
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Matthew G. Quesne
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Heather M. Neu
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Fabián G. Cantú Reinhard
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - David P. Goldberg
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sam P. de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
39
|
Ashley DC, Baik MH. The Electronic Structure of [Mn(V)═O]: What is the Connection between Oxyl Radical Character, Physical Oxidation State, and Reactivity? ACS Catal 2016. [DOI: 10.1021/acscatal.6b01793] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel Charles Ashley
- Department
of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Mu-Hyun Baik
- Center
for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department
of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
40
|
Liang YF, Massignan L, Liu W, Ackermann L. Catalyst-Guided C=Het Hydroarylations by Manganese-Catalyzed Additive-Free C−H Activation. Chemistry 2016; 22:14856-14859. [DOI: 10.1002/chem.201603848] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Indexed: 01/16/2023]
Affiliation(s)
- Yu-Feng Liang
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Leonardo Massignan
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Weiping Liu
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| |
Collapse
|
41
|
Balcells D, Clot E, Eisenstein O, Nova A, Perrin L. Deciphering Selectivity in Organic Reactions: A Multifaceted Problem. Acc Chem Res 2016; 49:1070-8. [PMID: 27152927 DOI: 10.1021/acs.accounts.6b00099] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Computational chemistry has made a sustained contribution to the understanding of chemical reactions. In earlier times, half a century ago, the goal was to distinguish allowed from forbidden reactions (e.g., Woodward-Hoffmann rules), that is, reactions with low or high to very high activation barriers. A great achievement of computational chemistry was also to contribute to the determination of structures with the bonus of proposing a rationalization (e.g., anomeric effect, isolobal analogy, Gillespie valence shell pair electron repulsion rules and counter examples, Wade-Mingos rules for molecular clusters). With the development of new methods and the constant increase in computing power, computational chemists move to more challenging problems, close to the daily concerns of the experimental chemists, in determining the factors that make a reaction both efficient and selective: a key issue in organic synthesis. For this purpose, experimental chemists use advanced synthetic and analytical techniques to which computational chemists added other ways of determining reaction pathways. The transition states and intermediates contributing to the transformation of reactants into the desired and undesired products can now be determined, including their geometries, energies, charges, spin densities, spectroscopy properties, etc. Such studies remain challenging due to the large number of chemical species commonly present in the reactive media whose role may have to be determined. Calculating chemical systems as they are in the experiment is not always possible, bringing its own share of complexity through the large number of atoms and the associated large number of conformers to consider. Modeling the chemical species with smaller systems is an alternative that historically led to artifacts. Another important topic is the choice of the computational method. While DFT is widely used, the vast diversity of functionals available is both an opportunity and a challenge. Though chemical knowledge helps, the relevant computational method is best chosen in conjunction with the nature of the experimental systems and many studies have been concerned with this topic. We will not address this aspect but give references in the text. Usually, a computational study starts with the validation of the method by means of benchmark calculations vs accurate experimental data or state-of-the-art calculations. Finally, computational chemists can bring more than the sole determination of the reaction pathways through the analysis of the electronic structure. In our case, we have privileged the NBO analysis, which has the advantage of describing interactions on the basis of terms and concepts that are shared within the chemical community. In this Account, we have chosen to select representative reactions from our own work to highlight the diversity of situations than can be addressed nowadays. These include selective activation of C(sp(3))-H bonds, selective reactions with low energy barriers, involving closed shell or radical species, the role of noncovalent interactions, and the importance of considering side reactions.
