1
|
Chen J, Liu Q, Fu Y, Xiang J. DNA Nanocage-Assisted Size-Selective Recognition and Quantification toward Low-Mass Soluble β-Amyloid Oligomers. Anal Chem 2024; 96:11397-11403. [PMID: 38940533 DOI: 10.1021/acs.analchem.4c01465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Low-mass soluble β-amyloid peptide oligomers (LSAβOs) play a crucial role in the pathogenesis of Alzheimer's disease. However, these oligomers exhibit heterogeneity in terms of structure, stability, and stoichiometry, and their abundance in biofluids is low, making accurate identification challenging. In this study, we developed a DNA nanocage-assisted method for selective sizing and sensitive quantification of LSAβOs in serum. Using LSAβO less than 10 kDa (LSAβO10kD) and less than 30 kDa (LSAβO30kD) as models, the size-matching rules between DNA nanocages and LSAβOs were investigated, and two appropriate nanocages were selected for the detection of two LSAβOs, respectively. Both nanocages were functionalized by encapsulating oligomer's aptamer and a complementary sequence within their cavities. Once the LSAβO entered the corresponding nanocage cavity, the complementary sequence was released, triggering a hybridization chain reaction on an electrochemical sensing platform. The system achieved size-selective discrimination of LSAβO10kD with a linear range of 10-150 pM and LSAβO30kD with a linear range of 15-150 pM. Real sample testing confirmed the applicability of the method for blood-based diagnosis. The DNA nanocage-assisted electrochemical analysis platform provides an accurate, highly selective, and sensitive approach for oligomer analysis, which is significant for amyloid protein research and related disease diagnosis.
Collapse
Affiliation(s)
- Jia Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yongchun Fu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410083, P. R. China
| | - Juan Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
2
|
Pandey R, Urbanc B. Oligomer Formation by Physiologically Relevant C-Terminal Isoforms of Amyloid β-Protein. Biomolecules 2024; 14:774. [PMID: 39062488 PMCID: PMC11274879 DOI: 10.3390/biom14070774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD) is a neurological disorder associated with amyloid β-protein (Aβ) assembly into toxic oligomers. In addition to the two predominant alloforms, Aβ1-40 and Aβ1-42, other C-terminally truncated Aβ peptides, including Aβ1-38 and Aβ1-43, are produced in the brain. Here, we use discrete molecular dynamics (DMD) and a four-bead protein model with amino acid-specific hydropathic interactions, DMD4B-HYDRA, to examine oligomer formation of Aβ1-38, Aβ1-40, Aβ1-42, and Aβ1-43. Self-assembly of 32 unstructured monomer peptides into oligomers is examined using 32 replica DMD trajectories for each of the four peptides. In a quasi-steady state, Aβ1-38 and Aβ1-40 adopt similar unimodal oligomer size distributions with a maximum at trimers, whereas Aβ1-42 and Aβ1-43 oligomer size distributions are multimodal with the dominant maximum at trimers or tetramers, and additional maxima at hexamers and unidecamers (for Aβ1-42) or octamers and pentadecamers (for Aβ1-43). The free energy landscapes reveal isoform- and oligomer-order specific structural and morphological features of oligomer ensembles. Our results show that oligomers of each of the four isoforms have unique features, with Aβ1-42 alone resulting in oligomers with disordered and solvent-exposed N-termini. Our findings help unravel the structure-function paradigm governing oligomers formed by various Aβ isoforms.
Collapse
Affiliation(s)
| | - Brigita Urbanc
- Department of Physics, Drexel University, Philadelphia, PA 19104, USA;
| |
Collapse
|
3
|
Lazzeri G, Jung H, Bolhuis PG, Covino R. Molecular Free Energies, Rates, and Mechanisms from Data-Efficient Path Sampling Simulations. J Chem Theory Comput 2023; 19:9060-9076. [PMID: 37988412 PMCID: PMC10753783 DOI: 10.1021/acs.jctc.3c00821] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
Molecular dynamics is a powerful tool for studying the thermodynamics and kinetics of complex molecular events. However, these simulations can rarely sample the required time scales in practice. Transition path sampling overcomes this limitation by collecting unbiased trajectories and capturing the relevant events. Moreover, the integration of machine learning can boost the sampling while simultaneously learning a quantitative representation of the mechanism. Still, the resulting trajectories are by construction non-Boltzmann-distributed, preventing the calculation of free energies and rates. We developed an algorithm to approximate the equilibrium path ensemble from machine-learning-guided path sampling data. At the same time, our algorithm provides efficient sampling, mechanism, free energy, and rates of rare molecular events at a very moderate computational cost. We tested the method on the folding of the mini-protein chignolin. Our algorithm is straightforward and data-efficient, opening the door to applications in many challenging molecular systems.
Collapse
Affiliation(s)
- Gianmarco Lazzeri
- Frankfurt
Institute for Advanced Studies, Frankfurt am Main, 60438, Germany
- Goethe
University Frankfurt, Frankfurt
am Main, 60438, Germany
| | - Hendrik Jung
- Goethe
University Frankfurt, Frankfurt
am Main, 60438, Germany
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Frankfurt
am Main, 60438, Germany
| | - Peter G. Bolhuis
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Amsterdam, 1090GD, The Netherlands
| | - Roberto Covino
- Frankfurt
Institute for Advanced Studies, Frankfurt am Main, 60438, Germany
- Goethe
University Frankfurt, Frankfurt
am Main, 60438, Germany
| |
Collapse
|
4
|
Li X, Yang Z, Chen Y, Zhang S, Wei G, Zhang L. Dissecting the Molecular Mechanisms of the Co-Aggregation of Aβ40 and Aβ42 Peptides: A REMD Simulation Study. J Phys Chem B 2023; 127:4050-4060. [PMID: 37126408 DOI: 10.1021/acs.jpcb.3c01078] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The aggregation of amyloid-β protein (Aβ) into oligomers and amyloid fibrils is closely related to Alzheimer's disease (AD). Aβ40 and Aβ42, as two most prominent isoforms of Aβ peptides, can cross-interact with each other and form co-aggregates, which affect the progression of the disease. However, the molecular determinants underlying Aβ40 and Aβ42 cross-interaction and the structural details of their co-oligomers remain elusive. Herein, we performed all-atom explicit-solvent replica exchange molecular dynamics simulations on Aβ40-Aβ42 heterogeneous and Aβ40/Aβ42 homogeneous dimer systems to dissect the co-aggregation mechanisms of the two isoforms. Our results show that the interpeptide main-chain interaction of Aβ40-Aβ42 is stronger than that of Aβ40-Aβ40 and Aβ42-Aβ42. The positions of hotspot residues in heterodimers and homodimers display high similarity, implying similar molecular recognition sites for both cross-interaction and self-interaction. Contact maps of Aβ40-Aβ42 heterodimers reveal that residue pairs crucial for cross-interaction are mostly located in the C-terminal hydrophobic regions of Aβ40 and Aβ42 peptides. Conformational analysis shows that Aβ40 and Aβ42 monomers can co-assemble into β-sheet-rich heterodimers with shorter β-sheets than those in homodimers, which is decremental to monomer addition. Similar molecular recognition sites and β-sheet distribution of Aβ40 and Aβ42 peptides are observed in heterodimers and homodimers, which may provide the molecular basis for the two isoforms' co-aggregation and cross-seeding. Our work dissects the co-aggregation mechanisms of Aβ40 and Aβ42 peptides at the atomic level, which will help for in-depth understanding of the cross-talk between the two Aβ isoforms and the pathogenesis of AD.
Collapse
Affiliation(s)
- Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yujie Chen
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
5
|
Xie D, Deng T, Zhai Z, Sun T, Xu Y. The cellular model for Alzheimer's disease research: PC12 cells. Front Mol Neurosci 2023; 15:1016559. [PMID: 36683856 PMCID: PMC9846650 DOI: 10.3389/fnmol.2022.1016559] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD) is a common age-related neurodegenerative disease characterized by progressive cognitive decline and irreversible memory impairment. Currently, several studies have failed to fully elucidate AD's cellular and molecular mechanisms. For this purpose, research on related cellular models may propose potential predictive models for the drug development of AD. Therefore, many cells characterized by neuronal properties are widely used to mimic the pathological process of AD, such as PC12, SH-SY5Y, and N2a, especially the PC12 pheochromocytoma cell line. Thus, this review covers the most systematic essay that used PC12 cells to study AD. We depict the cellular source, culture condition, differentiation methods, transfection methods, drugs inducing AD, general approaches (evaluation methods and metrics), and in vitro cellular models used in parallel with PC12 cells.
Collapse
Affiliation(s)
- Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenwei Zhai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Wu K, Sun W, Li D, Diao J, Xiu P. Inhibition of Amyloid Nucleation by Steric Hindrance. J Phys Chem B 2022; 126:10045-10054. [PMID: 36417323 DOI: 10.1021/acs.jpcb.2c06330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Despite recent experiments and simulations suggesting that small-molecule inhibitors and some post-translational modifications (e.g., glycosylation and ubiquitination) can suppress the pathogenic aggregation of proteins due to steric hindrance, the effect of steric hindrance on amyloid formation has not been systematically studied. Based on Monte Carlo simulations using a coarse-grained model for amyloidogenic proteins and a hard sphere acting as steric hindrance, we investigated how steric hindrance on proteins could affect amyloid formation, particularly two steps of primary nucleation, namely, oligomerization and conformational conversion into a β-sheet-enriched nucleus. We found that steric spheres played an inhibitory role in oligomerization with the effect proportional to the sphere radius RS, which we attributed to the decline in the nonspecific attractions between proteins. During the second step, small steric spheres facilitated the conformational conversion of proteins while large ones suppressed the conversion. The overall steric effect on amyloid nucleation was inhibitory regardless of RS. As RS increased, oligomeric assemblies changed from amorphous into sheet-like, structurally ordered species, reminiscent of the structure of amyloid fibrils. The oligomers with large RS were off-pathway with their ordered structures induced by the competition between steric hindrance and nonspecific attractions of soluble proteins. Interestingly, the equimolar mixture of proteins with and without steric hindrance amplified the sterically inhibitory effect by increasing the energy barrier of protein's conformational conversion. The physical mechanisms and biological implications of the above results are discussed. Our findings improve the current understanding of how nature regulates protein aggregation and amyloid formation by steric hindrance.
