1
|
Shen L, Bi Y, Yu J, Zhong Y, Chen W, Zhao Z, Ding J, Shu G, Chen M, Lu C, Ji J. The biological applications of near-infrared optical nanomaterials in atherosclerosis. J Nanobiotechnology 2024; 22:478. [PMID: 39135099 PMCID: PMC11320980 DOI: 10.1186/s12951-024-02703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/05/2024] [Indexed: 08/15/2024] Open
Abstract
PURPOSE OF REVIEW Atherosclerosis, a highly pathogenic and lethal disease, is difficult to locate accurately via conventional imaging because of its scattered and deep lesions. However, second near-infrared (NIR-II) nanomaterials show great application potential in the tracing of atherosclerotic plaques due to their excellent penetration and angiographic capabilities. RECENT FINDINGS With the development of nanotechnology, among many nanomaterials available for the visual diagnosis and treatment of cardiovascular diseases, optical nanomaterials provide strong support for various biomedical applications because of their advantages, such as noninvasive, nondestructive and molecular component imaging. Among optical nanomaterials of different wavelengths, NIR-II-range (900 ~ 1700 nm) nanomaterials have been gradually applied in the visual diagnosis and treatment of atherosclerosis and other vascular diseases because of their deep biological tissue penetration and limited background interference. This review explored in detail the prospects and challenges of the biological imaging and clinical application of NIR-II nanomaterials in treating atherosclerosis.
Collapse
Affiliation(s)
- Lin Shen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Yanran Bi
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Junchao Yu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Yi Zhong
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Weiqian Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Jiayi Ding
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Gaofeng Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Chenying Lu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China.
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China.
| |
Collapse
|
2
|
Dissanayake KC, Yuan D, Winter AH. Structure-Photoreactivity Studies of BODIPY Photocages: Limitations of the Activation Barrier for Optimizing Photoreactions. J Org Chem 2024; 89:6740-6748. [PMID: 38695507 PMCID: PMC11198865 DOI: 10.1021/acs.joc.3c02980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
BODIPY photocages are photoreactive chromophores that release covalently linked cargo upon absorption of visible light. Here, we used computations of the T1 photoheterolysis barrier to ascertain whether a computational approach could assist in a priori structure design by identifying new structures with higher quantum yields of photorelease. The electronic structure-photoreactivity relationships were elucidated for boron-substituted and core-functionalized 2-substituted BODIPY photocages as well as aryl substitutions at the meso-methyl position. Although there is a clear trend for the 2-substituted derivatives, with donor-substituted derivatives featuring both lower computed barriers and higher experimental quantum yields, no trend in the quantum yield with the computed activation barrier is found for the meso-methyl-substituted or boron-substituted derivatives. The lack of a correlation between the experimental quantum yield with the computed barrier in the latter two substitution cases is attributed to the substituents having larger effects on the rates of competing channels (internal conversion and competitive photoreactions) than on the rate of the photoheterolysis channel. Thus, although in some cases computed photoreaction barriers can aid in identifying structures with higher quantum yields, the ignored impacts of how changing the structure affects the rates of competing photophysical/photochemical channels limit the effectiveness of this single-parameter approach.
Collapse
Affiliation(s)
- Komadhie C Dissanayake
- Department of Chemistry, Iowa State University, 1608 Gilman Hall, Ames, Iowa 50010, United States
| | - Ding Yuan
- Department of Chemistry, Iowa State University, 1608 Gilman Hall, Ames, Iowa 50010, United States
| | - Arthur H Winter
- Department of Chemistry, Iowa State University, 1608 Gilman Hall, Ames, Iowa 50010, United States
| |
Collapse
|
3
|
Arora S, Mao C. Light-regulated RNA interference induced by p-hydroxyphenacyl-modified siRNA in mammalian cells. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:316-339. [PMID: 37700699 DOI: 10.1080/15257770.2023.2258171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023]
Abstract
siRNA is an important tool for modulating gene expression in current biomedical research. It would be highly desirable for siRNA to respond to an external stimulus. In this paper, we report a convenient, photolabile caging agent to regulate siRNA functions. 2-bromo-4'-hydroxyacetophenone (BHAP) can readily modify phosphorothioate backbones and inhibit siRNAs. Mild UV irradiation will cleave the modifying moiety to generate natural nucleic acid backbones, thus activating siRNA functions. Such modification is conveniently conducted in an aqueous solution with high efficiency and is cost-effective and scalable. This approach provides a convenient tool for the controlled regulation of gene expression by deploying minimal usage of complex organic synthesis for site-specific installation of the caging group to siRNA unlike previous reported works that required a series of intricate organic synthesis and cumbersome purification techniques to achieve similar aims. This study will open new doors for optochemical regulation of a variety of genes by pHP caging group in mammalian cell culture.
Collapse
Affiliation(s)
- Swati Arora
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
- Pharma Services Group, Patheon/Thermo Fisher Scientific, Florence, South Carolina, USA
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
4
|
Shrestha P, Kand D, Weinstain R, Winter AH. meso-Methyl BODIPY Photocages: Mechanisms, Photochemical Properties, and Applications. J Am Chem Soc 2023; 145:17497-17514. [PMID: 37535757 DOI: 10.1021/jacs.3c01682] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
meso-methyl BODIPY photocages have recently emerged as an exciting new class of photoremovable protecting groups (PPGs) that release leaving groups upon absorption of visible to near-infrared light. In this Perspective, we summarize the development of these PPGs and highlight their critical photochemical properties and applications. We discuss the absorption properties of the BODIPY PPGs, structure-photoreactivity studies, insights into the photoreaction mechanism, the scope of functional groups that can be caged, the chemical synthesis of these structures, and how substituents can alter the water solubility of the PPG and direct the PPG into specific subcellular compartments. Applications that exploit the unique optical and photochemical properties of BODIPY PPGs are also discussed, from wavelength-selective photoactivation to biological studies to photoresponsive organic materials and photomedicine.
Collapse
Affiliation(s)
- Pradeep Shrestha
- Department of Chemistry, Iowa State University, Ames, Iowa 50010, United States
| | - Dnyaneshwar Kand
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Roy Weinstain
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Arthur H Winter
- Department of Chemistry, Iowa State University, Ames, Iowa 50010, United States
| |
Collapse
|
5
|
Mann D, Labudda K, Zimmermann S, Vocke KU, Gasper R, Kötting C, Hofmann E. ATP binding and ATP hydrolysis in full-length MsbA monitored via time-resolved Fourier transform infrared spectroscopy. Biol Chem 2023:hsz-2023-0122. [PMID: 37185095 DOI: 10.1515/hsz-2023-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
The essential Escherichia coli ATPase MsbA is a lipid flippase that serves as a prototype for multi drug resistant ABC transporters. Its physiological function is the transport of lipopolisaccharides to build up the outer membranes of gram negative bacteria. Although several structural and biochemical studies of MsbA have been conducted previously, a detailed picture of the dynamic processes that link ATP hydrolysis to allocrit transport remains elusive. We report here for the first time time-resolved Fourier transform infrared (FTIR) spectroscopic measurements of the ATP binding and ATP hydrolysis reaction of full-length MsbA and determined reaction rates at 288 K of k 1 = 0.49 ± 0.28 s-1 and k 2 = 0.014 ± 0.003 s-1, respectively. We further verified these rates with photocaged NPEcgAppNHp where only nucleotide binding was observable and the negative mutant MsbA-H537A that showed slow hydrolysis (k 2 < 2 × 10-4 s-1). Besides single turnover kinetics, FTIR measurements also deliver IR signatures of all educts, products and the protein. ADP remains protein-bound after ATP hydrolysis. In addition, the spectral changes observed for the two variants MsbA-S378A and MsbA-S482A correlated with the loss of hydrogen bonding to the γ-phosphate of ATP. This study paves the way for FTIR-spectroscopic investigations of allocrite transport in full-length MsbA.
Collapse
Affiliation(s)
- Daniel Mann
- Ruhr University Bochum, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Forschungszentrum Jülich GmbH, Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons / ER-C-3: Structural Biology, D-52425 Jülich, Germany
- Forschungszentrum Jülich GmbH, Institute for Biological Information Processing / IBI-6 Cellular Structural Biology, D-52425 Jülich, Germany
| | - Kristin Labudda
- Ruhr University Bochum, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Ruhr University Bochum, Protein Crystallography, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Ruhr University Bochum, Center for Protein Diagnostics (PRODI), Biospectroscopy, D-44780 Bochum, Germany
| | - Sophie Zimmermann
- Ruhr University Bochum, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Ruhr University Bochum, Protein Crystallography, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Kai Ulrich Vocke
- Ruhr University Bochum, Protein Crystallography, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Raphael Gasper
- Ruhr University Bochum, Protein Crystallography, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Max Planck Institute of Molecular Physiology, Crystallography and Biophysics Facility, D-44227 Dortmund, Germany
| | - Carsten Kötting
- Ruhr University Bochum, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Ruhr University Bochum, Center for Protein Diagnostics (PRODI), Biospectroscopy, D-44780 Bochum, Germany
| | - Eckhard Hofmann
- Ruhr University Bochum, Protein Crystallography, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
| |
Collapse
|
6
|
Oang KY, Park S, Moon J, Park E, Lee HK, Sato T, Nozawa S, Adachi SI, Kim J, Kim J, Sohn JH, Ihee H. Extracting Kinetics and Thermodynamics of Molecules without Heavy Atoms via Time-Resolved Solvent Scattering Signals. J Phys Chem Lett 2023; 14:3103-3110. [PMID: 36951437 DOI: 10.1021/acs.jpclett.3c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Time-resolved X-ray liquidography (TRXL) has emerged as a powerful technique for studying the structural dynamics of small molecules and macromolecules in liquid solutions. However, TRXL has limited sensitivity for small molecules containing light atoms only, whose signal has lower contrast compared with the signal from solvent molecules. Here, we present an alternative approach to bypass this limitation by detecting the change in solvent temperature resulting from a photoinduced reaction. Specifically, we analyzed the heat dynamics of TRXL data obtained from p-hydroxyphenacyl diethyl phosphate (HPDP). This analysis enabled us to experimentally determine the number of intermediates and their respective enthalpy changes, which can be compared to theoretical enthalpies to identify the intermediates. This work demonstrates that TRXL can be used to uncover the kinetics and reaction pathways for small molecules without heavy atoms even if the scattering signal from the solute molecules is buried under the strong solvent scattering signal.
