1
|
Iwahara N, Huang Z, Mansikkamäki A, Chibotaru LF. Breakdown of broken-symmetry approach to exchange interaction. J Chem Phys 2025; 162:164701. [PMID: 40260816 DOI: 10.1063/5.0255897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/03/2025] [Indexed: 04/24/2025] Open
Abstract
Broken-symmetry (BS) approaches are widely employed to evaluate Heisenberg exchange parameters, primarily in combination with DFT calculations. For many magnetic materials, BS-DFT calculations give reasonable estimations of exchange parameters, although systematic failures have also been reported. While the latter were attributed to deficiencies of approximate exchange-correlation functional, we prove here by treating a simple model system that the broken-symmetry methodology has serious problems. Detailed analysis clarifies the intrinsic issue with the broken-symmetry treatment of low-spin states. It shows, in particular, that the error in the BS calculation of exchange parameter scales with the degree of covalency between the magnetic and the bridging orbitals. This is due to the constraint on the form of multiconfigurational state imposed by the BS determinant, a feature common to other single-reference methods too. As a possible tool to overcome this intrinsic drawback of single-determinant BS approaches, we propose their extension to a minimal multiconfigurational version.
Collapse
Affiliation(s)
- Naoya Iwahara
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
- Theory of Nanomaterials Group, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Zhishuo Huang
- Theory of Nanomaterials Group, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Department of Chemistry, National University of Singapore, Block S8 Level 3, 3 Science Drive 3, Singapore 117543, Singapore
| | - Akseli Mansikkamäki
- NMR Research Unit, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland
| | - Liviu F Chibotaru
- Theory of Nanomaterials Group, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
2
|
Quiroz M, Darensbourg MY. Development of (NO)Fe(N 2S 2) as a Metallodithiolate Spin Probe Ligand: A Case Study Approach. Acc Chem Res 2024; 57:831-844. [PMID: 38416694 PMCID: PMC10979402 DOI: 10.1021/acs.accounts.3c00667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/01/2024]
Abstract
ConspectusThe ubiquity of sulfur-metal connections in nature inspires the design of bi- and multimetallic systems in synthetic inorganic chemistry. Common motifs for biocatalysts developed in evolutionary biology include the placement of metals in close proximity with flexible sulfur bridges as well as the presence of π-acidic/delocalizing ligands. This Account will delve into the development of a (NO)Fe(N2S2) metallodithiolate ligand that harnesses these principles. The Fe(NO) unit is the centroid of a N2S2 donor field, which as a whole is capable of serving as a redox-active, bidentate S-donor ligand. Its paramagnetism as well as the ν(NO) vibrational monitor can be exploited in the development of new classes of heterobimetallic complexes. We offer four examples in which the unpaired electron on the {Fe(NO)}7 unit is spin-paired with adjacent paramagnets in proximal and distal positions.First, the exceptional stability of the (NO)Fe(N2S2)-Fe(NO)2 platform, which permits its isolation and structural characterization at three distinct redox levels, is linked to the charge delocalization occurring on both the Fe(NO) and the Fe(NO)2 supports. This accommodates the formation of a rare nonheme {Fe(NO)}8 triplet state, with a linear configuration. A subsequent FeNi complex, featuring redox-active ligands on both metals (NO on iron and dithiolene on nickel), displayed unexpected physical properties. Our research showed good reversibility in two redox processes, allowing isolation in reduced and oxidized forms. Various spectroscopic and crystallographic analyses confirmed these states, and Mössbauer data supported the redox change at the iron site upon reduction. Oxidation of the complex produced a dimeric dication, revealing an intriguing magnetic behavior. The monomer appears as a spin-coupled diradical between {Fe(NO)}7 and the nickel dithiolene monoradical, while dimerization couples the latter radical units via a Ni2S2 rhomb. Magnetic data (SQUID) on the dimer dication found a singlet ground state with a thermally accessible triplet state that is responsible for magnetism. A theoretical model built on an H4 chain explains this unexpected ferromagnetic low-energy triplet state arising from the antiferromagnetic coupling of a four-radical molecular conglomerate. For comparison, two (NO)Fe(N2S2) were connected through diamagnetic group 10 cations producing diradical trimetallic complexes. Antiferromagnetic coupling is observed between {Fe(NO)}7 units, with exchange coupling constants (J) of -3, -23, and -124 cm-1 for NiII, PdII, and PtII, respectively. This trend is explained by the enhanced covalency and polarizability of sulfur-dense metallodithiolate ligands. A central paramagnetic trans-Cr(NO)(MeCN) receiver unit core results in a cissoid structural topology, influenced by the stereoactivity of the lone pair(s) on the sulfur donors. This {Cr(NO)}5 radical bridge, unlike all previous cases, finds the coupling between the distal Fe(NO) radicals to be ferromagnetic (J = 24 cm-1).The stability and predictability of this S = 1/2 moiety and the steric/electronic properties of the bridging thiolate sulfurs suggest it to be a likely candidate for the development of novel molecular (magnetic) compounds and possibly materials. The role of synthetic inorganic chemistry in designing synthons that permit connections of the (NO)Fe(N2S2) metalloligand is highlighted as well as the properties of the heterobi- and polymetallic complexes derived therefrom.