Collapse
Affiliation(s)
- Kai Wu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China.,Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States of America
| | - Wuxuepeng Sun
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Dechang Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States of America
| | - Peng Xiu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
7
|
Liu Y, Wang Y, Tong C, Wei G, Ding F, Sun Y. Molecular Insights into the Self-Assembly of Block Copolymer Suckerin Polypeptides into Nanoconfined β-Sheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202642. [PMID: 35901284 PMCID: PMC9420834 DOI: 10.1002/smll.202202642] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Suckerin in squid sucker ring teeth is a block-copolymer peptide comprised of two repeating modules-the alanine and histidine-rich M1 and the glycine-rich M2. Suckerin self-assemblies display excellent thermo-plasticity and pH-responsive properties, along with the high biocompatibility, biodegradability, and sustainability. However, the self-assembly mechanism and the detailed role of each module are still elusive, limiting the capability of applying and manipulating such biomaterials. Here, the self-assembly dynamics of the two modules and two minimalist suckerin-mimetic block-copolymers, M1-M2-M1 and M2-M1-M2, in silico is investigated. The simulation results demonstrate that M2 has a stronger self-association but weaker β-sheet propensities than M1. The high self-assembly propensity of M2 allows the minimalist block-copolymer peptides to coalesce with microphase separation, enabling the formation of nanoconfined β-sheets in the matrix formed by M1-M2 contacts. Since these glycine-rich fragments with scatted hydrophobic and aromatic residues are building blocks of many other block-copolymer peptides, the study suggests that these modules function as the "molecular glue" in addition to the flexible linker or spacer to drive the self-assembly and microphase separation. The uncovered molecular insights may help understand the structure and function of suckerin and also aid in the design of functional block-copolymer peptides for nanotechnology and biomedicine applications.
Collapse
Affiliation(s)
- Yuying Liu
- Department of Physics, Ningbo University, Ningbo 315211, China
| | - Ying Wang
- Department of Physics, Ningbo University, Ningbo 315211, China
| | - Chaohui Tong
- Department of Physics, Ningbo University, Ningbo 315211, China
| | - Guanghong Wei
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Yunxiang Sun
- Department of Physics, Ningbo University, Ningbo 315211, China
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
8
|
Taylor AIP, Staniforth RA. General Principles Underpinning Amyloid Structure. Front Neurosci 2022; 16:878869. [PMID: 35720732 PMCID: PMC9201691 DOI: 10.3389/fnins.2022.878869] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/11/2022] [Indexed: 12/14/2022] Open
Abstract
Amyloid fibrils are a pathologically and functionally relevant state of protein folding, which is generally accessible to polypeptide chains and differs fundamentally from the globular state in terms of molecular symmetry, long-range conformational order, and supramolecular scale. Although amyloid structures are challenging to study, recent developments in techniques such as cryo-EM, solid-state NMR, and AFM have led to an explosion of information about the molecular and supramolecular organization of these assemblies. With these rapid advances, it is now possible to assess the prevalence and significance of proposed general structural features in the context of a diverse body of high-resolution models, and develop a unified view of the principles that control amyloid formation and give rise to their unique properties. Here, we show that, despite system-specific differences, there is a remarkable degree of commonality in both the structural motifs that amyloids adopt and the underlying principles responsible for them. We argue that the inherent geometric differences between amyloids and globular proteins shift the balance of stabilizing forces, predisposing amyloids to distinct molecular interaction motifs with a particular tendency for massive, lattice-like networks of mutually supporting interactions. This general property unites previously characterized structural features such as steric and polar zippers, and contributes to the long-range molecular order that gives amyloids many of their unique properties. The shared features of amyloid structures support the existence of shared structure-activity principles that explain their self-assembly, function, and pathogenesis, and instill hope in efforts to develop broad-spectrum modifiers of amyloid function and pathology.
Collapse
|
9
|
Leguizamon Herrera VL, Buell AK, Willbold D, Barz B. Interaction of Therapeutic d-Peptides with Aβ42 Monomers, Thermodynamics, and Binding Analysis. ACS Chem Neurosci 2022; 13:1638-1650. [PMID: 35580288 DOI: 10.1021/acschemneuro.2c00102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The aggregation of the amyloid-β (Aβ) peptide is a major hallmark of Alzheimer's disease. This peptide can aggregate into oligomers, proto-fibrils, and mature fibrils, which eventually assemble into amyloid plaques. The peptide monomers are the smallest assembly units and play an important role in most of the individual processes involved in amyloid fibril formation, such as primary and secondary nucleation and elongation. Several d-peptides have been confirmed as promising candidates to inhibit the aggregation of Aβ into toxic oligomers and fibrils by specifically interacting with monomeric species. In this work, we elucidate the structural interaction and thermodynamics of binding between three d-peptides (D3, ANK6, and RD2) and Aβ42 monomers by means of enhanced molecular dynamics simulations. Our study derives thermodynamic energies in good agreement with experimental values and suggests that there is an enhanced binding for D3 and ANK6, which leads to more stable complexes than for RD2. The binding of D3 to Aβ42 is shown to be weakly exothermic and mainly entropically driven, whereas the complex formation between the ANK6 and RD2 with the Aβ42 free monomer is weakly endothermic. In addition, the changes in the solvent-accessible surface area and the radius of gyration support that the binding between Aβ42 and d-peptides is mainly driven by electrostatic and hydrophobic interactions and leads to more compact conformations.
Collapse
Affiliation(s)
| | - Alexander K. Buell
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Dieter Willbold
- Institute of Biological Information Processing-Structural Biochemistry (IBI-7), Research Centre Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Bogdan Barz
- Institute of Biological Information Processing-Structural Biochemistry (IBI-7), Research Centre Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
10
|
Molecular Dynamics Simulation Studies on the Aggregation of Amyloid-β Peptides and Their Disaggregation by Ultrasonic Wave and Infrared Laser Irradiation. Molecules 2022; 27:molecules27082483. [PMID: 35458686 PMCID: PMC9030874 DOI: 10.3390/molecules27082483] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 01/02/2023] Open
Abstract
Alzheimer’s disease is understood to be caused by amyloid fibrils and oligomers formed by aggregated amyloid-β (Aβ) peptides. This review article presents molecular dynamics (MD) simulation studies of Aβ peptides and Aβ fragments on their aggregation, aggregation inhibition, amyloid fibril conformations in equilibrium, and disruption of the amyloid fibril by ultrasonic wave and infrared laser irradiation. In the aggregation of Aβ, a β-hairpin structure promotes the formation of intermolecular β-sheet structures. Aβ peptides tend to exist at hydrophilic/hydrophobic interfaces and form more β-hairpin structures than in bulk water. These facts are the reasons why the aggregation is accelerated at the interface. We also explain how polyphenols, which are attracting attention as aggregation inhibitors of Aβ peptides, interact with Aβ. An MD simulation study of the Aβ amyloid fibrils in equilibrium is also presented: the Aβ amyloid fibril has a different structure at one end from that at the other end. The amyloid fibrils can be destroyed by ultrasonic wave and infrared laser irradiation. The molecular mechanisms of these amyloid fibril disruptions are also explained, particularly focusing on the function of water molecules. Finally, we discuss the prospects for developing treatments for Alzheimer’s disease using MD simulations.
Collapse
|
11
|
Fukuhara D, Itoh SG, Okumura H. Replica permutation with solute tempering for molecular dynamics simulation and its application to the dimerization of amyloid-β fragments. J Chem Phys 2022; 156:084109. [DOI: 10.1063/5.0081686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We propose the replica permutation with solute tempering (RPST) by combining the replica-permutation method (RPM) and the replica exchange with solute tempering (REST). Temperature permutations are performed among more than two replicas in RPM, whereas temperature exchanges are performed between two replicas in the replica-exchange method (REM). The temperature transition in RPM occurs more efficiently than in REM. In REST, only the temperatures of the solute region, the solute temperatures, are exchanged to reduce the number of replicas compared to REM. Therefore, RPST is expected to be an improved method taking advantage of these methods. For comparison, we applied RPST, REST, RPM, and REM to two amyloid-β(16–22) peptides in explicit water. We calculated the transition ratio and the number of tunneling events in the temperature space and the number of dimerization events of amyloid-β(16–22) peptides. The results indicate that, in RPST, the number of replicas necessary for frequent random walks in the temperature and conformational spaces is reduced compared to the other three methods. In addition, we focused on the dimerization process of amyloid-β(16–22) peptides. The RPST simulation with a relatively small number of replicas shows that the two amyloid-β(16–22) peptides form the intermolecular antiparallel β-bridges due to the hydrophilic side-chain contact between Lys and Glu and hydrophobic side-chain contact between Leu, Val, and Phe, which stabilizes the dimer of the peptides.