Collapse
Affiliation(s)
- David Balcells
- Centre
for Theoretical and Computational Chemistry (CTCC) and The Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Eric Clot
- Institut
Charles Gerhardt, UMR 5253 CNRS-UM-ENSCM, Université de Montpellier, Place Eugène Bataillon, 34095
Cedex 5 Montpellier, France
| | - Odile Eisenstein
- Centre
for Theoretical and Computational Chemistry (CTCC) and The Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
- Institut
Charles Gerhardt, UMR 5253 CNRS-UM-ENSCM, Université de Montpellier, Place Eugène Bataillon, 34095
Cedex 5 Montpellier, France
| | - Ainara Nova
- Centre
for Theoretical and Computational Chemistry (CTCC) and The Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Lionel Perrin
- Univ Lyon, Université Lyon1, CNRS, INSA,
CPE-Lyon, ICBMS, UMR 5246, 43, Bd du 11 Novembre 1918, 69622 Cedex Villeurbanne, France
| |
Collapse
|
42
|
Jie X, Shang Y, Zhang X, Su W. Cu-Catalyzed Sequential Dehydrogenation–Conjugate Addition for β-Functionalization of Saturated Ketones: Scope and Mechanism. J Am Chem Soc 2016; 138:5623-33. [DOI: 10.1021/jacs.6b01337] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiaoming Jie
- State Key Laboratory of Structural
Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Yaping Shang
- State Key Laboratory of Structural
Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Xiaofeng Zhang
- State Key Laboratory of Structural
Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Weiping Su
- State Key Laboratory of Structural
Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| |
Collapse
|
43
|
Liu W, Richter SC, Zhang Y, Ackermann L. Manganese(I)-Catalyzed Substitutive C−H Allylation. Angew Chem Int Ed Engl 2016; 55:7747-50. [DOI: 10.1002/anie.201601560] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Weiping Liu
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Sven C. Richter
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Yujiao Zhang
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| |
Collapse
|
44
|
Liu W, Richter SC, Zhang Y, Ackermann L. Manganese(I)-Catalyzed Substitutive C−H Allylation. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601560] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Weiping Liu
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Sven C. Richter
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Yujiao Zhang
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| |
Collapse
|
45
|
Mallick D, Shaik S. Theory Revealing Unusual Non-Rebound Mechanisms Responsible for the Distinct Reactivities of O═MnIV═O and [HO–MnIV–OH]2+ in C–H Bond Activation. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dibyendu Mallick
- Institute
of Chemistry and
the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Sason Shaik
- Institute
of Chemistry and
the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
46
|
Zlatar M, Gruden M, Vassilyeva OY, Buvaylo EA, Ponomarev AN, Zvyagin SA, Wosnitza J, Krzystek J, Garcia-Fernandez P, Duboc C. Origin of the Zero-Field Splitting in Mononuclear Octahedral Mn(IV) Complexes: A Combined Experimental and Theoretical Investigation. Inorg Chem 2016; 55:1192-201. [PMID: 26745448 DOI: 10.1021/acs.inorgchem.5b02368] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this work was to determine and understand the origin of the electronic properties of Mn(IV) complexes, especially the zero-field splitting (ZFS), through a combined experimental and theoretical investigation on five well-characterized mononuclear octahedral Mn(IV) compounds, with various coordination spheres (N6, N3O3, N2O4 in both trans (trans-N2O4) and cis configurations (cis-N2O4) and O4S2). High-frequency and -field EPR (HFEPR) spectroscopy has been applied to determine the ZFS parameters of two of these compounds, MnL(trans-N2O4) and MnL(O4S2). While at X-band EPR, the axial-component of the ZFS tensor, D, was estimated to be +0.47 cm(-1) for MnL(O4S2), and a D-value of +2.289(5) cm(-1) was determined by HFEPR, which is the largest D-magnitude ever measured for a Mn(IV) complex. A moderate D value of -0.997(6) cm(-1) has been found for MnL(trans-N2O4). Quantum chemical calculations based on two theoretical frameworks (the Density Functional Theory based on a coupled perturbed approach (CP-DFT) and the hybrid Ligand-Field DFT (LF-DFT)) have been performed to define appropriate methodologies to calculate the ZFS tensor for Mn(IV) centers, to predict the orientation of the magnetic axes with respect to the molecular ones, and to define and quantify the physical origin of the different contributions to the ZFS. Except in the case of MnL(trans-N2O4), the experimental and calculated D values are in good agreement, and the sign of D is well predicted, LF-DFT being more satisfactory than CP-DFT. The calculations performed on MnL(cis-N2O4) are consistent with the orientation of the principal anisotropic axis determined by single-crystal EPR, validating the calculated ZFS tensor orientation. The different contributions to D were analyzed demonstrating that the d-d transitions mainly govern D in Mn(IV) ion. However, a deep analysis evidences that many factors enter into the game, explaining why no obvious magnetostructural correlations can be drawn in this series of Mn(IV) complexes.