Collapse
Affiliation(s)
- Key Young Oang
- Radiation Center for Ultrafast Science, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057, Republic of Korea
| | - Sungjun Park
- Department of Chemistry and KI for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Jiwon Moon
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Eunji Park
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hyun Kyung Lee
- Department of Chemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tokushi Sato
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Shin-Ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Joonghan Kim
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Jeongho Kim
- Department of Chemistry, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Jeong-Hun Sohn
- Department of Chemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry and KI for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| |
Collapse
|
7
|
Singh AK, Nair AV, Shah SS, Ray S, Singh NDP. ESIPT-, AIE-, and AIE + ESIPT-Based Light-Activated Drug Delivery Systems and Bioactive Donors for Targeted Disease Treatment. J Med Chem 2023; 66:3732-3745. [PMID: 36913722 DOI: 10.1021/acs.jmedchem.2c01466] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Targeted release of bioactive molecules for therapeutic purposes is a key area in the biomedical field that is growing quickly, where bioactive molecules are released passively or actively from drug delivery systems (DDSs) or bioactive donors. In the past decade, researchers have identified light as one of the prime stimuli that can implement the efficient spatiotemporally targeted delivery of drugs or gaseous molecules with minimal cytotoxicity and a real-time monitoring ability. This perspective emphasizes recent advances in the photophysical properties of ESIPT- (excited-state intramolecular proton transfer), AIE- (aggregation-induced emission), and AIE + ESIPT-attributed light-activated delivery systems or donors. The three major sections of this perspective describe the distinctive features of DDSs and donors concerning their design, synthesis, photophysical and photochemical properties, and in vitro and in vivo studies demonstrating their relevance as carrier molecules for releasing cancer drugs and gaseous molecules in the biological system.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Department of Chemistry, Photochemistry Laboratory, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Asha V Nair
- Department of Chemistry, Photochemistry Laboratory, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Sk Sheriff Shah
- Department of Chemistry, Photochemistry Laboratory, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Souvik Ray
- Department of Chemistry, Photochemistry Laboratory, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - N D Pradeep Singh
- Department of Chemistry, Photochemistry Laboratory, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
8
|
van Wilderen LJGW, Kern-Michler D, Neumann C, Reinfelds M, von Cosel J, Horz M, Burghardt I, Heckel A, Bredenbeck J. Choose your leaving group: selective photodeprotection in a mixture of pHP-caged compounds by VIPER excitation. Chem Sci 2023; 14:2624-2630. [PMID: 36908963 PMCID: PMC9993852 DOI: 10.1039/d2sc06259c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Photocages are light-triggerable molecular moieties that can locally release a pre-determined leaving group (LG). Finding a suitable photocage for a particular application may be challenging, as the choice may be limited by for instance the optical or physicochemical properties of the system. Using more than one photocage to release different LGs in a reaction mixture may even be more difficult. In this work an experimental strategy is presented that allows us to hand-pick the release of different LGs, and to do so in any order. This is achieved by using isotopologue photocage-LG mixtures in combination with ultrafast VIbrationally Promoted Electronic Resonance (VIPER) excitation. The latter provides the required molecular selectivity simply by tuning the wavenumber of the used IR pulses to the resonance of a specific photocage isotopologue, as is demonstrated here for the para-hydroxyphenacyl (pHP) photocage. For spectroscopic convenience, we use isotopologues of the infrared (IR) spectroscopic marker -SCN as different LGs. Especially for applications where fast LG release is required, pHP is found to be an excellent candidate, as free LG formation is observed to occur with a 10 ps lifetime. The devised strategy may open up new complex uncaging applications, where multiple LGs can be formed locally on a short time scale and in any sequence.
Collapse
Affiliation(s)
- Luuk J G W van Wilderen
- Johann Wolfgang Goethe-University, Institute of Biophysics Max-von-Laue-Str. 1 60438 Frankfurt am Main Germany
| | - Daniela Kern-Michler
- Johann Wolfgang Goethe-University, Institute of Biophysics Max-von-Laue-Str. 1 60438 Frankfurt am Main Germany
| | - Carsten Neumann
- Johann Wolfgang Goethe-University, Institute of Biophysics Max-von-Laue-Str. 1 60438 Frankfurt am Main Germany
| | - Matiss Reinfelds
- Johann Wolfgang Goethe-University, Institute of Organic Chemistry and Chemical Biology Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Jan von Cosel
- Johann Wolfgang Goethe-University, Institute of Physical and Theoretical Chemistry Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Maximiliane Horz
- Johann Wolfgang Goethe-University, Institute of Physical and Theoretical Chemistry Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Irene Burghardt
- Johann Wolfgang Goethe-University, Institute of Physical and Theoretical Chemistry Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Alexander Heckel
- Johann Wolfgang Goethe-University, Institute of Organic Chemistry and Chemical Biology Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Jens Bredenbeck
- Johann Wolfgang Goethe-University, Institute of Biophysics Max-von-Laue-Str. 1 60438 Frankfurt am Main Germany
| |
Collapse
|
9
|
Shrestha P, Mukhopadhyay A, Dissanayake KC, Winter AH. Efficiency of Functional Group Caging with Second-Generation Green- and Red-Light-Labile BODIPY Photoremovable Protecting Groups. J Org Chem 2022; 87:14334-14341. [PMID: 36255274 DOI: 10.1021/acs.joc.2c01781] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BODIPY-based photocages release substrates by excitation with wavelengths in the visible to near-IR regions. The recent development of more efficient BODIPY photocages spurred us to evaluate the scope and efficiency of these second-generation boron-methylated green-light and red-light-absorbing BODIPY photocages. Here, we show that these more photosensitive photocages release amine, alcohol, phenol, phosphate, halides, and carboxylic acid derivatives with much higher quantum yields than first-generation BODIPY photocages and excellent chemical yields. Chemical yields are near-quantitative for the release of all functional groups except the photorelease of amines, which react with concomitantly photogenerated singlet oxygen. In these cases, high chemical yields for photoreleased amines are restored by irradiation under an inert atmosphere. The photorelease quantum yield has a weak relationship with the leaving group pKa of the green-absorbing BODIPY photocages but little relationship with the red-absorbing derivatives, suggesting that factors other than leaving group quality impact the quantum yield. For the photorelease of alcohols, in all cases a carbonate linker (that loses CO2 upon photorelease) significantly increases both the quantum yield and the chemical yield compared to those for direct photorelease via the ether.
Collapse
Affiliation(s)
- Pradeep Shrestha
- Department of Chemistry, Iowa State University, 1608 Gilman Hall, Ames, Iowa50010, United States
| | - Atreyee Mukhopadhyay
- Department of Chemistry, Iowa State University, 1608 Gilman Hall, Ames, Iowa50010, United States
| | - Komadhie C Dissanayake
- Department of Chemistry, Iowa State University, 1608 Gilman Hall, Ames, Iowa50010, United States
| | - Arthur H Winter
- Department of Chemistry, Iowa State University, 1608 Gilman Hall, Ames, Iowa50010, United States
| |
Collapse
|
10
|
Leichnitz S, Dissanayake KC, Winter AH, Seeberger PH. Photo-labile BODIPY protecting groups for glycan synthesis. Chem Commun (Camb) 2022; 58:10556-10559. [PMID: 36047322 DOI: 10.1039/d2cc03851j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protective groups that can be selectively removed under mild conditions are an essential aspect of carbohydrate chemistry. Groups that can be selectively removed by visible light are particularly attractive because carbohydrates are transparent to visible light. Here, different BODIPY protecting groups were explored for their utility during glycan synthesis. A BODIPY group bearing a boron difluoride unit is stable during glycosylations but can be cleaved with green light as illustrated by the assembly of a trisaccharide.
Collapse
Affiliation(s)
- Sabrina Leichnitz
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany. .,Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | | | - Arthur H Winter
- Department of Chemistry, Iowa State University, Ames, Iowa 50014, USA.