Collapse
Affiliation(s)
- Daiki Fukuhara
- Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Satoru G. Itoh
- Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Hisashi Okumura
- Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
12
|
Tachi Y, Itoh SG, Okumura H. Molecular dynamics simulations of amyloid-β peptides in heterogeneous environments. Biophys Physicobiol 2022; 19:1-18. [PMID: 35666692 PMCID: PMC9135617 DOI: 10.2142/biophysico.bppb-v19.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Yuhei Tachi
- Department of Physics, Graduate school of Science, Nagoya University
| | - Satoru G. Itoh
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences
| | - Hisashi Okumura
- Institute for Molecular Science, National Institutes of Natural Sciences
| |
Collapse
|
13
|
Yuan M, Tang X, Han W. Anatomy and Formation Mechanisms of Early Amyloid-β Oligomers with Lateral Branching: Graph Network Analysis on Large-Scale Simulations. Chem Sci 2022; 13:2649-2660. [PMID: 35356670 PMCID: PMC8890322 DOI: 10.1039/d1sc06337e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/08/2022] [Indexed: 11/29/2022] Open
Abstract
Oligomeric amyloid-β aggregates (AβOs) effectively trigger Alzheimer's disease-related toxicity, generating great interest in understanding their structures and formation mechanisms. However, AβOs are heterogeneous and transient, making their structure and formation difficult to study. Here, we performed graph network analysis of tens of microsecond massive simulations of early amyloid-β (Aβ) aggregations at near-atomic resolution to characterize AβO structures with sizes up to 20-mers. We found that AβOs exhibit highly curvilinear, irregular shapes with occasional lateral branches, consistent with recent cryo-electron tomography experiments. We also found that Aβ40 oligomers were more likely to develop branches than Aβ42 oligomers, explaining an experimental observation that only Aβ40 was trapped in network-like aggregates and exhibited slower fibrillization kinetics. Moreover, AβO architecture dissection revealed that their curvilinear appearance is related to the local packing geometries of neighboring peptides and that Aβ40's greater branching ability originates from specific C-terminal interactions at branching interfaces. Finally, we demonstrate that whether Aβ oligomerization causes oligomers to elongate or to branch depends on the sizes and shapes of colliding aggregates. Collectively, this study provides bottom-up structural information for understanding early Aβ aggregation and AβO toxicity. Graph network analysis on large-scale simulations uncovers the differential branching behaviours of large Aβ40 and Aβ42 oligomers.![]()
Collapse
Affiliation(s)
- Miao Yuan
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Xuan Tang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Wei Han
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| |
Collapse
|
14
|
Adelusi TI, Oyedele AQK, Boyenle ID, Ogunlana AT, Adeyemi RO, Ukachi CD, Idris MO, Olaoba OT, Adedotun IO, Kolawole OE, Xiaoxing Y, Abdul-Hammed M. Molecular modeling in drug discovery. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100880] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
15
|
Nguyen PH, Derreumaux P. Computer Simulations Aimed at Exploring Protein Aggregation and Dissociation. Methods Mol Biol 2022; 2340:175-196. [PMID: 35167075 DOI: 10.1007/978-1-0716-1546-1_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein aggregation can lead to well-defined structures that are functional, but is also the cause of the death of neuron cells in many neurodegenerative diseases. The complexity of the molecular events involved in the aggregation kinetics of amyloid proteins and the transient and heterogeneous characters of all oligomers prevent high-resolution structural experiments. As a result, computer simulations have been used to determine the atomic structures of amyloid proteins at different association stages as well as to understand fibril dissociation. In this chapter, we first review the current computer simulation methods used for aggregation with some atomistic and coarse-grained results aimed at better characterizing the early formed oligomers and amyloid fibril formation. Then we present the applications of non-equilibrium molecular dynamics simulations to comprehend the dissociation of protein assemblies.
Collapse
Affiliation(s)
- Phuong H Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université de Paris, Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université de Paris, Paris, France.
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, Paris, France.
| |
Collapse
|
16
|
Zhou X, Zheng Y, Lv Q, Kong D, Ji B, Han X, Zhou D, Sun Z, Zhu L, Liu P, Jiang H, Jiang Y. Staphylococcus aureus N-terminus formylated δ-toxin tends to form amyloid fibrils, while the deformylated δ-toxin tends to form functional oligomer complexes. Virulence 2021; 12:1418-1437. [PMID: 34028320 PMCID: PMC8158037 DOI: 10.1080/21505594.2021.1928395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 11/29/2022] Open
Abstract
The community-associated Methicillin-resistant Staphylococcus aureus strain (CA-MRSA) is highly virulent and has become a major focus of public health professionals. Phenol-soluble modulins (PSM) are key factors in its increased virulence. δ-Toxin belongs to PSM family and has copious secretion in many S. aureus strains. In addition, δ-toxin exists in the S. aureus culture supernatant as both N-terminus formylated δ-toxin (fδ-toxin) and deformylated δ-toxin (dfδ-toxin) groups. Although δ-toxin has been studied for more than 70 years, its functions remain unclear. We isolated and purified PSMs from the supernatant of S. aureus MW2, and found fibrils and oligomers aggregates by Size Exclusion Chromatography. After analyzing PSM aggregates and using peptide simulations, we found that the difference in the monomer structure of fδ-toxin and dfδ-toxin might ultimately lead to differences in the aggregation ability: fδ-toxin and dfδ-toxin tend to form fibrils and oligomers respectively. Of note, we found that fδ-toxin fibrils enhanced the stability of biofilms, while dfδ-toxin oligomers promoted their dispersal. Additionally, oligomeric dfδ-toxin combined with PSMα to form a complex with enhanced functionality. Due to the different aggregation capabilities and functions of fδ-toxin and dfδ-toxin, we speculate that they may be involved in the regulation of physiological activities of S. aureus. Moreover, the dfδ-toxin oligomer not only provides a new form of complex in the study of PSMα, but also has significance as a reference in oligomer research pertaining to some human amyloid diseases.
Collapse
Affiliation(s)
- Xinyu Zhou
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuling Zheng
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Qingyu Lv
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Decong Kong
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Bin Ji
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xuelian Han
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Zeyu Sun
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Li Zhu
- Beijing Institute of Biotechnology, Beijing, China
| | - Peng Liu
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Hua Jiang
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
17
|
Effects of Aβ-derived peptide fragments on fibrillogenesis of Aβ. Sci Rep 2021; 11:19262. [PMID: 34584131 PMCID: PMC8479085 DOI: 10.1038/s41598-021-98644-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/13/2021] [Indexed: 11/08/2022] Open
Abstract
Amyloid β (Aβ) peptide aggregation plays a central role in Alzheimer's disease (AD) etiology. AD drug candidates have included small molecules or peptides directed towards inhibition of Aβ fibrillogenesis. Although some Aβ-derived peptide fragments suppress Aβ fibril growth, comprehensive analysis of inhibitory potencies of peptide fragments along the whole Aβ sequence has not been reported. The aim of this work is (a) to identify the region(s) of Aβ with highest propensities for aggregation and (b) to use those fragments to inhibit Aβ fibrillogenesis. Structural and aggregation properties of the parent Aβ1-42 peptide and seven overlapping peptide fragments have been studied, i.e. Aβ1-10 (P1), Aβ6-15 (P2), Aβ11-20 (P3), Aβ16-25 (P4), Aβ21-30 (P5), Aβ26-36 (P6), and Aβ31-42 (P7). Structural transitions of the peptides in aqueous buffer have been monitored by circular dichroism and Fourier transform infrared spectroscopy. Aggregation and fibrillogenesis were analyzed by light scattering and thioflavin-T fluorescence. The mode of peptide-peptide interactions was characterized by fluorescence resonance energy transfer. Three peptide fragments, P3, P6, and P7, exhibited exceptionally high propensity for β-sheet formation and aggregation. Remarkably, only P3 and P6 exerted strong inhibitory effect on the aggregation of Aβ1-42, whereas P7 and P2 displayed moderate inhibitory potency. It is proposed that P3 and P6 intercalate between Aβ1-42 molecules and thereby inhibit Aβ1-42 aggregation. These findings may facilitate therapeutic strategies of inhibition of Aβ fibrillogenesis by Aβ-derived peptides.
Collapse
|
18
|
Andrews B, Long K, Urbanc B. Soluble State of Villin Headpiece Protein as a Tool in the Assessment of MD Force Fields. J Phys Chem B 2021; 125:6897-6911. [PMID: 34143637 DOI: 10.1021/acs.jpcb.1c04589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protein self-assembly plays an important role in cellular processes. Whereas molecular dynamics (MD) represents a powerful tool in studying assembly mechanisms, its predictions depend on the accuracy of underlying force fields, which are known to overly promote protein assembly. We here examine villin headpiece domain, HP36, which remains soluble at concentrations amenable to MD studies. The experimental characterization of soluble HP36 at concentrations of 0.05 to 1 mM reveals concentration-independent 90% monomeric and 10% dimeric populations. Extensive all-atom MD simulations at two protein concentrations, 0.9 and 8.5 mM, probe the HP36 dimer population, stability, and kinetics of dimer formation within two MD force fields, Amber ff14SB and CHARMM36m. MD results demonstrate that whereas CHARMM36m captures experimental HP36 monomer populations at the lower concentration, both force fields overly promote HP36 association at the higher concentration. Moreover, contacts stabilizing HP36 dimers are force-field-dependent. CHARMM36m produces consistently higher HP36 monomer populations, lower association rates, and weaker dependence of these quantities on the protein concentration than Amber ff14SB. Nonetheless, the highest monomer populations and dissociation constants are observed when the TIP3P water model in Amber ff14SB is replaced by TIP4P/2005, showcasing the critical role of the water model in addressing the protein solubility problem in MD.
Collapse
Affiliation(s)
- Brian Andrews
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Kaho Long
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Brigita Urbanc
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
19
|
Molecular insight into the early stage of amyloid-β(1-42) Homodimers aggregation influenced by histidine tautomerism. Int J Biol Macromol 2021; 184:887-897. [PMID: 34153362 DOI: 10.1016/j.ijbiomac.2021.06.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/23/2021] [Accepted: 06/10/2021] [Indexed: 11/20/2022]
Abstract
Aggregated amyloid β-peptide (Aβ) in small oligomeric forms inside the brain causes synaptic function disruption and the development of Alzheimer's disease (AD). Histidine is an important amino acid that may lead to structural changes. Aβ42 monomer chain includes 3 histidine residues that considering two ε and δ tautomers 8 isomers, including (εεε) and (εδδ) could be formed. Molecular dynamics simulation on homodimerization of (εεε) (the most common type of tautomers) and (εδδ) tautomers with different initial configurations using monomer chains from our previous work were performed to uncover the tautomeric behavior of histidine on Aβ42 aggregation in a physiological pH which is still largely unknown and impossible to observe experimentally. We found a higher propensity of forming β-sheet in (εδδ) homodimers and specifically in a greater amount from Aβ42 than from Aβ40. A smaller amount of β-sheet formation was observed for (εεε) homodimers compared with (εδδ). Additionally, interactions in (εδδ) homodimers may indicate the importance of the hydrophobic core and C-/N-terminals during oligomerization. Our findings indicate the important role of the tautomeric effect of histidine and (εδδ) homodimers at the early stage of Aβ aggregation.
Collapse
|
20
|
Okumura H, Itoh SG. Molecular dynamics simulations of amyloid-β(16-22) peptide aggregation at air-water interfaces. J Chem Phys 2021; 152:095101. [PMID: 33480728 DOI: 10.1063/1.5131848] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Oligomers of amyloid-β (Aβ) peptides are known to be related to Alzheimer's disease, and their formation is accelerated at hydrophilic-hydrophobic interfaces, such as the cell membrane surface and air-water interface. Here, we report molecular dynamics simulations of aggregation of Aβ(16-22) peptides at air-water interfaces. First, 100 randomly distributed Aβ(16-22) peptides moved to the interface. The high concentration of peptides then accelerated their aggregation and formation of antiparallel β-sheets. Two layers of oligomers were observed near the interface. In the first layer from the interface, the oligomer with less β-bridges exposed the hydrophobic residues to the air. The second layer consisted of oligomers with more β-bridges that protruded into water. They are more soluble in water because the hydrophobic residues are covered by N- and C-terminal hydrophilic residues that are aligned well along the oligomer edge. These results indicate that amyloid protofibril formation mainly occurs in the second layer.