Collapse
Affiliation(s)
- Matija Zlatar
- Center for Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade , Njegoševa 12, P.O. Box 815, 11001 Belgrade, Serbia
| | - Maja Gruden
- Faculty of Chemistry, University of Belgrade , Studentski trg 12-16, 11001 Belgrade, Serbia
| | - Olga Yu Vassilyeva
- Department of Chemistry, Taras Shevchenko National University of Kyiv , 64/13 Volodymyrska str., Kyiv 01601, Ukraine
| | - Elena A Buvaylo
- Department of Chemistry, Taras Shevchenko National University of Kyiv , 64/13 Volodymyrska str., Kyiv 01601, Ukraine
| | - A N Ponomarev
- Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Saxony, Germany
| | - S A Zvyagin
- Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Saxony, Germany
| | - J Wosnitza
- Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Saxony, Germany.,Institut für Festkörperphysik, Technische Universität Dresden , D-01062 Dresden, Saxony, Germany
| | - J Krzystek
- National High Magnetic Field Laboratory (NHMFL), Florida State University , Tallahassee, Florida 32310, United States
| | - Pablo Garcia-Fernandez
- Departamento de Ciencias de la Tierra y Física de la Materia Condensada, Universidad de Cantabria , Avenida de los Castros s/n, 39005 Santander, Cantabria, Spain
| | - Carole Duboc
- Département de Chimie Moléculaire, Université Grenoble Alpes/CNRS, UMR-5250 , BP-53, 38041 Grenoble Cedex 9, France
| |
Collapse
|
47
|
Da Silva JCS, Pennifold RCR, Harvey JN, Rocha WR. A radical rebound mechanism for the methane oxidation reaction promoted by the dicopper center of a pMMO enzyme: a computational perspective. Dalton Trans 2016; 45:2492-504. [DOI: 10.1039/c5dt02638e] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hydrogen Atom Transfer (HAT) promoted by a triplet state of the bis-oxoCu2(iii) core generates a new radical rebound mechanism for the hydroxylation of methane catalyzed by the binuclear copper site of a pMMO enzyme.
Collapse
Affiliation(s)
- Júlio C. S. Da Silva
- BioMat: Biomaterial Modeling Group
- Departamento de Química Fundamental
- CCEN
- Universidade Federal de Pernambuco
- Cidade Universitária
| | | | | | - Willian R. Rocha
- LQC-MM: Laboratório de Química Computacional e Modelagem Molecular
- Departamento de Química
- ICEX
- Universidade Federal de Minas Gerais
- Belo Horizonte
| |
Collapse
|
48
|
Liu W, Bang J, Zhang Y, Ackermann L. Manganese(I)‐Catalyzed C–H Aminocarbonylation of Heteroarenes. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507087] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Weiping Liu
- Institut für Organische und Biomolekulare Chemie, Georg‐August‐Universität Göttingen, Tammannstrasse 2, 37077 Göttingen (Germany) http://www.ackermann.chemie.uni‐goettingen.de/
| | - Jonas Bang
- Institut für Organische und Biomolekulare Chemie, Georg‐August‐Universität Göttingen, Tammannstrasse 2, 37077 Göttingen (Germany) http://www.ackermann.chemie.uni‐goettingen.de/
| | - Yujiao Zhang
- Institut für Organische und Biomolekulare Chemie, Georg‐August‐Universität Göttingen, Tammannstrasse 2, 37077 Göttingen (Germany) http://www.ackermann.chemie.uni‐goettingen.de/
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg‐August‐Universität Göttingen, Tammannstrasse 2, 37077 Göttingen (Germany) http://www.ackermann.chemie.uni‐goettingen.de/
| |
Collapse
|
49
|
Liu W, Bang J, Zhang Y, Ackermann L. Manganese(I)-Catalyzed C-H Aminocarbonylation of Heteroarenes. Angew Chem Int Ed Engl 2015; 54:14137-40. [DOI: 10.1002/anie.201507087] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Indexed: 01/12/2023]
|
50
|
|