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany. .,Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
11
|
Aggarwal SC, Khodade VS, Porche S, Pharoah BM, Toscano JP. Photochemical Release of Hydropersulfides. J Org Chem 2022; 87:12644-12652. [PMID: 36084133 DOI: 10.1021/acs.joc.2c01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydropersulfides (RSSH) have received significant interest in the field of redox biology because of their intriguing biochemical properties. However, because RSSH are inherently unstable, their study is challenging, and as a result, the details of their physiological roles remain ill-defined. Herein, we report strategies to release RSSH utilizing photoremovable protecting groups. RSSH protection with the well-established p-hydroxyphenacyl (pHP) photoprotecting group resulted in inefficient RSSH photorelease along with complex chemistry. Therefore, an alternative precursor was examined in which a self-immolative linker was inserted between the pHP group and RSSH, providing nearly quantitative RSSH release following photolysis at 365 nm. Inspired by these results, we also synthesized an analogous precursor derivatized with 7-diethylaminocoumarin (DEACM), a visible light-cleavable photoprotecting group. Photolysis of this precursor at 420 nm led to efficient RSSH release, and in vitro experiments demonstrated intracellular RSSH delivery in breast cancer MCF-7 cells.
Collapse
Affiliation(s)
- Sahil C Aggarwal
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Vinayak S Khodade
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sarah Porche
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Blaze M Pharoah
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - John P Toscano
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
12
|
Shin HS, Moon DY, An S, Park BS. Solvent assisted photochemical formation of a new keto[3,3]paracyclophane. Org Biomol Chem 2022; 20:4303-4308. [PMID: 35575223 DOI: 10.1039/d2ob00660j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photolysis of a phenacyl benzoate tethered with a phenol leads to a very efficient release of benzoic acid, which is suggested to occur by electron transfer and/or proton transfer from the remote phenol moiety to the triplet excited carbonyl. Photolysis of the compound in protic solvents forms a new keto[3,3]paracyclophane.
Collapse
Affiliation(s)
- Ho Suk Shin
- Department of Chemistry, Dongguk University, Seoul 04620, Korea.
| | - Da Yoon Moon
- Department of Chemistry, Dongguk University, Seoul 04620, Korea.
| | - Sejin An
- Department of Chemistry, Dongguk University, Seoul 04620, Korea.
| | - Bong Ser Park
- Department of Chemistry, Dongguk University, Seoul 04620, Korea.
| |
Collapse
|
13
|
Meng J, Zhang Y, Pan L, Chen J. Dynamic Control of Self-Assembly of Amphiphilic Conjugated Alkenes in Water by Reactions. ACS OMEGA 2022; 7:4677-4682. [PMID: 35155959 PMCID: PMC8829865 DOI: 10.1021/acsomega.1c07026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Nature sets a great example of how to precisely control self-assembly to obtain distinct structures upon external stimuli and perform specific functions to sustain important biological tasks. In the present study, we report the design and control of self-assembly of an amphiphilic conjugated alkene in water. The morphologies of the self-assembled structures are highly dependent on the anions. The hydrophilic tosylate group can trigger the formation of nanotubes, while the less-hydrophilic inorganic bromide generates vesicles. The interchange of the two different structures can be controlled by employing different anions combined with a couple of reactions that act as signals. The result shown here provides an important tool for manipulating self-assembled behaviors in water and paves the way toward more complex systems.
Collapse
|
14
|
Štacko P, Šolomek T. Photoremovable Protecting Groups: Across the Light Spectrum to Near- Infrared Absorbing Photocages. Chimia (Aarau) 2021; 75:873-881. [PMID: 34728015 DOI: 10.2533/chimia.2021.873] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We discuss the past decade of progress in the field of photoremovable protecting groups that allowed the development of photocages activatable by near-IR light and highlight the individual conceptual advancements that lead to general guidelines to design new such photoremovable protecting groups. We emphasize the importance of understanding the individual photochemical reaction mechanisms that was necessary to achieve this progress and provide an outlook of the subsequent steps to facilitate a swift translation of this research into clinical praxis. Since this issue of CHIMIA is dedicated to the late Prof. Thomas Bally, we decided to provide a personal perspective on the field to which he contributed himself. We tried to write this review with the general readership of CHIMIA in mind in a hope to pay a tribute to the extraordinary dedication and clarity with which Thomas Bally used to explain abstract chemical concepts to his students or colleagues. We are uncertain whether we matched such challenge but we believe that he would have liked such approach very much.
Collapse
Affiliation(s)
- Peter Štacko
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich; Prievidza Chemical Society, M. Hodžu 10/16, 971 01 Prievidza, Slovakia;,
| | - Tomáš Šolomek
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; Prievidza Chemical Society, M. Hodžu 10/16, 971 01 Prievidza, Slovakia;,
| |
Collapse
|
15
|
Steinmetz MG, Givens RS. The Discovery, Development and Demonstration of Three Caged Compounds †. Photochem Photobiol 2021; 97:1168-1181. [PMID: 34101860 DOI: 10.1111/php.13462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/04/2021] [Indexed: 12/29/2022]
Abstract
An overview of the history, mechanistic aspects and applications is provided for p-hydroxyphenacyl (pHP) and benzoin photoremovable protecting groups, which release biologically important leaving groups upon photolysis with UV light. Also discussed is (7-diethylaminocoumarin-4-yl)methyl (DEACM), a photoremovable protecting group that absorbs visible light. These are followed by the α-keto amides and naphtho- and benzothiophene-2-carboxanilides as caging groups, which eliminate leaving groups via photochemically produced zwitterionic intermediates. Also covered are amino-1,4-benzoquinones, which upon exposure to green and red wavelengths of light photorearrange to an unstable photoproduct that subsequently eliminates leaving groups in aqueous media. Selected examples are given that use these photoremovable protecting (caging) groups for the light-activated release of biologically important substrates under physiological conditions in cells and tissue as practical applications in biology, biochemistry and physiology. These caging groups have found significant applications because their photochemistry is efficient and a single coproduct is formed in addition to the photoreleased substrate.
Collapse
Affiliation(s)
- Mark G Steinmetz
- Department of Chemistry, Marquette University, Milwaukee, WI, USA.,Department of Chemistry, University of Kansas, Lawrence, KS, USA
| | - Richard S Givens
- Department of Chemistry, Marquette University, Milwaukee, WI, USA.,Department of Chemistry, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
16
|
Norahan MJ, Horvath R, Woitzik N, Jouy P, Eigenmann F, Gerwert K, Kötting C. Microsecond-Resolved Infrared Spectroscopy on Nonrepetitive Protein Reactions by Applying Caged Compounds and Quantum Cascade Laser Frequency Combs. Anal Chem 2021; 93:6779-6783. [PMID: 33881816 DOI: 10.1021/acs.analchem.1c00666] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Infrared spectroscopy is ideally suited for the investigation of protein reactions at the atomic level. Many systems were investigated successfully by applying Fourier transform infrared (FTIR) spectroscopy. While rapid-scan FTIR spectroscopy is limited by time resolution (about 10 ms with 16 cm-1 resolution), step-scan FTIR spectroscopy reaches a time resolution of about 10 ns but is limited to cyclic reactions that can be repeated hundreds of times under identical conditions. Consequently, FTIR with high time resolution was only possible with photoactivable proteins that undergo a photocycle. The huge number of nonrepetitive reactions, e.g., induced by caged compounds, were limited to the millisecond time domain. The advent of dual-comb quantum cascade laser now allows for a rapid reaction monitoring in the microsecond time domain. Here, we investigate the potential to apply such an instrument to the huge class of G-proteins. We compare caged-compound-induced reactions monitored by FTIR and dual-comb spectroscopy by applying the new technique to the α subunit of the inhibiting Gi protein and to the larger protein-protein complex of Gαi with its cognate regulator of G-protein signaling (RGS). We observe good data quality with a 4 μs time resolution with a wavelength resolution comparable to FTIR. This is more than three orders of magnitude faster than any FTIR measurement on G-proteins in the literature. This study paves the way for infrared spectroscopic studies in the so far unresolvable microsecond time regime for nonrepetitive biological systems including all GTPases and ATPases.
Collapse
Affiliation(s)
- Mohamad Javad Norahan
- Competence Center for Biospectroscopy, Center for Protein Diagnostics (ProDi), Ruhr University Bochum, 44801 Bochum, Germany.,Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | | | - Nathalie Woitzik
- Competence Center for Biospectroscopy, Center for Protein Diagnostics (ProDi), Ruhr University Bochum, 44801 Bochum, Germany.,Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Pierre Jouy
- IRsweep AG, Laubisruetistrasse 44, 8712 Staefa, Switzerland
| | | | - Klaus Gerwert
- Competence Center for Biospectroscopy, Center for Protein Diagnostics (ProDi), Ruhr University Bochum, 44801 Bochum, Germany.,Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Carsten Kötting
- Competence Center for Biospectroscopy, Center for Protein Diagnostics (ProDi), Ruhr University Bochum, 44801 Bochum, Germany.,Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
17
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
18
|
Sasaki M, Tran Bao Nguyen L, Yabumoto S, Nakagawa T, Abe M. Structural Transformation of the 2‐(
p
‐Aminophenyl)‐1‐hydroxyinden‐3‐ylmethyl Chromophore as a Photoremovable Protecting Group. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Miyu Sasaki
- Department of Chemistry, Graduate School of Science Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Linh Tran Bao Nguyen
- Department of Chemistry, Graduate School of Science Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan
| | | | | | - Manabu Abe
- Department of Chemistry, Graduate School of Science Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan
- Hiroshima University Research Centre for Photo-Drug-Delivery Systems (HiU−P-DDS) Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan
| |
Collapse
|
19
|
Ma J, Ripp A, Wassy D, Dürr T, Qiu D, Häner M, Haas T, Popp C, Bezold D, Richert S, Esser B, Jessen HJ. Thiocoumarin Caged Nucleotides: Synthetic Access and Their Photophysical Properties. Molecules 2020; 25:E5325. [PMID: 33203096 PMCID: PMC7696096 DOI: 10.3390/molecules25225325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/07/2020] [Accepted: 11/13/2020] [Indexed: 11/21/2022] Open
Abstract
Photocages have been successfully applied in cellular signaling studies for the controlled release of metabolites with high spatio-temporal resolution. Commonly, coumarin photocages are activated by UV light and the quantum yields of uncaging are relatively low, which can limit their applications in vivo. Here, syntheses, the determination of the photophysical properties, and quantum chemical calculations of 7-diethylamino-4-hydroxymethyl-thiocoumarin (thio-DEACM) and caged adenine nucleotides are reported and compared to the widely used 7-diethylamino-4-hydroxymethyl-coumarin (DEACM) caging group. In this comparison, thio-DEACM stands out as a phosphate cage with improved photophysical properties, such as red-shifted absorption and significantly faster photolysis kinetics.