Collapse
Affiliation(s)
- Hisashi Okumura
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Satoru G Itoh
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
21
|
Okumura H, Itoh SG, Nakamura K, Kawasaki T. Role of Water Molecules and Helix Structure Stabilization in the Laser-Induced Disruption of Amyloid Fibrils Observed by Nonequilibrium Molecular Dynamics Simulations. J Phys Chem B 2021; 125:4964-4976. [PMID: 33961416 DOI: 10.1021/acs.jpcb.0c11491] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Water plays a crucial role in the formation and destruction of biomolecular structures. The mechanism for destroying biomolecular structures was thought to be an active breaking of hydrogen bonds by water molecules. However, using nonequilibrium molecular dynamics simulations, in which an amyloid-β amyloid fibril was destroyed via infrared free-electron laser (IR-FEL) irradiation, we discovered a new mechanism, in which water molecules disrupt protein aggregates. The intermolecular hydrogen bonds formed by C═O and N-H in the fibril are broken at each pulse of laser irradiation. These bonds spontaneously re-form after the irradiation in many cases. However, when a water molecule happens to enter the gap between C═O and N-H, it inhibits the re-formation of the hydrogen bonds. Such sites become defects in the regularly aligned hydrogen bonds, from which all hydrogen bonds in the intermolecular β-sheet are broken as the fraying spreads. This role of water molecules is entirely different from other known mechanisms. This new mechanism can explain the recent experiments showing that the amyloid fibrils are not destroyed by laser irradiation under dry conditions. Additionally, we found that helix structures form more after the amyloid disruption; this is because the resonance frequency is different in a helix structure. Our findings provide a theoretical basis for the application of IR-FEL to the future treatment of amyloidosis.
Collapse
Affiliation(s)
- Hisashi Okumura
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Satoru G Itoh
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Kazuhiro Nakamura
- Department of Laboratory Sciences, Graduate School of Health Sciences, Gunma University, Maebashi, Gunma 371-8514, Japan
| | - Takayasu Kawasaki
- IR Free Electron Laser Research Center, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| |
Collapse
|
22
|
Abedin F, Tatulian SA. Mutual structural effects of unmodified and pyroglutamylated amyloid β peptides during aggregation. J Pept Sci 2021; 27:e3312. [PMID: 33631839 DOI: 10.1002/psc.3312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/05/2021] [Accepted: 02/16/2021] [Indexed: 11/09/2022]
Abstract
Amyloid β (Aβ) peptide aggregates are linked to Alzheimer's disease (AD). Posttranslationally pyroglutamylated Aβ (pEAβ) occurs in AD brains in significant quantities and is hypertoxic, but the underlying structural and aggregation properties remain poorly understood. Here, the structure and aggregation of Aβ1-40 and pEAβ3-40 are analyzed separately and in equimolar combination. Circular dichroism data show that Aβ1-40 , pEAβ3-40 , and their combination assume α-helical structure in dry state and transition to unordered structure in aqueous buffer. Aβ1-40 and the 1:1 combination gradually acquire β-sheet structure while pEAβ3-40 adopts an α-helix/β-sheet conformation. Thioflavin-T fluorescence studies suggest that the two peptides mutually inhibit fibrillogenesis. Fourier transform infrared (FTIR) spectroscopy identifies the presence of β-turn and α-helical structures in addition to β-sheet structure in peptides in aqueous buffer. The kinetics of transitions from the initial α-helical structure to β-sheet structure were resolved by slow hydration of dry peptides by D2 O vapor, coupled with isotope-edited FTIR. These data confirmed the mutual suppression of β-sheet formation by the two peptides. Remarkably, pEAβ3-40 maintained a significant fraction of α-helical structure in the combined sample, implying a reduced β-sheet propensity of pEAβ3-40 . Altogether, the data imply that the combination of unmodified and pyroglutamylated Aβ peptides resists fibrillogenesis and favors the prefibrillar state, which may underlie hypertoxicity of pEAβ.
Collapse
Affiliation(s)
- Faisal Abedin
- Physics Graduate Program, University of Central Florida, Orlando, Florida, USA
| | - Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
23
|
Promotion and Inhibition of Amyloid-β Peptide Aggregation: Molecular Dynamics Studies. Int J Mol Sci 2021; 22:ijms22041859. [PMID: 33668406 PMCID: PMC7918115 DOI: 10.3390/ijms22041859] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/06/2023] Open
Abstract
Aggregates of amyloid-β (Aβ) peptides are known to be related to Alzheimer’s disease. Their aggregation is enhanced at hydrophilic–hydrophobic interfaces, such as a cell membrane surface and air-water interface, and is inhibited by polyphenols, such as myricetin and rosmarinic acid. We review molecular dynamics (MD) simulation approaches of a full-length Aβ peptide, Aβ40, and Aβ(16–22) fragments in these environments. Since these peptides have both hydrophilic and hydrophobic amino acid residues, they tend to exist at the interfaces. The high concentration of the peptides accelerates the aggregation there. In addition, Aβ40 forms a β-hairpin structure, and this structure accelerates the aggregation. We also describe the inhibition mechanism of the Aβ(16–22) aggregation by polyphenols. The aggregation of Aβ(16–22) fragments is caused mainly by the electrostatic attraction between charged amino acid residues known as Lys16 and Glu22. Since polyphenols form hydrogen bonds between their hydroxy and carboxyl groups and these charged amino acid residues, they inhibit the aggregation.
Collapse
|
24
|
Xing Y, Nandakumar A, Kakinen A, Sun Y, Davis TP, Ke PC, Ding F. Amyloid Aggregation under the Lens of Liquid-Liquid Phase Separation. J Phys Chem Lett 2021; 12:368-378. [PMID: 33356290 PMCID: PMC7855599 DOI: 10.1021/acs.jpclett.0c02567] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Increasing experiments suggest that amyloid peptides can undergo liquid-liquid phase separation (LLPS) before the formation of amyloid fibrils. However, the exact role of LLPS in amyloid aggregation at the molecular level remains elusive. Here, we investigated the LLPS and amyloid fibrillization of a coarse-grained peptide, capable of capturing fundamental properties of amyloid aggregation over a wide range of concentrations in molecular dynamics simulations. On the basis of the Flory-Huggins theory of polymer solutions, we determined the binodal and spinodal concentrations of LLPS in the low-concentration regime, ϕBL and ϕSL, respectively. Only at concentrations above ϕBL, peptides formed metastable or stable oligomers corresponding to the high-density liquid phase (HDLP) in LLPS, out of which the nucleated conformational conversion to fibril seeds occurred. Below ϕSL, the HDLP was metastable and transient, and the subsequent fibrillization process followed the traditional nucleation and elongation mechanisms. Only above ϕSL, the HDLP became stable, and the initial fibril nucleation and growth were governed by the high local peptide concentrations. The predicted saturation of amyloid aggregation half-times with increasing peptide concentration to a constant, instead of the traditional power-law scaling to zero, was confirmed by simulations and by a thioflavin-T kinetic assay and the transmission electron microscopy of islet amyloid polypeptide (IAPP) aggregation. Our study provides a unified picture of amyloid aggregation for a wide range of concentrations within the framework of LLPS, which may help us better understand the etiology of amyloid diseases, where the amyloid protein concentration can vary by ∼9 orders of magnitude depending on the organ location and facilitate the engineering of novel amyloid-based functional materials.
Collapse
Affiliation(s)
- Yanting Xing
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Aparna Nandakumar
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Aleksandr Kakinen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Pu Chu Ke, ; Feng Ding,
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
- Pu Chu Ke, ; Feng Ding,
| |
Collapse
|
25
|
Urbanc B. Cross-Linked Amyloid β-Protein Oligomers: A Missing Link in Alzheimer's Disease Pathology? J Phys Chem B 2021; 125:1307-1316. [PMID: 33440940 DOI: 10.1021/acs.jpcb.0c07716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Amyloid β-protein (Aβ) oligomers are broadly viewed as the proximate mediators of toxicity in Alzheimer's disease (AD). Recent studies, however, provide substantial evidence that Aβ is involved in protection and repair of the central nervous system whereby Aβ oligomer and subsequent fibril formation are integral to its normal antimicrobial and antiviral function. These developments raise a question of what exactly makes Aβ oligomers toxic in the context of AD. This Perspective describes a paradigm shift in the search for toxic Aβ oligomer species that involves oxidative-stress-induced stabilization of Aβ oligomers via cross-linking and reviews most recent research elucidating structural aspects of cross-linked Aβ oligomers and potential inhibition of their toxicity.
Collapse
Affiliation(s)
- Brigita Urbanc
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
26
|
Tran TT, Pan F, Tran L, Roland C, Sagui C. The F19W mutation reduces the binding affinity of the transmembrane Aβ 11-40 trimer to the membrane bilayer. RSC Adv 2021; 11:2664-2676. [PMID: 35424222 PMCID: PMC8693879 DOI: 10.1039/d0ra08837d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/28/2020] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease is linked to the aggregation of the amyloid-β protein (Aβ) of 40 or 42 amino acids. Lipid membranes are known to modulate the rate and mechanisms of the Aβ aggregation. Point mutations in Aβ can alter these rates and mechanisms. In particular, experiments show that F19 mutations influence the aggregation rate, but maintain the fibril structures. Here, we used molecular dynamics simulations to examine the effect of the F19W mutation in the 3Aβ11-40 trimer immersed in DPPC lipid bilayers submerged in aqueous solution. Substituting Phe by its closest (non-polar) aromatic amino acid Trp has a dramatic reduction in binding affinity to the phospholipid membrane (measured with respect to the solvated protein) compared to the wild type: the binding free energy of the protein-DPPC lipid bilayer increases by 40-50 kcal mol-1 over the wild-type. This is accompanied by conformational changes and loss of salt bridges, as well as a more complex free energy surface, all indicative of a more flexible and less stable mutated trimer. These results suggest that the impact of mutations can be assessed, at least partially, by evaluating the interaction of the mutated peptides with the lipid membranes.
