1
|
Yáñez M, Mó O, Montero-Campillo MM, Alkorta I, Elguero J. Hydride and halide abstraction reactions behind the enhanced basicity of Be and Mg clusters with nitrogen bases. J Comput Chem 2024. [PMID: 39340246 DOI: 10.1002/jcc.27509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
In this study, we investigate the protonation effects on the structure, relative stability and basicity of complexes formed by the interaction of monomers and dimers of BeX2 and MgX2 (X = H, F) with NH3, CH2NH, HCN, and NC5H5 bases. Calculations were performed using the M06-2X/aug-cc-pVTZ formalism, along with QTAIM, ELF and NCI methods for electron density analysis and MBIE and LMO-EDA energy decomposition analyses for interaction enthalpies. The protonation of the MH2- and M2H4-Base complexes occurs at the negatively charged hydrogen atoms of the MH2 and M2H4 moieties through typical hydride abstraction reactions, while protonation at the N atom of the base is systematically less exothermic. The preference for the hydride transfer mechanism is directly associated with the significant exothermicity of H2 formation through the interaction between H- and H+, and the high hydride donor ability of these complexes. The basicity of both, MH2 and M2H4 compounds increases enormously upon association with the corresponding bases, with the increase exceeding 40 orders of magnitude in terms of ionization constants. Due to the smaller exothermicity of HF formation, the basicity of fluorides is lower than that of hydrides. In Be complexes, the protonation at the N atom of the base dominates over the fluoride abstraction mechanism. However, for the Mg complexes the fluoride abstraction mechanism is energetically the most favorable process, reflecting the greater facility of Mg complexes to lose F-.
Collapse
Affiliation(s)
- Manuel Yáñez
- Departamento de Química, Módulo 13, Facultad de Ciencias, and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, Madrid, Spain
| | - Otilia Mó
- Departamento de Química, Módulo 13, Facultad de Ciencias, and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, Madrid, Spain
| | - M Merced Montero-Campillo
- Departamento de Química, Módulo 13, Facultad de Ciencias, and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, Madrid, Spain
| | - Ibon Alkorta
- Instituto de Química Médica, IQM-CSIC, Madrid, Spain
| | - José Elguero
- Instituto de Química Médica, IQM-CSIC, Madrid, Spain
| |
Collapse
|
2
|
Wang Z, Zhang H, Zhang P, Di K, Zhao J, Wang B, Qu J, Ye S, Yang D. Stepwise Reduction of Redox Noninnocent Nitrosobenzene to Aniline via a Rare Phenylhydroxylamino Intermediate on a Thiolate-Bridged Dicobalt Scaffold. J Am Chem Soc 2024; 146:19737-19747. [PMID: 39008833 DOI: 10.1021/jacs.4c01691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Nitrosobenzene (PhNO) and phenylhydroxylamine (PhNHOH) are of paramount importance because of their involvement as crucial intermediates in the biological metabolism and catalytic transformation of nitrobenzene (PhNO2) to aniline (PhNH2). However, a complete reductive transformation cycle of PhNO to PhNH2 via the PhNHOH intermediate has not been reported yet. In this context, we design and construct a new thiolate-bridged dicobalt scaffold that can accomplish coordination activation and reductive transformation of PhNO. Notably, an unprecedented reversible ligand-based redox sequence PhNO0 ↔ PhNO•- ↔ PhNO2- can be achieved on this well-defined {CoIII(μ-SPh)2CoIII} functional platform. Further detailed reactivity investigations demonstrate that the PhNO0 and PhNO•- complexes cannot react with the usual hydrogen and hydride donors to afford the corresponding phenylhydroxylamino (PhNHO-) species. However, the double reduced PhNO2- complex can readily undergo N-protonation with an uncommon weak proton donor PhSH to selectively yield a stable dicobalt PhNHO- bridged complex with a high pKa value of 13-16. Cyclic voltammetry shows that there are two successive reduction events at E1/2 = -0.075 V and Ep = -1.08 V for the PhNO0 complex, which allows us to determine both bond dissociation energy (BDEN-H) of 59-63 kcal·mol-1 and thermodynamic hydricity (ΔGH-) of 71-75 kcal·mol-1 of the PhNHO- complex. Both values indicate that the PhNO•- complex is not a potent hydrogen abstractor and the PhNO0 complex is not an efficient hydride acceptor. In the presence of BH3 as a combination of protons and electrons, facile N-O bond cleavage of the coordinated PhNHO- group can be realized to generate PhNH2 and a dicobalt hydroxide-bridged complex. Overall, we present the first stepwise reductive sequence, PhNO0 ↔ PhNO•- ↔ PhNO2- ↔ PhNHO- → PhNH2.
Collapse
Affiliation(s)
- Zhijie Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Haoyan Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Peng Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Kai Di
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jinfeng Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
- State Key Laboratory of Bioreactor Engineering, Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
3
|
Karagiannis A, Neugebauer H, Lalancette RA, Grimme S, Hansen A, Prokopchuk DE. Pushing the Limits of Organometallic Redox Chemistry with an Isolable Mn(-I) Dianion. J Am Chem Soc 2024; 146:19279-19285. [PMID: 38976843 DOI: 10.1021/jacs.4c04561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
We report an incredibly reducing and redox-active Mn-I dianion, [Mn(CO)3(Ph2B(tBuNHC)2)]2- (NHC = N-heterocyclic carbene), furnished via 2e- reduction of the parent 16e- MnI complex with Na0 or K0. Cyclic voltammograms show a Mn0/-I redox couple at -3.13 V vs Fc+/0 in tetrahydrofuran (THF), -3.06 V in 1,2-dimethoxyethane, and -2.85 V in acetonitrile. The diamagnetic Mn-I dianion is stable in solution and solid-state at room temperature, tolerating a wide range of countercations ([M(2.2.2)crypt]+, [M(18-crown-6)]+, [nBu4N]+; M = Na, K). Countercation identity does not significantly alter 13C NMR spectral signatures with [nBu4N]+ and Na+, suggesting minimal ion pairing in solution. IR spectroscopy reveals a significant decrease in CO stretching frequencies from MnI to Mn-I (ca. 240 cm-1), consistent with a drastic increase in electron density at Mn. State-of-the-art DFT calculations are in excellent agreement with the observed IR spectral data. Moreover, the Mn-I dianion behaves as a chemical reductant, smoothly releasing 1e- or 2e- to regenerate the oxidized Mn0 or MnI species in solution. The reducing potential of [Mn(CO)3(Ph2B(tBuNHC)2)]2- surpasses the naphthalenide anion in THF (-3.09 V) and represents one of the strongest isolable chemical redox agents.
Collapse
Affiliation(s)
- Ageliki Karagiannis
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Hagen Neugebauer
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Bonn 53115, Germany
| | - Roger A Lalancette
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Bonn 53115, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Bonn 53115, Germany
| | - Demyan E Prokopchuk
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
4
|
White NM, Waldie KM. Electrocatalytic formate and alcohol oxidation by hydride transfer at first-row transition metal complexes. Dalton Trans 2024; 53:11644-11654. [PMID: 38896286 DOI: 10.1039/d3dt04304e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The electrocatalytic oxidation of carbon-based liquid fuels, such as formic acid and alcohols, has important applications for our renewable energy transition. Molecular electrocatalysts based on transition metal complexes provide the opportunity to explore the interplay between precise catalyst design and electrocatalytic activity. Recent advances have seen the development of first-row transition metal electrocatalysts for these transformations that operate via hydride transfer between the substrate and catalyst. In this Frontier article, we present the key contributions to this field and discuss the proposed mechanisms for each case. These studies also reveal the remaining challenges for formate and alcohol oxidation with first-row transition metal systems, for which we provide perspectives on future directions for next-generation electrocatalyst design.
Collapse
Affiliation(s)
- Navar M White
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, USA.
| | - Kate M Waldie
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
5
|
Elvers BJ, Fischer C, Schulzke C. Dynamics and Coordination of a P 2N 2 Ligand - from Twisted Conformation to Chelation. Chemistry 2024; 30:e202304103. [PMID: 38372510 DOI: 10.1002/chem.202304103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/10/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
Based on their general spacial flexibility, their Lewis and Brønsted basicity, and ability to mimic second sphere effects the 1,5-diaza-3,7-diphosphacyclooctane ligand family and their complexes have regained substantial scientific interest. It was now possible to structurally analyze a recently reported member of this family with p-tolyl and t-butyl substituents on P and N, respectively, (P2 p-tolN2 tBu). Notably, the ligand crystallizes with a 'twisted' backbone. This compound is the very first of its kind to have been unambiguously characterized with regard to its chemical and molecular structure as being in this conformation. A temperature-dependent NMR study provides insight into the molecular dynamics of two isomers in solution, which are most likely also both twisted, as judged by the observed limited reactivity. Despite the in principle unfavorable conformation of the free ligand, it was successfully chelated to tungsten and molybdenum centers in mononuclear carbonyl complexes. The ligand, a derivative thereof and four new complexes were comprehensively characterized and analyzed in comparison. This includes single crystal XRD molecular structures of P2 p-tolN2 tBu and all four complexes. P2 p-tolN2 tBu, regardless of its twisted conformation, is able to coordinate to metal centers given that enough energy (heat) for a conformational change is provided.
Collapse
Affiliation(s)
- Benedict J Elvers
- Bioinorganic Chemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Christian Fischer
- Bioinorganic Chemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Carola Schulzke
- Bioinorganic Chemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| |
Collapse
|
6
|
Chokejaroenrat C, Watcharatharapong T, T-Thienprasert J, Angkaew A, Poompoung T, Chinwong C, Chirasatienpon T, Sakulthaew C. Decomposition of microplastics using copper oxide/bismuth vanadate-based photocatalysts: Insight mechanisms and environmental impacts. MARINE POLLUTION BULLETIN 2024; 201:116205. [PMID: 38452629 DOI: 10.1016/j.marpolbul.2024.116205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/17/2024] [Accepted: 02/25/2024] [Indexed: 03/09/2024]
Abstract
To mitigate marine pollution, we improved the photo-Fenton reaction of modified nanoscale CuO/BiVO4 photocatalysts to resolve the challenge of efficient microplastic degradation in wastewater treatment. Material property analysis and computational results revealed that deposition of CuO onto BiVO4 nanocomposites improved photocatalytic activity by promoting an excess of electrons in CuO and surface charge transfer, resulting in an increased production of e--h+ for ROS generation via H2O2 activation. 1O2 was dominated and identified through quenching experiments, XPS analysis, and EPR. ROS generation increased via H2O2 activation, causing major surface abrasion and increased carbonyl and vinyl indices in microplastics. Treated water had minimal impact on Lycopersicon esculentum Mill. seedling growth but caused considerable mortality in cell lines and Moina macrocopa mortality at greater dosages due to their sensitivity to ions and H2O2 residuals. Overall, this treatment can effectively degrade microplastics, but the dilution of treated water is still needed before being discharged.
Collapse
Affiliation(s)
- C Chokejaroenrat
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok 10900, Thailand
| | - T Watcharatharapong
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - J T-Thienprasert
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - A Angkaew
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok 10900, Thailand
| | - T Poompoung
- Department of Veterinary Nursing, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - C Chinwong
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok 10900, Thailand
| | - T Chirasatienpon
- Department of Physical Education, Faculty of Education, Kasetsart University, Bangkok, Thailand
| | - C Sakulthaew
- Department of Veterinary Nursing, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
7
|
Chirila A, Hu Y, Linehan JC, Dixon DA, Wiedner ES. Thermodynamic and Kinetic Activity Descriptors for the Catalytic Hydrogenation of Ketones. J Am Chem Soc 2024; 146:6866-6879. [PMID: 38437011 DOI: 10.1021/jacs.3c13876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Activity descriptors are a powerful tool for the design of catalysts that can efficiently utilize H2 with minimal energy losses. In this study, we develop the use of hydricity and H- self-exchange rates as thermodynamic and kinetic descriptors for the hydrogenation of ketones by molecular catalysts. Two complexes with known hydricity, HRh(dmpe)2 and HCo(dmpe)2, were investigated for the catalytic hydrogenation of ketones under mild conditions (1.5 atm and 25 °C). The rhodium catalyst proved to be an efficient catalyst for a wide range of ketones, whereas the cobalt catalyst could only hydrogenate electron-deficient ketones. Using a combination of experiment and electronic structure theory, thermodynamic hydricity values were established for 46 alkoxide/ketone pairs in both acetonitrile and tetrahydrofuran solvents. Through comparison of the hydricities of the catalysts and substrates, it was determined that catalysis was observed only for catalyst/ketone pairs with an exergonic H- transfer step. Mechanistic studies revealed that H- transfer was the rate-limiting step for catalysis, allowing for the experimental and computation construction of linear free-energy relationships (LFERs) for H- transfer. Further analysis revealed that the LFERs could be reproduced using Marcus theory, in which the H- self-exchange rates for the HRh/Rh+ and ketone/alkoxide pairs were used to predict the experimentally measured catalytic barriers within 2 kcal mol-1. These studies significantly expand the scope of catalytic reactions that can be analyzed with a thermodynamic hydricity descriptor and firmly establish Marcus theory as a valid approach to develop kinetic descriptors for designing catalysts for H- transfer reactions.
Collapse
Affiliation(s)
- Andrei Chirila
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yiqin Hu
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - John C Linehan
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Eric S Wiedner
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
8
|
Day CS, Martin R. Comproportionation and disproportionation in nickel and copper complexes. Chem Soc Rev 2023; 52:6601-6616. [PMID: 37655600 DOI: 10.1039/d2cs00494a] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Disproportionation and comproportionation reactions have become increasingly important electron transfer events in organometallic chemistry and catalysis. The renewed interest in these reactions is in part attributed to the improved understanding of first-row metals and their ability to occupy odd and even oxidation states. Disproportionation and comproportionation reactions enable metal complexes to shuttle between various oxidation states, a matter of utmost relevance for controlling the speciation and catalytic turnover. In addition, these reactions have a direct impact in the thermodynamic and kinetic stability of the corresponding metal complexes. This review covers the relevance and impact of these processes in electron transfer reactions and provides valuable information about their non-negligible influence in Ni- and Cu-catalysed transformations.
Collapse
Affiliation(s)
- Craig S Day
- The Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.
- ICREA, Passeig Lluís Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|
9
|
Kuehn MA, Fernandez W, Zall CM. Structure and Thermodynamic Hydricity in Cobalt(triphosphine)(monophosphine) Hydrides. Inorg Chem 2023. [PMID: 37216471 DOI: 10.1021/acs.inorgchem.2c04124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The mononuclear cobalt hydride complex [HCo(triphos)(PMe3)], in which triphos = PhP(CH2CH2PPh2)2, was synthesized and characterized by X-ray crystallography and by 1H and 31P NMR spectroscopy. The geometry of the compound is a distorted trigonal bipyramid in which the axial positions are occupied by the hydride and the central phosphorus atom of the triphos ligand, while the PMe3 and terminal triphos donor atoms occupy the equatorial positions. Protonation of [HCo(triphos)(PMe3)] generates H2 and the Co(I) cation, [Co(triphos)(PMe3)]+, and this reaction is reversible under an atmosphere of H2 when the proton source is weakly acidic. The thermodynamic hydricity of HCo(triphos)(PMe3) was determined to be 40.3 kcal/mol in MeCN from measurements of these equilibria. The reactivity of the hydride is, therefore, well suited to CO2 hydrogenation catalysis. Density functional theory (DFT) calculations were performed to evaluate the structures and hydricities of a series of analogous cobalt(triphosphine)(monophosphine) hydrides where the phosphine substituents are systematically changed from Ph to Me. The calculated hydricities range from 38.5 to 47.7 kcal/mol. Surprisingly, the hydricities of the complexes are generally insensitive to substitution at the triphosphine ligand, as a result of competing structural and electronic trends. The DFT-calculated geometries of the [Co(triphos)(PMe3)]+ cations are more square planar when the triphosphine ligand possesses bulkier phenyl groups and more tetrahedrally distorted when the triphosphine ligand has smaller methyl substituents, reversing the trend observed for [M(diphosphine)2]+ cations. More distorted structures are associated with an increase in ΔGH-°, and this structural trend counteracts the electronic effect in which methyl substitution at the triphosphine is expected to yield smaller ΔGH-° values. However, the steric influence of the monophosphine follows the normal trend that phenyl substituents give more distorted structures and increased ΔGH-° values.
Collapse
Affiliation(s)
- Makenzie A Kuehn
- Department of Chemistry, Sam Houston State University, 1003 Bowers Boulevard, Huntsville, Texas 77341, United States
| | - William Fernandez
- Department of Chemistry, Sam Houston State University, 1003 Bowers Boulevard, Huntsville, Texas 77341, United States
| | - Christopher M Zall
- Department of Chemistry, Sam Houston State University, 1003 Bowers Boulevard, Huntsville, Texas 77341, United States
| |
Collapse
|
10
|
Schlenker K, Casselman LK, VanderLinden RT, Saouma CT. Large changes in hydricity as a function of charge and not metal in (PNP)M–H (de)hydrogenation catalysts that undergo metal–ligand cooperativity. Catal Sci Technol 2023. [DOI: 10.1039/d2cy01349e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ligand pKa and metal hydricity scale with one another in (de)hydrogenation catalysts that undergo metal–ligand cooperativity, irrespective of metal or ligand identity. Anionic hydrides are significantly more hydridic than their neutral counterparts.
Collapse
Affiliation(s)
- Kevin Schlenker
- Department of Chemistry, University of Utah, Salt Lake City, Utah, 84112, USA
| | - Lillee K. Casselman
- Department of Chemistry, University of Utah, Salt Lake City, Utah, 84112, USA
| | | | - Caroline T. Saouma
- Department of Chemistry, University of Utah, Salt Lake City, Utah, 84112, USA
| |
Collapse
|
11
|
Derosa J, Garrido-Barros P, Li M, Peters JC. Use of a PCET Mediator Enables a Ni-HER Electrocatalyst to Act as a Hydride Delivery Agent. J Am Chem Soc 2022; 144:20118-20125. [PMID: 36264765 DOI: 10.1021/jacs.2c09786] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The generation of metal hydride intermediates during reductive electrocatalysis in the presence of acid most commonly leads to the hydrogen evolution reaction (HER). Redirecting the reactivity profile of such hydride intermediates toward the reduction of unsaturated substrates is an exciting opportunity in catalysis but presents a challenge in terms of catalyst selectivity. In this study, we demonstrate that a prototypical phosphine-supported Ni-HER catalyst can be repurposed toward the electrocatalytic reduction of a model substrate, methyl phenylpropiolate, via hydride transfer from a NiII-H when interfaced with a metallocene-derived proton-coupled electron transfer (PCET) mediator. Key to success is generation of the NiII-H at a potential pinned to that of the PCET mediator which is appreciably anodic of the onset of HER. Electrochemical, spectroscopic, and theoretical data point to a working mechanism where a PCET step from the metallocene-derived mediator to NiII generates NiIII-H and is rate-determining; the latter NiIII-H is then readily reduced to a NiII-H, which is competent for substrate reduction. Additional studies show that this tandem PCET-mediated hydride generation can afford high stereoselectivity (e.g., >20:1 Z/E using a phosphine-cobalt precatalyst with ethyl 2-heptynoate) and can also be used for the reduction of α,β-unsaturated ketones.
Collapse
Affiliation(s)
- Joseph Derosa
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| | - Pablo Garrido-Barros
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| | - Mengdi Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| |
Collapse
|
12
|
Yeo C, Nguyen M, Wang LP. Benchmarking Density Functionals, Basis Sets, and Solvent Models in Predicting Thermodynamic Hydricities of Organic Hydrides. J Phys Chem A 2022; 126:7566-7577. [PMID: 36251007 DOI: 10.1021/acs.jpca.2c03072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many renewable energy technologies, such as hydrogen gas synthesis and carbon dioxide reduction, rely on chemical reactions involving hydride anions (H-). When selecting molecules to be used in such applications, an important quantity to consider is the thermodynamic hydricity, which is the free energy required for a species to donate a hydride anion. Theoretical calculations of thermodynamic hydricity depend on several parameters, mainly the density functional, basis set, and solvent model. In order to assess the effects of the above three parameters, we carry out hydricity calculations with different combinations of density functionals, basis sets, and solvent models for a set of organic molecules with known experimental hydricity values. The data are analyzed by comparing the R2 and root-mean-squared error (RMSE) of linear fits with a fixed slope of 1 and using the Akaike Information Criterion to determine statistical significance of the RMSE rank ordering. Based on these results, we quantified the accuracy of theoretical predictions of hydricity and found that the best compromise between accuracy and computational cost was obtained by using the B3LYP-D3 density functional for the geometry optimization and free-energy corrections, either ωB97X-D3 or M06-2X-D3 for single-point energy corrections, combined with a basis set no larger than def-TZVP and the C-PCM ISWIG solvation model. At this level of theory, the RMSEs of hydricity calculations for organic molecules in acetonitrile and dimethyl sulfoxide were found to be <4 and <10 kcal/mol, respectively, for an experimental data set with a dynamic range of 20-150 kcal/mol.
Collapse
Affiliation(s)
- Christina Yeo
- Department of Physics and Astronomy, University of California, Davis. 1 Shields Avenue, Davis, California 95616, United States
| | - Minh Nguyen
- Department of Chemistry, University of California, Davis. 1 Shields Avenue, Davis, California 95616, United States
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis. 1 Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
13
|
Espinosa MR, Ertem MZ, Barakat M, Bruch QJ, Deziel AP, Elsby MR, Hasanayn F, Hazari N, Miller AJM, Pecoraro MV, Smith AM, Smith NE. Correlating Thermodynamic and Kinetic Hydricities of Rhenium Hydrides. J Am Chem Soc 2022; 144:17939-17954. [PMID: 36130605 DOI: 10.1021/jacs.2c07192] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The kinetics of hydride transfer from Re(Rbpy)(CO)3H (bpy = 4,4'-R-2,2'-bipyridine; R = OMe, tBu, Me, H, Br, COOMe, CF3) to CO2 and seven different cationic N-heterocycles were determined. Additionally, the thermodynamic hydricities of complexes of the type Re(Rbpy)(CO)3H were established primarily using computational methods. Linear free-energy relationships (LFERs) derived by correlating thermodynamic and kinetic hydricities indicate that, in general, the rate of hydride transfer increases as the thermodynamic driving force for the reaction increases. Kinetic isotope effects range from inverse for hydride transfer reactions with a small driving force to normal for reactions with a large driving force. Hammett analysis indicates that hydride transfer reactions with greater thermodynamic driving force are less sensitive to changes in the electronic properties of the metal hydride, presumably because there is less buildup of charge in the increasingly early transition state. Bronsted α values were obtained for a range of hydride transfer reactions and along with DFT calculations suggest the reactions are concerted, which enables the use of Marcus theory to analyze hydride transfer reactions involving transition metal hydrides. It is notable, however, that even slight perturbations in the steric properties of the Re hydride or the hydride acceptor result in large deviations in the predicted rate of hydride transfer based on thermodynamic driving forces. This indicates that thermodynamic considerations alone cannot be used to predict the rate of hydride transfer, which has implications for catalyst design.
Collapse
Affiliation(s)
- Matthew R Espinosa
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Mehmed Z Ertem
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Mariam Barakat
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Quinton J Bruch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Anthony P Deziel
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Matthew R Elsby
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Faraj Hasanayn
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Nilay Hazari
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Alexander J M Miller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Matthew V Pecoraro
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Allison M Smith
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nicholas E Smith
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| |
Collapse
|
14
|
Cypcar AD, Kerr TA, Yang JY. Thermochemical Studies of Nickel Hydride Complexes with Cationic Ligands in Aqueous and Organic Solvents. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrew D. Cypcar
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Tyler A. Kerr
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jenny Y. Yang
- Department of Chemistry, University of California, Irvine, California 92697, United States
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
15
|
Golwankar RR, Kumar A, Day VW, Blakemore JD. Revealing the Influence of Diverse Secondary Metal Cations on Redox‐Active Palladium Complexes. Chemistry 2022; 28:e202200344. [DOI: 10.1002/chem.202200344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Riddhi R. Golwankar
- Department of Chemistry University of Kansas 1567 Irving Hill Road Lawrence Kansas 66045 USA
| | - Amit Kumar
- Department of Chemistry University of Kansas 1567 Irving Hill Road Lawrence Kansas 66045 USA
- Current address: Department of Chemistry University of Pennsylvania Philadelphia Pennsylvania 19104 USA
| | - Victor W. Day
- Department of Chemistry University of Kansas 1567 Irving Hill Road Lawrence Kansas 66045 USA
| | - James D. Blakemore
- Department of Chemistry University of Kansas 1567 Irving Hill Road Lawrence Kansas 66045 USA
| |
Collapse
|
16
|
Stratakes BM, Wells KA, Kurtz DA, Castellano FN, Miller AJM. Photochemical H 2 Evolution from Bis(diphosphine)nickel Hydrides Enables Low-Overpotential Electrocatalysis. J Am Chem Soc 2021; 143:21388-21401. [PMID: 34878278 DOI: 10.1021/jacs.1c10628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecules capable of both harvesting light and forming new chemical bonds hold promise for applications in the generation of solar fuels, but such first-row transition metal photoelectrocatalysts are lacking. Here we report nickel photoelectrocatalysts for H2 evolution, leveraging visible-light-driven photochemical H2 evolution from bis(diphosphine)nickel hydride complexes. A suite of experimental and theoretical analyses, including time-resolved spectroscopy and continuous irradiation quantum yield measurements, led to a proposed mechanism of H2 evolution involving a short-lived singlet excited state that undergoes homolysis of the Ni-H bond. Thermodynamic analyses provide a basis for understanding and predicting the observed photoelectrocatalytic H2 evolution by a 3d transition metal based catalyst. Of particular note is the dramatic change in the electrochemical overpotential: in the dark, the nickel complexes require strong acids and therefore high overpotentials for electrocatalysis; but under illumination, the use of weaker acids at the same applied potential results in a more than 500 mV improvement in electrochemical overpotential. New insight into first-row transition metal hydride photochemistry thus enables photoelectrocatalytic H2 evolution without electrochemical overpotential (at the thermodynamic potential or 0 mV overpotential). This catalyst system does not require sacrificial chemical reductants or light-harvesting semiconductor materials and produces H2 at rates similar to molecular catalysts attached to silicon.
Collapse
Affiliation(s)
- Bethany M Stratakes
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Kaylee A Wells
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Daniel A Kurtz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Alexander J M Miller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
17
|
Zhang Y, Li H, Jiang X, Subba Reddy CV, Liang H, Zhang Y, Cao R, Sun RW, Tse MK, Qiu L. Nickel‐Catalyzed Decarbonylative Cycloaddition of Benzofuran‐2,3‐diones with Alkynes to Flavones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Yu‐Yang Zhang
- School of Chemistry, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Sun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Han Li
- School of Chemistry, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Sun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Xiaoding Jiang
- School of Chemistry, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Sun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Chitreddy V Subba Reddy
- School of Chemistry, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Sun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Hao Liang
- School of Chemistry, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Sun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Yaqi Zhang
- School of Chemistry, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Sun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Rihui Cao
- School of Chemistry, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Sun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Raymond Wai‐Yin Sun
- Guangzhou Lee & Man Technology Company Limited 8 Huanshi Avenue South, Nansha Guangzhou 511458 People's Republic of China
| | - Man Kin Tse
- Guangzhou Lee & Man Technology Company Limited 8 Huanshi Avenue South, Nansha Guangzhou 511458 People's Republic of China
| | - Liqin Qiu
- School of Chemistry, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Sun Yat-sen University Guangzhou 510006 People's Republic of China
| |
Collapse
|
18
|
Mayberry DD, Linehan JC, Appel AM. Designing Catalytic Systems Using Binary Solvent Mixtures: Impact of Mole Fraction of Water on Hydride Transfer. Inorg Chem 2021; 60:17132-17140. [PMID: 34723498 DOI: 10.1021/acs.inorgchem.1c02397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The free energy for hydride transfer reactions of transition metal hydrides is known to be influenced by solvent effects. The first-row transition metal hydride [HNi(dmpe)2][BF4] (dmpe = 1,2-bis(dimethylphosphino)ethane) has starkly different hydride transfer reactivities with CO2 in different solvents. A binary mixture of water and acetonitrile was used to tune the hydride transfer reactivity of HNi(dmpe)2+ with CO2 so that the free energy for this reaction approached zero. Various mole fractions of water were tested and a linear relationship between the hydride transfer free energy and solvent composition was established for 0-0.24 mole fraction of water. A deviation from linearity was found upon moving toward higher mole fractions of water. The tuning of the free energy for hydride transfer allowed HNi(dmpe)2+ to be used as a catalyst for the hydrogenation of CO2. The optimized catalyst conditions produced 58 turnovers at room temperature in 0.082 mole fraction of water using 60 atm of a 1:1 mixture of H2 to CO2 gas.
Collapse
Affiliation(s)
- Darrell D Mayberry
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - John C Linehan
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Aaron M Appel
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
19
|
Kireev NV, Kiryutin AS, Pavlov AA, Yurkovskaya AV, Musina EI, Karasik AA, Shubina ES, Ivanov KL, Belkova NV. Nickel(II) Dihydrogen and Hydride Complexes as the Intermediates of H
2
Heterolytic Splitting by Nickel Diazadiphosphacyclooctane Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nikolay V. Kireev
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Vavilov Street 28 119991 Moscow Russia
| | - Alexey S. Kiryutin
- International Tomography Center Novosibirsk State University Pirogova street 1 Novosibirsk 630090 Russia
| | - Alexander A. Pavlov
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Vavilov Street 28 119991 Moscow Russia
| | - Alexandra V. Yurkovskaya
- International Tomography Center Novosibirsk State University Pirogova street 1 Novosibirsk 630090 Russia
| | - Elvira I. Musina
- A. E. Arbuzov Institute of Organic and Physical Chemistry Kazan Scientific Center Russian Academy of Sciences Arbuzov str. 8 420088 Kazan Russia
| | - Andrey A. Karasik
- A. E. Arbuzov Institute of Organic and Physical Chemistry Kazan Scientific Center Russian Academy of Sciences Arbuzov str. 8 420088 Kazan Russia
| | - Elena S. Shubina
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Vavilov Street 28 119991 Moscow Russia
| | - Konstantin L. Ivanov
- International Tomography Center Novosibirsk State University Pirogova street 1 Novosibirsk 630090 Russia
| | - Natalia V. Belkova
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Vavilov Street 28 119991 Moscow Russia
| |
Collapse
|
20
|
Abstract
AbstractNickel-catalyzed cross-coupling and photoredox catalytic reactions has found widespread utilities in organic synthesis. Redox processes are key intermediate steps in many catalytic cycles. As a result, it is pertinent to measure and document the redox potentials of various nickel species as precatalysts, catalysts, and intermediates. The redox potentials of a transition-metal complex are governed by its oxidation state, ligand, and the solvent environment. This article tabulates experimentally measured redox potentials of nickel complexes supported on common ligands under various conditions. This review article serves as a versatile tool to help synthetic organic and organometallic chemists evaluate the feasibility and kinetics of redox events occurring at the nickel center, when designing catalytic reactions and preparing nickel complexes.1 Introduction1.1 Scope1.2 Measurement of Formal Redox Potentials1.3 Redox Potentials in Nonaqueous Solution2 Redox Potentials of Nickel Complexes2.1 Redox Potentials of (Phosphine)Ni Complexes2.2 Redox Potentials of (Nitrogen)Ni Complexes2.3 Redox Potentials of (NHC)Ni Complexes
Collapse
|
21
|
Li Q, Xu B, Huang T, Yu W, Wang X. Activation of CO 2 by Alkaline-Earth Metal Hydrides: Matrix Infrared Spectra and DFT Calculations of HM(O 2CH) and (MH 2)(HCOOH) Complexes (M = Sr, Ba). Inorg Chem 2021; 60:11466-11473. [PMID: 34291929 DOI: 10.1021/acs.inorgchem.1c01477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reactions of MH2 (M = Sr, Ba) with CO2 were explored in pure parahydrogen at 3.5 K using matrix isolation infrared spectroscopy and quantum chemical calculations. The formate complex HM(η2-O2CH) and formic acid complex (MH2)(HCOOH) were trapped and identified by isotopic substitutions and density functional theory (DFT) frequency calculations. Natural population analysis and the CO2 reduction mechanism demonstrate that hydride ion transfer from a metal hydride to a CO2 moiety facilitates the stabilization of such complexes.
Collapse
Affiliation(s)
- Qian Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bing Xu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tengfei Huang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wenjie Yu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuefeng Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
22
|
Hua SA, Paul LA, Oelschlegel M, Dechert S, Meyer F, Siewert I. A Bioinspired Disulfide/Dithiol Redox Switch in a Rhenium Complex as Proton, H Atom, and Hydride Transfer Reagent. J Am Chem Soc 2021; 143:6238-6247. [PMID: 33861085 DOI: 10.1021/jacs.1c01763] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The transfer of multiple electrons and protons is of crucial importance in many reactions relevant in biology and chemistry. Natural redox-active cofactors are capable of storing and releasing electrons and protons under relatively mild conditions and thus serve as blueprints for synthetic proton-coupled electron transfer (PCET) reagents. Inspired by the prominence of the 2e-/2H+ disulfide/dithiol couple in biology, we investigate herein the diverse PCET reactivity of a Re complex equipped with a bipyridine ligand featuring a unique SH···-S moiety in the backbone. The disulfide bond in fac-[Re(S-Sbpy)(CO)3Cl] (1, S-Sbpy = [1,2]dithiino[4,3-b:5,6-b']dipyridine) undergoes two successive reductions at equal potentials of -1.16 V vs Fc+|0 at room temperature forming [Re(S2bpy)(CO)3Cl]2- (12-, S2bpy = [2,2'-bipyridine]-3,3'-bis(thiolate)). 12- has two adjacent thiolate functions at the bpy periphery, which can be protonated forming the S-H···-S unit, 1H-. The disulfide/dithiol switch exhibits a rich PCET reactivity and can release a proton (ΔG°H+ = 34 kcal mol-1, pKa = 24.7), an H atom (ΔG°H• = 59 kcal mol-1), or a hydride ion (ΔG°H- = 60 kcal mol-1) as demonstrated in the reactivity with various organic test substrates.
Collapse
Affiliation(s)
- Shao-An Hua
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Lucas A Paul
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Manuel Oelschlegel
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Sebastian Dechert
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Franc Meyer
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077 Göttingen, Germany.,Universität Göttingen, International Center for Advanced Studies of Energy Conversion (ICASEC), Tammannstraße 6, D-37077 Göttingen, Germany
| | - Inke Siewert
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077 Göttingen, Germany.,Universität Göttingen, International Center for Advanced Studies of Energy Conversion (ICASEC), Tammannstraße 6, D-37077 Göttingen, Germany
| |
Collapse
|
23
|
Abstract
The nickel(II) complex [ON(H)O]Ni(PPh3) ([ON(H)O]2- = bis(3,5-di-tert-butyl-2-phenoxy)amine), bearing a protonated redox-active ligand, was examined for its ability to serve as a hydrogen atom (H•) and hydride (H-) donor. Deprotonation of [ON(H)O]Ni(PPh3) afforded the square-planar anion {[ONOcat]Ni(PPh3)}1-, whereas hydrogen atom transfer from [ON(H)O]Ni(PPh3) to TEMPO• in the presence of added PPh3 afforded five-coordinate [ONO]Ni(PPh3)2 that has been structurally characterized. In solution, this five-coordinate complex exists in equilibrium with four-coordinate [ONO]Ni(PPh3), and this ligand exchange equilibrium correlates with a valence tautomerization between the redox-active ligand and the nickel center. Abstraction of a hydride from [ON(H)O]Ni(PPh3) in the presence of PPh3 afforded the octahedral complex, [ONOq]Ni(OTf)(PPh3)2, which was characterized as an S = 1, nickel(II) complex. Bond dissociation free energy (BDFE) and hydricity (ΔG°H-) measurements benchmark the thermodynamic propensity of this complex to participate in ligand-centered H• and H- transfer reactions.
Collapse
Affiliation(s)
- Bronte J Charette
- Department of Chemistry, University of California, Irvine, Irvine, California 92677-2025, United States
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, Irvine, California 92677-2025, United States
| | - Alan F Heyduk
- Department of Chemistry, University of California, Irvine, Irvine, California 92677-2025, United States
| |
Collapse
|
24
|
Charette BJ, Ziller JW, Heyduk AF. Metal-Ion Influence on Ligand-Centered Hydrogen-Atom Transfer. Inorg Chem 2021; 60:1579-1589. [PMID: 33434022 DOI: 10.1021/acs.inorgchem.0c02981] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ligand-centered hydrogen-atom-transfer (HAT) reactivity was examined for a family of group 10 metal complexes containing a tridentate pincer ligand derived from bis(2-mercapto-p-tolyl)amine, [SNS]H3. Six new metal complexes of palladium and platinum were synthesized with the [SNS] ligand platform in different redox and protonation states to complete the group 10 series previously reported with nickel. The HAT reactivity was examined for this family of nickel, palladium, and platinum complexes to determine the impact of a metal ion on the ligand-centered reactivity. Thermodynamic measurements revealed that N-H bond dissociation free energies increased by approximately 10 kcal mol-1 along the series Ni < Pd < Pt driven by changes to both the redox potential and pKa of the ligand. Kinetic analyses for all three metal complexes suggest that the barrier to the HAT reactivity is primarily entropic rather than enthalpic for this system.
Collapse
Affiliation(s)
- Bronte J Charette
- Department of Chemistry, University of California at Irvine (UCI), Irvine, California 92677-2025, United States
| | - Joseph W Ziller
- Department of Chemistry, University of California at Irvine (UCI), Irvine, California 92677-2025, United States
| | - Alan F Heyduk
- Department of Chemistry, University of California at Irvine (UCI), Irvine, California 92677-2025, United States
| |
Collapse
|
25
|
Kumar A, Semwal S, Choudhury J. Emerging Implications of the Concept of Hydricity in Energy‐Relevant Catalytic Processes. Chemistry 2021; 27:5842-5857. [DOI: 10.1002/chem.202004499] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/20/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Abhishek Kumar
- Organometallics & Smart Materials Laboratory Department of Chemistry Indian Institute of, Science Education and Research Bhopal Bhopal 462066 India
| | - Shrivats Semwal
- Organometallics & Smart Materials Laboratory Department of Chemistry Indian Institute of, Science Education and Research Bhopal Bhopal 462066 India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory Department of Chemistry Indian Institute of, Science Education and Research Bhopal Bhopal 462066 India
| |
Collapse
|
26
|
Zurakowski JA, Bhattacharyya M, Spasyuk DM, Drover MW. Octaboraneyl [Ni(H)(diphosphine)2]+ Complexes: Exploiting Phosphine Ligand Lability for Hydride Transfer to an [NAD]+ Model. Inorg Chem 2020; 60:37-41. [DOI: 10.1021/acs.inorgchem.0c03409] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Joseph A. Zurakowski
- Department of Chemistry and Biochemistry, The University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| | - Moulika Bhattacharyya
- Department of Chemistry and Biochemistry, The University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| | - Denis M. Spasyuk
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Marcus W. Drover
- Department of Chemistry and Biochemistry, The University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
27
|
Mukherjee J, Siewert I. Manganese and Rhenium Tricarbonyl Complexes Equipped with Proton Relays in the Electrochemical CO
2
Reduction Reaction. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000738] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jyotima Mukherjee
- Institut für Anorganische Chemie Universität Göttingen Tammannstr. 4 37077 Göttingen Germany
| | - Inke Siewert
- Institut für Anorganische Chemie Universität Göttingen Tammannstr. 4 37077 Göttingen Germany
| |
Collapse
|
28
|
Yang JY, Kerr TA, Wang XS, Barlow JM. Reducing CO2 to HCO2– at Mild Potentials: Lessons from Formate Dehydrogenase. J Am Chem Soc 2020; 142:19438-19445. [DOI: 10.1021/jacs.0c07965] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jenny Y. Yang
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Tyler A. Kerr
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Xinran S. Wang
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jeffrey M. Barlow
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
29
|
Abstract
Preparation of formamides by CO2 hydrogenation requires an efficient catalyst and temperatures around 100 °C or higher, but most catalysts reported so far incorporate rare and toxic precious metals. Five cobalt(II) or nickel(II) complexes with dmpe or PNN (dmpe = 1,2-bis(dimethylphosphino)ethane; PNN = [(2-(di-tert-butylphosphinomethyl)-6-diethylaminomethyl)pyridine) have been evaluated as precatalysts for the hydrogenation of CO2 to prepare formamides from the corresponding secondary amines. The most active catalyst for these reactions was found to be [NiCl2(dmpe)] in DMSO, producing dimethylformamide (DMF) from CO2, H2, and dimethylamine in up to 6300 TON, the highest activity reported for this reaction with an abundant metal-phosphine complex.
Collapse
|
30
|
Drover MW, Dufour MC, Lesperance‐Nantau LA, Noriega RP, Levin K, Schurko RW. Octaboraneyl Complexes of Nickel: Monomers for Redox‐Active Coordination Polymers. Chemistry 2020; 26:11180-11186. [DOI: 10.1002/chem.202001218] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/17/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Marcus W. Drover
- Department of Chemistry and Biochemistry The University of Windsor 401 Sunset Avenue Windsor ON N9B 3P4 Canada
| | - Maeve C. Dufour
- Department of Chemistry and Biochemistry The University of Windsor 401 Sunset Avenue Windsor ON N9B 3P4 Canada
| | | | - Rayni P. Noriega
- Department of Chemistry and Biochemistry The University of Windsor 401 Sunset Avenue Windsor ON N9B 3P4 Canada
| | - Kirill Levin
- Department of Chemistry and Biochemistry The University of Windsor 401 Sunset Avenue Windsor ON N9B 3P4 Canada
| | - Robert W. Schurko
- Department of Chemistry and Biochemistry The University of Windsor 401 Sunset Avenue Windsor ON N9B 3P4 Canada
- Department of Chemistry and Biochemistry The Florida State University 102 Varsity Way Tallahassee FL 32306-4390 USA
| |
Collapse
|
31
|
Zhang J, Yang JD, Cheng JP. Diazaphosphinanes as hydride, hydrogen atom, proton or electron donors under transition-metal-free conditions: thermodynamics, kinetics, and synthetic applications. Chem Sci 2020; 11:3672-3679. [PMID: 34094055 PMCID: PMC8152589 DOI: 10.1039/c9sc05883d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Exploration of new hydrogen donors is in large demand in hydrogenation chemistry. Herein, we developed a new 1,3,2-diazaphosphinane 1a, which can serve as a hydride, hydrogen atom or proton donor without transition-metal mediation. The thermodynamics and kinetics of these three pathways of 1a, together with those of its analog 1b, were investigated in acetonitrile. It is noteworthy that, the reduction potentials (Ered) of the phosphenium cations 1a-[P]+ and 1b-[P]+ are extremely low, being −1.94 and −2.39 V (vs. Fc+/0), respectively, enabling corresponding phosphinyl radicals to function as neutral super-electron-donors. Kinetic studies revealed an extraordinarily large kinetic isotope effect KIE(1a) of 31.3 for the hydrogen atom transfer from 1a to the 2,4,6-tri-(tert-butyl)-phenoxyl radical, implying a tunneling effect. Furthermore, successful applications of these diverse P–H bond energetic parameters in organic syntheses were exemplified, shedding light on more exploitations of these versatile and powerful diazaphosphinane reagents in organic chemistry. A new 1,3,2-diazaphosphinane, serving as a formal hydride, hydrogen-atom or proton donor without transition-metal mediation was exploited thermodynamically and kinetically. And, its promising potentials in versatile syntheses have been demonstrated.![]()
Collapse
Affiliation(s)
- Jingjing Zhang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Jin-Dong Yang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Jin-Pei Cheng
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University Beijing 100084 China .,State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
32
|
Ceballos BM, Yang JY. Highly Selective Electrocatalytic CO2 Reduction by [Pt(dmpe)2]2+ through Kinetic and Thermodynamic Control. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00720] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Bianca M. Ceballos
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jenny Y. Yang
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
33
|
Cunningham DW, Barlow JM, Velazquez RS, Yang JY. Reversible and Selective CO
2
to HCO
2
−
Electrocatalysis near the Thermodynamic Potential. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Drew W. Cunningham
- Department of Chemistry University of California, Irvine Natural Sciences II Irvine CA 92697 USA
| | - Jeffrey M. Barlow
- Department of Chemistry University of California, Irvine Natural Sciences II Irvine CA 92697 USA
| | - Reyna S. Velazquez
- Department of Chemistry University of California, Irvine Natural Sciences II Irvine CA 92697 USA
| | - Jenny Y. Yang
- Department of Chemistry University of California, Irvine Natural Sciences II Irvine CA 92697 USA
| |
Collapse
|
34
|
Cunningham DW, Barlow JM, Velazquez RS, Yang JY. Reversible and Selective CO 2 to HCO 2 - Electrocatalysis near the Thermodynamic Potential. Angew Chem Int Ed Engl 2020; 59:4443-4447. [PMID: 31846551 DOI: 10.1002/anie.201913198] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Indexed: 11/12/2022]
Abstract
Reversible catalysis is a hallmark of energy-efficient chemical transformations, but can only be achieved if the changes in free energy of intermediate steps are minimized and the catalytic cycle is devoid of high transition-state barriers. Using these criteria, we demonstrate reversible CO2 /HCO2 - conversion catalyzed by [Pt(depe)2 ]2+ (depe=1,2-bis(diethylphosphino)ethane). Direct measurement of the free energies associated with each catalytic step correctly predicts a slight bias towards CO2 reduction. We demonstrate how the experimentally measured free energy of each step directly contributes to the <50 mV overpotential. We also find that for CO2 reduction, H2 evolution is negligible and the Faradaic efficiency for HCO2 - production is nearly quantitative. A free-energy analysis reveals H2 evolution is endergonic, providing a thermodynamic basis for highly selective CO2 reduction.
Collapse
Affiliation(s)
- Drew W Cunningham
- Department of Chemistry, University of California, Irvine, Natural Sciences II, Irvine, CA, 92697, USA
| | - Jeffrey M Barlow
- Department of Chemistry, University of California, Irvine, Natural Sciences II, Irvine, CA, 92697, USA
| | - Reyna S Velazquez
- Department of Chemistry, University of California, Irvine, Natural Sciences II, Irvine, CA, 92697, USA
| | - Jenny Y Yang
- Department of Chemistry, University of California, Irvine, Natural Sciences II, Irvine, CA, 92697, USA
| |
Collapse
|
35
|
Patel P, Wang J, Wilson AK. Prediction of pK a s of Late Transition-Metal Hydrides via a QM/QM Approach. J Comput Chem 2020; 41:171-183. [PMID: 31495951 DOI: 10.1002/jcc.26057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/04/2019] [Indexed: 11/09/2022]
Abstract
Three implicit solvation models, the conductor-like polarizable continuum model (C-PCM), the conductor-like screening model (COSMO), and universal implicit solvent model (SMD), combined with a hybrid two layer QM/QM approach (ONIOM), were utilized to calculate the pKa values, using a direct thermodynamic scheme, of a set of Group 10 transition metal (TM) hydrides in acetonitrile. To obtain the optimal combination of quantum methods for ONIOM calculations with implicit solvation models, the influence of factors, such as the choice of density functional and basis set, the atomic radii used to build a cavity in the solvent, and the size of the model system in an ONIOM scheme, was examined. Additionally, the impact of Grimme's empirical dispersion correction and exact exchange was also investigated. The results were calibrated by experimental data. This investigation provides insight about effective models for the prediction of thermodynamic properties of TM-containing complexes with bulky ligands. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Prajay Patel
- Department of Chemistry and Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, Texas, 76203-5017.,Department of Chemistry, Michigan State University, East Lansing, Michigan, 48824-1322
| | - Jiaqi Wang
- Department of Chemistry and Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, Texas, 76203-5017.,Department of Chemistry, Beijing Forestry University, Beijing, China, 100083
| | - Angela K Wilson
- Department of Chemistry and Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, Texas, 76203-5017.,Department of Chemistry, Michigan State University, East Lansing, Michigan, 48824-1322
| |
Collapse
|
36
|
Vollmer MV, Ye J, Linehan JC, Graziano BJ, Preston A, Wiedner ES, Lu CC. Cobalt-Group 13 Complexes Catalyze CO2 Hydrogenation via a Co(−I)/Co(I) Redox Cycle. ACS Catal 2020. [DOI: 10.1021/acscatal.9b03534] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Matthew V. Vollmer
- Department of Chemistry, University of Minnesota−Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Jingyun Ye
- Department of Chemistry, University of Minnesota−Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
- Supercomputing Institute, and Chemical Theory Center, University of Minnesota−Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - John C. Linehan
- Catalysis Science Group, Pacific Northwest National Laboratory, P.O. Box 999, MS K2-57, Richland, Washington 99352, United States
| | - Brendan J. Graziano
- Department of Chemistry, University of Minnesota−Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Andrew Preston
- Catalysis Science Group, Pacific Northwest National Laboratory, P.O. Box 999, MS K2-57, Richland, Washington 99352, United States
| | - Eric S. Wiedner
- Catalysis Science Group, Pacific Northwest National Laboratory, P.O. Box 999, MS K2-57, Richland, Washington 99352, United States
| | - Connie C. Lu
- Department of Chemistry, University of Minnesota−Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
37
|
Brereton KR, Smith NE, Hazari N, Miller AJM. Thermodynamic and kinetic hydricity of transition metal hydrides. Chem Soc Rev 2020; 49:7929-7948. [DOI: 10.1039/d0cs00405g] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review of thermodynamic and kinetic hydricity provides conceptual overviews, tutorials on how to determine hydricity both experimentally and computationally, and salient case studies.
Collapse
Affiliation(s)
| | | | - Nilay Hazari
- Department of Chemistry
- Yale University
- New Haven
- USA
| | | |
Collapse
|
38
|
Ostericher AL, Porter TM, Reineke MH, Kubiak CP. Thermodynamic targeting of electrocatalytic CO 2 reduction: advantages, limitations, and insights for catalyst design. Dalton Trans 2019; 48:15841-15848. [PMID: 31580359 DOI: 10.1039/c9dt03255j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein is reported the electrocatalytic reduction of CO2 with the complex [Ni(bis-NHC)(dmpe)]2+ (1) (bis-NHC = 1,l':3,3'-bis(1,3-propanediyl)dibenzimidazolin-2,2'-diylidene; dmpe = 1,2-bis(dimethylphosphino)ethane). The hydricity of 1 was previously benchmarked to be , equating to a driving force of a minimum of ∼3.4 kcal mol-1 for hydride transfer to CO2. While hydride transfer to CO2 is thermodynamically favorable, electrocatalytic and infrared spectroelectrochemical (IR-SEC) experiments reveal that hydride transfer is blocked by direct reactivity with CO2 in the reduced, Ni(0) state of the catalyst, yielding CO via reductive disproportionation (2CO2 + 2e- = CO + CO32-) and concomitant catalyst degradation. Although thermodynamic scaling relationships provide guidance in catalyst targeting, the findings herein illustrate the fundamental kinetic challenges in balancing substrate reactivity and selectivity in the design of CO2 reduction electrocatalysts. Advantages and limitations of this scaling relationship as well as approaches by which divergence from it may be achieved are discussed, which provides insight on important parameters for future catalyst design.
Collapse
Affiliation(s)
- Andrew L Ostericher
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Mail Code 0358, La Jolla, California 92093-0358, USA.
| | - Tyler M Porter
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Mail Code 0358, La Jolla, California 92093-0358, USA.
| | - Mark H Reineke
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Mail Code 0358, La Jolla, California 92093-0358, USA.
| | - Clifford P Kubiak
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Mail Code 0358, La Jolla, California 92093-0358, USA.
| |
Collapse
|
39
|
Barlow J, Yang JY. Thermodynamic Considerations for Optimizing Selective CO 2 Reduction by Molecular Catalysts. ACS CENTRAL SCIENCE 2019; 5:580-588. [PMID: 31041377 PMCID: PMC6487447 DOI: 10.1021/acscentsci.9b00095] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Indexed: 05/17/2023]
Abstract
Energetically efficient electrocatalysts with high product selectivity are desirable targets for sustainable chemical fuel generation using renewable electricity. Recycling CO2 by reduction to more energy dense products would support a carbon-neutral cycle that mitigates the intermittency of renewable energy sources. Conversion of CO2 to more saturated products typically requires proton equivalents. Complications with product selectivity stem from competitive reactions between H+ or CO2 at shared intermediates. We describe generalized catalytic cycles for H2, CO, and HCO2 - formation that are commonly proposed in inorganic molecular catalysts. Thermodynamic considerations and trends for the reactions of H+ or CO2 at key intermediates are outlined. A quantitative understanding of intermediate catalytic steps is key to designing systems that display high selectivity while promoting energetically efficient catalysis by minimizing the overall energy landscape. For CO2 reduction to CO, we describe how an enzymatic active site motif facilitates efficient and selective catalysis and highlight relevant examples from synthetic systems.
Collapse
|
40
|
Directing the reactivity of metal hydrides for selective CO 2 reduction. Proc Natl Acad Sci U S A 2018; 115:12686-12691. [PMID: 30463952 DOI: 10.1073/pnas.1811396115] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A critical challenge in electrocatalytic CO2 reduction to renewable fuels is product selectivity. Desirable products of CO2 reduction require proton equivalents, but key catalytic intermediates can also be competent for direct proton reduction to H2 Understanding how to manage divergent reaction pathways at these shared intermediates is essential to achieving high selectivity. Both proton reduction to hydrogen and CO2 reduction to formate generally proceed through a metal hydride intermediate. We apply thermodynamic relationships that describe the reactivity of metal hydrides with H+ and CO2 to generate a thermodynamic product diagram, which outlines the free energy of product formation as a function of proton activity and hydricity (∆GH-), or hydride donor strength. The diagram outlines a region of metal hydricity and proton activity in which CO2 reduction is favorable and H+ reduction is suppressed. We apply our diagram to inform our selection of [Pt(dmpe)2](PF6)2 as a potential catalyst, because the corresponding hydride [HPt(dmpe)2]+ has the correct hydricity to access the region where selective CO2 reduction is possible. We validate our choice experimentally; [Pt(dmpe)2](PF6)2 is a highly selective electrocatalyst for CO2 reduction to formate (>90% Faradaic efficiency) at an overpotential of less than 100 mV in acetonitrile with no evidence of catalyst degradation after electrolysis. Our report of a selective catalyst for CO2 reduction illustrates how our thermodynamic diagrams can guide selective and efficient catalyst discovery.
Collapse
|
41
|
Klug CM, Dougherty WG, Kassel WS, Wiedner ES. Electrocatalytic Hydrogen Production by a Nickel Complex Containing a Tetradentate Phosphine Ligand. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00548] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Christina M. Klug
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57, Richland, Washington 99352, United States
| | - William G. Dougherty
- Department of Chemistry, Villanova University, 800 East Lancaster Avenue, Villanova, Pennsylvania 19085, United States
| | - W. Scott Kassel
- Department of Chemistry, Villanova University, 800 East Lancaster Avenue, Villanova, Pennsylvania 19085, United States
| | - Eric S. Wiedner
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57, Richland, Washington 99352, United States
| |
Collapse
|
42
|
Tsay C, Ceballos BM, Yang JY. pH-Dependent Reactivity of a Water-Soluble Nickel Complex: Hydrogen Evolution vs Selective Electrochemical Hydride Generation. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Charlene Tsay
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Bianca M. Ceballos
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jenny Y. Yang
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
43
|
Ostericher AL, Waldie KM, Kubiak CP. Utilization of Thermodynamic Scaling Relationships in Hydricity To Develop Nickel Hydrogen Evolution Reaction Electrocatalysts with Weak Acids and Low Overpotentials. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02922] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrew L. Ostericher
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Mail Code 0358, La Jolla, California 92093-0358, United States
| | - Kate M. Waldie
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Mail Code 0358, La Jolla, California 92093-0358, United States
| | - Clifford P. Kubiak
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Mail Code 0358, La Jolla, California 92093-0358, United States
| |
Collapse
|
44
|
Selective Cu(I) complex with phosphine-peptide (SarGly) conjugate contra breast cancer: Synthesis, spectroscopic characterization and insight into cytotoxic action. J Inorg Biochem 2018; 186:162-175. [PMID: 29945023 DOI: 10.1016/j.jinorgbio.2018.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/10/2018] [Accepted: 06/13/2018] [Indexed: 11/20/2022]
Abstract
The main disadvantage of conventional anticancer chemotherapy is the inability to deliver the correct amount of drug directly to cancer. Those molecular delivering systems are very important to destroy cancer cells selectively. Herein we report synthesis of phosphine-peptide conjugate (Ph2PCH2-Sar-Gly-OH, PSG) derived from SarGly (sarcosine-glycine), which can be easily exchanged to other peptide carriers, its oxide (OPh2PCH2-Sar-Gly-OH, OPSG) and the first copper(I) complex ([CuI(dmp)(P(Ph)2CH2-Sar-Gly-OH)], 1-PSG, where dmp stands for 2,9-dimethyl-1,10-phenanthroline). The compounds were characterized by elemental analysis, NMR (1D, 2D), UV-Vis spectroscopy and DFT (Density Functional Theory) methods. PSG and 1-PSG proved to be stable in biological medium in the presence of atmospheric oxygen for several days. The cytotoxicity of the compounds and cisplatin was tested against cancer cell lines: mouse colon carcinoma (CT26; 1-PSGIC50 = 3.12 ± 0.1), human lung adenocarcinoma (A549; 1-PSGIC50 = 2.01 ± 0.2) and human breast adenocarcinoma (MCF7; 1-PSGIC50 = 0.98 ± 0.2) as well as against primary line of human pulmonary fibroblasts (MRC-5; 1-PSGIC50 = 78.56 ± 1.1). Therapeutic index for 1-PSG (MCF7) equals 80. Intracellular accumulation of 1-PSG complex increased with time and was much higher (96%) inside MCF7 cancer cells than in normal MRC5 cells (20%). Attachment of SarGly to cytotoxic copper(I) complex via phosphine motif improved selectivity of copper(I) complex 1-PSG into the cancer cells. Precise mechanistic study revealed that the 1-PSG complex causes apoptotic cells MCF7 death with simultaneous decrease of mitochondrial membrane potential and increase of caspase-9 and -3 activities. Additionally, 1-PSG generated high level of reactive oxygen species that was the reason for oxidative damages to the sugar-phosphate backbone of plasmid DNA.
Collapse
|
45
|
Berti B, Cesari C, Conte F, Ciabatti I, Femoni C, Iapalucci MC, Vacca F, Zacchini S. Synthesis of [Pt 12(CO) 20(dppm) 2] 2- and [Pt 18(CO) 30(dppm) 3] 2- Heteroleptic Chini-type Platinum Clusters by the Oxidative Oligomerization of [Pt 6(CO) 12(dppm)] 2. Inorg Chem 2018; 57:7578-7590. [PMID: 29889503 DOI: 10.1021/acs.inorgchem.8b00447] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reactions of [Pt6(CO)12]2- with CH(PPh2)2 (dppm), CH2═C(PPh2)2 (P^P), and Fe(C5H4PPh2)2 (dppf) proceed via nonredox substitution and result in the heteroleptic Chini-type clusters [Pt6(CO)10(dppm)]2-, [Pt6(CO)10(P^P)]2-, and [Pt6(CO)10(dppf)]2-, respectively. Conversely, the reactions of [Pt6(CO)12]2- with Ph2P(CH2)4PPh2 (dppb) and Ph2PC≡CPPh2 (dppa) can be described as redox fragmentation that afford the neutral complexes Pt(dppb)2, Pt2(CO)2(dppa)3, and Pt8(CO)6(PPh2)2(C≡CPPh2)2(dppa)2. The oxidation of [Pt6(CO)10(dppm)]2- results in its oligomerization to yield the larger heteroleptic Chini-type clusters [Pt12(CO)20(dppm)2]2-, [Pt18(CO)30(dppm)3]2-, and [Pt24(CO)40(dppm)4]2- (for the latter there is only IR spectroscopic evidence). All the clusters were characterized by means of IR and 31P NMR spectroscopies and electrospray ionization mass spectrometry. Moreover, the crystal structures of [NEt4]2[Pt6(CO)10(dppm)]·CH3CN, [NEt4]2[Pt12(CO)20(dppm)2]·2CH3CN·2dmf, [NEt4]2[Pt12(CO)20(dppm)2]·4dmf, [NEt4]2[Pt6(CO)10(dppf)]·2CH3CN, Pt2(CO)2(dppa)3·0.5CH3CN, Pt8(CO)6(PPh2)2(C≡CPPh2)2(dppa)2·2thf, and Pt(dppb)2 were determined by single-crystal diffraction (dmf = dimethylformamide; thf = tetrahydrofuran).
Collapse
Affiliation(s)
- Beatrice Berti
- Dipartimento di Chimica Industriale "Toso Montanari" , Università di Bologna , Viale Risorgimento 4 , 40136 Bologna , Italy
| | - Cristiana Cesari
- Dipartimento di Chimica Industriale "Toso Montanari" , Università di Bologna , Viale Risorgimento 4 , 40136 Bologna , Italy
| | - Francesco Conte
- Dipartimento di Chimica Industriale "Toso Montanari" , Università di Bologna , Viale Risorgimento 4 , 40136 Bologna , Italy
| | - Iacopo Ciabatti
- Dipartimento di Chimica Industriale "Toso Montanari" , Università di Bologna , Viale Risorgimento 4 , 40136 Bologna , Italy
| | - Cristina Femoni
- Dipartimento di Chimica Industriale "Toso Montanari" , Università di Bologna , Viale Risorgimento 4 , 40136 Bologna , Italy
| | - Maria Carmela Iapalucci
- Dipartimento di Chimica Industriale "Toso Montanari" , Università di Bologna , Viale Risorgimento 4 , 40136 Bologna , Italy
| | - Federico Vacca
- Dipartimento di Chimica Industriale "Toso Montanari" , Università di Bologna , Viale Risorgimento 4 , 40136 Bologna , Italy
| | - Stefano Zacchini
- Dipartimento di Chimica Industriale "Toso Montanari" , Università di Bologna , Viale Risorgimento 4 , 40136 Bologna , Italy
| |
Collapse
|
46
|
Cioncoloni G, Roger I, Wheatley PS, Wilson C, Morris RE, Sproules S, Symes MD. Proton-Coupled Electron Transfer Enhances the Electrocatalytic Reduction of Nitrite to NO in a Bioinspired Copper Complex. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00361] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Giacomo Cioncoloni
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - Isolda Roger
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - Paul S. Wheatley
- EaStCHEM School of Chemistry, University of St Andrews, Purdie Building, St Andrews KY16 9ST, United Kingdom
| | - Claire Wilson
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - Russell E. Morris
- EaStCHEM School of Chemistry, University of St Andrews, Purdie Building, St Andrews KY16 9ST, United Kingdom
| | - Stephen Sproules
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - Mark D. Symes
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
47
|
Ilic S, Pandey Kadel U, Basdogan Y, Keith JA, Glusac KD. Thermodynamic Hydricities of Biomimetic Organic Hydride Donors. J Am Chem Soc 2018; 140:4569-4579. [DOI: 10.1021/jacs.7b13526] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Stefan Ilic
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Usha Pandey Kadel
- Department of Chemistry, Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Yasemin Basdogan
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - John A. Keith
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ksenija D. Glusac
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
48
|
Robinson SJC, Heinekey DM. Hydride & dihydrogen complexes of earth abundant metals: structure, reactivity, and applications to catalysis. Chem Commun (Camb) 2018; 53:669-676. [PMID: 27928559 DOI: 10.1039/c6cc07529k] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent developments in the chemistry of hydride and dihydrogen complexes of iron, cobalt, and nickel are summarized. Applications in homogeneous catalysis are emphasized.
Collapse
Affiliation(s)
| | - D M Heinekey
- University of Washington, Department of Chemistry, Seattle, WA, USA
| |
Collapse
|
49
|
Waldie KM, Ostericher AL, Reineke MH, Sasayama AF, Kubiak CP. Hydricity of Transition-Metal Hydrides: Thermodynamic Considerations for CO2 Reduction. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03396] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kate M. Waldie
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Mail Code 0358, La Jolla, California 92093-0358, United States
| | - Andrew L. Ostericher
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Mail Code 0358, La Jolla, California 92093-0358, United States
| | - Mark H. Reineke
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Mail Code 0358, La Jolla, California 92093-0358, United States
| | - Alissa F. Sasayama
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Mail Code 0358, La Jolla, California 92093-0358, United States
| | - Clifford P. Kubiak
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Mail Code 0358, La Jolla, California 92093-0358, United States
| |
Collapse
|
50
|
Reineke MH, Porter TM, Ostericher AL, Kubiak CP. Synthesis and Characterization of Heteroleptic Ni(II) Bipyridine Complexes Bearing Bis(N-heterocyclic carbene) Ligands. Organometallics 2018. [DOI: 10.1021/acs.organomet.7b00847] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mark H. Reineke
- Department of Chemistry and
Biochemistry, University of California, San Diego, 9500 Gilman
Drive, Mail Code 0358, La Jolla, California 92093-0358, United States
| | - Tyler M. Porter
- Department of Chemistry and
Biochemistry, University of California, San Diego, 9500 Gilman
Drive, Mail Code 0358, La Jolla, California 92093-0358, United States
| | - Andrew L. Ostericher
- Department of Chemistry and
Biochemistry, University of California, San Diego, 9500 Gilman
Drive, Mail Code 0358, La Jolla, California 92093-0358, United States
| | - Clifford P. Kubiak
- Department of Chemistry and
Biochemistry, University of California, San Diego, 9500 Gilman
Drive, Mail Code 0358, La Jolla, California 92093-0358, United States
| |
Collapse
|