Collapse
Affiliation(s)
- Manuel Quiroz
- Department of Chemistry, Texas
A & M University, College Station, Texas 77843, United States
| | - Marcetta Y. Darensbourg
- Department of Chemistry, Texas
A & M University, College Station, Texas 77843, United States
| |
Collapse
|
3
|
Quiroz M, Lockart MM, Xue S, Jones D, Guo Y, Pierce BS, Dunbar KR, Hall MB, Darensbourg MY. Magnetic coupling between Fe(NO) spin probe ligands through diamagnetic Ni II, Pd II and Pt II tetrathiolate bridges. Chem Sci 2023; 14:9167-9174. [PMID: 37655023 PMCID: PMC10466285 DOI: 10.1039/d3sc01546g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023] Open
Abstract
Reaction of the nitrosylated-iron metallodithiolate ligand, paramagnetic (NO)Fe(N2S2), with [M(CH3CN)n][BF4]2 salts (M = NiII, PdII, and PtII; n = 4 or 6) affords di-radical tri-metallic complexes in a stairstep type arrangement ([FeMFe]2+, M = Ni, Pd, and Pt), with the central group 10 metal held in a MS4 square plane. These isostructural compounds have nearly identical ν(NO) stretching values, isomer shifts, and electrochemical properties, but vary in their magnetic properties. Despite the intramolecular Fe⋯Fe distances of ca. 6 Å, antiferromagnetic coupling is observed between {Fe(NO)}7 units as established by magnetic susceptibility, EPR, and DFT studies. The superexchange interaction through the thiolate sulfur and central metal atoms is on the order of NiII < PdII ≪ PtII with exchange coupling constants (J) of -3, -23, and -124 cm-1, consistent with increased covalency of the M-S bonds (3d < 4d < 5d). This trend is reproduced by DFT calculations with molecular orbital analysis providing insight into the origin of the enhancement in the exchange interaction. Specifically, the magnitude of the exchange interaction correlates surprisingly well with the energy difference between the HOMO and HOMO-1 orbitals of the triplet states, which is reflected in the central metal's contribution to these orbitals. These results demonstrate the ability of sulfur-dense metallodithiolate ligands to engender strong magnetic communication by virtue of their enhanced covalency and polarizability.
Collapse
Affiliation(s)
- Manuel Quiroz
- Department of Chemistry, Texas A &M University College Station Texas 77843 USA
| | - Molly M Lockart
- Department of Chemistry & Biochemistry, Samford University Birmingham Alabama 35229 USA
| | - Shan Xue
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
| | - Dakota Jones
- Department of Chemistry, Texas A &M University College Station Texas 77843 USA
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
| | - Brad S Pierce
- Department of Chemistry & Biochemistry, University of Alabama Tuscaloosa Alabama 35487 USA
| | - Kim R Dunbar
- Department of Chemistry, Texas A &M University College Station Texas 77843 USA
| | - Michael B Hall
- Department of Chemistry, Texas A &M University College Station Texas 77843 USA
| | | |
Collapse
|
4
|
Walleck S, Atanasov M, Schnack J, Bill E, Stammler A, Bögge H, Glaser T. Rational Design of a Confacial Pentaoctahedron: Anisotropic Exchange in a Linear Zn II Fe III Fe III Fe III Zn II Complex. Chemistry 2021; 27:15239-15250. [PMID: 34427372 PMCID: PMC8596665 DOI: 10.1002/chem.202102572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Indexed: 11/10/2022]
Abstract
The first confacial pentaoctahedron comprised of transition metal ions namely ZnII FeIII A FeIII B FeIII A ZnII has been synthesized by using a dinucleating nonadentate ligand. The face-sharing bridging mode enforces short ZnII ⋅⋅⋅FeIII A and FeIII A ⋅⋅⋅FeIII B distances of 2.83 and 2.72 Å, respectively. Ab-initio CASSCF/NEVPT2 calculations provide significant negative zero-field splittings for FeIII A and FeIII B with |DA |>|DB | with the main component along the C3 axis. Hence, a spin-Hamiltonian comprised of anisotropic exchange, zero-field, and Zeeman term was employed. This allowed by following the boundary conditions from the theoretical results the simulation in a theory-guided parameter determination with Jxy =+0.37, Jz =-0.32, DA =-1.21, EA =-0.24, DB =-0.35, and EB =-0.01 cm-1 supported by simulations of high-field magnetic Mössbauer spectra recorded at 2 K. The weak but ferromagnetic FeIII A FeIII B interaction arises from the small bridging angle of 84.8° being at the switch from anti- to ferromagnetic for the face-sharing bridging mode.
Collapse
Affiliation(s)
- Stephan Walleck
- Lehtuhl für Anorganische Chemie IFakultät für ChemieUniversität BielefeldUniversitätsstr. 2533615BielefeldGermany
| | - Mihail Atanasov
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
- Institute of General and Inorganic ChemistryBulgarian Academy of SciencesAkad. G. Bontchev Street, Bl.111113SofiaBulgaria
| | - Jürgen Schnack
- Fakultät für PhysikUniversität BielefeldPostfach 10013133501BielefeldGermany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische EnergiekonversionStiftstr. 34–3645470Mülheim an der RuhrGermany
| | - Anja Stammler
- Lehtuhl für Anorganische Chemie IFakultät für ChemieUniversität BielefeldUniversitätsstr. 2533615BielefeldGermany
| | - Hartmut Bögge
- Lehtuhl für Anorganische Chemie IFakultät für ChemieUniversität BielefeldUniversitätsstr. 2533615BielefeldGermany
| | - Thorsten Glaser
- Lehtuhl für Anorganische Chemie IFakultät für ChemieUniversität BielefeldUniversitätsstr. 2533615BielefeldGermany
| |
Collapse
|
5
|
|
6
|
Abstract
From the understanding of biological processes and metalloenzymes to the development of inorganic catalysts, electro- and photocatalytic systems for fuel generation have evolved considerably during the last decades. Recently, organic and hybrid organic systems have emerged to challenge the classical inorganic structures through their enormous chemical diversity and modularity that led earlier to their success in organic (opto)electronics. This Minireview describes recent advances in the design of synthetic organic architectures and promising strategies toward (solar) fuel synthesis, highlighting progress on materials from organic ligands and chromophores to conjugated polymers and covalent organic frameworks.
Collapse
Affiliation(s)
- Julien Warnan
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Department ChemieTechnische Universität MünchenLichtenbergstraße 485747GarchingGermany
| | - Erwin Reisner
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
7
|
Oldengott JC, Schnack J, Glaser T. Optimization of Single‐Molecule Magnets by Suppression of Quantum Tunneling of the Magnetization. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jan Christian Oldengott
- Lehrstuhl für Anorganische Chemie I Fakultät für Chemie Universität Bielefeld Universitätsstr. 25 33615 Bielefeld Germany
| | - Jürgen Schnack
- Fakultät für Physik Universität Bielefeld Universitätsstr. 25 33615 Bielefeld Germany
| | - Thorsten Glaser
- Lehrstuhl für Anorganische Chemie I Fakultät für Chemie Universität Bielefeld Universitätsstr. 25 33615 Bielefeld Germany
| |
Collapse
|
8
|
Affiliation(s)
- Julien Warnan
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Department Chemie Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Erwin Reisner
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
9
|
Huang W, Wu S, Gu X, Li Y, Okazawa A, Kojima N, Hayami S, Baker ML, Bencok P, Noguchi M, Miyazaki Y, Nakano M, Nakanishi T, Kanegawa S, Inagaki Y, Kawae T, Zhuang GL, Shiota Y, Yoshizawa K, Wu D, Sato O. Temperature dependence of spherical electron transfer in a nanosized [Fe 14] complex. Nat Commun 2019; 10:5510. [PMID: 31796745 PMCID: PMC6890645 DOI: 10.1038/s41467-019-13279-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/31/2019] [Indexed: 11/29/2022] Open
Abstract
The study of transition metal clusters exhibiting fast electron hopping or delocalization remains challenging, because intermetallic communications mediated through bridging ligands are normally weak. Herein, we report the synthesis of a nanosized complex, [Fe(Tp)(CN)3]8[Fe(H2O)(DMSO)]6 (abbreviated as [Fe14], Tp-, hydrotris(pyrazolyl)borate; DMSO, dimethyl sulfoxide), which has a fluctuating valence due to two mobile d-electrons in its atomic layer shell. The rate of electron transfer of [Fe14] complex demonstrates the Arrhenius-type temperature dependence in the nanosized spheric surface, wherein high-spin centers are ferromagnetically coupled, producing an S = 14 ground state. The electron-hopping rate at room temperature is faster than the time scale of Mössbauer measurements (<~10-8 s). Partial reduction of N-terminal high spin FeIII sites and electron mediation ability of CN ligands lead to the observation of both an extensive electron transfer and magnetic coupling properties in a precisely atomic layered shell structure of a nanosized [Fe14] complex.
Collapse
Affiliation(s)
- Wei Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Shuqi Wu
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Xiangwei Gu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Yao Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Atsushi Okazawa
- Department of Basic Science, Graduation School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Norimichi Kojima
- Toyota Physical and Chemical Research Institute, Yokomichi, Nagakute, Aichi, 480-1192, Japan
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology and Institute of Pulsed Power Science (IPPS), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Michael L Baker
- The School of Chemistry, The University of Manchester, Manchester, M13 9PL, UK
- The School of Chemistry, The University of Manchester at Harwell, Didcot, OX11 0FA, UK
| | - Peter Bencok
- Diamond Light Source, Science Division, Didcot, OX11 0DE, UK
| | - Mariko Noguchi
- Research Center for Structural Thermodynamics, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
- Department of Chemistry, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo, 156-8550, Japan
| | - Yuji Miyazaki
- Research Center for Structural Thermodynamics, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Motohiro Nakano
- Research Center for Structural Thermodynamics, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Takumi Nakanishi
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shinji Kanegawa
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuji Inagaki
- Department of Applied Quantum Physics, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tatsuya Kawae
- Department of Applied Quantum Physics, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Gui-Lin Zhuang
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Lab Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Dayu Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
10
|
Liu Y, Hua S, Cheng M, Yu L, Demeshko S, Dechert S, Meyer F, Lee G, Chiang M, Peng S. Electron Delocalization of Mixed‐Valence Diiron Sites Mediated by Group 10 Metal Ions in Heterotrimetallic Fe‐M‐Fe (M=Ni, Pd, and Pt) Chain Complexes. Chemistry 2018; 24:11649-11666. [DOI: 10.1002/chem.201801325] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/28/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Yu‐Chiao Liu
- Institute of ChemistryAcademia Sinica Taipei 11529 Taiwan
| | - Shao‐An Hua
- Department of Chemistry and Center for Emerging Material and Advanced DevicesNational Taiwan University Taipei 10617 Taiwan
- Present address: Institut für Anorganische ChemieUniversität Göttingen Tammannstr. 4 37077 Göttingen Germany
| | | | - Li‐Chung Yu
- Department of Chemistry and Center for Emerging Material and Advanced DevicesNational Taiwan University Taipei 10617 Taiwan
- Present address: National Synchrotron Radiation Research Center Hsinchu 30076 Taiwan
| | - Serhiy Demeshko
- Institut für Anorganische ChemieUniversität Göttingen Tammannstr. 4 37077 Göttingen Germany
| | - Sebastian Dechert
- Institut für Anorganische ChemieUniversität Göttingen Tammannstr. 4 37077 Göttingen Germany
| | - Franc Meyer
- Institut für Anorganische ChemieUniversität Göttingen Tammannstr. 4 37077 Göttingen Germany
| | - Gene‐Hsiang Lee
- Department of Chemistry and Center for Emerging Material and Advanced DevicesNational Taiwan University Taipei 10617 Taiwan
| | | | - Shie‐Ming Peng
- Institute of ChemistryAcademia Sinica Taipei 11529 Taiwan
- Department of Chemistry and Center for Emerging Material and Advanced DevicesNational Taiwan University Taipei 10617 Taiwan
| |
Collapse
|
11
|
Dammers S, Zimmermann TP, Walleck S, Stammler A, Bögge H, Bill E, Glaser T. A Mixed-Valence Fluorido-Bridged FeIIFeIII Complex. Inorg Chem 2017; 56:1779-1782. [DOI: 10.1021/acs.inorgchem.6b03093] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Susanne Dammers
- Lehrstuhl
für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld,D-33615 Bielefeld, Germany
| | - Thomas Philipp Zimmermann
- Lehrstuhl
für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld,D-33615 Bielefeld, Germany
| | - Stephan Walleck
- Lehrstuhl
für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld,D-33615 Bielefeld, Germany
| | - Anja Stammler
- Lehrstuhl
für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld,D-33615 Bielefeld, Germany
| | - Hartmut Bögge
- Lehrstuhl
für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld,D-33615 Bielefeld, Germany
| | - Eckhard Bill
- Max-Planck-Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| | - Thorsten Glaser
- Lehrstuhl
für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld,D-33615 Bielefeld, Germany
| |
Collapse
|
12
|
Fondo M, Doejo J, García-Deibe AM, Sanmartín-Matalobos J, Vicente R, El-Fallah MS, Amoza M, Ruiz E. Predetermined Ferromagnetic Coupling via Strict Control of M-O-M Angles. Inorg Chem 2016; 55:11707-11715. [PMID: 27805394 DOI: 10.1021/acs.inorgchem.6b01739] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An imidazolidine-phenolate ligand HL yields quadruple-bridged (μ-NCNimidazolidine)2(μ-Ophenolate)2 ferromagnetic dinuclear nickel and cobalt complexes. Both kinds of bridges contribute to the ferromagnetic coupling, but the ferromagnetism of these samples is mainly ascribed to the double μ-Ophenolate links, on the basis of density functional theory calculations. These studies demonstrate not only that the short M-O-M angles of the M2O2 cores favors the parallel alignment of the electrons but also that these angles are the optimal ones for maximizing the ferromagnetic contribution in these complexes. And these acute angles, close to 90°, are predetermined by the geometrical constrictions imposed by the ligand itself. Thus, HL is an uncommon polydentate donor that induces ferromagnetism per se in its metal complexes by strict control of one geometric parameter, the M-O-M angle.
Collapse
Affiliation(s)
- Matilde Fondo
- Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela , 15782 Santiago de Compostela, Spain
| | - Jesús Doejo
- Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela , 15782 Santiago de Compostela, Spain
| | - Ana M García-Deibe
- Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela , 15782 Santiago de Compostela, Spain
| | - Jesús Sanmartín-Matalobos
- Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela , 15782 Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
13
|
Jeremies A, Lehmann U, Gruschinski S, Matulis V, Ivashkevich OA, Jäschke A, Kersting B. Synthesis, structure, electrochemistry, and magnetic properties of face-sharing bioctahedral nickel complexes containing a N 3 Ni( μ -S 2 )( μ -X)NiN 3 core (X = F − , Cl − , Br − , N 3 − , OH − ). J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Glaser T, Hoeke V, Gieb K, Schnack J, Schröder C, Müller P. Quantum tunneling of the magnetization in [MnIII6M]3+ (M=CrIII, MnIII) SMMs: Impact of molecular and crystal symmetry. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Sonnenburg B, Liratzis I, Stammler A, Bögge H, Glaser T. The First Heterotrinuclear Confacial Trioctahedron Ni
II
Ti
IV
Cr
III
: Rational Modular Assembly and Cooperative Effects. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201403191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bodo Sonnenburg
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany, http://www.uni‐bielefeld.de/chemie/ac1chair/
| | - Ioannis Liratzis
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany, http://www.uni‐bielefeld.de/chemie/ac1chair/
| | - Anja Stammler
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany, http://www.uni‐bielefeld.de/chemie/ac1chair/
| | - Hartmut Bögge
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany, http://www.uni‐bielefeld.de/chemie/ac1chair/
| | - Thorsten Glaser
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany, http://www.uni‐bielefeld.de/chemie/ac1chair/
| |
Collapse
|
16
|
Oldengott J, Stammler A, Bögge H, Glaser T. Enhancing the ferromagnetic coupling in extended phloroglucinol complexes by increasing the metal SOMO–ligand overlap: synthesis and characterization of a trinuclear CoII3 triplesalophen complex. Dalton Trans 2015; 44:9732-5. [DOI: 10.1039/c5dt01255d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The better overlap of the SOMO with the central π-system in the CoII3 than in the CuII3 complex enhances the spin-polarization and thus the ferromagnetic coupling.
Collapse
Affiliation(s)
- Jan Oldengott
- Lehrstuhl für Anorganische Chemie I
- Fakultät für Chemie
- Universität Bielefeld
- 33615 Bielefeld
- Germany
| | - Anja Stammler
- Lehrstuhl für Anorganische Chemie I
- Fakultät für Chemie
- Universität Bielefeld
- 33615 Bielefeld
- Germany
| | - Hartmut Bögge
- Lehrstuhl für Anorganische Chemie I
- Fakultät für Chemie
- Universität Bielefeld
- 33615 Bielefeld
- Germany
| | - Thorsten Glaser
- Lehrstuhl für Anorganische Chemie I
- Fakultät für Chemie
- Universität Bielefeld
- 33615 Bielefeld
- Germany
| |
Collapse
|
17
|
Eichhöfer A, Andrushko V, Bodenstein T, Fink K. Trinuclear Early/Late-Transition-Metal Thiolate Complexes. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Feldscher B, Stammler A, Bögge H, Glaser T. Aromatic Versus Heteroradialene Character in Extended Thiophloroglucinol Ligands and their Trinuclear Nickel(II) Complexes. Chem Asian J 2014; 9:2205-18. [DOI: 10.1002/asia.201402272] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Indexed: 11/11/2022]
|
19
|
Feldscher B, Theil H, Stammler A, Bögge H, Glaser T. A streamlined synthesis of extended thiophloroglucinol ligands and their trinuclear NiII3 complexes. Dalton Trans 2014; 43:4102-14. [DOI: 10.1039/c3dt53457j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Yip JHK, Wu J, Wong KY, Ho KP, Pun CSN, Vittal JJ. Electronic Communications Mediated by Metal Clusters. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200400180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
Zall CM, Clouston LJ, Young VG, Ding K, Kim HJ, Zherebetskyy D, Chen YS, Bill E, Gagliardi L, Lu CC. Mixed-Valent Dicobalt and Iron–Cobalt Complexes with High-Spin Configurations and Short Metal–Metal Bonds. Inorg Chem 2013; 52:9216-28. [DOI: 10.1021/ic400292g] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christopher M. Zall
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota
55455-0431, United States
| | - Laura J. Clouston
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota
55455-0431, United States
| | - Victor G. Young
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota
55455-0431, United States
| | - Keying Ding
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota
55455-0431, United States
| | - Hyun Jung Kim
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota
55455-0431, United States
- Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota, 55455,
United States
| | - Danylo Zherebetskyy
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota
55455-0431, United States
- Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota, 55455,
United States
| | - Yu-Sheng Chen
- Advanced Photon Source, Argonne, Illinois 60439, United
States
| | - Eckhard Bill
- Max Planck Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Laura Gagliardi
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota
55455-0431, United States
- Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota, 55455,
United States
| | - Connie C. Lu
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota
55455-0431, United States
| |
Collapse
|
22
|
Exchange coupling mediated by extended phloroglucinol ligands: Spin-polarization vs. heteroradialene-formation. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.05.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Chan SLF, Gao S, Chui SSY, Shek L, Huang JS, Che CM. Supramolecular Self-Assembly of 1D and 3D Heterometallic Coordination Polymers with Triruthenium Building Blocks. Chemistry 2012; 18:11228-37. [DOI: 10.1002/chem.201202084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Indexed: 11/07/2022]
|
24
|
Feldscher B, Theil H, Stammler A, Bögge H, Glaser T. Bioinspired Enhancement of Superexchange: From 1,3,5-Trihydroxybenzene-Bridged to 1,3,5-Trimercaptobenzene-Bridged Trinuclear Copper(II) Complexes. Inorg Chem 2012; 51:8652-4. [DOI: 10.1021/ic301312v] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bastian Feldscher
- Lehrstuhl für
Anorganische Chemie I, Fakultät
für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Hubert Theil
- Lehrstuhl für
Anorganische Chemie I, Fakultät
für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Anja Stammler
- Lehrstuhl für
Anorganische Chemie I, Fakultät
für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Hartmut Bögge
- Lehrstuhl für
Anorganische Chemie I, Fakultät
für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Thorsten Glaser
- Lehrstuhl für
Anorganische Chemie I, Fakultät
für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| |
Collapse
|
25
|
Zhang Z, Lu JQ, Wu DF, Chen ZL, Liang FP, Wang ZL. Structural diversity of transition-metal complexes derived from N-propionic acid functionalized 1,4,7-triazacyclononane: From enchanting cluster motifs to unprecedented homometallic polymeric networks. CrystEngComm 2012. [DOI: 10.1039/c1ce05816a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Ruiz J, Mota AJ, Rodríguez-Diéguez A, Oyarzabal I, Seco JM, Colacio E. Rational design of ferromagnetic coupled diphenoxocarboxylate triply bridged dinuclear nickel(ii) complexes: orbital countercomplementarity of the bridging ligands. Dalton Trans 2012; 41:14265-73. [DOI: 10.1039/c2dt31643a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Gütlich P. Fifty Years of Mössbauer Spectroscopy in Solid State Research - Remarkable Achievements, Future Perspectives. Z Anorg Allg Chem 2011. [DOI: 10.1002/zaac.201100416] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Igashira-Kamiyama A, Konno T. Rational creation of chiral multinuclear and metallosupramolecular compounds from thiol-containing amino acids. Dalton Trans 2011; 40:7249-63. [PMID: 21499618 DOI: 10.1039/c0dt01660h] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Asako Igashira-Kamiyama
- Department of Chemistry, Graduate School of Science, Osaka University, Toyanaka, Osaka 560-0043, Japan
| | | |
Collapse
|
29
|
Glaser T. Rational design of single-molecule magnets: a supramolecular approach. Chem Commun (Camb) 2011; 47:116-30. [DOI: 10.1039/c0cc02259d] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Krupskaya Y, Alfonsov A, Parameswaran A, Kataev V, Klingeler R, Steinfeld G, Beyer N, Gressenbuch M, Kersting B, Büchner B. Interplay of magnetic exchange interactions and Ni-S-Ni bond angles in polynuclear nickel(II) complexes. Chemphyschem 2010; 11:1961-70. [PMID: 20408157 DOI: 10.1002/cphc.200900935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The ability of bridging thiophenolate groups (RS(-)) to transmit magnetic exchange interactions between paramagnetic Ni(II) ions is examined. Specific attention is paid to complexes with large Ni-SR-Ni angles. For this purpose, dinuclear [Ni(2)L(1)(mu-OAc)I(2)][I(5)] (2) and trinuclear [Ni(3)L(2)(OAc)(2)][BPh(4)](2) (3), where H(2)L(1) and H(2)L(2) represent 24-membered macrocyclic amino-thiophenol ligands, are prepared and fully characterized by IR- and UV/Vis spectroscopy, X-ray crystallography, static magnetization M measurements and high-field electron spin resonance (HF-ESR). The dinuclear complex 2 has a central N(3)Ni(2)(mu-S)(2)(mu-OAc)Ni(2)N(3) core with a mean Ni-S-Ni angle of 92 degrees . The macrocycle L(2) supports a trinuclear complex 3, with distorted octahedral N(2)O(2)S(2) and N(2)O(3)S coordination environments for one central and two terminal Ni(II) ions, respectively. The Ni-S-Ni angles are at 132.8 degrees and 133.5 degrees . We find that the variation of the bond angles has a very strong impact on the magnetic properties of the Ni complexes. In the case of the Ni(2)-complex, temperature T and magnetic field B dependencies of M reveal a ferromagnetic coupling J=-29 cm(-1) between two Ni(II) ions (H=JS(1)S(2)). HF-ESR measurements yield a negative axial magnetic anisotropy (D<0) which implies a bistable (easy axis) magnetic ground state. In contrast, for the Ni(3)-complex we find an appreciable antiferromagnetic coupling J'=97 cm(-1) between the Ni(II) ions and a positive axial magnetic anisotropy (D>0) which implies an easy plane situation.
