1
|
Kuwata KT. Computational Modeling of the Conformation-Dependent Atmospheric Reactivity of Criegee Intermediates. J Phys Chem A 2024; 128:7331-7345. [PMID: 39172159 DOI: 10.1021/acs.jpca.4c04517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The impacts of Criegee intermediates (CIs) on atmospheric chemistry depend significantly on the CI conformation. In this Perspective, I highlight examples of how electronic structure and statistical rate theory calculations, in conjunction with experiment, have revealed conformation-dependent details of both CI ground-state reactivity and electronic excitation. Calculations using single-reference electronic structure methods and conventional transition state theory have predicted that CIs with syn-alkyl or syn-vinyl substituents isomerize rapidly to vinyl hydroperoxides (VHPs) or dioxoles, both of which can decompose rapidly under atmospheric conditions. Ongoing computational research on hydroxyl radical (OH) roaming initiated by VHP dissociation requires the application of multireference electronic structure methods and variational transition state theory. CIs that lack both syn-alkyl and syn-vinyl substituents undergo either bimolecular reaction or π* ← π electronic excitation in the atmosphere. Accurate predictions of CI ultraviolet-visible spectra require multireference calculations with large active spaces and at least a second-order perturbative treatment of dynamic electron correlation. The extent to which electronic spectra can be diagnostic of the presence of specific CI conformers varies significantly with CI chemical identity.
Collapse
Affiliation(s)
- Keith T Kuwata
- Department of Chemistry, Macalester College, Saint Paul, Minnesota 55105-1899, United States
| |
Collapse
|
2
|
Guidry LM, Bardash LA, Yigiter A, Ravi S, Marchetti B, Karsili TNV. The role of solar photolysis in the atmospheric removal of methacrolein oxide and the methacrolein oxide-water van-der Waals complex in pristine environments. Photochem Photobiol 2024. [PMID: 39095969 DOI: 10.1111/php.14007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Biogenic hydrocarbons are emitted into the Earth's atmosphere by terrestrial vegetation as by-products of photosynthesis. Isoprene is one such hydrocarbon and is the second most abundant volatile organic compound emitted into the atmosphere (after methane). Reaction with ozone represents an important atmospheric sink for isoprene removal, forming carbonyl oxides (Criegee intermediates) with extended conjugation. In this manuscript, we argue that the extended conjugation of these Criegee intermediates enables electronic excitation of these compounds, on timescales that are competitive with their slow unimolecular decay and bimolecular chemistry. We show that the complexation of methacrolein oxide with water enhances the absorption cross section of the otherwise dark S1 state, potentially revealing a new avenue for forming lower volatility compounds via tropospherically relevant photochemistry.
Collapse
Affiliation(s)
- Lily M Guidry
- University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | | | - Aylin Yigiter
- University of Louisiana at Lafayette, Lafayette, Louisiana, USA
- St. Thomas More Catholic High School, Lafayette, Louisiana, USA
| | - Satyam Ravi
- School of Advanced Science and Languages, VIT Bhopal University, Sehore, Madhya Pradesh, India
| | | | | |
Collapse
|
3
|
Sit MK, Das S, Samanta K. Semiclassical Dynamics on Machine-Learned Coupled Multireference Potential Energy Surfaces: Application to the Photodissociation of the Simplest Criegee Intermediate. J Phys Chem A 2023; 127:2376-2387. [PMID: 36856588 DOI: 10.1021/acs.jpca.2c07229] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Determination of high-dimensional potential energy surfaces (PESs) and nonadiabatic couplings have always been quite challenging. To this end, machine learning (ML) models, trained with a finite set of ab initio data, allow accurate prediction of such properties. To express the PESs in terms of atomic contributions is the cornerstone of any ML based technique because it can be easily scaled to large systems. In this work, we have constructed high fidelity PESs and nonadiabatic coupling terms at the CASSCF level of ab initio data using a machine learning technique, namely, kernel-ridge regression. Additional MRCI-level calculations were carried out to assess the quality of the PESs. We use these machine-learned PESs and nonadiabatic couplings to simulate excited-state molecular dynamics based on Tully's fewest-switches surface hopping method (FSSH). FSSH is a semiclassical method in which nuclei move on the PESs due to the electrons according to the laws of classical mechanics. Nonadiabatic effects are taken into account in terms of transitions between PESs. We apply this scheme to study the O-O photodissociation of the simplest Criegee intermediate (CH2OO). The FSSH trajectories were initiated on the lowest optically bright singlet excited state (S2) and propagated along the three most important internal coordinates, namely, O-O and C-O bond distances and the COO bond angle. Some of the trajectories end up on energetically lower PESs as a result of radiationless transfer through conical intersections. All of the trajectories lead to the dissociation of the O-O bond due to the dissociative nature of the excited PESs through one of the two dissociative channels. The simulation reveals that there is about 88.4% probability of dissociation through the lower channel leading to the H2CO (X1A1) and O (1D) products, whereas there is only 11.6% probability of dissociation through the upper channel leading to H2CO (a3A″) and O (3P) products.
Collapse
Affiliation(s)
- Mahesh K Sit
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| | - Subhasish Das
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| | - Kousik Samanta
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| |
Collapse
|
4
|
Ouyang WY, Wang WL, Zhang YL, Cai HY, Wu QY. VUV/UV oxidation performance for the elimination of recalcitrant aldehydes in water and its variation along the light-path. WATER RESEARCH 2023; 228:119390. [PMID: 36423547 DOI: 10.1016/j.watres.2022.119390] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/19/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Vacuum ultraviolet/ultraviolet (VUV/UV) oxidation using a low-pressure mercury lamp emitting dual wavelengths (185 nm (VUV) and 254 nm (UV)) significantly varies in performance along the light-path (lP), which has not been fully characterized. Therefore, VUV/UV oxidation in solution was investigated at various lP in terms of the degradation kinetics and mineralization pathway of representative aldehydes with various alkyl-chain lengths. Oxidative degradation of parent aldehydes with shorter alkyl chains was less efficient, specifically the pseudo-zero-order rate constant (kobs) of formaldehyde was only 51% of that of propionaldehyde (kobs = 0.078 μM s-1). In contrast, the mineralization of aldehydes with longer alkyl chains was less efficient because these aldehydes underwent mineralization into more refractory carboxylic byproducts, e.g., oxalic acid. VUV was mainly absorbed by superficial water (lP < 0.55 cm), which resulted in highly heterogeneous oxidation in homogeneous water. Thus, kobs of acetaldehyde dramatically decreased from 0.13 to 0.033 μM s-1 as the total lP of solution increased from 1.0 to 3.0 cm. On the basis of mineralization pathways proposed above, an iterative kinetic model was developed to characterize the degradation of parent aldehydes and the formation of carboxylic acids along lP. This model predicted the VUV/UV oxidaton for the first time by considering the fast diffusion of pollutants by limited diffusion of transient radical species. Thus, it realized the prediction of •OH concentration at specific water solution and byproduct evolution within specific water solution in turbulent flow regime, wherein •OH was predominantly formed in superficial water-layers wherein •OH in water-layers of lP <0.16 cm and <0.81 cm contributed to 50% and 90% of the total oxidation performance, respectively. This result would help to improve the VUV-UV-reactor design in terms of optimizing the thickness of water-layer and turbulence of water-flow.
Collapse
Affiliation(s)
- Wan-Yue Ouyang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (MARC), Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Wen-Long Wang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (MARC), Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Yi-Lin Zhang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (MARC), Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| | - Han-Ying Cai
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (MARC), Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| | - Qian-Yuan Wu
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (MARC), Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
5
|
Yang J, Li Y, Makroni L, Liu F. The photoisomerization mechanism of methacrolein oxide (MACR-OO): the cyclic dioxole formation pathway revealed. Phys Chem Chem Phys 2022; 24:22531-22537. [PMID: 36111632 DOI: 10.1039/d2cp03028d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Methacrolein oxide (MACR-OO), the isopropenyl substituted Criegee intermediate (CI), is one product of isoprene ozonolysis. In this work, we report MACR-OO's photo-isomerization paths with electronic structure calculation at the CASSCF and MS-CASPT2 levels and trajectory surface-hopping (TSH) nonadiabatic dynamics simulation at the CASSCF level. Our calculated results show that the ring-closure is the dominant photo-induced unimolecular isomerization of MACR-OO in the S1 state. In addition, a new photo-induced ring-closure to heterocyclopentane dioxole in syn_syn-MACR-OO is found. The findings of MACR-OO are expected to deepen the understanding of the substituted CIs and their photochemistry.
Collapse
Affiliation(s)
- Jiawei Yang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China.
| | - Yazhen Li
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China.
| | - Lily Makroni
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China.
| | - Fengyi Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China.
| |
Collapse
|
6
|
Xia Y, Long B, Lin S, Teng C, Bao JL, Truhlar DG. Large Pressure Effects Caused by Internal Rotation in the s-cis-syn-Acrolein Stabilized Criegee Intermediate at Tropospheric Temperature and Pressure. J Am Chem Soc 2022; 144:4828-4838. [PMID: 35262353 DOI: 10.1021/jacs.1c12324] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Criegee intermediates are important atmospheric oxidants, and quantitative kinetics for stabilized Criegee intermediates are key parameters for atmospheric modeling but are still limited. Here we report barriers and rate constants for unimolecular reactions of s-cis-syn-acrolein oxide (scsAO), in which the vinyl group makes it a prototype for Criegee intermediates produced in the ozonolysis of isoprene. We find that the MN15-L and M06-2X density functionals have CCSD(T)/CBS accuracy for the unimolecular cyclization and stereoisomerization of scsAO. We calculated high-pressure-limit rate constants by the dual-level strategy that combines (a) high-level wave function-based conventional transition-state theory (which includes coupled-cluster calculations with quasiperturbative inclusion of quadruple excitations because of the strongly multiconfigurational character of the electronic wave function) and (b) canonical variational transition-state theory with small-curvature tunneling based on a validated density functional. We calculated pressure-dependent rate constants both by system-specific quantum Rice-Ramsperger-Kassel theory and by solving the master equation. We report rate constants for unimolecular reactions of scsAO over the full range of atmospheric temperature and pressure. We found that the unimolecular reaction rates of this larger-than-previously studied Criegee intermediate depend significantly on pressure. Particularly, we found that falloff effects decrease the effective unimolecular cyclization rate constant of scsAO by about a factor of 3, but the unimolecular reaction is still the dominant atmospheric sink for scsAO at low altitudes. The large falloff caused by the inclusion of the stereoisomerization channel in the master equation calculations has broad implications for mechanistic analysis of reactions with competitive internal rotations that can produce stable rotamers.
Collapse
Affiliation(s)
- Yu Xia
- College of Mechanical and Electrical Engineering, Guizhou Minzu University, Guiyang 550025, China.,College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Bo Long
- College of Mechanical and Electrical Engineering, Guizhou Minzu University, Guiyang 550025, China.,College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Shiru Lin
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Chong Teng
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Junwei Lucas Bao
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
7
|
Mazarei E, Barker JR. CH 2 + O 2: reaction mechanism, biradical and zwitterionic character, and formation of CH 2OO, the simplest Criegee intermediate. Phys Chem Chem Phys 2022; 24:914-927. [PMID: 34913447 DOI: 10.1039/d1cp04372b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The singlet and triplet potential surfaces for the title reaction were investigated using the CBS-QB3 level of theory. The wave functions for some species exhibited multireference character and required the CASPT2/6-31+G(d,p) and CASPT2/aug-cc-pVTZ levels of theory to obtain accurate relative energies. A Natural Bond Orbital Analysis showed that triplet 3CH2OO (the simplest Criegee intermediate) and 3CH2O2 (dioxirane) have mostly polar biradical character, while singlet 1CH2OO has some zwitterionic character and a planar structure. Canonical variational transition state theory (CVTST) and master equation simulations were used to analyze the reaction system. CVTST predicts that the rate constant for reaction of 1CH2 + 3O2 is more than ten times as fast as the reaction of 3CH2 (X3B1) + 3O2 and the ratio remains almost independent of temperature from 900 K to 3000 K. The master equation simulations predict that at low pressures the 1CH2O + 3O product set is dominant at all temperatures and the primary yield of OH radicals is negligible below 600 K, due to competition with other primary reactions in this complex system.
Collapse
Affiliation(s)
- Elham Mazarei
- Theoretical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
| | - John R Barker
- Department of Climate and Space Sciences & Engineering, The University of Michigan, Ann Arbor, MI 48109-2143, USA
| |
Collapse
|
8
|
Wang G, Liu T, Caracciolo A, Vansco MF, Trongsiriwat N, Walsh PJ, Marchetti B, Karsili TNV, Lester MI. Photodissociation dynamics of methyl vinyl ketone oxide: A four-carbon unsaturated Criegee intermediate from isoprene ozonolysis. J Chem Phys 2021; 155:174305. [PMID: 34742186 DOI: 10.1063/5.0068664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The electronic spectrum of methyl vinyl ketone oxide (MVK-oxide), a four-carbon Criegee intermediate derived from isoprene ozonolysis, is examined on its second π* ← π transition, involving primarily the vinyl group, at UV wavelengths (λ) below 300 nm. A broad and unstructured spectrum is obtained by a UV-induced ground state depletion method with photoionization detection on the parent mass (m/z 86). Electronic excitation of MVK-oxide results in dissociation to O (1D) products that are characterized using velocity map imaging. Electronic excitation of MVK-oxide on the first π* ← π transition associated primarily with the carbonyl oxide group at λ > 300 nm results in a prompt dissociation and yields broad total kinetic energy release (TKER) and anisotropic angular distributions for the O (1D) + methyl vinyl ketone products. By contrast, electronic excitation at λ ≤ 300 nm results in bimodal TKER and angular distributions, indicating two distinct dissociation pathways to O (1D) products. One pathway is analogous to that at λ > 300 nm, while the second pathway results in very low TKER and isotropic angular distributions indicative of internal conversion to the ground electronic state and statistical unimolecular dissociation.
Collapse
Affiliation(s)
- Guanghan Wang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Tianlin Liu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Adriana Caracciolo
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Michael F Vansco
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Nisalak Trongsiriwat
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Patrick J Walsh
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Barbara Marchetti
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana 70504, USA
| | - Tolga N V Karsili
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana 70504, USA
| | - Marsha I Lester
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| |
Collapse
|
9
|
Ji YT, Lee YP. Dynamics of Reaction CH 3CHI + O 2 Investigated via Infrared Emission of Products CO, CO 2, and OH. J Phys Chem A 2021; 125:8373-8385. [PMID: 34524829 DOI: 10.1021/acs.jpca.1c05610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction CH3CHI + O2 has been commonly employed in laboratories to produce a methyl-substituted Criegee intermediate CH3CHOO, but the detailed dynamics of this reaction remain unexplored. We carried out this reaction by irradiating a flowing mixture of CH3CHI2 (∼70 mTorr) and O2 (∼4 and 8 Torr) at 308 or 248 nm and observed infrared emission of the products with a step-scan Fourier-transform spectrometer. Upon irradiation at 248 nm with O2 ∼4 Torr, a Boltzmann distribution of CO (v ≤ 4, J ≤ 25) with average vibrational energy (12 ± 2) kJ mol-1 and of OH (v = 1, J ≤ 5.5) were observed and assigned to be produced from the decomposition of CH3C(O)OH* to form CO + CH3OH and OH + CH3CO, respectively. The observed broadband emission of CO2 was simulated with two vibrational distributions of average energies (42 ± 3) and (114 ± 6) kJ mol-1 and assigned to be produced from the decomposition of CH3C(O)OH* and (methyl dioxirane)*, respectively. The results upon irradiation of the sample at 308 nm are similar, likely indicating a small fraction of energy partition into these products and rapid thermalization of CH3CHI*. Compared with reaction CH2I + O2, the title reaction yielded products with much less internal excitation, consistent with the expectation that these observed products receive much less fraction of available energy upon fragmentation when an additional methyl moiety was present in the parent. The large-v component of CO observed in experiments of CH2I + O2 at 248 nm, produced from secondary reaction HCO + O2, was absent in this work because the corresponding secondary reaction CH3CO + O2 in decomposition of CH3CHOO* produces α-lactone + OH or H2CO + CO + OH.
Collapse
Affiliation(s)
- Ya-Tsang Ji
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Yuan-Pern Lee
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan.,Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan.,Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106319, Taiwan
| |
Collapse
|
10
|
Luo X, Wang Y, Xie X, Su T, Chen J, Qin Z, Ji H. Catalytic Ozonation of Cinnamaldehyde to Benzaldehyde over Ca(OH)
2. ChemistrySelect 2021. [DOI: 10.1002/slct.202100786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xuan Luo
- School of Chemistry and Chemical Engineering Guangxi University 100 Daxue Dong Rd. Nanning Guangxi 530004 P. R. China
| | - Yiyuan Wang
- School of Chemistry and Chemical Engineering Guangxi University 100 Daxue Dong Rd. Nanning Guangxi 530004 P. R. China
| | - Xinling Xie
- School of Chemistry and Chemical Engineering Guangxi University 100 Daxue Dong Rd. Nanning Guangxi 530004 P. R. China
| | - Tongming Su
- School of Chemistry and Chemical Engineering Guangxi University 100 Daxue Dong Rd. Nanning Guangxi 530004 P. R. China
| | - Jianhua Chen
- School of Resources Environment and Materials Guangxi University 100 Daxue Dong Rd. Nanning Guangxi 530004 P. R. China
| | - Zuzeng Qin
- School of Chemistry and Chemical Engineering Guangxi University 100 Daxue Dong Rd. Nanning Guangxi 530004 P. R. China
| | - Hongbing Ji
- Fine Chemical Industry Research Institute School of Chemistry Sun Yat-sen University 135, Xingang Xi Road Guangzhou 510275 P. R. China
| |
Collapse
|
11
|
Li YZ, Yang JW, Makroni L, Wang WL, Liu FY. Photodynamics of methyl-vinyl Criegee intermediate: Different conical intersections govern the fates of syn/anti configurations. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp2006088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ya-zhen Li
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Jia-wei Yang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Lily Makroni
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Wen-liang Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Feng-yi Liu
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| |
Collapse
|
12
|
Li Y, Gong Q, Yang J, Feng Q, Song T, Wang W, Liu F. Hydrogen bond, ring tension and π-conjugation effects: methyl and vinyl substitutions dramatically change the photodynamics of Criegee intermediates. Phys Chem Chem Phys 2020; 22:15295-15302. [PMID: 32618986 DOI: 10.1039/d0cp01873b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The substitution effect in chemistry is a concept that is probably too common to mention, while for a molecule with an elusive electronic structure, substitution can introduce an unusual effect that dramatically tunes the chemical process. To reveal the substitution effects on the photodynamics of Criegee Intermediates (CIs), we carried out the multireference CASSCF trajectory surface-hopping (TSH) molecular dynamics and CASPT2 electronic-structure calculations for a methyl-substituted CI (MCI) and a vinyl-substituted CI (VCI). The results show that for different substituents, the hydrogen bond, ring tension and π-conjugation not only alter the relative stabilities of the conformers/configurations, but also dramatically change the photo-induced channel of CIs. For an anti-MCI, the dominant channel starting from the S1 state is the ring-closure process leading to dioxirane, while in the syn configuration, the intramolecular CHO hydrogen bond hinders the rotation around the C-O bond and thus leads to a high yield of in-plane O-O dissociation towards acetaldehyde (X1A') and the O(1D) atom. In a VCI with an unsaturated substituent, the π-conjugation greatly strengthens the O-O bond and therefore no O-O dissociation is observed in all configurations. In addition, the CHO hydrogen bond in the syn(CO)-VCI further stabilizes the S1-state intermediates and makes them less reactive; in contrast, isomerization to dioxirane becomes the globally dominant channel in the anti(CO)-VCI. The dramatic substitution effects by saturated and unsaturated substituents on CIs found here will deepen the understanding of Criegee-intermediate chemistry.
Collapse
Affiliation(s)
- Yazhen Li
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Kumar M, Shee J, Rudshteyn B, Reichman DR, Friesner RA, Miller CE, Francisco JS. Multiple Stable Isoprene-Ozone Complexes Reveal Complex Entrance Channel Dynamics in the Isoprene + Ozone Reaction. J Am Chem Soc 2020; 142:10806-10813. [PMID: 32431151 DOI: 10.1021/jacs.0c02360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Accurately characterizing isoprene ozonolysis continues to challenge atmospheric chemists. The reaction is believed to be a spontaneous, concerted cycloaddition. However, little information is available about the entrance channel and isoprene-ozone complexes thought to define the long-range portion of the reaction coordinate. Our coupled cluster and auxiliary field quantum Monte Carlo calculations predict multiple stable isoprene-ozone van der Waals complexes for trans-isoprene in the gas phase with moderate association energies. These results indicate that long-range dynamics in the isoprene-ozone entrance channel can impact the overall reaction in the troposphere and provide the spectroscopic information necessary to extend the microwave characterization of isoprene ozonolysis to prereactive complexes. At the air-water interface, Born-Oppenheimer molecular dynamics simulations indicate that the cycloaddition reaction between ozone and trans-isoprene follows a stepwise mechanism, which is quite distinct from our proposed gas-phase mechanism and occurs on a femtosecond time scale. The stepwise nature of isoprene ozonolysis on the aqueous surface is more consistent with the DeMore mechanism than with the Criegee mechanism suggested by the gas-phase calculations, suggesting that the reaction media may play an important role in the reaction. Overall, these predictions aim to provide a missing fundamental piece of molecular insight into isoprene ozonolysis, which has broad tropospheric implications due to its critical role as a nighttime source of hydroxyl radicals.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - James Shee
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Benjamin Rudshteyn
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - David R Reichman
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Richard A Friesner
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Charles E Miller
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, United States
| | - Joseph S Francisco
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
14
|
Lu B, Qin YY, Song C, Qian WY, Wang LN, Zeng XQ. O2-oxidation of cyanomethylene radical: Infrared identification of criegee intermediates syn- and anti-NCC(H)OO. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp2001004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Bo Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yuan-yuan Qin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Chao Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wei-yu Qian
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Li-na Wang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Xiao-qing Zeng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
15
|
Chen Y, Zhou XH, Liu YQ, Jin YQ, Dong WR, Yang XM. Kinetics of the simplest criegee intermediate CH 2OO reacting with CF 3CF=CF 2. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp2002025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Yang Chen
- Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiao-hu Zhou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Fine Chemicals and Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science & Technology, Dalian University of Technology, Dalian 116024, China
| | - Yi-qiang Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Yu-qi Jin
- Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wen-rui Dong
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xue-ming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
16
|
Lakshmanan S, Spada RFK, Machado FBC, Hase WL. Potential Energy Curves for Formation of the CH 2O 2 Criegee Intermediate on the 3CH 2 + 3O 2 Singlet and Triplet Potential Energy Surfaces. J Phys Chem A 2019; 123:8968-8975. [DOI: 10.1021/acs.jpca.9b07368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Sandhiya Lakshmanan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | | | | | - William L. Hase
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
17
|
Wagner JP. Gauging stability and reactivity of carbonyl O-oxide Criegee intermediates. Phys Chem Chem Phys 2019; 21:21530-21540. [PMID: 31536065 DOI: 10.1039/c9cp03790j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we evaluated the effect of substitution on the stability and reactivity of carbonyl O-oxide Criegee intermediates (CIs). In this regard, we computed a set of more than 50 carbonyl oxides at the CBS-QB3 level of theory and assessed their stability by means of an isodesmic reaction equation defining a carbonyl oxide stabilization energy (COSE). Almost all substituents are stabilizing and amino groups in particular leading to COSE values of almost 60 kcal mol-1. As opposed to π-donors, substituents with a strong σ-electron pull destabilize the C[double bond, length as m-dash]O-O group. Furthermore, we studied how the intrinsic stabilization of the Criegee intermediate is reflected in its C[double bond, length as m-dash]O and O-O bond lengths as well as the partial charges on the individual atoms of the carbonyl oxide moiety. As a potential measure for reactivity, we determined the adiabatic singlet-triplet energy gap of all carbonyl oxides. Amino substituted CIs exhibit high-lying triplet states and have relatively large barriers towards addition of water or the OH radical. However, the ΔES-T cannot serve as a rigorous measure for carbonyl oxide reactivity.
Collapse
Affiliation(s)
- J Philipp Wagner
- Institut für Organische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| |
Collapse
|
18
|
Giorio C, Campbell SJ, Bruschi M, Archibald AT, Kalberer M. Detection and identification of Criegee intermediates from the ozonolysis of biogenic and anthropogenic VOCs: comparison between experimental measurements and theoretical calculations. Faraday Discuss 2018; 200:559-578. [PMID: 28580994 PMCID: PMC5708353 DOI: 10.1039/c7fd00025a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ozonolysis of alkenes is a key reaction in the atmosphere, playing an important role in determining the oxidising capacity of the atmosphere and acting as a source of compounds that can contribute to local photochemical “smog”. The reaction products of the initial step of alkene-ozonolysis are Criegee intermediates (CIs), which have for many decades eluded direct experimental detection because of their very short lifetime. We use an innovative experimental technique, stabilisation of CIs with spin traps and analysis with proton transfer reaction mass spectrometry, to measure the gas phase concentration of a series of CIs formed from the ozonolysis of a range of both biogenic and anthropogenic alkenes in flow tube experiments. Density functional theory (DFT) calculations were used to assess the stability of the CI-spin trap adducts and show that the reaction of the investigated CIs with the spin trap occurs very rapidly except for the large β-pinene CI. Our measurement method was used successfully to measure all the expected CIs, emphasising that this new technique is applicable to a wide range of CIs with different molecular structures that were previously unidentified experimentally. In addition, for the first time it was possible to study CIs simultaneously in an even more complex reaction system consisting of more than one olefinic precursor. Comparison between our new experimental measurements, calculations of stability of the CI-spin trap adducts and results from numerical modelling, using the master chemical mechanism (MCM), shows that our new method can be used for the quantification of CIs produced in situ in laboratory experiments.
Collapse
Affiliation(s)
- Chiara Giorio
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | | | | | | | | |
Collapse
|
19
|
Yin C, Takahashi K. Effect of unsaturated substituents in the reaction of Criegee intermediates with water vapor. Phys Chem Chem Phys 2018; 20:20217-20227. [PMID: 30027942 DOI: 10.1039/c8cp02064g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Criegee intermediates (CIs), formed in the reactions of unsaturated hydrocarbons with ozone, are very reactive carbonyl oxides and have recently been suggested as important oxidants in the atmosphere. In this work, we studied the substituent effect on the water monomer and dimer reaction with CIs which include up to three carbon atoms at the QCISD(T)/CBS//B3LYP/6-311+G(2d,2p) level. Our calculation showed that for saturated CIs with a hydrogen atom on the same side as the terminal oxygen atom, the reaction with water vapor would likely dominate the removal processes of these CIs in the atmosphere. On the other hand, for unsaturated CIs, the reactivity toward water vapor decreases compared to the saturated species allowing them to survive in humid atmospheric environments. We also evaluated the kinetic isotope effect in the reaction between CI and water vapor by performing calculations with deuterated water. We found that tunneling is not important and the kinetic isotope effect mainly comes from the difference in the zero point energy between water and deuterated water.
Collapse
Affiliation(s)
- Cangtao Yin
- Institute of Atomic and Molecular Sciences, Academia Sinica, PO-Box 23-166, Taipei, 10617, Taiwan.
| | | |
Collapse
|
20
|
Lakshmanan S, Pratihar S, Machado FBC, Hase WL. Direct Dynamics Simulation of the Thermal 3CH 2 + 3O 2 Reaction. Rate Constant and Product Branching Ratios. J Phys Chem A 2018; 122:4808-4818. [PMID: 29697979 DOI: 10.1021/acs.jpca.8b01002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reaction of 3CH2 with 3O2 is of fundamental importance in combustion, and the reaction is complex as a result of multiple extremely exothermic product channels. In the present study, direct dynamics simulations were performed to study the reaction on both the singlet and triplet potential energy surfaces (PESs). The simulations were performed at the UM06/6-311++G(d,p) level of theory. Trajectories were calculated at a temperature of 300 K, and all reactive trajectories proceeded through the carbonyl oxide Criegee intermediate, CH2OO, on both the singlet and triplet PESs. The triplet surface leads to only one product channel, H2CO + O(3P), while the singlet surface leads to eight product channels with their relative importance as CO + H2O > CO + OH + H ∼ H2CO + O(1D) > HCO + OH ∼ CO2 + H2 ∼ CO + H2 + O(1D) > CO2 + H + H > HCO + O(1D) + H. The reaction on the singlet PES is barrierless, consistent with experiment, and the total rate constant on the singlet surface is (0.93 ± 0.22) × 10-12 cm3 molecule-1 s-1 in comparison to the recommended experimental rate constant of 3.3 × 10-12 cm3 molecule-1 s-1. The simulation product yields for the singlet PES are compared with experiment, and the most significant differences are for H, CO2, and H2O. The reaction on the triplet surface is also barrierless, inconsistent with experiment. A discussion is given of the need for future calculations to address (1) the barrier on the triplet PES for 3CH2 + 3O2 → 3CH2OO, (2) the temperature dependence of the 3CH2 + 3O2 reaction rate constant and product branching ratios, and (3) the possible non-RRKM dynamics of the 1CH2OO Criegee intermediate.
Collapse
Affiliation(s)
- Sandhiya Lakshmanan
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409 , United States
| | - Subha Pratihar
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409 , United States
| | - Francisco B C Machado
- Departamento de Química , Instituto Tecnológico de Aeronáutica , São José dos Campos, São Paulo , Brazil
| | - William L Hase
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409 , United States
| |
Collapse
|
21
|
Lester MI, Klippenstein SJ. Unimolecular Decay of Criegee Intermediates to OH Radical Products: Prompt and Thermal Decay Processes. Acc Chem Res 2018; 51:978-985. [PMID: 29613756 DOI: 10.1021/acs.accounts.8b00077] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Alkene ozonolysis is a primary oxidation pathway for anthropogenic and biogenic alkenes emitted into the troposphere. It is also an important source of atmospheric hydroxyl (OH) radicals, often called the atmosphere's detergent. Alkene ozonolysis takes place through a highly exothermic reaction pathway with multiple intermediates and barriers prior to releasing the OH radical products. This Account focuses on a key reaction intermediate with a carbonyl oxide functional group (-COO), known as the Criegee intermediate, which is formed along with a carbonyl coproduct in alkene ozonolysis reactions. Under atmospheric conditions, the initially energized Criegee intermediates may promptly decay to OH products or be collisionally stabilized prior to thermal decay to OH radicals and other products. Alternatively, the stabilized Criegee intermediates may undergo bimolecular reactions with atmospheric species, including water vapor and sulfur dioxide, which can lead to nucleation and growth of aerosols. The dimethyl-substituted Criegee intermediate, (CH3)2COO, is utilized in this Account to showcase recent efforts to experimentally measure and theoretically predict the rates for prompt and thermal unimolecular decay processes of prototypical Criegee intermediates under laboratory and atmospheric conditions. The experimental laboratory studies utilize an alternative synthesis method to efficiently generate Criegee intermediates via the reaction of iodoalkyl radicals with O2. Infrared excitation is then used to prepare the (CH3)2COO Criegee intermediates at specific energies in the vicinity of the transition state barrier or significantly below the barrier for 1,4-hydrogen transfer that leads to OH products. The rate of unimolecular decay is revealed through direct time-domain measurements of the appearance of OH products utilizing ultraviolet laser-induced fluorescence detection under collision-free conditions. Complementary high-level theoretical calculations are carried out to evaluate the transition state barrier and the energy-dependent unimolecular decay rates for (CH3)2COO using Rice-Ramsperger-Kassel-Marcus (RRKM) theory, which are in excellent accord with the experimental measurements. Quantum mechanical tunneling through the barrier, incorporated through Eckart and semiclassical transition state theory models, is shown to make a significant contribution to the unimolecular decay rates at energies in the vicinity of and much below the barrier. Master equation modeling is used to extend the energy-dependent unimolecular rates to thermal decay rates of (CH3)2COO under tropospheric conditions (high pressure limit), which agree well with recent laboratory measurements [ Smith et al. J. Phys. Chem. A 2016 , 120 , 4789 and Chhantyal-Pun et al. J. Phys. Chem. A 2017 , 121 , 4 - 15 ]. Again, tunneling is shown to enhance the thermal decay rate by orders of magnitude. The experimentally validated unimolecular rates are also utilized in modeling the prompt and thermal unimolecular decay of chemically activated (CH3)2COO formed upon ozonolysis of 2,3-dimethyl-2-butene under atmospheric conditions [ Drozd et al. J. Phys. Chem. A 2017 , 121 , 6036 - 6045 ]. Future challenges lie in extension of these spectroscopic and dynamical methods to Criegee intermediates derived from more complex ozonolysis reactions involving biogenic alkenes.
Collapse
Affiliation(s)
- Marsha I. Lester
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Stephen J. Klippenstein
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
22
|
Almatarneh MH, Elayan IA, Poirier RA, Altarawneh M. The ozonolysis of cyclic monoterpenes: a computational review. CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0587] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Monoterpenes are prevalent organic compounds emitted to the atmosphere, via biogenic activities in various types of plants. Monoterpenes undergo atmospheric decomposition reactions derived by the potent atmospheric oxidizing agents, OH, O3, and NOx. This review critically surveys literature pertinent to the atmospheric removal of monoterpenes by ozone. In general, the ozonolysis reactions of monoterpenes occur through the so-called Criegee mechanism. These classes of reactions generate a wide array of chemical organic and inorganic low vapor pressure (LVP) species. Carbonyl oxides, commonly known as Criegee intermediates (CIs), are the main intermediates from the gas-phase ozonolysis reaction. Herein, we present mechanistic pathways, reactions rate constants, product profiles, thermodynamic, and kinetic results dictating the ozonolysis reactions of selected monoterpenes (namely carene, camphene, limonene, α-pinene, β-pinene, and sabinene). Furthermore, the unimolecular (vinyl hydroperoxide and ester channels) and bimolecular reactions (cycloaddition, insertion, and radical recombination) of the resulting CIs are fully discussed. The orientations and conformations of the resulting primary ozonides (POZs) and CIs of monoterpenes are classified to reveal their plausible effects on reported thermokinetic parameters.
Collapse
Affiliation(s)
- Mansour H. Almatarneh
- Department of Chemistry, University of Jordan, Amman 11942, Jordan
- Chemistry Department, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
| | - Ismael A. Elayan
- Department of Chemistry, University of Jordan, Amman 11942, Jordan
| | - Raymond A. Poirier
- Chemistry Department, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
| | | |
Collapse
|
23
|
Anglada JM, Solé A. Impact of the water dimer on the atmospheric reactivity of carbonyl oxides. Phys Chem Chem Phys 2018; 18:17698-712. [PMID: 27308802 DOI: 10.1039/c6cp02531e] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactions of twelve carbonyl oxides or Criegee intermediates with the water monomer and with the water dimer have been investigated employing high level theoretical methods. The study includes all possible carbonyl oxides arising from the isoprene ozonolysis and the methyl and dimethyl carbonyl oxides that originated from the reaction of ozone with several hydrocarbons. These reactions have great significance in the chemistry of the atmosphere because Criegee intermediates have recently been identified as important oxidants in the troposphere and as precursors of secondary organic aerosols. Moreover, water vapor is one of the most abundant trace gases in the atmosphere and the water dimer can trigger the atmospheric decomposition of Criegee intermediates. Our calculations show that the nature and position of the substituents in carbonyl oxides play a very important role in the reactivity of these species with both the water monomer and the water dimer. This fact results in differences in rate constants of up to six orders of magnitude depending on the carbonyl oxide. In this work we have defined an effective rate constant (keff) for the atmospheric reaction of carbonyl oxides with water vapor, which depends on the temperature and on the relative humidity as well. With this keff we show that the water dimer, despite its low tropospheric concentration, enhances the atmospheric reactivity of Criegee intermediates, but its effect changes with the nature of carbonyl oxide, ranging between 59 and 295 times in the most favorable case (syn-methyl carbonyl oxide), and between 1.4 and 3 times only in the most unfavorable case.
Collapse
Affiliation(s)
- Josep M Anglada
- Departament de Química Biològica i Modelització Molecular, (IQAC - CSIC), Jordi Girona, 18-26, E-08034 Barcelona, Spain.
| | - Albert Solé
- Departament de Ciència de Materials i Química Física, i Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franqués, 1, E-08028 Barcelona, Spain
| |
Collapse
|
24
|
Sršeň Š, Hollas D, Slavíček P. UV absorption of Criegee intermediates: quantitative cross sections from high-level ab initio theory. Phys Chem Chem Phys 2018; 20:6421-6430. [DOI: 10.1039/c8cp00199e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Criegee Intermediates (CIs) are important intermediates in atmospheric and combustion chemistry. We quantitatively model their UV absorption spectra using ab initio techniques.
Collapse
Affiliation(s)
- Š. Sršeň
- University of Chemistry and Technology Prague
- Department of Physical Chemistry
- 16628 Prague 6
- Czech Republic
| | - D. Hollas
- University of Chemistry and Technology Prague
- Department of Physical Chemistry
- 16628 Prague 6
- Czech Republic
| | - P. Slavíček
- University of Chemistry and Technology Prague
- Department of Physical Chemistry
- 16628 Prague 6
- Czech Republic
| |
Collapse
|
25
|
Trabelsi T, Kumar M, Francisco JS. How Does the Central Atom Substitution Impact the Properties of a Criegee Intermediate? Insights from Multireference Calculations. J Am Chem Soc 2017; 139:15446-15449. [DOI: 10.1021/jacs.7b08412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tarek Trabelsi
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Manoj Kumar
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Joseph S. Francisco
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
26
|
Drozd GT, Kurtén T, Donahue NM, Lester MI. Unimolecular Decay of the Dimethyl-Substituted Criegee Intermediate in Alkene Ozonolysis: Decay Time Scales and the Importance of Tunneling. J Phys Chem A 2017; 121:6036-6045. [DOI: 10.1021/acs.jpca.7b05495] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Greg T. Drozd
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Theo Kurtén
- Department
of Chemistry, University of Helsinki, P.O. Box 55, Helsinki 00014, Finland
| | - Neil M. Donahue
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15123, United States
| | - Marsha I. Lester
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
27
|
Vansco MF, Li H, Lester MI. Prompt release of O 1D products upon UV excitation of CH2OO Criegee intermediates. J Chem Phys 2017; 147:013907. [DOI: 10.1063/1.4977987] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Michael F. Vansco
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Hongwei Li
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Marsha I. Lester
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| |
Collapse
|
28
|
Fang Y, Barber VP, Klippenstein SJ, McCoy AB, Lester MI. Tunneling effects in the unimolecular decay of (CH3)2COO Criegee intermediates to OH radical products. J Chem Phys 2017; 146:134307. [DOI: 10.1063/1.4979297] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yi Fang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323,
USA
| | - Victoria P. Barber
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323,
USA
| | - Stephen J. Klippenstein
- Chemical Sciences and Engineering Division,
Argonne National Laboratory, Argonne, Illinois 60439,
USA
| | - Anne B. McCoy
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Marsha I. Lester
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323,
USA
| |
Collapse
|
29
|
Long B, Bao JL, Truhlar DG. Atmospheric Chemistry of Criegee Intermediates: Unimolecular Reactions and Reactions with Water. J Am Chem Soc 2016; 138:14409-14422. [PMID: 27682870 DOI: 10.1021/jacs.6b08655] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Criegee intermediates are produced in the ozonolysis of unsaturated hydrocarbons in the troposphere, and understanding their fate is a prerequisite to modeling climate-controlling atmospheric aerosol formation. Although some experimental and theoretical rate data are available, they are incomplete and partially inconsistent, and they do not cover the tropospheric temperature range. Here, we report quantum chemical rate constants for the reactions of stabilized formaldehyde oxide (CH2OO) and acetaldehyde oxide (syn-CH3CHOO and anti-CH3CHOO) with H2O and for their unimolecular reactions. Our results are obtained by combining post-CCSD(T) electronic structure benchmarks, validated density functional theory potential energy surfaces, and multipath variational transition state theory with multidimensional tunneling, coupled-torsions anharmonicity, and high-frequency anharmonicity. We consider two different types of reaction mechanisms for the bimolecular reactions, namely, (i) addition-coupled hydrogen transfer and (ii) double hydrogen atom transfer (DHAT). First, we show that the MN15-L exchange-correlation functional has kJ/mol accuracy for the CH2OO + H2O and syn-CH3CHOO + H2O reactions. Then we show that, due to tunneling, the DHAT mechanism is especially important in the syn-CH3CHOO + H2O reaction. We show that the dominant pathways for reactions of Criegee intermediates depend on altitude. The results we obtain eliminate the discrepancy between experiment and theory under those conditions where experimental results are available, and we make predictions for the full range of temperatures and pressures encountered in the troposphere and stratosphere. The present results are an important cog in clarifying the atmospheric fate and oxidation processes of Criegee intermediates, and they also show how theoretical methods can provide reliable rate data for complex atmospheric processes.
Collapse
Affiliation(s)
- Bo Long
- College of Information Engineering, Guizhou Minzu University , Guiyang 550025, China.,Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota , Minneapolis, Minnesota 55455-0431, United States
| | - Junwei Lucas Bao
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota , Minneapolis, Minnesota 55455-0431, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota , Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
30
|
Mackenzie-Rae FA, Karton A, Saunders SM. Computational investigation into the gas-phase ozonolysis of the conjugated monoterpene α-phellandrene. Phys Chem Chem Phys 2016; 18:27991-28002. [PMID: 27711539 DOI: 10.1039/c6cp04695a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reaction with ozone is a major atmospheric sink for α-phellandrene, a monoterpene found in both indoor and outdoor environments, however experimental literature concerning the reaction is scarce. In this study, high-level G4(MP2) quantum chemical calculations are used to theoretically characterise the reaction of ozone with both double bonds in α-phellandrene for the first time. Results show that addition of ozone to the least substituted double bond in the conjugated system is preferred. Following addition, thermal and chemically activated unimolecular reactions, including the so-called hydroperoxide and ester or 'hot' acid channels, and internal cyclisation reactions, are characterised to major first generation products. Conjugation present in α-phellandrene allows two favourable Criegee intermediate reaction pathways to proceed that have not previously been considered in the literature; namely a 1,6-allyl resonance stabilised hydrogen shift and intramolecular dioxirane isomerisation to an epoxide. These channels are expected to play an important role alongside conventional routes in the ozonolysis of a-phellandrene. Computational characterisation of the potential energy surface thus provides insight into this previously unstudied system, and will aid future mechanism development and experimental interpretation involving α-phellandrene and structurally similar species, to which the results are expected to extend.
Collapse
Affiliation(s)
- F A Mackenzie-Rae
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia.
| | - A Karton
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia.
| | - S M Saunders
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|
31
|
Brown PA, Inomata S, Tanimoto H, Sato K, Sakamoto Y, Yajima R, Hirokawa J. Dialdehyde Production during Direct Dissociation of Energy-rich Criegee Intermediates Produced by Ozonolysis of Cycloalkenes. CHEM LETT 2016. [DOI: 10.1246/cl.160294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
32
|
Nguyen TB, Tyndall GS, Crounse JD, Teng AP, Bates KH, Schwantes RH, Coggon MM, Zhang L, Feiner P, Milller DO, Skog KM, Rivera-Rios JC, Dorris M, Olson KF, Koss A, Wild RJ, Brown SS, Goldstein AH, de Gouw JA, Brune WH, Keutsch FN, Seinfeld JH, Wennberg PO. Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene. Phys Chem Chem Phys 2016; 18:10241-54. [PMID: 27021601 DOI: 10.1039/c6cp00053c] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We use a large laboratory, modeling, and field dataset to investigate the isoprene + O3 reaction, with the goal of better understanding the fates of the C1 and C4 Criegee intermediates in the atmosphere. Although ozonolysis can produce several distinct Criegee intermediates, the C1 stabilized Criegee (CH2OO, 61 ± 9%) is the only one observed to react bimolecularly. We suggest that the C4 Criegees have a low stabilization fraction and propose pathways for their decomposition. Both prompt and non-prompt reactions are important in the production of OH (28% ± 5%) and formaldehyde (81% ± 16%). The yields of unimolecular products (OH, formaldehyde, methacrolein (42 ± 6%) and methyl vinyl ketone (18 ± 6%)) are fairly insensitive to water, i.e., changes in yields in response to water vapor (≤4% absolute) are within the error of the analysis. We propose a comprehensive reaction mechanism that can be incorporated into atmospheric models, which reproduces laboratory data over a wide range of relative humidities. The mechanism proposes that CH2OO + H2O (k(H2O)∼ 1 × 10(-15) cm(3) molec(-1) s(-1)) yields 73% hydroxymethyl hydroperoxide (HMHP), 6% formaldehyde + H2O2, and 21% formic acid + H2O; and CH2OO + (H2O)2 (k(H2O)2∼ 1 × 10(-12) cm(3) molec(-1) s(-1)) yields 40% HMHP, 6% formaldehyde + H2O2, and 54% formic acid + H2O. Competitive rate determinations (kSO2/k(H2O)n=1,2∼ 2.2 (±0.3) × 10(4)) and field observations suggest that water vapor is a sink for greater than 98% of CH2OO in a Southeastern US forest, even during pollution episodes ([SO2] ∼ 10 ppb). The importance of the CH2OO + (H2O)n reaction is demonstrated by high HMHP mixing ratios observed over the forest canopy. We find that CH2OO does not substantially affect the lifetime of SO2 or HCOOH in the Southeast US, e.g., CH2OO + SO2 reaction is a minor contribution (<6%) to sulfate formation. Extrapolating, these results imply that sulfate production by stabilized Criegees is likely unimportant in regions dominated by the reactivity of ozone with isoprene. In contrast, hydroperoxide, organic acid, and formaldehyde formation from isoprene ozonolysis in those areas may be significant.
Collapse
Affiliation(s)
- Tran B Nguyen
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Smith MC, Chao W, Takahashi K, Boering KA, Lin JJM. Unimolecular Decomposition Rate of the Criegee Intermediate (CH3)2COO Measured Directly with UV Absorption Spectroscopy. J Phys Chem A 2016; 120:4789-98. [DOI: 10.1021/acs.jpca.5b12124] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mica C. Smith
- Department
of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Wen Chao
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Kaito Takahashi
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Kristie A. Boering
- Department
of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department
of Earth and Planetary Science, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jim Jr-Min Lin
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
34
|
Harding LB, Klippenstein SJ. Comment on “A novel and facile decay path of Criegee intermediates by intramolecular insertion reactions via roaming transition states” [J. Chem. Phys. 142, 124312 (2015)]. J Chem Phys 2015; 143:167101. [DOI: 10.1063/1.4934801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
35
|
Li J, Guo H. Full-Dimensional Potential Energy Surface and Ro-vibrational Levels of Dioxirane. J Phys Chem A 2015; 120:2991-8. [DOI: 10.1021/acs.jpca.5b08491] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jun Li
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Hua Guo
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
36
|
Yu HG, Ndengue S, Li J, Dawes R, Guo H. Vibrational energy levels of the simplest Criegee intermediate (CH2OO) from full-dimensional Lanczos, MCTDH, and MULTIMODE calculations. J Chem Phys 2015; 143:084311. [DOI: 10.1063/1.4929707] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hua-Gen Yu
- Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Steve Ndengue
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Jun Li
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
37
|
|
38
|
Liu F, Fang Y, Kumar M, Thompson WH, Lester MI. Direct observation of vinyl hydroperoxide. Phys Chem Chem Phys 2015. [PMID: 26199999 DOI: 10.1039/c5cp02917a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many alkyl-substituted Criegee intermediates are predicted to undergo an intramolecular 1,4-hydrogen transfer to form isomeric vinyl hydroperoxide species (C[double bond, length as m-dash]COOH moiety), which break apart to release OH and vinoxy radicals. We report direct detection of stabilized vinyl hydroperoxides formed via carboxylic acid-catalyzed tautomerization of Criegee intermediates. A doubly hydrogen-bonded interaction between the Criegee intermediate and carboxylic acid facilitates efficient hydrogen transfer through a double hydrogen shift. Deuteration of formic or acetic acid permits migration of a D atom to yield partially deuterated vinyl hydroperoxides, which are distinguished from the CH3CHOO, (CH3)2COO, and CH3CH2CHOO Criegee intermediates by mass. Using 10.5 eV photoionization, three prototypical vinyl hydroperoxides, CH2[double bond, length as m-dash]CHOOD, CH2[double bond, length as m-dash]C(CH3)OOD, and CH3CH[double bond, length as m-dash]CHOOD, are detected directly. Complementary electronic structure calculations reveal several reaction pathways, including the barrierless acid-catalyzed tautomerization reaction predicted previously and a barrierless addition reaction that yields hydroperoxy alkyl formate.
Collapse
Affiliation(s)
- Fang Liu
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA.
| | | | | | | | | |
Collapse
|
39
|
Li H, Fang Y, Kidwell NM, Beames JM, Lester MI. UV Photodissociation Dynamics of the CH3CHOO Criegee Intermediate: Action Spectroscopy and Velocity Map Imaging of O-Atom Products. J Phys Chem A 2015; 119:8328-37. [DOI: 10.1021/acs.jpca.5b05352] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hongwei Li
- Department
of Chemistry, University of Pennsylvania, Philadelphia Pennsylvania 19104-6323, United States
| | - Yi Fang
- Department
of Chemistry, University of Pennsylvania, Philadelphia Pennsylvania 19104-6323, United States
| | - Nathanael M. Kidwell
- Department
of Chemistry, University of Pennsylvania, Philadelphia Pennsylvania 19104-6323, United States
| | - Joseph M. Beames
- Department
of Chemistry, University of Pennsylvania, Philadelphia Pennsylvania 19104-6323, United States
| | - Marsha I. Lester
- Department
of Chemistry, University of Pennsylvania, Philadelphia Pennsylvania 19104-6323, United States
| |
Collapse
|
40
|
Lee YP. Perspective: Spectroscopy and kinetics of small gaseous Criegee intermediates. J Chem Phys 2015; 143:020901. [DOI: 10.1063/1.4923165] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yuan-Pern Lee
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan and Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
41
|
Li H, Fang Y, Beames JM, Lester MI. Velocity map imaging of O-atom products from UV photodissociation of the CH2OO Criegee intermediate. J Chem Phys 2015; 142:214312. [DOI: 10.1063/1.4921990] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Hongwei Li
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Yi Fang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Joseph M. Beames
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Marsha I. Lester
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| |
Collapse
|
42
|
Nguyen TL, Lee H, Matthews DA, McCarthy MC, Stanton JF. Stabilization of the Simplest Criegee Intermediate from the Reaction between Ozone and Ethylene: A High-Level Quantum Chemical and Kinetic Analysis of Ozonolysis. J Phys Chem A 2015; 119:5524-33. [DOI: 10.1021/acs.jpca.5b02088] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thanh Lam Nguyen
- Department
of Chemistry, The University of Texas at Austin, Mail Stop A5300, Austin, Texas 78712-0165, United States
| | - Hyunwoo Lee
- Department
of Chemistry, The University of Texas at Austin, Mail Stop A5300, Austin, Texas 78712-0165, United States
| | - Devin A. Matthews
- Department
of Chemistry, The University of Texas at Austin, Mail Stop A5300, Austin, Texas 78712-0165, United States
| | - Michael C. McCarthy
- Harvard-Smithsonian
Center for Astrophysics, 60 Garden
Street, Cambridge, Massachusetts 02138, United States
| | - John F. Stanton
- Department
of Chemistry, The University of Texas at Austin, Mail Stop A5300, Austin, Texas 78712-0165, United States
| |
Collapse
|
43
|
Vereecken L, Glowacki DR, Pilling MJ. Theoretical Chemical Kinetics in Tropospheric Chemistry: Methodologies and Applications. Chem Rev 2015; 115:4063-114. [DOI: 10.1021/cr500488p] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Luc Vereecken
- Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - David R. Glowacki
- PULSE
Institute and Department of Chemistry, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
- Department
of Computer Science, University of Bristol, Bristol BS8 1UB, United Kingdom
| | | |
Collapse
|
44
|
Nguyen TN, Putikam R, Lin MC. A novel and facile decay path of Criegee intermediates by intramolecular insertion reactions via roaming transition states. J Chem Phys 2015; 142:124312. [DOI: 10.1063/1.4914987] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Trong-Nghia Nguyen
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Physical Chemistry, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Raghunath Putikam
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - M. C. Lin
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
45
|
Berndt T, Kaethner R, Voigtländer J, Stratmann F, Pfeifle M, Reichle P, Sipilä M, Kulmala M, Olzmann M. Kinetics of the unimolecular reaction of CH2OO and the bimolecular reactions with the water monomer, acetaldehyde and acetone under atmospheric conditions. Phys Chem Chem Phys 2015; 17:19862-73. [DOI: 10.1039/c5cp02224j] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The rate coefficients of the unimolecular reaction of CH2OO and the bimolecular reactions with the water monomer and carbonyls were measured.
Collapse
Affiliation(s)
- Torsten Berndt
- Leibniz-Institut für Troposphärenforschung
- TROPOS
- Leipzig
- Germany
| | - Ralf Kaethner
- Leibniz-Institut für Troposphärenforschung
- TROPOS
- Leipzig
- Germany
| | | | - Frank Stratmann
- Leibniz-Institut für Troposphärenforschung
- TROPOS
- Leipzig
- Germany
| | - Mark Pfeifle
- Institut für Physikalische Chemie
- Karlsruher Institut für Technologie (KIT)
- Karlsruhe
- Germany
| | - Patrick Reichle
- Institut für Physikalische Chemie
- Karlsruher Institut für Technologie (KIT)
- Karlsruhe
- Germany
| | - Mikko Sipilä
- Department of Physics
- University of Helsinki
- Helsinki
- Finland
| | - Markku Kulmala
- Department of Physics
- University of Helsinki
- Helsinki
- Finland
| | - Matthias Olzmann
- Institut für Physikalische Chemie
- Karlsruher Institut für Technologie (KIT)
- Karlsruhe
- Germany
| |
Collapse
|
46
|
Li M, Li J, Cao H, Han D, He M. Mechanistic and kinetic investigations on the ozonolysis of isopropenyl acetate and propenyl acetate in atmosphere. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
Liu F, Beames JM, Petit AS, McCoy AB, Lester MI. Infrared-driven unimolecular reaction of CH3CHOO Criegee intermediates to OH radical products. Science 2014; 345:1596-8. [DOI: 10.1126/science.1257158] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
48
|
Li J, Carter S, Bowman JM, Dawes R, Xie D, Guo H. High-Level, First-Principles, Full-Dimensional Quantum Calculation of the Ro-vibrational Spectrum of the Simplest Criegee Intermediate (CH2OO). J Phys Chem Lett 2014; 5:2364-2369. [PMID: 26279560 DOI: 10.1021/jz501059m] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The ro-vibrational spectrum of the simplest Criegee intermediate (CH2OO) has been determined quantum mechanically based on nine-dimensional potential energy and dipole surfaces for its ground electronic state. The potential energy surface is fitted to more than 50 000 high-level ab initio points with a root-mean-square error of 25 cm(-1), using a recently proposed permutation invariant polynomial neural network method. The calculated rotational constants, vibrational frequencies, and spectral intensities of CH2OO are in excellent agreement with experiment. The potential energy surface provides a valuable platform for studying highly excited vibrational and unimolecular reaction dynamics of this important molecule.
Collapse
Affiliation(s)
- Jun Li
- †Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Stuart Carter
- ‡Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Joel M Bowman
- ‡Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Richard Dawes
- §Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Daiqian Xie
- ∥Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Hua Guo
- †Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
49
|
Liu F, Beames JM, Green AM, Lester MI. UV spectroscopic characterization of dimethyl- and ethyl-substituted carbonyl oxides. J Phys Chem A 2014; 118:2298-306. [PMID: 24621008 DOI: 10.1021/jp412726z] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dimethyl- and ethyl-substituted Criegee intermediates, (CH3)2COO and CH3CH2CHOO, are photolytically generated from diiodo precursors, detected by VUV photoionization at 118 nm, and spectroscopically characterized via UV-induced depletion of the m/z = 74 signals under jet-cooled conditions. In each case, UV excitation resonant with the B-X transition results in significant ground-state depletion, reflecting the large absorption cross section and rapid dynamics in the excited B state. The broad UV absorption spectra of both (CH3)2COO and CH3CH2CHOO peak at ~320 nm with absorption cross sections approaching ~4 × 10(-17) cm(2) molec(-1). The UV absorption spectra for (CH3)2COO and CH3CH2CHOO are similar to that reported previously for syn-CH3CHOO, suggesting analogous intramolecular interactions between the α-H and terminal O of the COO groups. Hydroxyl radical products generated concurrently with the Criegee intermediates are detected by 1 + 1' resonance enhanced multiphoton ionization. The OH signals, scaled relative to those for the Criegee intermediates, are compared with prior studies of OH yield from alkene ozonolysis. The stationary points along the reaction coordinates from the alkyl-substituted Criegee intermediates to vinyl hydroperoxides and OH products are also computed to provide insight on the OH yields.
Collapse
Affiliation(s)
- Fang Liu
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | | | | | | |
Collapse
|
50
|
Taatjes CA, Shallcross DE, Percival CJ. Research frontiers in the chemistry of Criegee intermediates and tropospheric ozonolysis. Phys Chem Chem Phys 2014; 16:1704-18. [DOI: 10.1039/c3cp52842a] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|