• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643727)   Today's Articles (3751)   Subscriber (50650)
For: Anglada JM, Bofill JM, Olivella S, Solé A. Unimolecular Isomerizations and Oxygen Atom Loss in Formaldehyde and Acetaldehyde Carbonyl Oxides. A Theoretical Investigation. J Am Chem Soc 1996. [DOI: 10.1021/ja953858a] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Number Cited by Other Article(s)
1
Kuwata KT. Computational Modeling of the Conformation-Dependent Atmospheric Reactivity of Criegee Intermediates. J Phys Chem A 2024;128:7331-7345. [PMID: 39172159 DOI: 10.1021/acs.jpca.4c04517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
2
Guidry LM, Bardash LA, Yigiter A, Ravi S, Marchetti B, Karsili TNV. The role of solar photolysis in the atmospheric removal of methacrolein oxide and the methacrolein oxide-water van-der Waals complex in pristine environments. Photochem Photobiol 2024. [PMID: 39095969 DOI: 10.1111/php.14007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
3
Sit MK, Das S, Samanta K. Semiclassical Dynamics on Machine-Learned Coupled Multireference Potential Energy Surfaces: Application to the Photodissociation of the Simplest Criegee Intermediate. J Phys Chem A 2023;127:2376-2387. [PMID: 36856588 DOI: 10.1021/acs.jpca.2c07229] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
4
Ouyang WY, Wang WL, Zhang YL, Cai HY, Wu QY. VUV/UV oxidation performance for the elimination of recalcitrant aldehydes in water and its variation along the light-path. WATER RESEARCH 2023;228:119390. [PMID: 36423547 DOI: 10.1016/j.watres.2022.119390] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/19/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
5
Yang J, Li Y, Makroni L, Liu F. The photoisomerization mechanism of methacrolein oxide (MACR-OO): the cyclic dioxole formation pathway revealed. Phys Chem Chem Phys 2022;24:22531-22537. [PMID: 36111632 DOI: 10.1039/d2cp03028d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
6
Xia Y, Long B, Lin S, Teng C, Bao JL, Truhlar DG. Large Pressure Effects Caused by Internal Rotation in the s-cis-syn-Acrolein Stabilized Criegee Intermediate at Tropospheric Temperature and Pressure. J Am Chem Soc 2022;144:4828-4838. [PMID: 35262353 DOI: 10.1021/jacs.1c12324] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
7
Mazarei E, Barker JR. CH2 + O2: reaction mechanism, biradical and zwitterionic character, and formation of CH2OO, the simplest Criegee intermediate. Phys Chem Chem Phys 2022;24:914-927. [PMID: 34913447 DOI: 10.1039/d1cp04372b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
8
Wang G, Liu T, Caracciolo A, Vansco MF, Trongsiriwat N, Walsh PJ, Marchetti B, Karsili TNV, Lester MI. Photodissociation dynamics of methyl vinyl ketone oxide: A four-carbon unsaturated Criegee intermediate from isoprene ozonolysis. J Chem Phys 2021;155:174305. [PMID: 34742186 DOI: 10.1063/5.0068664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]  Open
9
Ji YT, Lee YP. Dynamics of Reaction CH3CHI + O2 Investigated via Infrared Emission of Products CO, CO2, and OH. J Phys Chem A 2021;125:8373-8385. [PMID: 34524829 DOI: 10.1021/acs.jpca.1c05610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
10
Luo X, Wang Y, Xie X, Su T, Chen J, Qin Z, Ji H. Catalytic Ozonation of Cinnamaldehyde to Benzaldehyde over Ca(OH) 2. ChemistrySelect 2021. [DOI: 10.1002/slct.202100786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
11
Li YZ, Yang JW, Makroni L, Wang WL, Liu FY. Photodynamics of methyl-vinyl Criegee intermediate: Different conical intersections govern the fates of syn/anti configurations. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp2006088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
12
Li Y, Gong Q, Yang J, Feng Q, Song T, Wang W, Liu F. Hydrogen bond, ring tension and π-conjugation effects: methyl and vinyl substitutions dramatically change the photodynamics of Criegee intermediates. Phys Chem Chem Phys 2020;22:15295-15302. [PMID: 32618986 DOI: 10.1039/d0cp01873b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
13
Kumar M, Shee J, Rudshteyn B, Reichman DR, Friesner RA, Miller CE, Francisco JS. Multiple Stable Isoprene-Ozone Complexes Reveal Complex Entrance Channel Dynamics in the Isoprene + Ozone Reaction. J Am Chem Soc 2020;142:10806-10813. [PMID: 32431151 DOI: 10.1021/jacs.0c02360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
14
Lu B, Qin YY, Song C, Qian WY, Wang LN, Zeng XQ. O2-oxidation of cyanomethylene radical: Infrared identification of criegee intermediates syn- and anti-NCC(H)OO. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp2001004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
15
Chen Y, Zhou XH, Liu YQ, Jin YQ, Dong WR, Yang XM. Kinetics of the simplest criegee intermediate CH2OO reacting with CF3CF=CF2. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp2002025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