Collapse
Affiliation(s)
- Jiahui Ma
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Alexander Ripp
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Daniel Wassy
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Tobias Dürr
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Danye Qiu
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Markus Häner
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Thomas Haas
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Christoph Popp
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Dominik Bezold
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Sabine Richert
- Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany;
| | - Birgit Esser
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Henning J. Jessen
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
20
|
Shrestha P, Dissanayake KC, Gehrmann EJ, Wijesooriya CS, Mukhopadhyay A, Smith EA, Winter AH. Efficient Far-Red/Near-IR Absorbing BODIPY Photocages by Blocking Unproductive Conical Intersections. J Am Chem Soc 2020; 142:15505-15512. [PMID: 32786742 DOI: 10.1021/jacs.0c07139] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Photocages are light-sensitive chemical protecting groups that give investigators control over activation of biomolecules using targeted light irradiation. A compelling application of far-red/near-IR absorbing photocages is their potential for deep tissue activation of biomolecules and phototherapeutics. Toward this goal, we recently reported BODIPY photocages that absorb near-IR light. However, these photocages have reduced photorelease efficiencies compared to shorter-wavelength absorbing photocages, which has hindered their application. Because photochemistry is a zero-sum competition of rates, improvement of the quantum yield of a photoreaction can be achieved either by making the desired photoreaction more efficient or by hobbling competitive decay channels. This latter strategy of inhibiting unproductive decay channels was pursued to improve the release efficiency of long-wavelength absorbing BODIPY photocages by synthesizing structures that block access to unproductive singlet internal conversion conical intersections, which have recently been located for simple BODIPY structures from excited state dynamic simulations. This strategy led to the synthesis of new conformationally restrained boron-methylated BODIPY photocages that absorb light strongly around 700 nm. In the best case, a photocage was identified with an extinction coefficient of 124000 M-1 cm-1, a quantum yield of photorelease of 3.8%, and an overall quantum efficiency of 4650 M-1 cm-1 at 680 nm. This derivative has a quantum efficiency that is 50-fold higher than the best known BODIPY photocages absorbing >600 nm, validating the effectiveness of a strategy for designing efficient photoreactions by thwarting competitive excited state decay channels. Furthermore, 1,7-diaryl substitutions were found to improve the quantum yields of photorelease by excited state participation and blocking ion pair recombination by internal nucleophilic trapping. No cellular toxicity (trypan blue exclusion) was observed at 20 μM, and photoactivation was demonstrated in HeLa cells using red light.
Collapse
Affiliation(s)
- Pradeep Shrestha
- Department of Chemistry, Iowa State University, 1608 Gilman Hall, Ames, Iowa 50010, United States
| | - Komadhie C Dissanayake
- Department of Chemistry, Iowa State University, 1608 Gilman Hall, Ames, Iowa 50010, United States
| | - Elizabeth J Gehrmann
- Department of Chemistry, Iowa State University, 1608 Gilman Hall, Ames, Iowa 50010, United States
| | - Chamari S Wijesooriya
- Department of Chemistry, Iowa State University, 1608 Gilman Hall, Ames, Iowa 50010, United States
| | - Atreyee Mukhopadhyay
- Department of Chemistry, Iowa State University, 1608 Gilman Hall, Ames, Iowa 50010, United States
| | - Emily A Smith
- Department of Chemistry, Iowa State University, 1608 Gilman Hall, Ames, Iowa 50010, United States
| | - Arthur H Winter
- Department of Chemistry, Iowa State University, 1608 Gilman Hall, Ames, Iowa 50010, United States
| |
Collapse
|
21
|
Bojtár M, Németh K, Domahidy F, Knorr G, Verkman A, Kállay M, Kele P. Conditionally Activatable Visible-Light Photocages. J Am Chem Soc 2020; 142:15164-15171. [PMID: 32786783 PMCID: PMC7472520 DOI: 10.1021/jacs.0c07508] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The proof of concept for conditionally
activatable photocages is
demonstrated on a new vinyltetrazine-derivatized coumarin. The tetrazine
form is disabled in terms of light-induced cargo release, however,
bioorthogonal transformation of the modulating tetrazine moiety results
in fully restored photoresponsivity. Irradiation of such a “click-armed”
photocage with blue light leads to fast and efficient release of a
set of caged model species, conjugated via various linkages. Live-cell
applicability of the concept was also demonstrated by the conditional
release of a fluorogenic probe using mitochondrial pretargeting.
Collapse
Affiliation(s)
- Márton Bojtár
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences. Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Krisztina Németh
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences. Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Farkas Domahidy
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences. Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Gergely Knorr
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences. Magyar tudósok krt. 2, H-1117 Budapest, Hungary.,Faculty of Chemistry and Earth Sciences, Friedrich-Schiller-Universität Jena, Lessingstraße 8, D-07743 Jena, Germany
| | - András Verkman
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences. Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Mihály Kállay
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Péter Kele
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences. Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| |
Collapse
|
22
|
Abstract
Infrared difference spectroscopy probes vibrational changes of proteins upon their perturbation. Compared with other spectroscopic methods, it stands out by its sensitivity to the protonation state, H-bonding, and the conformation of different groups in proteins, including the peptide backbone, amino acid side chains, internal water molecules, or cofactors. In particular, the detection of protonation and H-bonding changes in a time-resolved manner, not easily obtained by other techniques, is one of the most successful applications of IR difference spectroscopy. The present review deals with the use of perturbations designed to specifically change the protein between two (or more) functionally relevant states, a strategy often referred to as reaction-induced IR difference spectroscopy. In the first half of this contribution, I review the technique of reaction-induced IR difference spectroscopy of proteins, with special emphasis given to the preparation of suitable samples and their characterization, strategies for the perturbation of proteins, and methodologies for time-resolved measurements (from nanoseconds to minutes). The second half of this contribution focuses on the spectral interpretation. It starts by reviewing how changes in H-bonding, medium polarity, and vibrational coupling affect vibrational frequencies, intensities, and bandwidths. It is followed by band assignments, a crucial aspect mostly performed with the help of isotopic labeling and site-directed mutagenesis, and complemented by integration and interpretation of the results in the context of the studied protein, an aspect increasingly supported by spectral calculations. Selected examples from the literature, predominately but not exclusively from retinal proteins, are used to illustrate the topics covered in this review.
Collapse
|
23
|
Adatia KK, Halbritter T, Reinfelds M, Michele A, Tran M, Laschat S, Heckel A, Tovar GEM, Southan A. Coumarin‐4‐ylmethyl‐ and p‐Hydroxyphenacyl‐Based Photoacid Generators with High Solubility in Aqueous Media: Synthesis, Stability and Photolysis. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.201900258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Karishma K. Adatia
- Institute of Interfacial Process Engineering and Plasma Technology IGVPUniversity of Stuttgart Nobelstr. 12 70569 Stuttgart Germany
| | - Thomas Halbritter
- Institute for Organic Chemistry and Chemical BiologyGoethe University Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt/Main Germany
- Department of ChemistryUniversity of Iceland Dunhaga 3 107 Reykjavik Iceland
| | - Matiss Reinfelds
- Institute for Organic Chemistry and Chemical BiologyGoethe University Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt/Main Germany
| | - Andre Michele
- Institute of Interfacial Process Engineering and Plasma Technology IGVPUniversity of Stuttgart Nobelstr. 12 70569 Stuttgart Germany
- Institute of Organic Chemistry IOCUniversity of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Michael Tran
- Institute of Interfacial Process Engineering and Plasma Technology IGVPUniversity of Stuttgart Nobelstr. 12 70569 Stuttgart Germany
- Institute of Organic Chemistry IOCUniversity of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Sabine Laschat
- Institute of Organic Chemistry IOCUniversity of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Alexander Heckel
- Institute for Organic Chemistry and Chemical BiologyGoethe University Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt/Main Germany
| | - Günter E. M. Tovar
- Institute of Interfacial Process Engineering and Plasma Technology IGVPUniversity of Stuttgart Nobelstr. 12 70569 Stuttgart Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB Nobelstr. 12 70569 Stuttgart Germany
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology IGVPUniversity of Stuttgart Nobelstr. 12 70569 Stuttgart Germany
| |
Collapse
|
24
|
Field T, Peterson J, Ma C, Jagadesan P, Da Silva JP, Rubina M, Ramamurthy V, Givens RS. Competing pathways for photoremovable protecting groups: the effects of solvent, oxygen and encapsulation. Photochem Photobiol Sci 2020; 19:1364-1372. [DOI: 10.1039/d0pp00067a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photolysis of p-hydroxyphenacyloxy arenes releases free phenols in good yields governed by their pKa. At high pKa, new byproducts (Bvs. A) reveal a change in reaction mechanism.
Collapse
Affiliation(s)
- Thomas Field
- Department of Chemistry
- University of Kansas
- Lawrence
- USA
| | | | - Chicheng Ma
- Department of Chemistry
- University of Kansas
- Lawrence
- USA
| | | | - José P. Da Silva
- CCMAR - Centre of Marine Sciences
- University of Algarve
- Campus de Gambelas
- Portugal
| | - Marina Rubina
- Department of Chemistry
- University of Kansas
- Lawrence
- USA
| | - V. Ramamurthy
- Department of Chemistry
- University of Miami
- Coral Gables
- USA
| | | |
Collapse
|
25
|
Singh AK, Kundu M, Roy S, Roy B, Shah SS, Nair AV, Pal B, Mondal M, Singh NDP. A two-photon responsive naphthyl tagged p-hydroxyphenacyl based drug delivery system: uncaging of anti-cancer drug in the phototherapeutic window with real-time monitoring. Chem Commun (Camb) 2020; 56:9986-9989. [DOI: 10.1039/d0cc01903h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A two-photon responsive drug delivery system having two-photon absorption (TPA) in the phototherapeutic window with a two-photon uncaging cross-section ≥10 GM and exhibiting real-time monitoring of anti-cancer drug release.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- 721302 Kharagpur
- India
| | - Moumita Kundu
- School of Medical Science and Technology
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - Samrat Roy
- Department of Physical Sciences
- Indian Institute of Science Education and Research
- Kolkata, Mohanpur, Nadia 741246
- India
| | - Biswajit Roy
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- 721302 Kharagpur
- India
| | - Sk. Sheriff Shah
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- 721302 Kharagpur
- India
| | - Asha V Nair
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- 721302 Kharagpur
- India
| | - Bipul Pal
- Department of Physical Sciences
- Indian Institute of Science Education and Research
- Kolkata, Mohanpur, Nadia 741246
- India
| | - Mahitosh Mondal
- School of Medical Science and Technology
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - N. D. Pradeep Singh
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- 721302 Kharagpur
- India
| |
Collapse
|
26
|
Bojtár M, Kormos A, Kis-Petik K, Kellermayer M, Kele P. Green-Light Activatable, Water-Soluble Red-Shifted Coumarin Photocages. Org Lett 2019; 21:9410-9414. [PMID: 31714093 DOI: 10.1021/acs.orglett.9b03624] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Easily accessible green-light activatable (>500 nm) photocages based on red-shifted, π-extended coumarin scaffolds are developed with uncaging efficiencies similar to those of recently introduced BODIPY derivatives. The photocages possess increased aqueous solubility, high absorption coefficients within the 450-600 nm range, and exceptionally high two-photon cross sections.
Collapse
Affiliation(s)
- Márton Bojtár
- Chemical Biology Research Group, Institute of Organic Chemistry , Research Centre for Natural Sciences , H-1117 Magyar tudósok krt 2 , Budapest , Hungary
| | - Attila Kormos
- Chemical Biology Research Group, Institute of Organic Chemistry , Research Centre for Natural Sciences , H-1117 Magyar tudósok krt 2 , Budapest , Hungary
| | - Katalin Kis-Petik
- Faculty of Medicine, Department of Biophysics and Radiation Biology , Semmelweis University , H-1094 Tűzoltó u. 37-47 , Budapest , Hungary
| | - Miklós Kellermayer
- Faculty of Medicine, Department of Biophysics and Radiation Biology , Semmelweis University , H-1094 Tűzoltó u. 37-47 , Budapest , Hungary
| | - Péter Kele
- Chemical Biology Research Group, Institute of Organic Chemistry , Research Centre for Natural Sciences , H-1117 Magyar tudósok krt 2 , Budapest , Hungary
| |
Collapse
|
27
|
Budisa N, Schneider T. Expanding the DOPA Universe with Genetically Encoded, Mussel-Inspired Bioadhesives for Material Sciences and Medicine. Chembiochem 2019; 20:2163-2190. [PMID: 30830997 DOI: 10.1002/cbic.201900030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Indexed: 12/21/2022]
Abstract
Catechols are a biologically relevant group of aromatic diols that have attracted much attention as mediators of adhesion of "bio-glue" proteins in mussels of the genus Mytilus. These organisms use catechols in the form of the noncanonical amino acid l-3,4-dihydroxyphenylalanine (DOPA) as a building block for adhesion proteins. The DOPA is generated post-translationally from tyrosine. Herein, we review the properties, natural occurrence, and reactivity of catechols in the design of bioinspired materials. We also provide a basic description of the mussel's attachment apparatus, the interplay between its different molecules that play a crucial role in adhesion, and the role of post-translational modifications (PTMs) of these proteins. Our focus is on the microbial production of mussel foot proteins with the aid of orthogonal translation systems (OTSs) and the use of genetic code engineering to solve some fundamental problems in the bioproduction of these bioadhesives and to expand their chemical space. The major limitation of bacterial expression systems is their intrinsic inability to introduce PTMs. OTSs have the potential to overcome these challenges by replacing canonical amino acids with noncanonical ones. In this way, PTM steps are circumvented while the genetically programmed precision of protein sequences is preserved. In addition, OTSs should enable spatiotemporal control over the complex adhesion process, because the catechol function can be masked by suitable chemical protection. Such caged residues can then be noninvasively unmasked by, for example, UV irradiation or thermal treatment. All of these features make OTSs based on genetic code engineering in reprogrammed microbial strains new and promising tools in bioinspired materials science.
Collapse
Affiliation(s)
- Nediljko Budisa
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Strasse 10, Berlin, 10623, Germany.,Chair of Chemical Synthetic Biology, Department of Chemistry, University of Manitoba, 144 Dysart Road, R3T 2N2, Winnipeg, MB, Canada
| | - Tobias Schneider
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Strasse 10, Berlin, 10623, Germany
| |
Collapse
|
28
|
Paul A, Biswas A, Sinha S, Shah SS, Bera M, Mandal M, Singh NDP. Push-Pull Stilbene: Visible Light Activated Photoremovable Protecting Group for Alcohols and Carboxylic Acids with Fluorescence Reporting Employed for Drug Delivery. Org Lett 2019; 21:2968-2972. [PMID: 31013105 DOI: 10.1021/acs.orglett.9b00124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For the first time we have utilized push-pull stilbene as a visible light activated photoremovable protecting group (PRPG) for the uncaging of alcohols and carboxylic acids. The PRPG efficiently release caged molecules with good photochemical quantum yield. It is capable of monitoring the release in real time owing to its fluorescence "turn on" phenomenon upon photorelease in polar medium. The efficient photorelease and real time monitoring abilities of push-pull stilbene were employed for in vitro drug delivery.
Collapse
|
29
|
Light-triggered release of photocaged therapeutics - Where are we now? J Control Release 2019; 298:154-176. [PMID: 30742854 DOI: 10.1016/j.jconrel.2019.02.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 01/02/2023]
Abstract
The current available therapeutics face several challenges such as the development of ideal drug delivery systems towards the goal of personalized treatments for patients benefit. The application of light as an exogenous activation mechanism has shown promising outcomes, owning to the spatiotemporal confinement of the treatment in the vicinity of the diseased tissue, which offers many intriguing possibilities. Engineering therapeutics with light responsive moieties have been explored to enhance the bioavailability, and drug efficacy either in vitro or in vivo. The tailor-made character turns the so-called photocaged compounds highly desirable to reduce the side effects of drugs and, therefore, have received wide research attention. Herein, we seek to highlight the potential of photocaged compounds to obtain a clear understanding of the mechanisms behind its use in therapeutic delivery. A deep overview on the progress achieved in the design, fabrication as well as current and possible future applications in therapeutics of photocaged compounds is provided, so that novel formulations for biomedical field can be designed.
Collapse
|
30
|
Suzuki AZ, Sekine R, Takeda S, Aikawa R, Shiraishi Y, Hamaguchi T, Okuno H, Tamamura H, Furuta T. A clickable caging group as a new platform for modular caged compounds with improved photochemical properties. Chem Commun (Camb) 2019; 55:451-454. [DOI: 10.1039/c8cc07981a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A clickable caging group was designed, which was applied to the synthesis of caged paclitaxels with improved physical and photochemical properties.
Collapse
Affiliation(s)
- Akinobu Z. Suzuki
- Department of Biomolecular Science
- Faculty of Science
- Toho University
- Funabashi
- Japan
| | - Ryota Sekine
- Department of Biomolecular Science
- Faculty of Science
- Toho University
- Funabashi
- Japan
| | - Shiori Takeda
- Department of Biomolecular Science
- Faculty of Science
- Toho University
- Funabashi
- Japan
| | - Ryosuke Aikawa
- Department of Biomolecular Science
- Faculty of Science
- Toho University
- Funabashi
- Japan
| | - Yukiko Shiraishi
- Department of Biomolecular Science
- Faculty of Science
- Toho University
- Funabashi
- Japan
| | - Tomomi Hamaguchi
- Department of Biomolecular Science
- Faculty of Science
- Toho University
- Funabashi
- Japan
| | - Hiroyuki Okuno
- Graduate School of Medical and Dental Sciences
- Kagoshima University
- Kagoshima
- Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University
- Chiyoda-ku
- Japan
| | - Toshiaki Furuta
- Department of Biomolecular Science
- Faculty of Science
- Toho University
- Funabashi
- Japan
| |
Collapse
|
31
|
Cheong H, Kim J, Mu J, Zhang W, Li J, Yang H, Xing B. Spatiotemporal‐Controlled Reporter for Cell‐Surface Proteolytic Enzyme Activity Visualization. Chembiochem 2018; 20:561-567. [DOI: 10.1002/cbic.201800445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/08/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Haolun Cheong
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Jisu Kim
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Jing Mu
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Wenmin Zhang
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
- College of ChemistryFuzhou University Fuzhou Fujian 350116 P.R. China
| | - Juan Li
- College of ChemistryFuzhou University Fuzhou Fujian 350116 P.R. China
| | - HuangHao Yang
- College of ChemistryFuzhou University Fuzhou Fujian 350116 P.R. China
| | - Bengang Xing
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
- College of ChemistryFuzhou University Fuzhou Fujian 350116 P.R. China
| |
Collapse
|
32
|
Peterson JA, Wijesooriya C, Gehrmann EJ, Mahoney KM, Goswami PP, Albright TR, Syed A, Dutton AS, Smith EA, Winter AH. Family of BODIPY Photocages Cleaved by Single Photons of Visible/Near-Infrared Light. J Am Chem Soc 2018; 140:7343-7346. [PMID: 29775298 DOI: 10.1021/jacs.8b04040] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photocages are light-sensitive chemical protecting groups that provide external control over when, where, and how much of a biological substrate is activated in cells using targeted light irradiation. Regrettably, most popular photocages (e.g., o-nitrobenzyl groups) absorb cell-damaging ultraviolet wavelengths. A challenge with achieving longer wavelength bond-breaking photochemistry is that long-wavelength-absorbing chromophores have shorter excited-state lifetimes and diminished excited-state energies. However, here we report the synthesis of a family of BODIPY-derived photocages with tunable absorptions across the visible/near-infrared that release chemical cargo under irradiation. Derivatives with appended styryl groups feature absorptions above 700 nm, yielding photocages cleaved with the highest known wavelengths of light via a direct single-photon-release mechanism. Photorelease with red light is demonstrated in living HeLa cells, Drosophila S2 cells, and bovine GM07373 cells upon ∼5 min irradiation. No cytotoxicity is observed at 20 μM photocage concentration using the trypan blue exclusion assay. Improved B-alkylated derivatives feature improved quantum efficiencies of photorelease ∼20-fold larger, on par with the popular o-nitrobenzyl photocages (εΦ = 50-100 M-1 cm-1), but absorbing red/near-IR light in the biological window instead of UV light.
Collapse
Affiliation(s)
- Julie A Peterson
- Department of Chemistry , Iowa State University , Ames , Iowa 50014 , United States
| | - Chamari Wijesooriya
- Department of Chemistry , Iowa State University , Ames , Iowa 50014 , United States
| | - Elizabeth J Gehrmann
- Department of Chemistry , Iowa State University , Ames , Iowa 50014 , United States
| | - Kaitlyn M Mahoney
- Department of Chemistry , Iowa State University , Ames , Iowa 50014 , United States
| | - Pratik P Goswami
- Department of Chemistry , Iowa State University , Ames , Iowa 50014 , United States
| | - Toshia R Albright
- Department of Chemistry , Iowa State University , Ames , Iowa 50014 , United States
| | - Aleem Syed
- Department of Chemistry , Iowa State University , Ames , Iowa 50014 , United States
| | - Andrew S Dutton
- Department of Chemistry , Iowa State University , Ames , Iowa 50014 , United States
| | - Emily A Smith
- Department of Chemistry , Iowa State University , Ames , Iowa 50014 , United States
| | - Arthur H Winter
- Department of Chemistry , Iowa State University , Ames , Iowa 50014 , United States
| |
Collapse
|
33
|
Lin Q, Yang L, Wang Z, Hua Y, Zhang D, Bao B, Bao C, Gong X, Zhu L. Coumarin Photocaging Groups Modified with an Electron-Rich Styryl Moiety at the 3-Position: Long-Wavelength Excitation, Rapid Photolysis, and Photobleaching. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800713] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Qiuning Lin
- Key Laboratory for Advanced Materials; East China University of Science and Technology; 130# Meilong Road Shanghai 200237 China
| | - Lipeng Yang
- Key Laboratory for Advanced Materials; East China University of Science and Technology; 130# Meilong Road Shanghai 200237 China
| | - Zhiqiang Wang
- Key Laboratory for Advanced Materials; East China University of Science and Technology; 130# Meilong Road Shanghai 200237 China
| | - Yujie Hua
- Key Laboratory for Advanced Materials; East China University of Science and Technology; 130# Meilong Road Shanghai 200237 China
| | - Dasheng Zhang
- Key Laboratory for Advanced Materials; East China University of Science and Technology; 130# Meilong Road Shanghai 200237 China
| | - Bingkun Bao
- Key Laboratory for Advanced Materials; East China University of Science and Technology; 130# Meilong Road Shanghai 200237 China
| | - Chunyan Bao
- Key Laboratory for Advanced Materials; East China University of Science and Technology; 130# Meilong Road Shanghai 200237 China
| | - Xueqing Gong
- Key Laboratory for Advanced Materials; East China University of Science and Technology; 130# Meilong Road Shanghai 200237 China
| | - Linyong Zhu
- Key Laboratory for Advanced Materials; East China University of Science and Technology; 130# Meilong Road Shanghai 200237 China
| |
Collapse
|
34
|
Lin Q, Yang L, Wang Z, Hua Y, Zhang D, Bao B, Bao C, Gong X, Zhu L. Coumarin Photocaging Groups Modified with an Electron-Rich Styryl Moiety at the 3-Position: Long-Wavelength Excitation, Rapid Photolysis, and Photobleaching. Angew Chem Int Ed Engl 2018; 57:3722-3726. [DOI: 10.1002/anie.201800713] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Qiuning Lin
- Key Laboratory for Advanced Materials; East China University of Science and Technology; 130# Meilong Road Shanghai 200237 China
| | - Lipeng Yang
- Key Laboratory for Advanced Materials; East China University of Science and Technology; 130# Meilong Road Shanghai 200237 China
| | - Zhiqiang Wang
- Key Laboratory for Advanced Materials; East China University of Science and Technology; 130# Meilong Road Shanghai 200237 China
| | - Yujie Hua
- Key Laboratory for Advanced Materials; East China University of Science and Technology; 130# Meilong Road Shanghai 200237 China
| | - Dasheng Zhang
- Key Laboratory for Advanced Materials; East China University of Science and Technology; 130# Meilong Road Shanghai 200237 China
| | - Bingkun Bao
- Key Laboratory for Advanced Materials; East China University of Science and Technology; 130# Meilong Road Shanghai 200237 China
| | - Chunyan Bao
- Key Laboratory for Advanced Materials; East China University of Science and Technology; 130# Meilong Road Shanghai 200237 China
| | - Xueqing Gong
- Key Laboratory for Advanced Materials; East China University of Science and Technology; 130# Meilong Road Shanghai 200237 China
| | - Linyong Zhu
- Key Laboratory for Advanced Materials; East China University of Science and Technology; 130# Meilong Road Shanghai 200237 China
| |
Collapse
|
35
|
Xiong B, Wang G, Zhou C, Liu Y, Zhang P, Tang K. Bu4NI-Catalyzed Dehydrogenative Coupling of Diaryl Phosphinic Acids with C(sp3)–H Bonds of Arenes. J Org Chem 2018; 83:993-999. [DOI: 10.1021/acs.joc.7b02422] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Biquan Xiong
- Department of Chemistry and
Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Gang Wang
- Department of Chemistry and
Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Congshan Zhou
- Department of Chemistry and
Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Yu Liu
- Department of Chemistry and
Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Panliang Zhang
- Department of Chemistry and
Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Kewen Tang
- Department of Chemistry and
Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| |
Collapse
|
36
|
Synthesis and In Vitro Antimycobacterial Activity of Novel N-Arylpiperazines Containing an Ethane-1,2-diyl Connecting Chain. Molecules 2017; 22:molecules22122100. [PMID: 29189762 PMCID: PMC6149664 DOI: 10.3390/molecules22122100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 11/17/2022] Open
Abstract
Novel 1-(2-{3-/4-[(alkoxycarbonyl)amino]phenyl}-2-hydroxyethyl)-4-(2-fluorophenyl)-piperazin-1-ium chlorides (alkoxy = methoxy to butoxy; 8a-h) have been designed and synthesized through multistep reactions as a part of on-going research programme focused on finding new antimycobacterials. Lipophilic properties of these compounds were estimated by RP-HPLC using methanol/water mobile phases with a various volume fraction of the organic modifier. The log kw values, which were extrapolated from intercepts of a linear relationship between the logarithm of a retention factor k (log k) and volume fraction of a mobile phase modifier (ϕM), varied from 2.113 (compound 8e) to 2.930 (compound 8h) and indicated relatively high lipophilicity of these salts. Electronic properties of the molecules 8a-h were investigated by evaluation of their UV/Vis spectra. In a next phase of the research, the compounds 8a-h were in vitro screened against M. tuberculosis CNCTC My 331/88 (identical with H37Rv and ATCC 2794), M. kansasii CNCTC My 235/80 (identical with ATCC 12478), a M. kansasii 6 509/96 clinical isolate, M. avium CNCTC My 330/80 (identical with ATCC 25291) and M. avium intracellulare ATCC 13950, respectively, as well as against M. kansasii CIT11/06, M. avium subsp. paratuberculosis CIT03 and M. avium hominissuis CIT10/08 clinical isolates using isoniazid, ethambutol, ofloxacin, ciprofloxacin or pyrazinamide as reference drugs. The tested compounds 8a-h were found to be the most promising against M. tuberculosis; a MIC = 8 μM was observed for the most effective 1-(2-{4-[(butoxycarbonyl)amino]phen-ylphenyl}-2-hydroxyethyl)-4-(2-fluorophenyl)piperazin-1-ium chloride (8h). In addition, all of them showed low (insignificant) in vitro toxicity against a human monocytic leukemia THP-1 cell line, as observed LD50 values > 30 μM indicated. The structure-antimycobacterial activity relationships of the analyzed 8a-h series are also discussed.
Collapse
|
37
|
Xiong B, Wang G, Zhou C, Liu Y, Li J, Zhang P, Tang K. DCC-assisted direct esterification of phosphinic and phosphoric acids with O-nucleophiles. PHOSPHORUS SULFUR 2017. [DOI: 10.1080/10426507.2017.1395438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, P.R.China
| | - Gang Wang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, P.R.China
| | - Congshan Zhou
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, P.R.China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, P.R.China
| | - Jiandong Li
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, P.R.China
| | - Pangliang Zhang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, P.R.China
| | - Kewen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, P.R.China
| |
Collapse
|
38
|
von Cosel J, Cerezo J, Kern-Michler D, Neumann C, van Wilderen LJGW, Bredenbeck J, Santoro F, Burghardt I. Vibrationally resolved electronic spectra including vibrational pre-excitation: Theory and application to VIPER spectroscopy. J Chem Phys 2017; 147:164116. [DOI: 10.1063/1.4999455] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Jan von Cosel
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Javier Cerezo
- Departamento de Química Física, Universidad de Murcia, E-30071 Murcia, Spain
| | - Daniela Kern-Michler
- Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
| | - Carsten Neumann
- Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
| | | | - Jens Bredenbeck
- Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
| | - Fabrizio Santoro
- Consiglio Nazionale delle Ricerche–CNR, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), UOS di Pisa, Via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Irene Burghardt
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| |
Collapse
|
39
|
Slanina T, Shrestha P, Palao E, Kand D, Peterson JA, Dutton AS, Rubinstein N, Weinstain R, Winter AH, Klán P. In Search of the Perfect Photocage: Structure-Reactivity Relationships in meso-Methyl BODIPY Photoremovable Protecting Groups. J Am Chem Soc 2017; 139:15168-15175. [PMID: 29039200 DOI: 10.1021/jacs.7b08532] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A detailed investigation of the photophysical parameters and photochemical reactivity of meso-methyl BODIPY photoremovable protecting groups was accomplished through systematic variation of the leaving group (LG) and core substituents as well as substitutions at boron. Efficiencies of the LG release were evaluated using both steady-state and transient absorption spectroscopies as well as computational analyses to identify the optimal structural features. We find that the quantum yields for photorelease with this photocage are highly sensitive to substituent effects. In particular, we find that the quantum yields of photorelease are improved with derivatives with higher intersystem crossing quantum yields, which can be promoted by core heavy atoms. Moreover, release quantum yields are dramatically improved by boron alkylation, whereas alkylation in the meso-methyl position has no effect. Better LGs are released considerably more efficiently than poorer LGs. We find that these substituent effects are additive, for example, a 2,6-diiodo-B-dimethyl BODIPY photocage features quantum yields of 28% for the mediocre LG acetate and a 95% quantum yield of release for chloride. The high chemical and quantum yields combined with the outstanding absorption properties of BODIPY dyes lead to photocages with uncaging cross sections over 10 000 M-1 cm-1, values that surpass cross sections of related photocages absorbing visible light. These new photocages, which absorb strongly near the second harmonic of an Nd:YAG laser (532 nm), hold promise for manipulating and interrogating biological and material systems with the high spatiotemporal control provided by pulsed laser irradiation, while avoiding the phototoxicity problems encountered with many UV-absorbing photocages. More generally, the insights gained from this structure-reactivity relationship may aid in the development of new highly efficient photoreactions.
Collapse
Affiliation(s)
- Tomáš Slanina
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University , Kamenice 5, 625 00, Brno, Czech Republic.,Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt , 60323 Frankfurt am Main, Germany
| | - Pradeep Shrestha
- Department of Chemistry, Iowa State University , 1608 Gilman Hall, Ames, Iowa 50010, United States
| | - Eduardo Palao
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University , Kamenice 5, 625 00, Brno, Czech Republic
| | - Dnyaneshwar Kand
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University , Tel-Aviv 6997801, Israel
| | - Julie A Peterson
- Department of Chemistry, Iowa State University , 1608 Gilman Hall, Ames, Iowa 50010, United States
| | - Andrew S Dutton
- Department of Chemistry, Iowa State University , 1608 Gilman Hall, Ames, Iowa 50010, United States
| | - Naama Rubinstein
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University , Tel-Aviv 6997801, Israel
| | - Roy Weinstain
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University , Tel-Aviv 6997801, Israel
| | - Arthur H Winter
- Department of Chemistry, Iowa State University , 1608 Gilman Hall, Ames, Iowa 50010, United States
| | - Petr Klán
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University , Kamenice 5, 625 00, Brno, Czech Republic
| |
Collapse
|
40
|
Speckmeier E, Zeitler K. Desyl and Phenacyl as Versatile, Photocatalytically Cleavable Protecting Groups: A Classic Approach in a Different (Visible) Light. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Elisabeth Speckmeier
- Institut für Organische
Chemie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| | - Kirsten Zeitler
- Institut für Organische
Chemie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| |
Collapse
|
41
|
Elucidation of Single Hydrogen Bonds in GTPases via Experimental and Theoretical Infrared Spectroscopy. Biophys J 2017; 112:66-77. [PMID: 28076817 PMCID: PMC5232353 DOI: 10.1016/j.bpj.2016.11.3195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/04/2016] [Accepted: 11/28/2016] [Indexed: 11/28/2022] Open
Abstract
Time-resolved Fourier transform infrared (FTIR) spectroscopy is a powerful tool to elucidate label-free the reaction mechanisms of proteins. After assignment of the absorption bands to individual groups of the protein, the order of events during the reaction mechanism can be monitored and rate constants can be obtained. Additionally, structural information is encoded into infrared spectra and can be decoded by combining the experimental data with biomolecular simulations. We have determined recently the infrared vibrations of GTP and guanosine diphosphate (GDP) bound to Gαi1, a ubiquitous GTPase. These vibrations are highly sensitive for the environment of the phosphate groups and thereby for the binding mode the GTPase adopts to enable fast hydrolysis of GTP. In this study we calculated these infrared vibrations from biomolecular simulations to transfer the spectral information into a computational model that provides structural information far beyond crystal structure resolution. Conformational ensembles were generated using 15 snapshots of several 100 ns molecular-mechanics/molecular-dynamics (MM-MD) simulations, followed by quantum-mechanics/molecular-mechanics (QM/MM) minimization and normal mode analysis. In comparison with other approaches, no time-consuming QM/MM-MD simulation was necessary. We carefully benchmarked the simulation systems by deletion of single hydrogen bonds between the GTPase and GTP through several Gαi1 point mutants. The missing hydrogen bonds lead to blue-shifts of the corresponding absorption bands. These band shifts for α-GTP (Gαi1-T48A), γ-GTP (Gαi1-R178S), and for both β-GTP/γ-GTP (Gαi1-K46A, Gαi1-D200E) were found in agreement in the experimental and the theoretical spectra. We applied our approach to open questions regarding Gαi1: we show that the GDP state of Gαi1 carries a Mg2+, which is not found in x-ray structures. Further, the catalytic role of K46, a central residue of the P-loop, and the protonation state of the GTP are elucidated.
Collapse
|
42
|
|
43
|
Xiong B, Hu C, Gu J, Yang C, Zhang P, Liu Y, Tang K. Efficient and Controllable Esterification of P(O)-OH Compounds Using Uronium-Based Salts. ChemistrySelect 2017. [DOI: 10.1002/slct.201700596] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Biquan Xiong
- Department of Chemistry and Chemical Engineering; Hunan Institute of Science and Technology; Xueyuan Road Yueyang 414006 P.R.China
| | - Chenghong Hu
- Department of Chemistry and Chemical Engineering; Hunan Institute of Science and Technology; Xueyuan Road Yueyang 414006 P.R.China
| | - Jingfang Gu
- Department of Chemistry and Chemical Engineering; Hunan Institute of Science and Technology; Xueyuan Road Yueyang 414006 P.R.China
| | - Changan Yang
- Department of Chemistry and Chemical Engineering; Hunan Institute of Science and Technology; Xueyuan Road Yueyang 414006 P.R.China
| | - Panliang Zhang
- Department of Chemistry and Chemical Engineering; Hunan Institute of Science and Technology; Xueyuan Road Yueyang 414006 P.R.China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering; Hunan Institute of Science and Technology; Xueyuan Road Yueyang 414006 P.R.China
| | - Kewen Tang
- Department of Chemistry and Chemical Engineering; Hunan Institute of Science and Technology; Xueyuan Road Yueyang 414006 P.R.China
| |
Collapse
|
44
|
Chaudhuri A, Venkatesh Y, Behara KK, Singh NDP. Bimane: A Visible Light Induced Fluorescent Photoremovable Protecting Group for the Single and Dual Release of Carboxylic and Amino Acids. Org Lett 2017; 19:1598-1601. [PMID: 28281342 DOI: 10.1021/acs.orglett.7b00416] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amrita Chaudhuri
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302 West Bengal, India
| | - Yarra Venkatesh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302 West Bengal, India
| | - Krishna Kalyani Behara
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302 West Bengal, India
| | - N. D. Pradeep Singh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302 West Bengal, India
| |
Collapse
|
45
|
Mechanism of the intrinsic arginine finger in heterotrimeric G proteins. Proc Natl Acad Sci U S A 2016; 113:E8041-E8050. [PMID: 27911799 DOI: 10.1073/pnas.1612394113] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterotrimeric G proteins are crucial molecular switches that maintain a large number of physiological processes in cells. The signal is encoded into surface alterations of the Gα subunit that carries GTP in its active state and GDP in its inactive state. The ability of the Gα subunit to hydrolyze GTP is essential for signal termination. Regulator of G protein signaling (RGS) proteins accelerates this process. A key player in this catalyzed reaction is an arginine residue, Arg178 in Gαi1, which is already an intrinsic part of the catalytic center in Gα in contrast to small GTPases, at which the corresponding GTPase-activating protein (GAP) provides the arginine "finger." We applied time-resolved FTIR spectroscopy in combination with isotopic labeling and site-directed mutagenesis to reveal the molecular mechanism, especially of the role of Arg178 in the intrinsic Gαi1 mechanism and the RGS4-catalyzed mechanism. Complementary biomolecular simulations (molecular mechanics with molecular dynamics and coupled quantum mechanics/molecular mechanics) were performed. Our findings show that Arg178 is bound to γ-GTP for the intrinsic Gαi1 mechanism and pushed toward a bidentate α-γ-GTP coordination for the Gαi1·RGS4 mechanism. This movement induces a charge shift toward β-GTP, increases the planarity of γ-GTP, and thereby catalyzes the hydrolysis.
Collapse
|
46
|
Wen F, Jin H, Tao K, Hou T. Design, synthesis and antifungal activity of novel furancarboxamide derivatives. Eur J Med Chem 2016; 120:244-51. [DOI: 10.1016/j.ejmech.2016.04.060] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 04/19/2016] [Accepted: 04/22/2016] [Indexed: 11/16/2022]
|
47
|
Gavriljuk K, Schartner J, Seidel H, Dickhut C, Zahedi RP, Hedberg C, Kötting C, Gerwert K. Unraveling the Phosphocholination Mechanism of the Legionella pneumophila Enzyme AnkX. Biochemistry 2016; 55:4375-85. [PMID: 27404583 DOI: 10.1021/acs.biochem.6b00524] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The intracellular pathogen Legionella pneumophila infects lung macrophages and injects numerous effector proteins into the host cell to establish a vacuole for proliferation. The necessary interference with vesicular trafficking of the host is achieved by modulation of the function of Rab GTPases. The effector protein AnkX chemically modifies Rab1b and Rab35 by covalent phosphocholination of serine or threonine residues using CDP-choline as a donor. So far, the phosphoryl transfer mechanism and the relevance of observed autophosphocholination of AnkX remained disputable. We designed tailored caged compounds to make this type of enzymatic reaction accessible for time-resolved Fourier transform infrared difference spectroscopy. By combining spectroscopic and biochemical methods, we determined that full length AnkX is autophosphocholinated at Ser521, Thr620, and Thr943. However, autophosphocholination loses specificity for these sites in shortened constructs and does not appear to be relevant for the catalysis of the phosphoryl transfer. In contrast, transient phosphocholination of His229 in the conserved catalytic motif might exist as a short-lived reaction intermediate. Upon substrate binding, His229 is deprotonated and locked in this state, being rendered capable of a nucleophilic attack on the pyrophosphate moiety of the substrate. The proton that originated from His229 is transferred to a nearby carboxylic acid residue. Thus, our combined findings support a ping-pong mechanism involving phosphocholination of His229 and subsequent transfer of phosphocholine to the Rab GTPase. Our approach can be extended to the investigation of further nucleotidyl transfer reactions, which are currently of reemerging interest in regulatory pathways of host-pathogen interactions.
Collapse
Affiliation(s)
- Konstantin Gavriljuk
- Department of Biophysics, Ruhr-Universität Bochum , Universitätsstrasse 150, 44801 Bochum, Germany
| | - Jonas Schartner
- Department of Biophysics, Ruhr-Universität Bochum , Universitätsstrasse 150, 44801 Bochum, Germany
| | - Hans Seidel
- Department of Biophysics, Ruhr-Universität Bochum , Universitätsstrasse 150, 44801 Bochum, Germany
| | - Clarissa Dickhut
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V. , Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany
| | - Rene P Zahedi
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V. , Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany
| | - Christian Hedberg
- Department of Chemistry and Umeå Center for Microbial Research, Umeå University , SE-90187 Umeå, Sweden
| | - Carsten Kötting
- Department of Biophysics, Ruhr-Universität Bochum , Universitätsstrasse 150, 44801 Bochum, Germany
| | - Klaus Gerwert
- Department of Biophysics, Ruhr-Universität Bochum , Universitätsstrasse 150, 44801 Bochum, Germany
| |
Collapse
|
48
|
Zhuang Q, Young A, Callam CS, McElroy CA, Ekici ÖD, Yoder RJ, Hadad CM. Efforts toward treatments against aging of organophosphorus-inhibited acetylcholinesterase. Ann N Y Acad Sci 2016; 1374:94-104. [PMID: 27327269 DOI: 10.1111/nyas.13124] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 11/26/2022]
Abstract
Aging is a dealkylation reaction of organophosphorus (OP)-inhibited acetylcholinesterase (AChE). Despite many studies to date, aged AChE cannot be reactivated directly by traditional pyridinium oximes. This review summarizes strategies that are potentially valuable in the treatment against aging in OP poisoning. Among them, retardation of aging seeks to lower the rate of aging through the use of AChE effectors. These drugs should be administered before AChE is completely aged. For postaging treatment, realkylation of aged AChE by appropriate alkylators may pave the way for oxime treatment by neutralizing the oxyanion at the active site of aged AChE. The other two strategies, upregulation of AChE expression and introduction of exogenous AChE, cannot resurrect aged AChE but may compensate for lowered active AChE levels by in situ production or external introduction of active AChE. Upregulation of AChE expression can be triggered by some peptides. Sources of exogenous AChE can be whole blood or purified AChE, either from human or nonhuman species.
Collapse
Affiliation(s)
- Qinggeng Zhuang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Amneh Young
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Christopher S Callam
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Craig A McElroy
- College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Özlem Dogan Ekici
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio.,Department of Chemistry and Biochemistry, The Ohio State University-Newark, Newark, Ohio
| | - Ryan J Yoder
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio.,Department of Chemistry and Biochemistry, The Ohio State University-Marion, Marion, Ohio
| | - Christopher M Hadad
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| |
Collapse
|
49
|
Houk AL, Givens RS, Elles CG. Two-Photon Activation of p-Hydroxyphenacyl Phototriggers: Toward Spatially Controlled Release of Diethyl Phosphate and ATP. J Phys Chem B 2016; 120:3178-86. [PMID: 26962676 DOI: 10.1021/acs.jpcb.5b12150] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Two-photon activation of the p-hydroxyphenacyl (pHP) photoactivated protecting group is demonstrated for the first time using visible light at 550 nm from a pulsed laser. Broadband two-photon absorption measurements reveal a strong two-photon transition (>10 GM) near 4.5 eV that closely resembles the lowest-energy band at the same total excitation energy in the one-photon absorption spectrum of the pHP chromophore. The polarization dependence of the two-photon absorption band is consistent with excitation to the same S3 ((1)ππ*) excited state for both one- and two-photon activation. Monitoring the progress of the uncaging reaction under nonresonant excitation at 550 nm confirms a quadratic intensity dependence and that two-photon activation of the uncaging reaction is possible using visible light in the range 500-620 nm. Deprotonation of the pHP chromophore under mildly basic conditions shifts the absorption band to lower energy (3.8 eV) in both the one- and two-photon absorption spectra, suggesting that two-photon activation of the pHP chromophore may be possible using light in the range 550-720 nm. The results of these measurements open the possibility of spatially and temporally selective release of biologically active compounds from the pHP protecting group using visible light from a pulsed laser.
Collapse
Affiliation(s)
- Amanda L Houk
- Department of Chemistry, University of Kansas , Lawrence, Kansas 66045, United States
| | - Richard S Givens
- Department of Chemistry, University of Kansas , Lawrence, Kansas 66045, United States
| | - Christopher G Elles
- Department of Chemistry, University of Kansas , Lawrence, Kansas 66045, United States
| |
Collapse
|
50
|
Xiong B, Zeng K, Zhang S, Zhou Y, Au CT, Yin SF. Copper-catalyzed direct esterification of P(O)–OH compounds with phenols. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.10.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|