Collapse
Affiliation(s)
- Yulia Krupskaya
- Leibniz Institute for Solid State and Materials Research, IFW Dresden, 01171 Dresden, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhang Z, Zhang L, Li Y, Hong L, Chen Z, Zhou X. Activation of Bis(guanidinate)lanthanide Alkyl and Aryl Complexes on Elemental Sulfur: Synthesis and Characterization of Bis(guanidinate)lanthanide Thiolates and Disulfides. Inorg Chem 2010; 49:5715-22. [DOI: 10.1021/ic100617n] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhengxing Zhang
- Molecular Catalysis and Innovative Material Laboratory, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China
| | - Lixin Zhang
- Molecular Catalysis and Innovative Material Laboratory, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China
| | - Yanrong Li
- Molecular Catalysis and Innovative Material Laboratory, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China
| | - Longcheng Hong
- Molecular Catalysis and Innovative Material Laboratory, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China
| | - Zhenxia Chen
- Molecular Catalysis and Innovative Material Laboratory, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China
| | - Xigeng Zhou
- Molecular Catalysis and Innovative Material Laboratory, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai 200032, People's Republic of China
| |
Collapse
|
32
|
Weber B, Obel J, Lorenz LR, Bauer W, Carrella L, Rentschler E. Control of Exchange Interactions in Trinuclear Complexes Based on Orthogonal Magnetic Orbitals. Eur J Inorg Chem 2009. [DOI: 10.1002/ejic.200900847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Birgit Weber
- Center for Integrated Protein Science Munich at the Department Chemie und Biochemie, Ludwig‐Maximilians‐Universität München, Butenandtstr. 5‐13 (Haus F), 81377 München, Germany, Fax: +49‐89‐2180‐77407
| | - Jaroslava Obel
- Center for Integrated Protein Science Munich at the Department Chemie und Biochemie, Ludwig‐Maximilians‐Universität München, Butenandtstr. 5‐13 (Haus F), 81377 München, Germany, Fax: +49‐89‐2180‐77407
| | - Lucia R. Lorenz
- Center for Integrated Protein Science Munich at the Department Chemie und Biochemie, Ludwig‐Maximilians‐Universität München, Butenandtstr. 5‐13 (Haus F), 81377 München, Germany, Fax: +49‐89‐2180‐77407
| | - Wolfgang Bauer
- Center for Integrated Protein Science Munich at the Department Chemie und Biochemie, Ludwig‐Maximilians‐Universität München, Butenandtstr. 5‐13 (Haus F), 81377 München, Germany, Fax: +49‐89‐2180‐77407
| | - Luca Carrella
- Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg Universität Mainz, 55099 Mainz, Germany
| | - Eva Rentschler
- Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg Universität Mainz, 55099 Mainz, Germany
| |
Collapse
|
33
|
Thallmair S, Bauer W, Weber B. Strategies towards the purposeful design of long-range ferromagnetic ordering due to spin canting. Polyhedron 2009. [DOI: 10.1016/j.poly.2008.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Chandrasekhar V, Pandian BM, Vittal JJ, Clérac R. Synthesis, Structure, and Magnetism of Heterobimetallic Trinuclear Complexes {[L2Co2Ln][X]} [Ln = Eu, X = Cl; Ln = Tb, Dy, Ho, X = NO3; LH3 = (S)P[N(Me)N═CH−C6H3-2-OH-3-OMe]3]: A 3d−4f Family of Single-Molecule Magnets. Inorg Chem 2009; 48:1148-57. [DOI: 10.1021/ic801905p] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vadapalli Chandrasekhar
- Department of Chemistry, Indian Institute of Technology—Kanpur, Kanpur-208016, India, Department of Chemistry, National University of Singapore, Singapore, CNRS, UPR 8641, Centre de Recherche Paul Pascal (CRPP), Equipe “Matériaux Moléculaires Magnétiques”, 115 avenue du Dr. Albert Schweitzer, Pessac, F-33600, France, and Université de Bordeaux, UPR 8641, Pessac, F-33600, France
| | - Balasubramanian Murugesa Pandian
- Department of Chemistry, Indian Institute of Technology—Kanpur, Kanpur-208016, India, Department of Chemistry, National University of Singapore, Singapore, CNRS, UPR 8641, Centre de Recherche Paul Pascal (CRPP), Equipe “Matériaux Moléculaires Magnétiques”, 115 avenue du Dr. Albert Schweitzer, Pessac, F-33600, France, and Université de Bordeaux, UPR 8641, Pessac, F-33600, France
| | - Jagadese J. Vittal
- Department of Chemistry, Indian Institute of Technology—Kanpur, Kanpur-208016, India, Department of Chemistry, National University of Singapore, Singapore, CNRS, UPR 8641, Centre de Recherche Paul Pascal (CRPP), Equipe “Matériaux Moléculaires Magnétiques”, 115 avenue du Dr. Albert Schweitzer, Pessac, F-33600, France, and Université de Bordeaux, UPR 8641, Pessac, F-33600, France
| | - Rodolphe Clérac
- Department of Chemistry, Indian Institute of Technology—Kanpur, Kanpur-208016, India, Department of Chemistry, National University of Singapore, Singapore, CNRS, UPR 8641, Centre de Recherche Paul Pascal (CRPP), Equipe “Matériaux Moléculaires Magnétiques”, 115 avenue du Dr. Albert Schweitzer, Pessac, F-33600, France, and Université de Bordeaux, UPR 8641, Pessac, F-33600, France
| |
Collapse
|
35
|
Kersting B, Lehmann U. Chemistry of metalated container molecules. ADVANCES IN INORGANIC CHEMISTRY 2009. [DOI: 10.1016/s0898-8838(09)00207-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Glaser T, Heidemeier M, Krickemeyer E, Bögge H, Stammler A, Fröhlich R, Bill E, Schnack J. Exchange Interactions and Zero-Field Splittings in C3-Symmetric MnIII6FeIII: Using Molecular Recognition for the Construction of a Series of High Spin Complexes Based on the Triplesalen Ligand. Inorg Chem 2008; 48:607-20. [DOI: 10.1021/ic8016529] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thorsten Glaser
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany, Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstr. 40, D-48149 Münster, Germany, Max-Planck-Institut für Bioanorganische Chemie, Stiftsstr. 34-36, D-45470 Mülheim, Germany, and Fakultät für Physik, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Maik Heidemeier
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany, Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstr. 40, D-48149 Münster, Germany, Max-Planck-Institut für Bioanorganische Chemie, Stiftsstr. 34-36, D-45470 Mülheim, Germany, and Fakultät für Physik, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Erich Krickemeyer
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany, Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstr. 40, D-48149 Münster, Germany, Max-Planck-Institut für Bioanorganische Chemie, Stiftsstr. 34-36, D-45470 Mülheim, Germany, and Fakultät für Physik, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Hartmut Bögge
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany, Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstr. 40, D-48149 Münster, Germany, Max-Planck-Institut für Bioanorganische Chemie, Stiftsstr. 34-36, D-45470 Mülheim, Germany, and Fakultät für Physik, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Anja Stammler
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany, Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstr. 40, D-48149 Münster, Germany, Max-Planck-Institut für Bioanorganische Chemie, Stiftsstr. 34-36, D-45470 Mülheim, Germany, and Fakultät für Physik, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Roland Fröhlich
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany, Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstr. 40, D-48149 Münster, Germany, Max-Planck-Institut für Bioanorganische Chemie, Stiftsstr. 34-36, D-45470 Mülheim, Germany, and Fakultät für Physik, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Eckhard Bill
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany, Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstr. 40, D-48149 Münster, Germany, Max-Planck-Institut für Bioanorganische Chemie, Stiftsstr. 34-36, D-45470 Mülheim, Germany, and Fakultät für Physik, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Jürgen Schnack
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany, Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstr. 40, D-48149 Münster, Germany, Max-Planck-Institut für Bioanorganische Chemie, Stiftsstr. 34-36, D-45470 Mülheim, Germany, and Fakultät für Physik, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
37
|
Glaser T, Theil H, Heidemeier M. Spin-polarization in 1,3,5-trihydroxybenzene-bridged first-row transition metal complexes. CR CHIM 2008. [DOI: 10.1016/j.crci.2008.05.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
|
39
|
Volkers PI, Boyke CA, Chen J, Rauchfuss TB, Whaley CM, Wilson SR, Yao H. Precursors to [FeFe]-hydrogenase models: syntheses of Fe2(SR)2(CO)6 from CO-free iron sources. Inorg Chem 2008; 47:7002-8. [PMID: 18610969 PMCID: PMC2562774 DOI: 10.1021/ic800601k] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This report describes routes to iron dithiolato carbonyls that do not require preformed iron carbonyls. The reaction of FeCl 2, Zn, and Q 2S 2C n H 2 n (Q (+) = Na (+), Et 3NH (+)) under an atmosphere of CO affords Fe 2(S 2C n H 2 n )(CO) 6 ( n = 2, 3) in yields >70%. The method was employed to prepare Fe 2(S 2C 2H 4)( (13)CO) 6. Treatment of these carbonylated mixtures with tertiary phosphines, instead of Zn, gave the ferrous species Fe 3(S 2C 3H 6) 3(CO) 4(PR 3) 2, for R = Et, Bu, and Ph. Like the related complex Fe 3(SPh) 6(CO) 6, these compounds consist of a linear arrangement of three conjoined face-shared octahedral centers. Omitting the phosphine but with an excess of dithiolate, we obtained the related mixed-valence triiron species [Fe 3(S 2C n H 2 n ) 4(CO) 4] (-). The highly reducing all-ferrous species [Fe 3(S 2C n H 2 n ) 4(CO) 4] (2-) is implicated as an intermediate in this transformation. Reactive forms of iron, prepared by the method of Rieke, also combined with dithiols under a CO atmosphere to give Fe 2(S 2C n H 2 n )(CO) 6 in modest yields under mild conditions. Studies on the order of addition indicate that ferrous thiolates are formed prior to the onset of carbonylation. Crystallographic characterization demonstrated that the complexes Fe 3(S 2C 3H 6) 3(CO) 4(PEt 3) 2 and PBnPh 3[Fe 3(S 2C 3H 6) 4(CO) 4] feature high-spin ferrous and low-spin ferric as the central metal, respectively.
Collapse
Affiliation(s)
- Phillip I Volkers
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Stenson P, Board A, Marin-Becerra A, Blake A, Davies E, Wilson C, McMaster J, Schröder M. Molecular and Electronic Structures of One-Electron Oxidized NiII–(Dithiosalicylidenediamine) Complexes: NiIII–Thiolate versus NiII–Thiyl Radical States. Chemistry 2008; 14:2564-76. [DOI: 10.1002/chem.200701108] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Ferromagnetic coupling by the spin-polarization mechanism in a trinuclear VIV triplesalen complex. Inorganica Chim Acta 2008. [DOI: 10.1016/j.ica.2007.05.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Chandrasekhar V, Azhakar R, Pandian BM, Bickley JF, Steiner A. A Tunable Coordination Response of the Phosphorus-Based Hexadentate Ligand (S)P[N(Me)N=CHC6H4-o-OH]3 (LH3): Synthesis and Structure of LM (M = Sc, Cr, Mn, Fe, Co, Ga). Eur J Inorg Chem 2008. [DOI: 10.1002/ejic.200700961] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Glaser T, Heidemeier M, Strautmann J, Bögge H, Stammler A, Krickemeyer E, Huenerbein R, Grimme S, Bothe E, Bill E. Trinuclear Copper Complexes with Triplesalen Ligands: Geometric and Electronic Effects on Ferromagnetic Coupling via the Spin-Polarization Mechanism. Chemistry 2007; 13:9191-206. [DOI: 10.1002/chem.200700781] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Lauderbach F, Prakash R, Götz AW, Munoz M, Heinemann FW, Nickel U, Hess BA, Sellmann D. Alternative Synthesis, Density Functional Calculations and Proton Reactivity Study of a Trinuclear [NiFe] Hydrogenase Model Compound. Eur J Inorg Chem 2007. [DOI: 10.1002/ejic.200601077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Clima S, Hendrickx MFA, Chibotaru LF, Soncini A, Mironov V, Ceulemans A. Effect of the Metal Environment on the Ferromagnetic Interaction in the Co−NC−W Pairs of Octacyanotungstate(V)−Cobalt(II) Three-Dimensional Networks. Inorg Chem 2007; 46:2682-90. [PMID: 17348645 DOI: 10.1021/ic062345+] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
State of the art CASSCF and CASPT2 calculations have been performed to elucidate the nature of ferromagnetism of CoII-NC-WV pairs in the three-dimensional compound [[WV(CN)2]2[(micro-CN)4CoII(H2O)2]3.4H2O]n, which has been recently synthesized and investigated by a number of experimental techniques (Herrera, J. M.; Bleuzen, A.; Dromzée, Y.; Julve, M.; Lloret, F.; Verdaguer, M. Inorg. Chem. 2003, 42, 7052-7059). In this network, the Co ions are in the high-spin (S = 3/2) state, while the single unpaired electron on the W centers occupies the lowest orbital of the dz2 type of the 5d shell. In agreement with the suggestion made by Herrera et al., we find that the ferromagnetism is due to a certain occupation scheme of the orbitals from the parent octahedral t2g shell on CoII sites, in which the orbital accommodating the unpaired electron is orthogonal to the dz2 orbitals of the surrounding W ions. We investigate the stabilization of such an orbital configuration on the Co sites and find that it cannot be achieved in the ground state of isolated mononuclear fragments [CoII(NC)4(OH2)2]2- for any conformations of the coordinated water molecules and Co-N-C bond angles. On the other hand, it is stabilized by the interaction of the complex with neighboring W ions, which are simulated here by effective potentials. The calculated exchange coupling constants for the CoII-NC-WV binuclear fragments are in reasonable agreement with the measured Curie-Weiss constant for this compound. As additional evidence for the inferred electronic configuration on the Co sites, the ligand-field transitions, the temperature-dependent magnetic susceptibility, and the field-dependent low-temperature magnetization, simulated ab initio for the mononuclear Co fragments, are in agreement with the available data for another compound [WIV[(micro-CN)4-CoII(H2O)2]2.4H2O]n containing diamagnetic W and high-spin Co ions in an isostructural environment.