16
Lakshmanan S, Spada RFK, Machado FBC, Hase WL. Potential Energy Curves for Formation of the CH2O2 Criegee Intermediate on the 3CH2 + 3O2 Singlet and Triplet Potential Energy Surfaces. J Phys Chem A 2019;123:8968-8975. [DOI: 10.1021/acs.jpca.9b07368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
17
Wagner JP. Gauging stability and reactivity of carbonyl O-oxide Criegee intermediates. Phys Chem Chem Phys 2019;21:21530-21540. [PMID: 31536065 DOI: 10.1039/c9cp03790j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
18
Giorio C, Campbell SJ, Bruschi M, Archibald AT, Kalberer M. Detection and identification of Criegee intermediates from the ozonolysis of biogenic and anthropogenic VOCs: comparison between experimental measurements and theoretical calculations. Faraday Discuss 2018;200:559-578. [PMID: 28580994 PMCID: PMC5708353 DOI: 10.1039/c7fd00025a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
19
Yin C, Takahashi K. Effect of unsaturated substituents in the reaction of Criegee intermediates with water vapor. Phys Chem Chem Phys 2018;20:20217-20227. [PMID: 30027942 DOI: 10.1039/c8cp02064g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
20
Lakshmanan S, Pratihar S, Machado FBC, Hase WL. Direct Dynamics Simulation of the Thermal 3CH2 + 3O2 Reaction. Rate Constant and Product Branching Ratios. J Phys Chem A 2018;122:4808-4818. [PMID: 29697979 DOI: 10.1021/acs.jpca.8b01002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
21
Lester MI, Klippenstein SJ. Unimolecular Decay of Criegee Intermediates to OH Radical Products: Prompt and Thermal Decay Processes. Acc Chem Res 2018;51:978-985. [PMID: 29613756 DOI: 10.1021/acs.accounts.8b00077] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
22
Almatarneh MH, Elayan IA, Poirier RA, Altarawneh M. The ozonolysis of cyclic monoterpenes: a computational review. CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0587] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
23
Anglada JM, Solé A. Impact of the water dimer on the atmospheric reactivity of carbonyl oxides. Phys Chem Chem Phys 2018;18:17698-712. [PMID: 27308802 DOI: 10.1039/c6cp02531e] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
24
Sršeň Š, Hollas D, Slavíček P. UV absorption of Criegee intermediates: quantitative cross sections from high-level ab initio theory. Phys Chem Chem Phys 2018;20:6421-6430. [DOI: 10.1039/c8cp00199e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
25
Trabelsi T, Kumar M, Francisco JS. How Does the Central Atom Substitution Impact the Properties of a Criegee Intermediate? Insights from Multireference Calculations. J Am Chem Soc 2017;139:15446-15449. [DOI: 10.1021/jacs.7b08412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
26
Drozd GT, Kurtén T, Donahue NM, Lester MI. Unimolecular Decay of the Dimethyl-Substituted Criegee Intermediate in Alkene Ozonolysis: Decay Time Scales and the Importance of Tunneling. J Phys Chem A 2017;121:6036-6045. [DOI: 10.1021/acs.jpca.7b05495] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
27
Vansco MF, Li H, Lester MI. Prompt release of O 1D products upon UV excitation of CH2OO Criegee intermediates. J Chem Phys 2017;147:013907. [DOI: 10.1063/1.4977987] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
28
Fang Y, Barber VP, Klippenstein SJ, McCoy AB, Lester MI. Tunneling effects in the unimolecular decay of (CH3)2COO Criegee intermediates to OH radical products. J Chem Phys 2017;146:134307. [DOI: 10.1063/1.4979297] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
29
Long B, Bao JL, Truhlar DG. Atmospheric Chemistry of Criegee Intermediates: Unimolecular Reactions and Reactions with Water. J Am Chem Soc 2016;138:14409-14422. [PMID: 27682870 DOI: 10.1021/jacs.6b08655] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
30
Mackenzie-Rae FA, Karton A, Saunders SM. Computational investigation into the gas-phase ozonolysis of the conjugated monoterpene α-phellandrene. Phys Chem Chem Phys 2016;18:27991-28002. [PMID: 27711539 DOI: 10.1039/c6cp04695a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
31
Brown PA, Inomata S, Tanimoto H, Sato K, Sakamoto Y, Yajima R, Hirokawa J. Dialdehyde Production during Direct Dissociation of Energy-rich Criegee Intermediates Produced by Ozonolysis of Cycloalkenes. CHEM LETT 2016. [DOI: 10.1246/cl.160294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
32
Nguyen TB, Tyndall GS, Crounse JD, Teng AP, Bates KH, Schwantes RH, Coggon MM, Zhang L, Feiner P, Milller DO, Skog KM, Rivera-Rios JC, Dorris M, Olson KF, Koss A, Wild RJ, Brown SS, Goldstein AH, de Gouw JA, Brune WH, Keutsch FN, Seinfeld JH, Wennberg PO. Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene. Phys Chem Chem Phys 2016;18:10241-54. [PMID: 27021601 DOI: 10.1039/c6cp00053c] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