Collapse
Affiliation(s)
- Thanh Thuy Tran
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Feng Pan
- Department of Statistics, Florida State University Tallahassee Florida USA
| | - Linh Tran
- Institute of Fundamental and Applied Sciences, Duy Tan University Ho Chi Minh City 700000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang City 550000 Vietnam
| | - Christopher Roland
- Department of Physics, North Carolina State University Raleigh North Carolina USA
| | - Celeste Sagui
- Department of Physics, North Carolina State University Raleigh North Carolina USA
| |
Collapse
|
27
|
Nguyen H, Linh HQ, Matteini P, La Penna G, Li MS. Emergence of Barrel Motif in Amyloid-β Trimer: A Computational Study. J Phys Chem B 2020; 124:10617-10631. [PMID: 33180492 PMCID: PMC7735726 DOI: 10.1021/acs.jpcb.0c05508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/29/2020] [Indexed: 12/20/2022]
Abstract
Amyloid-β (Aβ) peptides form assemblies that are pathological hallmarks of Alzheimer's disease. Aβ oligomers are soluble, mobile, and toxic forms of the peptide that act in the extracellular space before assembling into protofibrils and fibrils. Therefore, oligomers play an important role in the mechanism of Alzheimer's disease. Since it is difficult to determine by experiment the atomic structures of oligomers, which accumulate fast and are polymorphic, computer simulation is a useful tool to investigate elusive oligomers' structures. In this work, we report extended all-atom molecular dynamics simulations, both canonical and replica exchange, of Aβ(1-42) trimer starting from two different initial conformations: (i) the pose produced by the best docking of a monomer aside of a dimer (simulation 1), representing oligomers freshly formed by assembling monomers, and (ii) a configuration extracted from an experimental mature fibril structure (simulation 2), representing settled oligomers in equilibrium with extended fibrils. We showed that in simulation 1, regions with small β-barrels are populated, indicating the chance of spontaneous formation of domains resembling channel-like structures. These structural domains are alternative to those more representative of mature fibrils (simulation 2), the latter showing a stable bundle of C-termini that is not sampled in simulation 1. Moreover, trimer of Aβ(1-42) can form internal pores that are large enough to be accessed by water molecules and Ca2+ ions.
Collapse
Affiliation(s)
- Hoang
Linh Nguyen
- Institute
for Computational Science and Technology, SBI Building, Quang Trung Software
City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Ho
Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi Minh
City 700000, Vietnam
| | - Huynh Quang Linh
- Ho
Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi Minh
City 700000, Vietnam
| | - Paolo Matteini
- Institute
of Applied Physics “Nello Carrara”, National Research Council, Via Madonna Del Piano 10, I-50019 Sesto Fiorentino, Italy
| | - Giovanni La Penna
- National
Research Council of Italy (CNR), Institute
for Chemistry of Organometallic Compounds (ICCOM), 50019 Florence, Italy
- National Institute for Nuclear Physics
(INFN), Section of Roma-Tor
Vergata Institute of Physics, Polish Academy of
Sciences, Al. Lotnikow
32/46, 02-668 Warsaw, Poland
| | - Mai Suan Li
- National Institute for Nuclear Physics
(INFN), Section of Roma-Tor
Vergata Institute of Physics, Polish Academy of
Sciences, Al. Lotnikow
32/46, 02-668 Warsaw, Poland
| |
Collapse
|
28
|
Sun Y, Ding F. αB-Crystallin Chaperone Inhibits Aβ Aggregation by Capping the β-Sheet-Rich Oligomers and Fibrils. J Phys Chem B 2020; 124:10138-10146. [PMID: 33119314 DOI: 10.1021/acs.jpcb.0c07256] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inhibiting the cytotoxicity of amyloid aggregation by endogenous proteins is a promising strategy against degenerative amyloid diseases due to their intrinsically high biocompatibility and low immunogenicity. In this study, we investigated the inhibition mechanism of the structured core region of αB-crystallin (αBC) against Aβ fibrillization using discrete molecular dynamics simulations. Our computational results recapitulated the experimentally observed Aβ binding sites in αBC and suggested that αBC could bind to various Aβ aggregate species during the aggregation process-including monomers, dimers, and likely other high molecular weight oligomers, protofibrils, and fibrils-by capping the exposed β-sheet elongation surfaces. Thus, the nucleation of Aβ oligomers into fibrils and the fibril growth could be inhibited. Mechanistic insights obtained from our systematic computational studies may aid in the development of novel therapeutic strategies to modulate the aggregation of pathological, amyloidogenic protein in degenerative diseases.
Collapse
Affiliation(s)
- Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.,Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
29
|
Taylor AIP, Gahan LD, Chakrabarti B, Staniforth RA. A two-step biopolymer nucleation model shows a nonequilibrium critical point. J Chem Phys 2020; 153:025102. [PMID: 32668930 DOI: 10.1063/5.0009394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Biopolymer self-assembly pathways are complicated by the ability of their monomeric subunits to adopt different conformational states. This means nucleation often involves a two-step mechanism where the monomers first condense to form a metastable intermediate, which then converts to a stable polymer by conformational rearrangement of constituent monomers. Nucleation intermediates play a causative role in amyloid diseases such as Alzheimer's and Parkinson's. While existing mathematical models neglect the conversion dynamics, experiments show that conversion events frequently occur on comparable timescales to the condensation of intermediates and growth of mature polymers and thus cannot be ignored. We present a model that explicitly accounts for simultaneous assembly and conversion. To describe conversion, we propose an experimentally motivated initiation-propagation mechanism in which the stable phase arises locally within the intermediate and then spreads by nearest-neighbor interactions, in a manner analogous to one-dimensional Glauber dynamics. Our analysis shows that the competing timescales of assembly and conversion result in a nonequilibrium critical point, separating a regime where intermediates are kinetically unstable from one where conformationally mixed intermediates accumulate. This strongly affects the accumulation rate of the stable biopolymer phase. Our model is uniquely able to explain experimental phenomena such as the formation of mixed intermediates and abrupt changes in the scaling exponent γ, which relates the total monomer concentration to the accumulation rate of the stable phase. This provides a first step toward a general model of two-step biopolymer nucleation, which can quantitatively predict the concentration and composition of biologically crucial intermediates.
Collapse
Affiliation(s)
- Alexander I P Taylor
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Lianne D Gahan
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Buddhapriya Chakrabarti
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| | - Rosemary A Staniforth
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
30
|
Structures of the intrinsically disordered Aβ, tau and α-synuclein proteins in aqueous solution from computer simulations. Biophys Chem 2020; 264:106421. [PMID: 32623047 DOI: 10.1016/j.bpc.2020.106421] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/21/2022]
Abstract
Intrinsically disordered proteins (IDPs) play many biological roles in the human proteome ranging from vesicular transport, signal transduction to neurodegenerative diseases. The Aβ and tau proteins, and the α-synuclein protein, key players in Alzheimer's and Parkinson's diseases, respectively are fully disordered at the monomer level. The structural heterogeneity of the monomeric and oligomeric states and the high self-assembly propensity of these three IDPs have precluded experimental structural determination. Simulations have been used to determine the atomic structures of these IDPs. In this article, we review recent computer models to capture the equilibrium ensemble of Aβ, tau and α-synuclein proteins at different association steps in aqueous solution and present new results of the PEP-FOLD framework on α-synuclein monomer.
Collapse
|
31
|
Raskatov JA. Conformational Selection as the Driving Force of Amyloid β Chiral Inactivation. Chembiochem 2020; 21:2945-2949. [PMID: 32424959 DOI: 10.1002/cbic.202000237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/17/2020] [Indexed: 12/19/2022]
Abstract
We recently introduced amyloid β chiral inactivation (Aβ-CI) as a molecular approach that uses mirror-image peptides to chaperone the natural Aβ stereoisomer into a less toxic state. The oligomer-to-fibril conversion mechanism remains the subject of active research. Perhaps the most striking feature of Aβ-CI is the virtual obliteration of the incubation/induction phase that is so characteristic of Aβ fibril formation kinetics. This qualitative change is indicative of the distinct mechanistic pathway Aβ-CI operates through. The current working model of Aβ-CI invokes the formation of "rippled" cross-β sheets, in which alternating l- and d-peptide strands form periodic networks. However, the assumption of rippled cross-β sheets does not per se explain the dramatic changes in reaction kinetics upon mixing of Aβ enantiomers. Herein, it is shown by DFT computational methods that the individual peptide strands in rippled cross-β networks are less conformationally strained than their pleated counterparts. This means that the adoption of fibril-seeding conformations is more probable for rippled cross-β. Conformational selection is thus suggested as the mechanistic rationale for the acceleration of fibril formation upon Aβ-CI.
Collapse
Affiliation(s)
- Jevgenij A Raskatov
- Department of Chemistry and Biochemistry, University of California Santa Cruz Physical Science Building 356, 1156 High Street, Santa Cruz, CA 95064, USA
| |
Collapse
|
32
|
Menon S, Sengupta N, Das P. Nanoscale Interplay of Membrane Composition and Amyloid Self-Assembly. J Phys Chem B 2020; 124:5837-5846. [DOI: 10.1021/acs.jpcb.0c03796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sneha Menon
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neelanjana Sengupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Payel Das
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
- Applied Physics and Applied Math Department, Columbia University, New York, New York 10027, United States
| |
Collapse
|
33
|
Ajmalicine and Reserpine: Indole Alkaloids as Multi-Target Directed Ligands Towards Factors Implicated in Alzheimer's Disease. Molecules 2020; 25:molecules25071609. [PMID: 32244635 PMCID: PMC7180484 DOI: 10.3390/molecules25071609] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/09/2020] [Accepted: 03/14/2020] [Indexed: 01/14/2023] Open
Abstract
Alzheimer’s disease (AD) is a multifactorial disorder characterized by exponential loss of memory and cognitive deficit involving several disease modifying targets (amyloid beta, beta-secretase, monoaminoxidase-B, and cholinesterase). The present study explores multi-target directed ligand approach using secondary metabolite reserpine (RES) and ajmalicine (AJM) obtained from Rauwolfia serpentina roots. Novel LCMS and HPLC methods were developed for identification and quantification of reserpine and ajmalicine. In vitro enzyme inhibition assays were performed to evaluate anti-cholinesterase, β-site amyloid cleaving enzyme (BACE-1) inhibition and monoamine oxidase-B (MAO-B) inhibition, further analyzed with in silico analysis. Anti-amyloidogenic potential was studied using anti-aggregation studies along with TEM and circular dichroism (CD) analysis. In vitro neuroprotective potential against Aβ toxicity and anti-oxidative stress was demonstrated using PC12 cell cultures. Reserpine is a more potent dual cholinesterase inhibitor than ajmalicine (IC50 values of 1.7 μM (AChE) and 2.8 μM (BuChE)). The anti-aggregation activity of reserpine (68%) was more than ajmalicine (56%). Both compounds demonstrated neuroprotective activity against Aβ42 (92%) and H2O2 (93%) induced toxicity in PC12 cells against controls. Phytocompounds also inhibited MAO-B and BACE-1 enzymes in concentration dependent manner. Molecular docking studies indicated the strong binding of compounds to the catalytic site of targets. This novel study demonstrated that reserpine and ajmalicine as a multi-target directed ligand that have disease modifying potential for amelioration of AD.
Collapse
|
34
|
Sun Y, Ding F. Thermo- and pH-responsive fibrillization of squid suckerin A1H1 peptide. NANOSCALE 2020; 12:6307-6317. [PMID: 32108838 PMCID: PMC7083694 DOI: 10.1039/c9nr09271d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Stimuli-responsive smart materials have attracted considerable attention with numerous applications in nanotechnology, sensing, and biomedicine. Suckerin family proteins found in squid ring teeth represent such a class of peptide-based smart materials with their self-assemblies featuring excellent thermo-plasticity and pH-dependence. Similar to block copolymers, suckerin proteins are comprised of two repeating sequence motifs, where M1 motifs are abundant in alanine and histidine residues and M2 are rich in glycine. Experimental studies of suckerin assemblies suggested that M1 regions mainly formed nano-confined β-sheets within an amorphous matrix made of M2 modules stabilizing these β-rich nano-assemblies. The histidine-containing M1 modules are believed to govern the pH- and temperature-sensitive properties of suckerin assemblies. To better understand the stimuli-responsive properties of suckerin assemblies at the molecular level, we systematically studied the self-assembly dynamics of A1H1 peptides - a representative M1 sequence - at different temperatures and pH conditions with atomistic discrete molecular dynamic simulations. Our simulations with twenty A1H1 peptides demonstrated that below the transition temperature Tagg, they could readily self-assemble from isolated monomers into well-defined β-sheet nanostructures by both primary and secondary nucleation of β-sheets and subsequent aggregation growth via elongation and coagulation. Interestingly, the dissociation of pre-formed A1H1 β-sheet nanostructures featured a melting temperature Tm higher than Tagg, exhibiting the thermal hysteresis that is characteristic of first-order phase transitions with high energy barriers. In acidic environments where all histidine residues were protonated, the stability of the A1H1 β-sheet nano-assemblies was reduced and the β-rich assemblies easily dissociated into unstructured monomers at significantly lower temperatures than in the neutral solution. The computationally derived molecular mechanisms for pH- and temperature-dependent A1H1 self-assembly will help to understand the supramolecular assembly structures and functions of the large suckerin family and aid in the future design of peptide-based stimuli-responsive smart materials.
Collapse
Affiliation(s)
- Yunxiang Sun
- Department of Physics, Ningbo University, Ningbo 315211, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
35
|
Pilkington AW, Schupp J, Nyman M, Valentine SJ, Smith DM, Legleiter J. Acetylation of Aβ 40 Alters Aggregation in the Presence and Absence of Lipid Membranes. ACS Chem Neurosci 2020; 11:146-161. [PMID: 31834770 DOI: 10.1021/acschemneuro.9b00483] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A hallmark of Alzheimer's disease (AD) is the formation of senile plaques comprised of the β-amyloid (Aβ) peptide. Aβ fibrillization is a complex nucleation-dependent process involving a variety of metastable intermediate aggregates and features the formation of inter- and intramolecular salt bridges involving lysine residues, K16 and K28. Cationic lysine residues also mediate protein-lipid interactions via association with anionic lipid headgroups. As several toxic mechanisms attributed to Aβ involve membrane interactions, the impact of acetylation on Aβ40 aggregation in the presence and absence of membranes was determined. Using chemical acetylation, varying mixtures of acetylated and nonacetylated Aβ40 were produced. With increasing acetylation, fibril and oligomer formation decreased, eventually completely arresting fibrillization. In the presence of total brain lipid extract (TBLE) vesicles, acetylation reduced the interaction of Aβ40 with membranes; however, fibrils still formed at near complete levels of acetylation. Additionally, the combination of TBLE and acetylated Aβ promoted annular aggregates. Finally, toxicity associated with Aβ40 was reduced with increasing acetylation in a cell culture assay. These results suggest that in the absence of membranes that the cationic character of lysine plays a major role in fibril formation. However, acetylation promotes unique aggregation pathways in the presence of lipid membranes.
Collapse
Affiliation(s)
- Albert W. Pilkington
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, West Virginia 26506, United States
| | - Jane Schupp
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Morgan Nyman
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, West Virginia 26506, United States
| | - Stephen J. Valentine
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, West Virginia 26506, United States
| | - David M. Smith
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States
- Rockefeller Neurosciences Institutes, West Virginia University, 1 Medical Center Drive, P.O. Box 9303, Morgantown, West Virginia 26505, United States
- Department of Neuroscience, West Virginia University, 1 Medical Center Drive, P.O. Box
9303, Morgantown, West Virginia 26505, United States
| | - Justin Legleiter
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, West Virginia 26506, United States
- Rockefeller Neurosciences Institutes, West Virginia University, 1 Medical Center Drive, P.O. Box 9303, Morgantown, West Virginia 26505, United States
- Department of Neuroscience, West Virginia University, 1 Medical Center Drive, P.O. Box
9303, Morgantown, West Virginia 26505, United States
| |
Collapse
|
36
|
Nguyen PH, Sterpone F, Derreumaux P. Aggregation of disease-related peptides. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:435-460. [PMID: 32145950 DOI: 10.1016/bs.pmbts.2019.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein misfolding and aggregation of amyloid proteins is the fundamental cause of more than 20 diseases. Molecular mechanisms of the self-assembly and the formation of the toxic aggregates are still elusive. Computer simulations have been intensively used to study the aggregation of amyloid peptides of various amino acid lengths related to neurodegenerative diseases. We review atomistic and coarse-grained simulations of short amyloid peptides aimed at determining their transient oligomeric structures and the early and late aggregation steps.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Fabio Sterpone
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Philippe Derreumaux
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
37
|
Foley AR, Lee HW, Raskatov JA. A Focused Chiral Mutant Library of the Amyloid β 42 Central Electrostatic Cluster as a Tool To Stabilize Aggregation Intermediates. J Org Chem 2020; 85:1385-1391. [PMID: 31875394 DOI: 10.1021/acs.joc.9b02312] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Amyloidogenic peptides and proteins aggregate into fibrillary structures that are usually deposited in tissues and organs and are often involved in the development of diseases. In contrast to native structured proteins, amyloids do not follow a defined energy landscape toward the fibrillary state and often generate a vast population of aggregation intermediates that are transient and exceedingly difficult to study. Here, we employ chiral editing as a tool to study the aggregation mechanism of the Amyloid β (Aβ) 42 peptide, whose aggregation intermediates are thought to be one of the main driving forces in Alzheimer's disease (AD). Through the design of a focused chiral mutant library (FCML) of 16 chiral Aβ42 variants, we identified several point D-substitutions that allowed us to modulate the aggregation propensity and the biological activity of the peptide. Surprisingly, the reduced propensity toward aggregation and the stabilization of oligomeric intermediates did not always correlate with an increase in toxicity. In the present study, we show how chiral editing can be a powerful tool to trap and stabilize Aβ42 conformers that might otherwise be too transient and dynamic to study, and we identify sites within the Aβ42 sequence that could be potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Alejandro R Foley
- Department of Chemistry and Biochemistry , University of California Santa Cruz , Santa Cruz , California 95064 , United States
| | - Hsiau-Wei Lee
- Department of Chemistry and Biochemistry , University of California Santa Cruz , Santa Cruz , California 95064 , United States
| | - Jevgenij A Raskatov
- Department of Chemistry and Biochemistry , University of California Santa Cruz , Santa Cruz , California 95064 , United States
| |
Collapse
|
38
|
Kashyap P, Muthusamy K, Niranjan M, Trikha S, Kumar S. Sarsasapogenin: A steroidal saponin from Asparagus racemosus as multi target directed ligand in Alzheimer's disease. Steroids 2020; 153:108529. [PMID: 31672628 DOI: 10.1016/j.steroids.2019.108529] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/10/2019] [Accepted: 10/20/2019] [Indexed: 01/25/2023]
Abstract
Alzheimer's disease (AD) is multi-factorial disorder characterized by impaired memory and cognition deficit. AD is characterized by impaired cholinergic transmission, extracellular amyloid beta deposits, neurofibrillary tangles and oxidative stress. A multi-target directed ligand (MTDL) approach is required to devise a therapeutic strategy against AD. In the present study, Asparagus racemosus aqueous extract was chosen, as it possess abundant medicinal properties including nootropic effect mentioned in ancient Ayurvedic texts. Moreover, its secondary metabolite sarsasapogenin (SRS) was also selected for this multi-target study for the very first time. The current study demonstrated that sarsasapogenin significantly inhibits key enzymes involved in pathogenesis of AD which are acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), BACE1 and MAO-B in a concentration dependent manner. SRS also exhibited anti-amyloidogenic, anti-oxidant and neuroprotective effects by in vitro studies. The IC50 values of SRS is 9.9 μM and 5.4 μM for AChE and BuChE respectively. SRS also significantly inhibited Aβ42 fibrillization up to 68% at 40 μM concentration as compared to control. TEM visualization showed Aβ aggregates as short and scattered fibril clearly indicating SRS significantly inhibited peptide nucleation and fibril formation. Furthermore, the SRS was found to exert neuroprotective effect on PC12 cells against Aβ42 and H2O2-mediated cytotoxicity. The cell survival was 62% and 69% against Aβ42 and H2O2-mediated cytotoxicity, respectively. SRS also inhibited monoaminoxidase-B (MAO-B) and BACE1 enzymes in concentration dependent manner. Molecular docking studies indicated that SRS binds to the catalytic sites of multiple targets (AChE, BuChE, Aβ42, BACE1, and MAO-B) in a significant manner that might having disease-modifying effects. Thus SRS is acting as suitable lead and can be utilised as MTDL compound for factors implicated in AD.
Collapse
Affiliation(s)
- Priya Kashyap
- University School of Biotechnology, GGS Indraprastha University, Dwarka, Sector 16C, New Delhi 110078, India
| | - Kalaivani Muthusamy
- Indian Pharmacopoeia Commission, Ministry of Health and Family Welfare, Sector 23, Raj Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Manisha Niranjan
- Indian Pharmacopoeia Commission, Ministry of Health and Family Welfare, Sector 23, Raj Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Shweta Trikha
- Indian Pharmacopoeia Commission, Ministry of Health and Family Welfare, Sector 23, Raj Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Suresh Kumar
- University School of Biotechnology, GGS Indraprastha University, Dwarka, Sector 16C, New Delhi 110078, India.
| |
Collapse
|
39
|
Yang QQ, He H, Li CQ, Luo LB, Li SL, Xu ZQ, Jin JC, Jiang FL, Liu Y, Yang M. Molecular Mechanisms of the Ultra-Strong Inhibition Effect of Oxidized Carbon Dots on Human Insulin Fibrillation. ACS APPLIED BIO MATERIALS 2019; 3:217-226. [DOI: 10.1021/acsabm.9b00725] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qi-Qi Yang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Huan He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Chen-Qiao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Lai-Bing Luo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Shu-Lan Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Zi-Qiang Xu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (MOE), Hubei Province Key Laboratory of Industrial Biotechnology, Faculty of Materials Science & Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Jian-Cheng Jin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Feng-Lei Jiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yi Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- College of Chemistry and Material Sciences, Guangxi Teachers Education University, Nanning 530001, P. R. China
- Key Laboratory of Coal Conversion and Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Mian Yang
- Key Laboratory of Coal Conversion and Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
40
|
Hashemi M, Zhang Y, Lv Z, Lyubchenko YL. Spontaneous self-assembly of amyloid β (1-40) into dimers. NANOSCALE ADVANCES 2019; 1:3892-3899. [PMID: 36132110 PMCID: PMC9417245 DOI: 10.1039/c9na00380k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/16/2019] [Indexed: 05/17/2023]
Abstract
The self-assembly and fibrillation of amyloid β (Aβ) proteins is the neuropathological hallmark of Alzheimer's disease. However, the molecular mechanism of how disordered monomers assemble into aggregates remains largely unknown. In this work, we characterize the assembly of Aβ (1-40) monomers into dimers using long-time molecular dynamics simulations. Upon interaction, the monomers undergo conformational transitions, accompanied by change of the structure, leading to the formation of a stable dimer. The dimers are stabilized by interactions in the N-terminal region (residues 5-12), in the central hydrophobic region (residues 16-23), and in the C-terminal region (residues 30-40); with inter-peptide interactions focused around the N- and C-termini. The dimers do not contain long β-strands that are usually found in fibrils.
Collapse
Affiliation(s)
- Mohtadin Hashemi
- Department of Pharmaceutical Sciences, 986025 Nebraska Medical Center, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Yuliang Zhang
- Department of Pharmaceutical Sciences, 986025 Nebraska Medical Center, University of Nebraska Medical Center Omaha NE 68198 USA
- Biology and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory Livermore CA 94550 USA
| | - Zhengjian Lv
- Department of Pharmaceutical Sciences, 986025 Nebraska Medical Center, University of Nebraska Medical Center Omaha NE 68198 USA
- Bruker Nano Surfaces Division 112 Robin Hill Road Goleta, Santa Barbara CA 93117 USA
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, 986025 Nebraska Medical Center, University of Nebraska Medical Center Omaha NE 68198 USA
| |
Collapse
|
41
|
Mayer AR, Dodd AB, Vermillion MS, Stephenson DD, Chaudry IH, Bragin DE, Gigliotti AP, Dodd RJ, Wasserott BC, Shukla P, Kinsler R, Alonzo SM. A systematic review of large animal models of combined traumatic brain injury and hemorrhagic shock. Neurosci Biobehav Rev 2019; 104:160-177. [PMID: 31255665 PMCID: PMC7307133 DOI: 10.1016/j.neubiorev.2019.06.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 01/08/2023]
Abstract
Traumatic brain injury (TBI) and severe blood loss (SBL) frequently co-occur in human trauma, resulting in high levels of mortality and morbidity. Importantly, each of the individual post-injury cascades is characterized by complex and potentially opposing pathophysiological responses, complicating optimal resuscitation and therapeutic approaches. Large animal models of poly-neurotrauma closely mimic human physiology, but a systematic literature review of published models has been lacking. The current review suggests a relative paucity of large animal poly-neurotrauma studies (N = 52), with meta-statistics revealing trends for animal species (exclusively swine), characteristics (use of single biological sex, use of juveniles) and TBI models. Although most studies have targeted blood loss volumes of 35-45%, the associated mortality rates are much lower relative to Class III/IV human trauma. This discrepancy may result from potentially mitigating experimental factors (e.g., mechanical ventilation prior to or during injury, pausing/resuming blood loss based on physiological parameters, administration of small volume fluid resuscitation) that are rarely associated with human trauma, highlighting the need for additional work in this area.
Collapse
Affiliation(s)
- Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States; Neurology Department, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States; Psychiatry Department, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States; Psychology Department, University of New Mexico, Albuquerque, NM 87131, United States.
| | - Andrew B Dodd
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - Meghan S Vermillion
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - David D Stephenson
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - Irshad H Chaudry
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294-0019, United States
| | - Denis E Bragin
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Andrew P Gigliotti
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - Rebecca J Dodd
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - Benjamin C Wasserott
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - Priyank Shukla
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - Rachel Kinsler
- Department of the Army Civilian, U.S. Army Aeromedical Research Laboratory, Fort Rucker, AL 36362-0577, United States
| | - Sheila M Alonzo
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| |
Collapse
|
42
|
Nguyen HL, Krupa P, Hai NM, Linh HQ, Li MS. Structure and Physicochemical Properties of the Aβ42 Tetramer: Multiscale Molecular Dynamics Simulations. J Phys Chem B 2019; 123:7253-7269. [DOI: 10.1021/acs.jpcb.9b04208] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hoang Linh Nguyen
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software
City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Biomedical Engineering Department, Ho Chi Minh City University of Technology-VNU HCM, 268 Ly Thuong Kiet Street, Distr. 10, Ho Chi Minh City 700000, Vietnam
| | - Pawel Krupa
- Institute of Physics Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Nguyen Minh Hai
- Faculty of Physics and Engineering Physics, University of Science-VNU HCM, Ho Chi Minh City 700000, Vietnam
| | - Huynh Quang Linh
- Biomedical Engineering Department, Ho Chi Minh City University of Technology-VNU HCM, 268 Ly Thuong Kiet Street, Distr. 10, Ho Chi Minh City 700000, Vietnam
| | - Mai Suan Li
- Institute of Physics Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
43
|
Nguyen PH, Campanera JM, Ngo ST, Loquet A, Derreumaux P. Tetrameric Aβ40 and Aβ42 β-Barrel Structures by Extensive Atomistic Simulations. II. In Aqueous Solution. J Phys Chem B 2019; 123:6750-6756. [DOI: 10.1021/acs.jpcb.9b05288] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Phuong H. Nguyen
- CNRS, Université de Paris, UPR 9080,
Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005, Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Josep M. Campanera
- Departament de Fisicoquímica, Facultat de Farmacia, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Antoine Loquet
- Institute of Chemistry and Biology of Membranes and Nanoobjects, UMR5248 CNRS, Université de Bordeaux, Bordeaux, France
| | - Philippe Derreumaux
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
44
|
Grazioli G, Martin RW, Butts CT. Comparative Exploratory Analysis of Intrinsically Disordered Protein Dynamics Using Machine Learning and Network Analytic Methods. Front Mol Biosci 2019; 6:42. [PMID: 31245383 PMCID: PMC6581705 DOI: 10.3389/fmolb.2019.00042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/20/2019] [Indexed: 01/23/2023] Open
Abstract
Simulations of intrinsically disordered proteins (IDPs) pose numerous challenges to comparative analysis, prominently including highly dynamic conformational states and a lack of well-defined secondary structure. Machine learning (ML) algorithms are especially effective at discriminating among high-dimensional inputs whose differences are extremely subtle, making them well suited to the study of IDPs. In this work, we apply various ML techniques, including support vector machines (SVM) and clustering, as well as related methods such as principal component analysis (PCA) and protein structure network (PSN) analysis, to the problem of uncovering differences between configurational data from molecular dynamics simulations of two variants of the same IDP. We examine molecular dynamics (MD) trajectories of wild-type amyloid beta (Aβ1−40) and its “Arctic” variant (E22G), systems that play a central role in the etiology of Alzheimer's disease. Our analyses demonstrate ways in which ML and related approaches can be used to elucidate subtle differences between these proteins, including transient structure that is poorly captured by conventional metrics.
Collapse
Affiliation(s)
- Gianmarc Grazioli
- California Institute for Telecommunications and Information Technology (Calit2), University of California, Irvine, Irvine, CA, United States.,Department of Chemistry, University of California, Irvine, Irvine, CA, United States
| | - Rachel W Martin
- Department of Chemistry, University of California, Irvine, Irvine, CA, United States.,Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Carter T Butts
- California Institute for Telecommunications and Information Technology (Calit2), University of California, Irvine, Irvine, CA, United States.,Department of Computer Science, University of California, Irvine, Irvine, CA, United States.,Department of Sociology, Statistics, and Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
45
|
Zhao X, Liao C, Ma YT, Ferrell JB, Schneebeli ST, Li J. Top-down Multiscale Approach To Simulate Peptide Self-Assembly from Monomers. J Chem Theory Comput 2019; 15:1514-1522. [PMID: 30677300 DOI: 10.1021/acs.jctc.8b01025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modeling peptide assembly from monomers on large time and length scales is often intractable at the atomistic resolution. To address this challenge, we present a new approach which integrates coarse-grained (CG), mixed-resolution, and all-atom (AA) modeling in a single simulation. We simulate the initial encounter stage with the CG model, while the further assembly and reorganization stages are simulated with the mixed-resolution and AA models. We have implemented this top-down approach with new tools to automate model transformations and to monitor oligomer formations. Further, a theory was developed to estimate the optimal simulation length for each stage using a model peptide, melittin. The assembly level, the oligomer distribution, and the secondary structures of melittin simulated by the optimal protocol show good agreement with prior experiments and AA simulations. Finally, our approach and theory have been successfully validated with three amyloid peptides (β-amyloid 16-22, GNNQQNY fragment from the yeast prion protein SUP35, and α-synuclein fibril 35-55), which highlight the synergy from modeling at multiple resolutions. This work not only serves as proof of concept for multiresolution simulation studies but also presents practical guidelines for further self-assembly simulations at more physically and chemically relevant scales.
Collapse
Affiliation(s)
- Xiaochuan Zhao
- Department of Chemistry , The University of Vermont , Burlington , Vermont 05405 , United States
| | - Chenyi Liao
- Department of Chemistry , The University of Vermont , Burlington , Vermont 05405 , United States
| | - Yong-Tao Ma
- Department of Chemistry , The University of Vermont , Burlington , Vermont 05405 , United States
| | - Jonathon B Ferrell
- Department of Chemistry , The University of Vermont , Burlington , Vermont 05405 , United States
| | - Severin T Schneebeli
- Department of Chemistry , The University of Vermont , Burlington , Vermont 05405 , United States
| | - Jianing Li
- Department of Chemistry , The University of Vermont , Burlington , Vermont 05405 , United States
| |
Collapse
|
46
|
Zhang S, Fox DM, Urbanc B. Elucidating the Role of Hydroxylated Phenylalanine in the Formation and Structure of Cross-Linked Aβ Oligomers. J Phys Chem B 2019; 123:1068-1084. [DOI: 10.1021/acs.jpcb.8b12120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Shuting Zhang
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Dillion M. Fox
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Brigita Urbanc
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, United States
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
47
|
Itoh SG, Yagi-Utsumi M, Kato K, Okumura H. Effects of a Hydrophilic/Hydrophobic Interface on Amyloid-β Peptides Studied by Molecular Dynamics Simulations and NMR Experiments. J Phys Chem B 2019; 123:160-169. [PMID: 30543290 DOI: 10.1021/acs.jpcb.8b11609] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Oligomer formation of amyloid-β peptides (Aβ) is accelerated at a hydrophilic/hydrophobic interface. However, details of the acceleration mechanism have not been elucidated. To understand the effects of the interface on oligomerization at the atomic level, we performed molecular dynamics simulations for an Aβ40 monomer in the presence and absence of the hydrophilic/hydrophobic interface. Nuclear magnetic resonance experiments of Aβ40 peptides with gangliosidic micelles were also carried out. In the simulations and experiments, the hydrophobic residues of Aβ40 bound to the interface stably. Moreover, we found that Aβ40 formed a hairpin structure at the interface more readily than in bulk water. From these results, we discussed the acceleration mechanism of the oligomer formation at the interface.
Collapse
Affiliation(s)
- Satoru G Itoh
- Institute for Molecular Science (IMS) , National Institutes of Natural Sciences , Okazaki , Aichi 444-8585 , Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS) , National Institutes of Natural Sciences , Okazaki , Aichi 444-8787 , Japan.,Department of Structural Molecular Science , SOKENDAI (The Graduate University for Advanced Studies) , Okazaki , Aichi 444-8585 , Japan
| | - Maho Yagi-Utsumi
- Institute for Molecular Science (IMS) , National Institutes of Natural Sciences , Okazaki , Aichi 444-8585 , Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS) , National Institutes of Natural Sciences , Okazaki , Aichi 444-8787 , Japan.,Department of Functional Molecular Science , SOKENDAI (The Graduate University for Advanced Studies) , Okazaki , Aichi 444-8787 , Japan.,Graduate School of Pharmaceutical Sciences , Nagoya City University , Nagoya , Aichi 465-8603 , Japan
| | - Koichi Kato
- Institute for Molecular Science (IMS) , National Institutes of Natural Sciences , Okazaki , Aichi 444-8585 , Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS) , National Institutes of Natural Sciences , Okazaki , Aichi 444-8787 , Japan.,Department of Functional Molecular Science , SOKENDAI (The Graduate University for Advanced Studies) , Okazaki , Aichi 444-8787 , Japan.,Graduate School of Pharmaceutical Sciences , Nagoya City University , Nagoya , Aichi 465-8603 , Japan
| | - Hisashi Okumura
- Institute for Molecular Science (IMS) , National Institutes of Natural Sciences , Okazaki , Aichi 444-8585 , Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS) , National Institutes of Natural Sciences , Okazaki , Aichi 444-8787 , Japan.,Department of Structural Molecular Science , SOKENDAI (The Graduate University for Advanced Studies) , Okazaki , Aichi 444-8585 , Japan
| |
Collapse
|
48
|
Liu Z, Jiang F, Wu YD. Significantly different contact patterns between Aβ40 and Aβ42 monomers involving the N-terminal region. Chem Biol Drug Des 2018; 94:1615-1625. [PMID: 30381893 DOI: 10.1111/cbdd.13431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/28/2018] [Accepted: 10/10/2018] [Indexed: 01/03/2023]
Abstract
Aβ42 peptide, with two additional residues at C-terminus, aggregates much faster than Aβ40. We performed equilibrium replica-exchange molecular dynamics simulations of their monomers using our residue-specific force field. Simulated 3 JHNH α -coupling constants agree excellently with experimental data. Aβ40 and Aβ42 have very similar local conformational features, with considerable β-strand structures in the segments: A2-H6 (A), L17-A21 (B), A30-V36 (C) of both peptides and V39-I41 (D) of Aβ42. Both peptides have abundant A-B and B-C contacts, but Aβ40 has much more contacts between A and C than Aβ42, which may retard its aggregation. Only Aβ42 has considerable A-B-C-D topology. Decreased probability of A-C contact in Aβ42 relates to the competition from C-D contact. Increased A-C contact probability may also explain the slower aggregation of A2T and A2V mutants of Aβ42.
Collapse
Affiliation(s)
- Ziye Liu
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Fan Jiang
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| |
Collapse
|
49
|
Wang M, Sun Y, Cao X, Peng G, Javed I, Kakinen A, Davis TP, Lin S, Liu J, Ding F, Ke PC. Graphene quantum dots against human IAPP aggregation and toxicity in vivo. NANOSCALE 2018; 10:19995-20006. [PMID: 30350837 PMCID: PMC6212334 DOI: 10.1039/c8nr07180b] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The development of biocompatible nanomaterials has become a new frontier in the detection, treatment and prevention of human amyloid diseases. Here we demonstrated the use of graphene quantum dots (GQDs) as a potent inhibitor against the in vivo aggregation and toxicity of human islet amyloid polypeptide (IAPP), a hallmark of type 2 diabetes. GQDs initiated contact with IAPP through electrostatic and hydrophobic interactions as well as hydrogen bonding, which subsequently drove the peptide fibrillization off-pathway to eliminate the toxic intermediates. Such interactions, probed in vitro by a thioflavin T kinetic assay, fluorescence quenching, circular dichroism spectroscopy, a cell viability assay and in silico by discrete molecular dynamics simulations, translated to a significant recovery of embryonic zebrafish from the damage elicited by IAPP in vivo, as indicated by improved hatching as well as alleviated reactive oxygen species production, abnormality and mortality of the organism. This study points to the potential of using zero-dimensional nanomaterials for in vivo mitigation of a range of amyloidosis.
Collapse
Affiliation(s)
- Miaoyi Wang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Xueying Cao
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Guotao Peng
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Ibrahim Javed
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Aleksandr Kakinen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Sijie Lin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
50
|
Li H, Wang X, Yu H, Zhu J, Jin H, Wang A, Yang Z. Combining in vitro and in silico Approaches to Find New Candidate Drugs Targeting the Pathological Proteins Related to the Alzheimer's Disease. Curr Neuropharmacol 2018; 16:758-768. [PMID: 29086699 PMCID: PMC6080099 DOI: 10.2174/1570159x15666171030142108] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 09/24/2017] [Accepted: 10/10/2017] [Indexed: 01/10/2023] Open
Abstract
Background: Alzheimer’s disease (AD) as the most common cause of dementia among older people has aroused the universal concern of the whole world. However, until now there is still none effective treatments. Consequently, the development of new drugs targeting this complicated brain disorder is urgent and needs more efforts. In this review, we detailed the current state of knowledge about new candidate drugs targeting the pathological proteins especially the drugs which are employed using the combined methods of in vitro and in silico. Methods: We looked up and reviewed online papers related to the pathogenesis and new drugs development of AD. Then, articles up to the requirements were respectively analyzed and summaried to provide the latest knowledge about the pathogenic effect and the new candidate drugs targeting Aβ and Tau proteins. Results: New candidate drugs targeting the Aβ include decreasing the production, promoting the clearence and preventing aggregation. However these drugs have mostly failed in Phase III clinical trial stage due to the unsuccessful of reversing cognition symptoms. As to tau protein, the prevention of tau aggregation and propagation is a promising strategy to synthesize/design mechanism-based drugs against tauopathies. Some candidate drugs are under research. Moreover, because of the complex pathogenesis of AD, multi-target drugs have also shed light on the treatment of AD. Conclusion: Given to the consecutive failure of Aβ-directed drugs and the feasibilities of tau-targeted therapy, more and more researchers suggested that the AD treatment should be moved from Aβ to tau or focused on considering the soluble form of Aβ and tau as a whole. Moreover, the novel in silico methods also have great potential in drug discovery, drug repositioning, virtual screening of chemical libraries. No matter how many difficulties and challenges in prevention and treatment of AD, we firmly believe that the effective and safe drugs will be found using the combined methods in the immediate future with the global effort.
Collapse
Affiliation(s)
- Hui Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaobing Wang
- Tumor Marker Research Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hongmei Yu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jing Zhu
- College of Pharmacy, The Ohio State University, Columbus, Ohio, 43210, United States
| | - Hongtao Jin
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Aiping Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhaogang Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, 43210, United States
| |
Collapse
|