Collapse
Affiliation(s)
- Sergiu Clima
- Laboratorium voor Kwantumchemie, Katholieke Universiteit Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
46
|
Stenson PA, Marin-Becerra A, Wilson C, Blake AJ, McMaster J, Schröder M. Formation of [(L)Ni(μ2-S)x{Fe(CO)3}x] adducts (x = 1 or 2): analogues of the active site of [NiFe] hydrogenase. Chem Commun (Camb) 2006:317-9. [PMID: 16391746 DOI: 10.1039/b509798c] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The binuclear [Ni(L)Fe(CO)3], , and trinuclear [Ni(L){Fe(CO)3}2], , complexes adopt unusual structural motifs whereby Fe(CO)3 units bind to [Ni(L)] via mu2-S bridging modes, C=N imine pi-bonds and potential Ni-Fe bonding interactions.
Collapse
Affiliation(s)
- Philip A Stenson
- School of Chemistry, University of Nottingham, Nottingham, UK NG7 2RD
| | | | | | | | | | | |
Collapse
|
47
|
Chandrasekhar V, Azhakar R, Zacchini S, Bickley JF, Steiner A. Synthesis, Structure, and Stereochemistry of Trinuclear Metal Complexes Formed from the Phosphorus-Based Achiral Tripodal Ligand {P(S)[N(Me)NCHC6H4-o-OH]3} (LH3): Luminescent Properties of L2Cd3·2H2O. Inorg Chem 2005; 44:4608-15. [PMID: 15962968 DOI: 10.1021/ic050395t] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neutral trinuclear metal complexes L2Cd3 x 2H2O, L2Mn3 x MeOH, and L2Zn3 x MeOH were isolated in the reaction between the phosphorus-centered achiral tris(hydrazone) P(S)[N(Me)N=CHC6H(4)-o-OH]3 (LH3) and the corresponding divalent metal ions. The trinuclear complexes contain two equivalent terminal metal ions (M(t)) and a central metal ion (M(c)). The ligand encapsulates M(t) in a facial N3O3 coordination environment. From the coordination sphere of the two terminal metal ions a pair of phenolic oxygen atoms further coordinate to the central metal ion. The coordination requirements of M(c) are completed by the solvents of coordination. The achiral trianionic tripodal ligand (L)3- induces chirality in the metal complexes. This results in a delta (clockwise) or lambda (anticlockwise) configuration for the terminal metal ions. The enantiomeric complexes 2-4 (delta-delta or lambda-lambda) crystallize as racemic compounds. The supramolecular structures of 2-4 reveal chiral recognition in the solid-state; every molecule with the delta-delta configuration interacts stereospecifically, through C-H...S=P bonds, with two lambda-lambda molecules to generate a one-dimensional polymeric chain. Photophysical studies of the diamagnetic trinuclear complexes reveal that the tricadmium complex is luminescent in the solid state as well as in solution. In contrast LH3 and L2Zn3 x MeOH are nonluminescent.
Collapse
|
48
|
Barone G, La Manna G, Duca D. X-ray Absorption Spectra of CuII and CuIII Complexes ofN,N?-1,2-Phenylenebis(2-mercapto-2-methylpropionamide). Eur J Inorg Chem 2005. [DOI: 10.1002/ejic.200400495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
|
50
|
Chandrasekhar V, Azhakar R, Senthil Andavan GT, Krishnan V, Zacchini S, Bickley JF, Steiner A, Butcher RJ, Kögerler P. A phosphorus supported multisite coordinating tris hydrazone P(S)[N(Me)N=CH-C6H4-o-OH]3 as an efficient ligand for the assembly of trinuclear metal complexes: synthesis, structure, and magnetism. Inorg Chem 2003; 42:5989-98. [PMID: 12971769 DOI: 10.1021/ic034434h] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A phosphorus supported multisite coordinating ligand P(S)[N(Me)N=CH-C(6)H(4)-o-OH](3) (2) was prepared by the condensation of the phosphorus tris hydrazide P(S)[N(Me)NH(2)](3) (1) with o-hydroxybenzaldehyde. The reaction of 2 with M(OAc)(2).xH(2)O (M = Mn, Co, Ni, x = 4; M = Zn, x = 2) afforded neutral trinuclear complexes [P(S)[N(Me)N=CH-C(6)H(4)-o-O](3)](2)M(3) [M = Mn (3), Co (4), Ni (5), and Zn (6)]. The X-ray crystal structures of compounds 2-6 have been determined. The structures of 3-6 reveal that the trinculear metal assemblies are nearly linear. The two terminal metal ions in a given assembly have an N(3)O(3) ligand environment in a distorted octahedral geometry while the central metal ion has an O(6) ligand environment also in a slightly distorted octahedral geometry. In all the complexes, ligand 2 coordinates to the metal ions through three imino nitrogens and three phenolate oxygens; the latter act as bridging ligands to connect the terminal and central metal ions. The compounds 2-6 also show intermolecular C-H...S=P contacts in the solid-state which lead to the formation of polymeric supramolecular architectures. The observed magnetic data for the (s = 5/2)3 L(2)(Mn(II))(3) derivative, 3, show an antiferromagnetic nearest- and next-nearest-neighbor exchange (J = -4.0 K and J' = -0.15 K; using the spin Hamiltonian H(HDvV) = -2J(S(1)S(2) + S(2)S(3)) - 2J'S(1)S(3)). In contrast, the (s = 1)(3) L(2)(Ni(II))(3) derivative, 5, displays ferromagnetic nearest-neighbor and antiferromagnetic next-nearest-neighbor exchange interactions (J = 4.43 K and J' = -0.28 K; H = H(HDvV)+ S(1)DS(1) + S(2)DS(2)+ S(3)DS(3)). The magnetic behavior of the L(2)(Co(II))(3) derivative, 4, reveals only antiferromagnetic exchange analogous to 3 (J = -4.5, J' = -1.4; same Hamiltonian as for 3).
Collapse
|