33
Smith MC, Chao W, Takahashi K, Boering KA, Lin JJM. Unimolecular Decomposition Rate of the Criegee Intermediate (CH3)2COO Measured Directly with UV Absorption Spectroscopy. J Phys Chem A 2016;120:4789-98. [DOI: 10.1021/acs.jpca.5b12124] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
34
Harding LB, Klippenstein SJ. Comment on “A novel and facile decay path of Criegee intermediates by intramolecular insertion reactions via roaming transition states” [J. Chem. Phys. 142, 124312 (2015)]. J Chem Phys 2015;143:167101. [DOI: 10.1063/1.4934801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]  Open
35
Li J, Guo H. Full-Dimensional Potential Energy Surface and Ro-vibrational Levels of Dioxirane. J Phys Chem A 2015;120:2991-8. [DOI: 10.1021/acs.jpca.5b08491] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
36
Yu HG, Ndengue S, Li J, Dawes R, Guo H. Vibrational energy levels of the simplest Criegee intermediate (CH2OO) from full-dimensional Lanczos, MCTDH, and MULTIMODE calculations. J Chem Phys 2015;143:084311. [DOI: 10.1063/1.4929707] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
37
Osborn DL, Taatjes CA. The physical chemistry of Criegee intermediates in the gas phase. INT REV PHYS CHEM 2015. [DOI: 10.1080/0144235x.2015.1055676] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
38
Liu F, Fang Y, Kumar M, Thompson WH, Lester MI. Direct observation of vinyl hydroperoxide. Phys Chem Chem Phys 2015. [PMID: 26199999 DOI: 10.1039/c5cp02917a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
39
Li H, Fang Y, Kidwell NM, Beames JM, Lester MI. UV Photodissociation Dynamics of the CH3CHOO Criegee Intermediate: Action Spectroscopy and Velocity Map Imaging of O-Atom Products. J Phys Chem A 2015;119:8328-37. [DOI: 10.1021/acs.jpca.5b05352] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
40
Lee YP. Perspective: Spectroscopy and kinetics of small gaseous Criegee intermediates. J Chem Phys 2015;143:020901. [DOI: 10.1063/1.4923165] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
41
Li H, Fang Y, Beames JM, Lester MI. Velocity map imaging of O-atom products from UV photodissociation of the CH2OO Criegee intermediate. J Chem Phys 2015;142:214312. [DOI: 10.1063/1.4921990] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]  Open
42
Nguyen TL, Lee H, Matthews DA, McCarthy MC, Stanton JF. Stabilization of the Simplest Criegee Intermediate from the Reaction between Ozone and Ethylene: A High-Level Quantum Chemical and Kinetic Analysis of Ozonolysis. J Phys Chem A 2015;119:5524-33. [DOI: 10.1021/acs.jpca.5b02088] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
43
Vereecken L, Glowacki DR, Pilling MJ. Theoretical Chemical Kinetics in Tropospheric Chemistry: Methodologies and Applications. Chem Rev 2015;115:4063-114. [DOI: 10.1021/cr500488p] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
44
Nguyen TN, Putikam R, Lin MC. A novel and facile decay path of Criegee intermediates by intramolecular insertion reactions via roaming transition states. J Chem Phys 2015;142:124312. [DOI: 10.1063/1.4914987] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]  Open
45
Berndt T, Kaethner R, Voigtländer J, Stratmann F, Pfeifle M, Reichle P, Sipilä M, Kulmala M, Olzmann M. Kinetics of the unimolecular reaction of CH2OO and the bimolecular reactions with the water monomer, acetaldehyde and acetone under atmospheric conditions. Phys Chem Chem Phys 2015;17:19862-73. [DOI: 10.1039/c5cp02224j] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
46
Li M, Li J, Cao H, Han D, He M. Mechanistic and kinetic investigations on the ozonolysis of isopropenyl acetate and propenyl acetate in atmosphere. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
47
Liu F, Beames JM, Petit AS, McCoy AB, Lester MI. Infrared-driven unimolecular reaction of CH3CHOO Criegee intermediates to OH radical products. Science 2014;345:1596-8. [DOI: 10.1126/science.1257158] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
48
Li J, Carter S, Bowman JM, Dawes R, Xie D, Guo H. High-Level, First-Principles, Full-Dimensional Quantum Calculation of the Ro-vibrational Spectrum of the Simplest Criegee Intermediate (CH2OO). J Phys Chem Lett 2014;5:2364-2369. [PMID: 26279560 DOI: 10.1021/jz501059m] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
49
Liu F, Beames JM, Green AM, Lester MI. UV spectroscopic characterization of dimethyl- and ethyl-substituted carbonyl oxides. J Phys Chem A 2014;118:2298-306. [PMID: 24621008 DOI: 10.1021/jp412726z] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
50
Taatjes CA, Shallcross DE, Percival CJ. Research frontiers in the chemistry of Criegee intermediates and tropospheric ozonolysis. Phys Chem Chem Phys 2014;16:1704-18. [DOI: 10.1039/c3cp52842a] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
PrevPage 1 of 3 123Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA