1
|
David R, Tuñón I, Laage D. Competing Reaction Mechanisms of Peptide Bond Formation in Water Revealed by Deep Potential Molecular Dynamics and Path Sampling. J Am Chem Soc 2024; 146:14213-14224. [PMID: 38739765 DOI: 10.1021/jacs.4c03445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The formation of an amide bond is an essential step in the synthesis of materials and drugs, and in the assembly of amino acids to form peptides. The mechanism of this reaction has been studied extensively, in particular to understand how it can be catalyzed, but a representation capable of explaining all the experimental data is still lacking. Numerical simulation should provide the necessary molecular description, but the solvent involvement poses a number of challenges. Here, we combine the efficiency and accuracy of neural network potential-based reactive molecular dynamics with the extensive and unbiased exploration of reaction pathways provided by transition path sampling. Using microsecond-scale simulations at the density functional theory level, we show that this method reveals the presence of two competing distinct mechanisms for peptide bond formation between alanine esters in aqueous solution. We describe how both reaction pathways, via a general base catalysis mechanism and via direct cleavage of the tetrahedral intermediate respectively, change with pH. This result contrasts with the conventional mechanism involving a single pathway in which only the barrier heights are affected by pH. We show that this new proposal involving two competing mechanisms is consistent with the experimental data, and we discuss the implications for peptide bond formation under prebiotic conditions and in the ribosome. Our work shows that integrating deep potential molecular dynamics with path sampling provides a powerful approach for exploring complex chemical mechanisms.
Collapse
Affiliation(s)
- Rolf David
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Iñaki Tuñón
- Departamento de Química Física, Universitat de Valencia, Burjassot, 46100 Valencia, Spain
| | - Damien Laage
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
2
|
Fındık V, Varınca Gerçik BT, Sinek Ö, Erdem SS, Ruiz-López MF. Mechanistic Investigation of Lysine-Targeted Covalent Inhibition of PI3Kδ via ONIOM QM:QM Computations. J Chem Inf Model 2022; 62:6775-6787. [PMID: 35980989 DOI: 10.1021/acs.jcim.2c00569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Phosphoinositide 3-kinase (PI3K) enzymes are important drug targets, especially in oncology, and several inhibitors are currently under investigation in clinical trials for the treatment of lymphocytic leukemia, follicular lymphoma, breast, thyroid, colorectal, and lung cancer. Targeted covalent inhibitors hold significant promise for drug discovery research especially for kinases. Targeting the lysine residues attracts attention as a new strategy in designing targeted covalent inhibitors, since the lysine residue provides several advantages over the traditional cysteine residue. Recently, new highly selective covalent inhibitors of PI3Kδ with activated ester warheads, targeting the conserved Lys779 residue, were reported. Based on the observed kinetics, a covalent inhibition mechanism was proposed, but the atomistic details of the reaction are still not understood. Therefore, in the present work, we have conducted quantum chemical ONIOM M06-2X/6-31+G(d,p):PM6 calculations on the active site cluster structure of PI3Kδ to elucidate the microscopic details of the mechanism of the aminolysis reaction between Lys779 and the ester inhibitors. Our calculations clearly discriminate the noncovalent methyl ester inhibitor and the covalent inhibitors with activated phenolic esters. For the representative p-NO2, p-F, p-H, and p-OCH3 phenolic esters, the Gibbs free energy profiles of alternative mechanistic paths through either Asp782 or Asp911 demonstrate the modulatory role of active site aspartate residues. The most plausible path alters depending on the electron-withdrawing/donating nature of the p-substituted phenolate leaving group. Inhibitors with sufficiently strong electron-withdrawing group prefer direct dissociation of the leaving group from the tetrahedral zwitterion intermediate, while the ones with electron-donating group favor the formation of a neutral tetrahedral intermediate prior to the dissociation. The relative Gibbs free energy barriers of p-NO2 < p-F < p-H < p-OCH3 substituted phenyl esters display the same qualitative trend as the experimentally measured kinact/KI values. Our results provide in depth insight into the mechanism, which can pave the way for optimizing the inhibitor efficiency.
Collapse
Affiliation(s)
- Volkan Fındık
- LPCT, UMR 7019, University of Lorraine, CNRS, 54000, Nancy, France.,Department of Chemistry, Faculty of Arts and Sciences, Marmara University, 34722, Istanbul, Turkey
| | | | - Öykü Sinek
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, 34722, Istanbul, Turkey
| | - Safiye Sağ Erdem
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, 34722, Istanbul, Turkey
| | | |
Collapse
|
3
|
Hu Q, Jayasinghe-Arachchige VM, Prabhakar R. Degradation of a Main Plastic Pollutant Polyethylene Terephthalate by Two Distinct Proteases (Neprilysin and Cutinase-like Enzyme). J Chem Inf Model 2021; 61:764-776. [PMID: 33534993 DOI: 10.1021/acs.jcim.0c00797] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this DFT study, hydrolysis of polyethylene terephthalate (PET), a major cause of plastic pollution, by two distinct enzymes, neprilysin (NEP, a mononuclear metalloprotease) and cutinase-like enzyme (CLE, a serine protease), has been investigated. These enzymes utilize different mechanisms for the degradation of PET. NEP uses either the metal-bound hydroxide attack (MH) mechanism or reverse protonation (RP) mechanism, while CLE utilizes a general acid/base mechanism that includes acylation and deacylation processes. Additionally, the RP mechanism of NEP can proceed through three pathways, RP0, RP1, and RP2. The DFT calculations predict that, among all these mechanisms, the MH mechanism is the energetically most favorable one for the NEP enzyme. In comparison, CLE catalyzes this reaction with a significantly higher barrier. These results suggest that the Lewis acid and nucleophile activations provided by the Zn metal center of NEP are more effective than the hydrogen bonding interactions afforded by the catalytic Ser85-His180-Asp165 triad of CLE. They have provided intrinsic details regarding PET degradation and will pave the way for the design of efficient metal-based catalysts for this critical reaction.
Collapse
Affiliation(s)
- Qiaoyu Hu
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | | | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
4
|
Blumberger J, Lamoureux G, Klein ML. Peptide Hydrolysis in Thermolysin: Ab Initio QM/MM Investigation of the Glu143-Assisted Water Addition Mechanism. J Chem Theory Comput 2015; 3:1837-50. [PMID: 26627626 DOI: 10.1021/ct7000792] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Thermolysin (TLN) is one of the best-studied zinc metalloproteases. Yet the mechanism of action is still under debate. In order to investigate the energetic feasibility of the currently most favored mechanism, we have docked a tripeptide to the active site of TLN and computed the free energy profile at the quantum mechanics/molecular mechanics level of theory. The mechanism consists of three distinct steps: (i) a Zn-bound water molecule is deprotonated by Glu143 and attacks the carbonyl bond of the substrate; (ii) Glu143 transfers the proton to the amide nitrogen atom; (iii) the nitrogen atom is protonated and the peptide bond is irreversibly broken. The free energy barriers for steps i and iii have almost equal heights, 14.8 and 14.7 kcal/mol, respectively, and are in good agreement with the effective experimental activation barrier obtained for similar substrates, 12.1-13.6 kcal/mol. Transition state stabilization for nucleophilic attack is achieved by formation of a weak coordination bond between the substrate carbonyl oxygen atom and the Zn ion and of three strong hydrogen bonds between the substrate and protonated His231 and two solvent molecules. The transition state for the nucleophilic attack (step i) is more tightly bonded than the enzyme-substrate complex, implying that TLN complies with Pauling's hypothesis regarding transition-state stabilization. Glu143, at first unfavorably oriented for protonation of the amide nitrogen atom, displayed large structural fluctuations that facilitated reorganization of the local hydrogen-bond network and transport of the proton to the leaving group on the nanosecond time scale. The present simulations give further evidence that Glu143 is a highly effective proton shuttle which should be assigned a key role in any reaction mechanism proposed for TLN.
Collapse
Affiliation(s)
- Jochen Blumberger
- Center for Molecular Modeling and Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104-6323
| | - Guillaume Lamoureux
- Center for Molecular Modeling and Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104-6323
| | - Michael L Klein
- Center for Molecular Modeling and Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104-6323
| |
Collapse
|
5
|
Rivail JL, Monari A, Assfeld X. The Non Empirical Local Self Consistent Field Method: Application to Quantum Mechanics/Molecular Mechanics (QM/MM) Modeling of Large Biomolecular Systems. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2015. [DOI: 10.1007/978-3-319-21626-3_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Abstract
![]()
A projected hybrid orbital (PHO)
method was described to model
the covalent boundary in a hybrid quantum mechanical and molecular
mechanical (QM/MM) system. The PHO approach can be used in ab initio
wave function theory and in density functional theory with any basis
set without introducing system-dependent parameters. In this method,
a secondary basis set on the boundary atom is introduced to formulate
a set of hybrid atomic orbtials. The primary basis set on the boundary
atom used for the QM subsystem is projected onto the secondary basis
to yield a representation that provides a good approximation to the
electron-withdrawing power of the primary basis set to balance electronic
interactions between QM and MM subsystems. The PHO method has been
tested on a range of molecules and properties. Comparison with results
obtained from QM calculations on the entire system shows that the
present PHO method is a robust and balanced QM/MM scheme that preserves
the structural and electronic properties of the QM region.
Collapse
Affiliation(s)
- Yingjie Wang
- Theoretical Chemistry Institute, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University , Changchun, Jilin Province 130028, People's Republic of China
| | | |
Collapse
|
7
|
|
8
|
Monari A, Rivail JL, Assfeld X. Theoretical modeling of large molecular systems. Advances in the local self consistent field method for mixed quantum mechanics/molecular mechanics calculations. Acc Chem Res 2013; 46:596-603. [PMID: 23249409 DOI: 10.1021/ar300278j] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular mechanics methods can efficiently compute the macroscopic properties of a large molecular system but cannot represent the electronic changes that occur during a chemical reaction or an electronic transition. Quantum mechanical methods can accurately simulate these processes, but they require considerably greater computational resources. Because electronic changes typically occur in a limited part of the system, such as the solute in a molecular solution or the substrate within the active site of enzymatic reactions, researchers can limit the quantum computation to this part of the system. Researchers take into account the influence of the surroundings by embedding this quantum computation into a calculation of the whole system described at the molecular mechanical level, a strategy known as the mixed quantum mechanics/molecular mechanics (QM/MM) approach. The accuracy of this embedding varies according to the types of interactions included, whether they are purely mechanical or classically electrostatic. This embedding can also introduce the induced polarization of the surroundings. The difficulty in QM/MM calculations comes from the splitting of the system into two parts, which requires severing the chemical bonds that link the quantum mechanical subsystem to the classical subsystem. Typically, researchers replace the quantoclassical atoms, those at the boundary between the subsystems, with a monovalent link atom. For example, researchers might add a hydrogen atom when a C-C bond is cut. This Account describes another approach, the Local Self Consistent Field (LSCF), which was developed in our laboratory. LSCF links the quantum mechanical portion of the molecule to the classical portion using a strictly localized bond orbital extracted from a small model molecule for each bond. In this scenario, the quantoclassical atom has an apparent nuclear charge of +1. To achieve correct bond lengths and force constants, we must take into account the inner shell of the atom: for an sp(3) carbon atom, we consider the two core 1s electrons and treat that carbon as an atom with three electrons. This results in an LSCF+3 model. Similarly, a nitrogen atom with a lone pair of electrons available for conjugation is treated as an atom with five electrons (LSCF+5). This approach is particularly well suited to splitting peptide bonds and other bonds that include carbon or nitrogen atoms. To embed the induced polarization within the calculation, researchers must use a polarizable force field. However, because the parameters of the usual force fields include an average of the induction effects, researchers typically can obtain satisfactory results without explicitly introducing the polarization. When considering electronic transitions, researchers must take into account the changes in the electronic polarization. One approach is to simulate the electronic cloud of the surroundings by a continuum whose dielectric constant is equal to the square of the refractive index. This Electronic Response of the Surroundings (ERS) methodology allows researchers to model the changes in induced polarization easily. We illustrate this approach by modeling the electronic absorption of tryptophan in human serum albumin (HSA).
Collapse
Affiliation(s)
- Antonio Monari
- Théorie Modélisation Simulation, Université de Lorraine, SRSMC UMR 7565, Vandœuvre-lès-Nancy F-54506, France
- Théorie Modélisation Simulation, CNRS, SRSMC UMR 7565, Vandœuvre-lès-Nancy F-54506, France
| | - Jean-Louis Rivail
- Théorie Modélisation Simulation, Université de Lorraine, SRSMC UMR 7565, Vandœuvre-lès-Nancy F-54506, France
- Théorie Modélisation Simulation, CNRS, SRSMC UMR 7565, Vandœuvre-lès-Nancy F-54506, France
| | - Xavier Assfeld
- Théorie Modélisation Simulation, Université de Lorraine, SRSMC UMR 7565, Vandœuvre-lès-Nancy F-54506, France
- Théorie Modélisation Simulation, CNRS, SRSMC UMR 7565, Vandœuvre-lès-Nancy F-54506, France
| |
Collapse
|
9
|
Abstract
Techniques for modelling enzyme-catalyzed reaction mechanisms are making increasingly important contributions to biochemistry. They can address fundamental questions in enzyme catalysis and have the potential to contribute to practical applications such as drug development.
Collapse
|
10
|
Wu A, Xu X. DCMB that combines divide-and-conquer and mixed-basis set methods for accurate geometry optimizations, total energies, and vibrational frequencies of large molecules. J Comput Chem 2012; 33:1421-32. [DOI: 10.1002/jcc.22973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 03/02/2012] [Indexed: 11/06/2022]
|
11
|
Comparative Study of Vibrational Spectra of Two Bioactive Natural Products Lupeol and Lupenone Using MM/QM Method. ACTA ACUST UNITED AC 2012. [DOI: 10.1155/2012/486304] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This work deals with the theoretical study on the molecular structure and vibrational spectra of two well-known natural products: lupeol and lupenone. The spectra were interpreted with the aid of normal mode analysis following full-structure optimization carried out with the hybrid two-level ONIOM (B3LYP/6-31G: PM3) method. A detailed interpretation of the infrared spectra of Lupeol and Lupenone is also reported in the present work. The similarities and differences between the vibrational spectra of the two molecules studied have been highlighted. The scaled theoretical wave numbers are in perfect agreement with the experimental values. The thermodynamic calculations related to the title compounds were also performed at B3LYP/6-31G: PM3 level of theory. Quantum chemical calculations have been carried out to understand the dynamical behavior of the bioactive molecules Lupeol and Lupenone.
Collapse
|
12
|
Cheng X, Wang J, Tang K, Liu Y, Liu C. Decarboxylation of pyrrole-2-carboxylic acid: A DFT investigation. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.07.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Bora RP, Barman A, Zhu X, Ozbil M, Prabhakar R. Which One Among Aspartyl Protease, Metallopeptidase, and Artificial Metallopeptidase is the Most Efficient Catalyst in Peptide Hydrolysis? J Phys Chem B 2010; 114:10860-75. [DOI: 10.1021/jp104294x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ram Prasad Bora
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146
| | - Arghya Barman
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146
| | - Xiaoxia Zhu
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146
| | - Mehmet Ozbil
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146
| |
Collapse
|
14
|
Kilshtain AV, Warshel A. On the origin of the catalytic power of carboxypeptidase A and other metalloenzymes. Proteins 2010; 77:536-50. [PMID: 19480013 DOI: 10.1002/prot.22466] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Zinc metalloenzymes play a major role in key biological processes and carboxypeptidase-A (CPA) is a major prototype of such enzymes. The present work quantifies the energetics of the catalytic reaction of CPA and its mutants using the empirical valence bond (EVB) approach. The simulations allow us to quantify the origin of the catalytic power of this enzyme and to examine different mechanistic alternatives. The first step of the analysis used experimental information to determine the activation energy of each assumed mechanism of the reference reaction without the enzyme. The next step of the analysis involved EVB simulations of the reference reaction and then a calibration of the simulations by forcing them to reproduce the energetics of the reference reaction, in each assumed mechanism. The calibrated EVB was then used in systematic simulations of the catalytic reaction in the protein environment, without changing any parameter. The simulations reproduced the observed rate enhancement in two feasible general acid-general base mechanisms (GAGB-1 and GAGB-2), although the calculations with the GAGB-2 mechanism underestimated the catalytic effect in some treatments. We also reproduced the catalytic effect in the R127A mutant. The mutation calculations indicate that the GAGB-2 mechanism is significantly less likely than the GAGB-1 mechanism. It is also found, that the enzyme loses all its catalytic effect without the metal. This and earlier studies show that the catalytic effect of the metal is not some constant electrostatic effect, that can be assessed from gas phase studies, but a reflection of the dielectric effect of the specific environment.
Collapse
|
15
|
Bora RP, Ozbil M, Prabhakar R. Elucidation of insulin degrading enzyme catalyzed site specific hydrolytic cleavage of amyloid β peptide: a comparative density functional theory study. J Biol Inorg Chem 2009; 15:485-95. [DOI: 10.1007/s00775-009-0617-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 12/14/2009] [Indexed: 01/29/2023]
|
16
|
Wu R, Hu P, Wang S, Cao Z, Zhang Y. Flexibility of Catalytic Zinc Coordination in Thermolysin and HDAC8: A Born-Oppenheimer ab initio QM/MM Molecular Dynamics Study. J Chem Theory Comput 2009; 6:337. [PMID: 20161624 PMCID: PMC2812930 DOI: 10.1021/ct9005322] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The different coordination modes and fast ligand exchange of zinc coordination has been suggested to be one key catalytic feature of the zinc ion which makes it an invaluable metal in biological catalysis. However, partly due to the well known difficulties for zinc to be characterized by spectroscopy methods, evidence for dynamic nature of the catalytic zinc coordination has so far mainly been indirect. In this work, Born-Oppenheimer ab initio QM/MM molecular dynamics simulation has been employed, which allows for a first-principle description of the dynamics of the metal active site while properly including effects of the heterogeneous and fluctuating protein environment. Our simulations have provided direct evidence regarding inherent flexibility of the catalytic zinc coordination shell in Thermolysin (TLN) and Histone Deacetylase 8 (HDAC8). We have observed different coordination modes and fast ligand exchange during the picosecond's time-scale. For TLN, the coordination of the carboxylate group of Glu166 to Zinc is found to continuously change between monodentate and bidentate manner dynamically; while for HDAC8, the flexibility mainly comes from the coordination to a non-amino-acid ligand. Such distinct dynamics in the zinc coordination shell between two enzymes suggests that the catalytic role of Zinc in TLN and HDAC8 is likely to be different in spite of the fact that both catalyze the hydrolysis of amide bond. Meanwhile, considering that such Born-Oppenheimer ab initio QM/MM MD simulations are very much desired but are widely considered to be too computationally expensive to be feasible, our current study demonstrates the viability and powerfulness of this state-of-the-art approach in simulating metalloenzymes.
Collapse
Affiliation(s)
- Ruibo Wu
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
- Department of Chemistry and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Po Hu
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | - Shenglong Wang
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | - Zexing Cao
- Department of Chemistry and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yingkai Zhang
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| |
Collapse
|
17
|
VARDI-KILSHTAIN ALEXANDRA, SHOHAM GIL, GOLDBLUM AMIRAM. Anhydride formation is not a valid mechanism for peptide cleavage by carboxypeptidase-A: a semiempirical reaction pathway study. Mol Phys 2009. [DOI: 10.1080/00268970310001602528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- ALEXANDRA VARDI-KILSHTAIN
- a Department of Inorganic and Analytical Chemistry , Institute of Chemistry , Jerusalem , 91120 , Israel
- b Department of Medicinal Chemistry and Natural Products , The David R. Bloom Center for Pharmacy, School of Pharmacy, The Hebrew University of Jerusalem , Jerusalem , 91120 , Israel
| | - GIL SHOHAM
- a Department of Inorganic and Analytical Chemistry , Institute of Chemistry , Jerusalem , 91120 , Israel
| | - AMIRAM GOLDBLUM
- b Department of Medicinal Chemistry and Natural Products , The David R. Bloom Center for Pharmacy, School of Pharmacy, The Hebrew University of Jerusalem , Jerusalem , 91120 , Israel
| |
Collapse
|
18
|
Computational study on the conformation and vibration frequencies of β-sheet of ε-polylysine in vacuum. Int J Mol Sci 2009; 10:3358-3370. [PMID: 20111685 PMCID: PMC2812828 DOI: 10.3390/ijms10083358] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 07/21/2009] [Accepted: 07/27/2009] [Indexed: 11/29/2022] Open
Abstract
Two oligomers, each containing 3 l-lysine residues, were used as model molecules for the simulation of the β-sheet conformation of ɛ-polylysine (ɛ-PLL) chains. Their C terminals were capped with ethylamine and N terminals were capped with α-l-aminobutanoic acid, respectively. The calculations were carried out with the hybrid two-level ONOIM (B3LYP/6-31G:PM3) computational chemistry method. The optimized conformation was obtained and IR frequencies were compared with experimental data. The result indicated that the two chains were winded around each other to form a distinct cyclohepta structure through bifurcated hydrogen bonds. The groups of amide and α-amidocyanogen coming from one chain and the carbonyl group from the other chain were involved in the cyclohepta structure. The bond angle of the bifurcated hydrogen bonds was 66.6°. The frequency analysis at ONIOM [B3LYP/6-31G (d):PM3] level showed the IR absorbances of the main groups, such as the amide and amidocyanogen groups, were in accordance with the experimental data.
Collapse
|
19
|
Antonczak S, Fiorucci S, Golebiowski J, Cabrol-Bass D. Theoretical investigations of the role played by quercetinase enzymes upon the flavonoids oxygenolysis mechanism. Phys Chem Chem Phys 2009; 11:1491-501. [DOI: 10.1039/b814588a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
20
|
Cheshmedzhieva D, Ilieva S, Hadjieva B, Galabov B. The mechanism of alkaline hydrolysis of amides: a comparative computational and experimental study of the hydrolysis of N
-methylacetamide, N
-methylbenzamide, and acetanilide. J PHYS ORG CHEM 2008. [DOI: 10.1002/poc.1492] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
Anderson JA, Hopkins BW, Chapman JL, Tschumper GS. A systematic assessment of density functionals and ONIOM schemes for the study of hydrogen bonding between water and the side chains of serine, threonine, asparagine, and glutamine. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.theochem.2006.03.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Gorb L, Asensio A, Tuñón I, Ruiz-López MF. The Mechanism of Formamide Hydrolysis in Water from Ab Initio Calculations and Simulations. Chemistry 2005; 11:6743-53. [PMID: 16130156 DOI: 10.1002/chem.200500346] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The neutral hydrolysis of formamide in water is a suitable reference to quantify the efficiency of proteolytic enzymes. However, experimental data for this reaction has only very recently been obtained and the kinetic constant determined experimentally is significantly higher than that predicted by previous theoretical estimations. In this work, we have investigated in detail the possible mechanisms of this reaction. Several solvent models have been considered that represent a considerable improvement on those used in previous studies. Density functional and ab initio calculations have been carried out on a system which explicitly includes the first solvation shell of the formamide molecule. Its interaction with the bulk has been treated with the aid of a dielectric continuum model. Molecular dynamics simulations at the combined density functional/molecular mechanics level have been carried out in parallel to better understand the structure of the reaction intermediates in aqueous solution. Overall, the most favored mechanism predicted by our study involves two reaction steps. In the first step, the carbonyl group of the formamide molecule is hydrated to form a diol intermediate. The corresponding transition structure involves two water molecules. From this intermediate, a water-assisted proton transfer occurs from one of the hydroxy groups to the amino group. This reaction step may lead either to the formation of a new reaction intermediate with a marked zwitterionic character or to dissociation of the system into ammonia and formic acid. The zwitterionic intermediate dissociates quite easily but its lifetime is not negligible and it could play a role in the hydrolysis of substituted amides or peptides. The predicted pseudo-first-order kinetic constant for the rate-limiting step (the first step) of the hydrolysis reaction at 25 degrees C (3.9x10(-10) s(-1)) is in excellent agreement with experimental data (1.1x10(-10) s(-1)).
Collapse
Affiliation(s)
- Leonid Gorb
- Computational Center for Molecular Structure and Interactions, Department of Chemistry, Jackson State University, P.O. Box 17910, 1325 Lynch Street, Jackson, MS 39217, USA
| | | | | | | |
Collapse
|
23
|
Is the bias introduced in a FEP calculation by parameterizing a QM reaction acceptable? Comparison with Car–Parrinello MD/AMBER results for the second proton transfer in triosephosphate isomerase (TIM). ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.theochem.2005.03.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Raha K, Merz KM. Chapter 9 Calculating Binding Free Energy in Protein–Ligand Interaction. ANNUAL REPORTS IN COMPUTATIONAL CHEMISTRY 2005. [DOI: 10.1016/s1574-1400(05)01009-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Fiorucci S, Golebiowski J, Cabrol-Bass D, Antonczak S. Oxygenolysis of Flavonoid Compounds: DFT Description of the Mechanism for Quercetin. Chemphyschem 2004; 5:1726-33. [PMID: 15580933 DOI: 10.1002/cphc.200400186] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Flavonoids are naturally occurring phenol derivatives present in substantial amounts in a large variety of plants, fruits and vegetables daily eaten by humans. Most of these compounds exhibit several interesting biological activities, such as antiradical and antioxidant actions. Indeed, by complexation with specific enzymes, flavonoids are notably liable to metabolize molecular dioxygen. On the basis of experimental results describing oxygenolysis of the flavonoid quercetin, activated by the enzyme quercetin 2,3-dioxygenase (2,3-QD),ur attention has focused on the role of metal center in the activation of the substrate quercetin. Thus, in the present study, by means of DFT calculations at the B3LYP/ 6-31(+)G* level on model molecular systems, we describe different mechanisms for dioxygen metabolization by quercetin. Stationary points are described, and energetic and structural analyses along the reaction paths are reported. Our calculations show that the copper cation must act as an oxidant towards the substrate and that the reaction proceeds through a 1,3-cycloaddition.
Collapse
Affiliation(s)
- Sébastien Fiorucci
- Laboratoire Arômes, Synthèses, Interactions, Faculté des Sciences, Université de Nice-Sophia Antipolis, 06108 Nice 2, France
| | | | | | | |
Collapse
|
26
|
Yasuda K, Yamaki D. Simple minimum principle to derive a quantum-mechanical/ molecular-mechanical method. J Chem Phys 2004; 121:3964-72. [PMID: 15332942 DOI: 10.1063/1.1772354] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We propose a minimum principle to derive a QM/MM (quantum-mechanical/molecular-mechanical) method from the first principle. We approximate the Hamiltonian of a spectator substituent as the structure-dependent effective Hamiltonian in a least-squares sense. This effective Hamiltonian is expanded with the orthogonal operator set called the normal-ordered product. We determine the structure-dependent energy that corresponds to the classical MM energy and the extra one-electron potential that takes account of the interface effects. This QM/MM method is free from the double-counting problem and the artificial truncation of the localized molecular orbitals. As a numerical example we determine the one-electron effective Hamiltonian of the methyl group. This effective Hamiltonian is applied to the ethane and CH(3)CH(2)X molecules (X=CH(3), NH(2), OH, F, COOH, NH(3) (+), OH(2) (+), and COO(-)). It reproduced the relative energies, potential energy curves, and the Mulliken populations of the all-electron calculations fairly well.
Collapse
Affiliation(s)
- Koji Yasuda
- Graduate School of Information Science, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan.
| | | |
Collapse
|
27
|
Tubert-Brohman I, Guimarães CRW, Repasky MP, Jorgensen WL. Extension of the PDDG/PM3 and PDDG/MNDO semiempirical molecular orbital methods to the halogens. J Comput Chem 2004; 25:138-50. [PMID: 14635001 DOI: 10.1002/jcc.10356] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The new semiempirical methods, PDDG/PM3 and PDDG/MNDO, have been parameterized for halogens. For comparison, the original MNDO and PM3 were also reoptimized for the halogens using the same training set; these modified methods are referred to as MNDO' and PM3'. For 442 halogen-containing molecules, the smallest mean absolute error (MAE) in heats of formation is obtained with PDDG/PM3 (5.6 kcal/mol), followed by PM3' (6.1 kcal/mol), PDDG/MNDO (6.6 kcal/mol), PM3 (8.1 kcal/mol), MNDO' (8.5 kcal/mol), AM1 (11.1 kcal/mol), and MNDO (14.0 kcal/mol). For normal-valent halogen-containing molecules, the PDDG methods also provide improved heats of formation over MNDO/d. Hypervalent compounds were not included in the training set and improvements over the standard NDDO methods with sp basis sets were not obtained. For small haloalkanes, the PDDG methods yield more accurate heats of formation than are obtained from density functional theory (DFT) with the B3LYP and B3PW91 functionals using large basis sets. PDDG/PM3 and PM3' also give improved binding energies over the standard NDDO methods for complexes involving halide anions, and they are competitive with B3LYP/6-311++G(d,p) results including thermal corrections. Among the semiempirical methods studied, PDDG/PM3 also generates the best agreement with high-level ab initio G2 and CCSD(T) intrinsic activation energies for S(N)2 reactions involving methyl halides and halide anions. Finally, the MAEs in ionization potentials, dipole moments, and molecular geometries show that the parameter sets for the PDDG and reoptimized NDDO methods reduce the MAEs in heats of formation without compromising the other important QM observables.
Collapse
Affiliation(s)
- Ivan Tubert-Brohman
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
28
|
Park JD, Kim DH. Reversed hydroxamate-bearing thermolysin inhibitors mimic a high-energy intermediate along the enzyme-catalyzed proteolytic reaction pathway. Bioorg Med Chem Lett 2003; 13:3161-6. [PMID: 12951085 DOI: 10.1016/s0960-894x(03)00720-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A series of inhibitors that bear a reversed hydroxamate moiety have been evaluated as transition state analogue inhibitors for thermolysin. A linear correlation is observed between the K(i) values of these inhibitors and the kinetic parameters (K(M)/k(cat)) of the parallel series of related substrates, satisfying the criterion stipulated for transition state analogue inhibitors by Bartlett and Marlowe. Furthermore, examination of the binding mode of a related reversed hydroxamate bearing thermolysin inhibitor, in comparison with a transition state postulated for the enzyme-catalyzed proteolytic reaction revealed that the inhibitors under study mimic the electronic as well as the geometric characteristics of the transition state. On the basis of these results it may be concluded that the hydroxamate-bearing zinc protease inhibitors are a new type of transition state analogue inhibitors.
Collapse
Affiliation(s)
- Jung Dae Park
- Center for Integrated Molecular Systems, Division of Molecular and Life Sciences, Pohang University of Science and Technology, San 31 Hyojadong, Pohang 790-784, South Korea
| | | |
Collapse
|
29
|
|
30
|
Coutinho K, Canuto S. The sequential Monte Carlo-quantum mechanics methodology. Application to the solvent effects in the Stokes shift of acetone in water. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0166-1280(03)00302-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Konuklar FA, Aviyente V, Ruiz Lopez MF. Theoretical Study on the Alkaline and Neutral Hydrolysis of Succinimide Derivatives in Deamidation Reactions. J Phys Chem A 2002. [DOI: 10.1021/jp026153l] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- F. Aylin Konuklar
- Department of Chemistry, Boǧaziçi University, 80815 Bebek-Istanbul, Turkey, and Laboratoire de Chimie Théorique, Université Henri Poincaré-Nancy I, UMR CNRS-UHP No. 7565, 54506 Vandoeuvre-les-Nancy, France
| | - Viktorya Aviyente
- Department of Chemistry, Boǧaziçi University, 80815 Bebek-Istanbul, Turkey, and Laboratoire de Chimie Théorique, Université Henri Poincaré-Nancy I, UMR CNRS-UHP No. 7565, 54506 Vandoeuvre-les-Nancy, France
| | - Manuel F. Ruiz Lopez
- Department of Chemistry, Boǧaziçi University, 80815 Bebek-Istanbul, Turkey, and Laboratoire de Chimie Théorique, Université Henri Poincaré-Nancy I, UMR CNRS-UHP No. 7565, 54506 Vandoeuvre-les-Nancy, France
| |
Collapse
|
32
|
Abstract
This review discusses methods for the incorporation of quantum mechanical effects into enzyme kinetics simulations in which the enzyme is an explicit part of the model. We emphasize three aspects: (a) use of quantum mechanical electronic structure methods such as molecular orbital theory and density functional theory, usually in conjunction with molecular mechanics; (b) treating vibrational motions quantum mechanically, either in an instantaneous harmonic approximation, or by path integrals, or by a three-dimensional wave function coupled to classical nuclear motion; (c) incorporation of multidimensional tunneling approximations into reaction rate calculations.
Collapse
Affiliation(s)
- Jiali Gao
- Department of Chemistry and Supercomputer Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455-0431, USA.
| | | |
Collapse
|
33
|
Ferré N, Assfeld X, Rivail JL. Specific force field parameters determination for the hybrid ab initio QM/MM LSCF method. J Comput Chem 2002; 23:610-24. [PMID: 11939595 DOI: 10.1002/jcc.10058] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The pure quantum mechanics method, called Local Self-Consistent Field (LSCF), that allows to optimize a wave function within the constraint that some predefined spinorbitals are kept frozen, is discussed. These spinorbitals can be of any shape, and their occupation numbers can be 0 or 1. Any post-Hartree-Fock method, based on the restricted or unrestricted Hartree-Fock Slater determinant, and Kohn-Sham-based DFT method are available. The LSCF method is easily applied to hybrid quantum mechanics/molecular mechanics (QM/MM) procedure where the quantum and the classical parts are covalently bonded. The complete methodology of our hybrid QM/MM scheme is detailed for studies of macromolecular systems. Not only the energy but also the gradients are derived; thus, the full geometry optimization of the whole system is feasible. We show that only specific force field parameters are needed for a correct description of the molecule, they are given for some general chemical bonds. A careful analysis of the errors induced by the use of molecular mechanics in hybrid computation show that a general procedure can be derived to obtain accurate results at low computation effort. The methodology is applied to the structure determination of the crambin protein and to Menshutkin reactions between primary amines and chloromethane.
Collapse
Affiliation(s)
- Nicolas Ferré
- Equipe de Chimie et Biochimie théoriques, UMR Université Henri Poincaré, CNRS No. 7565, Vandoeuvre-lès-Nancy, France
| | | | | |
Collapse
|
34
|
Castillo R, Silla E, Tuñón I. Role of protein flexibility in enzymatic catalysis: quantum mechanical-molecular mechanical study of the deacylation reaction in class A beta-lactamases. J Am Chem Soc 2002; 124:1809-16. [PMID: 11853460 DOI: 10.1021/ja017156z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a theoretical study of a mechanism for the hydrolysis of the acyl-enzyme complex formed by a class A beta-lactamase (TEM1) and an antibiotic (penicillanate), as a part of the process of antibiotic's inactivation by this type of enzymes. In the presented mechanism the carboxylate group of a particular residue (Glu166) activates a water molecule, accepting one of its protons, and afterward transfers this proton directly to the acylated serine residue (Ser70). In our study we employed a quantum mechanics (AM1)-molecular mechanics partition scheme (QM/MM) where all the atoms of the system were allowed to relax. For this purpose we used the GRACE procedure in which part of the system is used to define the Hessian matrix while the rest is relaxed at each step of the stationary structures search. By use of this computational scheme, the hydrolysis of the acyl-enzyme is described as a three-step process: The first step corresponds to the proton transfer from the hydrolytic water molecule to the carboxylate group of Glu166 and the subsequent formation of a tetrahedral adduct as a consequence of the attack of this activated water molecule to the carbonyl carbon atom of the beta-lactam. In the second step, the acyl-enzyme bond is broken, obtaining a negatively charged Ser70. In the last step this residue is protonated by means of a direct proton transfer from Glu166. The large mobility of Glu166, a residue that is placed in a Ohms-loop, is essential to facilitate this mechanism. The geometry of the acyl-enzyme complex shows a large distance between Glu166 and Ser70 and thus, if protein coordinates were kept frozen during the reaction path, it would be difficult to get a direct proton transfer between these two residues. This computational study shows how a flexible treatment suggests the feasibility of a mechanism that could have been discounted on the basis of crystallographic positions.
Collapse
Affiliation(s)
- Raquel Castillo
- Departament de Ciències Experimentals, Universitat Jaume I, 12080 Castelló, Spain
| | | | | |
Collapse
|
35
|
Bahnson BJ, Anderson VE, Petsko GA. Structural mechanism of enoyl-CoA hydratase: three atoms from a single water are added in either an E1cb stepwise or concerted fashion. Biochemistry 2002; 41:2621-9. [PMID: 11851409 DOI: 10.1021/bi015844p] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have determined the crystal structure of the enzyme enoyl-CoA hydratase (ECH) from rat liver with the bound substrate 4-(N,N-dimethylamino)cinnamoyl-CoA using X-ray diffraction data to a resolution of 2.3 A. In addition to the thiolester substrate, the catalytic water, which is added in the hydration reaction, has been modeled into well-defined electron density in each of the six active sites of the physiological hexamer within the crystallographic asymmetric unit. The catalytic water bridges Glu(144) and Glu(164) of the enzyme and has a lone pair of electrons poised to react with C(3) of the enzyme-bound alpha,beta-unsaturated thiolester. The water molecule, which bridges two glutamate residues, is reminiscent of the enolase active site. However, unlike enolase, which has a lysine available to donate a proton, there are no other sources of protons available from other active site residues in ECH. Furthermore, an analysis of the hydrogen-bonding network of the active site suggests that both Glu(144) and Glu(164) are ionized and carry a negative charge with no reasonable place to have a protonated carboxylate. This lack of hydrogen-bonding acceptors that could accommodate a source of a proton, other than from the water molecule, leads to a hypothesis that the three atoms from a single water molecule are added across the double bond to form the hydrated product. The structural results are discussed in connection with details of the mechanism, which have been elucidated from kinetics, site-directed mutagenesis, and spectroscopy of enzyme-substrate species, in presenting an atomic-resolution mechanism of the reaction. Contrary to the previous interpretation, the structure of the E-S complex together with previously determined kinetic isotope effects is consistent with either a concerted mechanism or an E1cb stepwise mechanism.
Collapse
Affiliation(s)
- Brian J Bahnson
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA.
| | | | | |
Collapse
|
36
|
Ab Initio QM/MM and Free Energy Calculations of Enzyme Reactions. LECTURE NOTES IN COMPUTATIONAL SCIENCE AND ENGINEERING 2002. [DOI: 10.1007/978-3-642-56080-4_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Prat-Resina X, Garcia-Viloca M, González-Lafont A, Lluch JM. On the modulation of the substrate activity for the racemization catalyzed by mandelate racemase enzyme. A QM/MM study. Phys Chem Chem Phys 2002. [DOI: 10.1039/b204693h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
38
|
Chalmet S, Harb W, Ruiz-López MF. Computer Simulation of Amide Bond Formation in Aqueous Solution. J Phys Chem A 2001. [DOI: 10.1021/jp0135656] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- S. Chalmet
- Laboratoire de Chimie théorique, UMR CNRS-UHP No. 7565, Université Henri Poincaré-Nancy I, BP 239, 54506 Vandoeuvre-les-Nancy Cedex, France
| | - W. Harb
- Laboratoire de Chimie théorique, UMR CNRS-UHP No. 7565, Université Henri Poincaré-Nancy I, BP 239, 54506 Vandoeuvre-les-Nancy Cedex, France
| | - M. F. Ruiz-López
- Laboratoire de Chimie théorique, UMR CNRS-UHP No. 7565, Université Henri Poincaré-Nancy I, BP 239, 54506 Vandoeuvre-les-Nancy Cedex, France
| |
Collapse
|
39
|
Wang W, Donini O, Reyes CM, Kollman PA. Biomolecular simulations: recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 30:211-43. [PMID: 11340059 DOI: 10.1146/annurev.biophys.30.1.211] [Citation(s) in RCA: 392] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Computer modeling has been developed and widely applied in studying molecules of biological interest. The force field is the cornerstone of computer simulations, and many force fields have been developed and successfully applied in these simulations. Two interesting areas are (a) studying enzyme catalytic mechanisms using a combination of quantum mechanics and molecular mechanics, and (b) studying macromolecular dynamics and interactions using molecular dynamics (MD) and free energy (FE) calculation methods. Enzyme catalysis involves forming and breaking of covalent bonds and requires the use of quantum mechanics. Noncovalent interactions appear ubiquitously in biology, but here we confine ourselves to review only noncovalent interactions between protein and protein, protein and ligand, and protein and nucleic acids.
Collapse
Affiliation(s)
- W Wang
- Graduate Group in Biophysics, University of California San Francisco, California 94143, USA.
| | | | | | | |
Collapse
|
40
|
Martí S, Andrés J, Moliner V, Silla E, Tuñón I, Bertrán J, Field MJ. A hybrid potential reaction path and free energy study of the chorismate mutase reaction. J Am Chem Soc 2001; 123:1709-12. [PMID: 11456771 DOI: 10.1021/ja003522n] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We present a combination of two techniques--QM/MM statistical simulation methods and QM/MM internal energy minimizations--to get a deeper insight into the reaction catalyzed by the enzyme chorismate mutase. Structures, internal energies and free energies, taken from the paths of the reaction in solution and in the enzyme have been analyzed in order to estimate the relative importance of the reorganization and preorganization effects. The results we obtain for this reaction are in good agreement with experiment and show that chorismate mutase achieves its catalytic efficiency in two ways; first, it preferentially binds the active conformer of the substrate and, second, it reduces the free energy of activation for the reaction relative to that in solution by providing an environment which stabilizes the transition state.
Collapse
Affiliation(s)
- S Martí
- Departament de Ciències Experimentals, Universitat Jaume I, Box 224, 12080 Castellón, Spain
| | | | | | | | | | | | | |
Collapse
|
41
|
Garcia-Viloca M, Lluch JM. A QM/MM study of the racemization of vinylglycolate catalyzed by mandelate racemase enzyme. J Am Chem Soc 2001; 123:709-21. [PMID: 11456585 DOI: 10.1021/ja002879o] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The experimentally postulated mechanism for the interconversion between (S)-vinylglycolate and (R)-vinylglycolate catalyzed by mandelate racemase enzyme consists of a two-step quite symmetric process through a dianionic enolic intermediate that is formed after the abstraction of the alpha-proton of vinylglycolate by a basic enzymatic residue and is then reprotonated by another residue. The challenging problem behind this reaction is how the enzyme manages to stabilize such an intermediate, that is, how it lowers enough the high pK(a) of the alpha-proton for the reaction to take place. The QM/MM simulations performed in this paper indicate that catalysis is based on the stabilization of the negative charge developed on the substrate along the reaction. We have identified three different reaction mechanisms starting from different quasi-degenerate structures of the substrate-enzyme complex. In two of them the stabilizing role is done by means of a catalytic proton transfer that avoids the formation of a dianionic intermediate, and they involve six steps instead of the two experimentally proposed. On the contrary, the third mechanism passes through a dianionic species stabilized by the concerted approach of a protonated enzymatic residue during the proton abstraction. The potential energy barriers theoretically found along these mechanisms are qualitatively in good agreement with the experimental free energy barriers determined for racemization of vinylglycolate and mandelate. The theoretical study of the effect of the mutation of Glu317 by Gln317 in the kinetics of the reaction reveals the important role in the catalysis of the hydrogen bond formed by Glu317 in the native enzyme, as only one of the mechanisms, the slower one, is able to produce the racemization in the active site of the mutant. However, we have found that this hydrogen bond is not an LBHB within our model.
Collapse
Affiliation(s)
- M Garcia-Viloca
- Contribution from the Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | | |
Collapse
|
42
|
|
43
|
Orozco M, Luque FJ. Theoretical Methods for the Description of the Solvent Effect in Biomolecular Systems. Chem Rev 2000; 100:4187-4226. [PMID: 11749344 DOI: 10.1021/cr990052a] [Citation(s) in RCA: 454] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Modesto Orozco
- Departament de Bioquímica i Biologia Molecular, Facultat de Química, Universitat de Barcelona, Martí i Franqués 1, E-08028 Barcelona, Spain, and Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Avgda. Diagonal s/n, E-08028 Barcelona, Spain
| | | |
Collapse
|
44
|
A theoretical investigation of the conformational aspects of aminophenols and of their complexation with BF 2 + and ZnCl 2. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0166-1280(00)00445-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Bräuer M, Kunert M, Dinjus E, Klußmann M, Döring M, Görls H, Anders E. Evaluation of the accuracy of PM3, AM1 and MNDO/d as applied to zinc compounds. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0166-1280(99)00401-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
46
|
Titmuss SJ, Cummins PL, Bliznyuk AA, Rendell AP, Gready JE. Comparison of linear-scaling semiempirical methods and combined quantum mechanical/molecular mechanical methods applied to enzyme reactions. Chem Phys Lett 2000. [DOI: 10.1016/s0009-2614(00)00215-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Zhang Y, Liu H, Yang W. Free energy calculation on enzyme reactions with an efficient iterative procedure to determine minimum energy paths on a combinedab initioQM/MM potential energy surface. J Chem Phys 2000. [DOI: 10.1063/1.480503] [Citation(s) in RCA: 379] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
48
|
Reuter N, Dejaegere A, Maigret B, Karplus M. Frontier Bonds in QM/MM Methods: A Comparison of Different Approaches. J Phys Chem A 2000. [DOI: 10.1021/jp9924124] [Citation(s) in RCA: 323] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nathalie Reuter
- Laboratoire de chimie théorique, U.M.R. C.N.R.S. 7565, Faculté des Sciences, UHP, Nancy I, Vandoeuvre-lès-Nancy Cédex, France, Groupe de RMN, U.P.R. 9003, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, pôle API, 67 400 Strasbourg-Illkirch, France, Laboratoire de chimie biophysique, Institut Le Bel, ULP, 67 000 Strasbourg, France, and Department of Chemistry, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - Annick Dejaegere
- Laboratoire de chimie théorique, U.M.R. C.N.R.S. 7565, Faculté des Sciences, UHP, Nancy I, Vandoeuvre-lès-Nancy Cédex, France, Groupe de RMN, U.P.R. 9003, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, pôle API, 67 400 Strasbourg-Illkirch, France, Laboratoire de chimie biophysique, Institut Le Bel, ULP, 67 000 Strasbourg, France, and Department of Chemistry, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - Bernard Maigret
- Laboratoire de chimie théorique, U.M.R. C.N.R.S. 7565, Faculté des Sciences, UHP, Nancy I, Vandoeuvre-lès-Nancy Cédex, France, Groupe de RMN, U.P.R. 9003, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, pôle API, 67 400 Strasbourg-Illkirch, France, Laboratoire de chimie biophysique, Institut Le Bel, ULP, 67 000 Strasbourg, France, and Department of Chemistry, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - Martin Karplus
- Laboratoire de chimie théorique, U.M.R. C.N.R.S. 7565, Faculté des Sciences, UHP, Nancy I, Vandoeuvre-lès-Nancy Cédex, France, Groupe de RMN, U.P.R. 9003, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, pôle API, 67 400 Strasbourg-Illkirch, France, Laboratoire de chimie biophysique, Institut Le Bel, ULP, 67 000 Strasbourg, France, and Department of Chemistry, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| |
Collapse
|
49
|
Tiraboschi G, Gresh N, Giessner-Prettre C, Pedersen LG, Deerfield DW. Parallelab initio and molecular mechanics investigation of polycoordinated Zn(II) complexes with model hard and soft ligands: Variations of binding energy and of its components with number and charges of ligands. J Comput Chem 2000. [DOI: 10.1002/1096-987x(200009)21:12<1011::aid-jcc1>3.0.co;2-b] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Monard G, Merz KM. Combined Quantum Mechanical/Molecular Mechanical Methodologies Applied to Biomolecular Systems. Acc Chem Res 1999. [DOI: 10.1021/ar970218z] [Citation(s) in RCA: 293] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Gérald Monard
- 152 Davey Laboratory, Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Kenneth M. Merz
- 152 Davey Laboratory, Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|