1
|
Schultz JD, Yuly JL, Arsenault EA, Parker K, Chowdhury SN, Dani R, Kundu S, Nuomin H, Zhang Z, Valdiviezo J, Zhang P, Orcutt K, Jang SJ, Fleming GR, Makri N, Ogilvie JP, Therien MJ, Wasielewski MR, Beratan DN. Coherence in Chemistry: Foundations and Frontiers. Chem Rev 2024; 124:11641-11766. [PMID: 39441172 DOI: 10.1021/acs.chemrev.3c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Coherence refers to correlations in waves. Because matter has a wave-particle nature, it is unsurprising that coherence has deep connections with the most contemporary issues in chemistry research (e.g., energy harvesting, femtosecond spectroscopy, molecular qubits and more). But what does the word "coherence" really mean in the context of molecules and other quantum systems? We provide a review of key concepts, definitions, and methodologies, surrounding coherence phenomena in chemistry, and we describe how the terms "coherence" and "quantum coherence" refer to many different phenomena in chemistry. Moreover, we show how these notions are related to the concept of an interference pattern. Coherence phenomena are indeed complex, and ambiguous definitions may spawn confusion. By describing the many definitions and contexts for coherence in the molecular sciences, we aim to enhance understanding and communication in this broad and active area of chemistry.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kelsey Parker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sutirtha N Chowdhury
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Reshmi Dani
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Sección Química, Departamento de Ciencias, Pontificia Universidad Católica del Perú, San Miguel, Lima 15088, Peru
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kaydren Orcutt
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Queens, New York 11367, United States
- Chemistry and Physics PhD programs, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael J Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
2
|
Huang F, Su W, Yang Y, Wang H, Bo Z, Jing P, Zhang W. The efficient triplet states formation of Se-modified PDI dimers and tetramers in solvents. Phys Chem Chem Phys 2024; 26:27325-27331. [PMID: 39440382 DOI: 10.1039/d4cp00954a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The triplet excited states of molecules play an important role in photophysical processes, which has attracted great research interest. Perylene diimide (PDI) is a widely studied material closely associated with the generation of triplet states, and it is highly anticipated to become an electron acceptor material for improving photovoltaic conversion efficiency. In this work, we prepared dimers and tetramers composed of selenium-modified PDI-C5 (N,N'-bis(6-undecyl) perylene-3,4,9,10-bis(dicarboximide)) units. We investigated the photophysical processes of these dimers and tetramers in chloroform and toluene using UV-visible absorption spectroscopy, fluorescence spectroscopy, and femtosecond transient absorption spectroscopy. Both the dimers and tetramers undergo efficient triplet state formation processes in the solvents. Solvents with higher polarity facilitate charge transfer thereby promote the triplet states formation. The differences in the configurations of the dimer and tetramer molecules lead to variations in triplet states generation. The twisted angles in the tetramer restricted the intramolecular electronic coupling, posing certain hindrances to exciton coupling and lowering the intramolecular CT characteristics. The emission of excimer in tetramers also competes with the triplet states formation. The research demonstrates the influence of various factors on the generation of triplet states of PDI oligomers.
Collapse
Affiliation(s)
- Feijun Huang
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China.
| | - Wenli Su
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China.
| | - Yubo Yang
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China.
| | - Hang Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhishan Bo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Pengfei Jing
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China.
| | - Wenkai Zhang
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China.
- Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
3
|
Volek TS, Verkamp MA, Ruiz GN, Staat AJ, Li BC, Rose MJ, Eaves JD, Roberts ST. Slowed Singlet Exciton Fission Enhances Triplet Exciton Transport in Select Perylenediimide Crystals. J Am Chem Soc 2024; 146:29575-29587. [PMID: 39422542 DOI: 10.1021/jacs.4c09923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Singlet fission (SF) materials used in light-harvesting devices must not only efficiently produce spin-triplet excitons but also transport them to an energy acceptor. N,N'-Bis(2-phenylethyl)-3,4,9,10-perylenedicarboximide (EP-PDI) is a promising SF chromophore due to its photostability, large extinction coefficient, and high triplet yield, but the energy transport mechanisms in EP-PDI solids are minimally understood. Herein, we use transient absorption microscopy to directly characterize exciton transport in EP-PDI crystals. We find evidence for singlet-mediated transport in which pairs of triplet excitons undergo triplet fusion (TF), producing spin-singlet excitons that rapidly diffuse. This interchange of singlet and triplet excitons shuttles triplets as far as 205 nm within the first 500 ps after photoexcitation. This enhanced transport comes at a cost, however, as it necessitates favoring triplet recombination and thus requires fine-tuning of SF dynamics to balance triplet yields with triplet transport lengths. Through numerical modeling, we predict tuning the ratio of SF and TF rate constants, kSF/kTF, to between 1.9 and 3.8 allows for an optimized triplet transport length (425-563 nm) with minimal loss (7-10%) in triplet yield. Interestingly, by adjusting the size of EP-PDI crystals, we find that we can subtly tune their crystal structure and thereby alter their SF and TF rates. By slowing SF within small EP-PDI crystals, we are able to boost their triplet transport length by ∼20%. Although counterintuitive, our work suggests slowing SF by introducing moderate structural distortions can be preferential when optimizing triplet exciton transport, provided singlet exciton transport is not significantly hindered.
Collapse
Affiliation(s)
- Tanner S Volek
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Max A Verkamp
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemistry, Hanover College, Hanover, Indiana 47243, United States
| | - Gabriella N Ruiz
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Alexander J Staat
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Boxi Cam Li
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael J Rose
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Joel D Eaves
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Sean T Roberts
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Lee J, Eom S, Kim H. Diverse quantum interference regimes in intramolecular singlet fission chromophores with thiophene-based linkers. Chem Sci 2024:d4sc03546a. [PMID: 39397821 PMCID: PMC11465401 DOI: 10.1039/d4sc03546a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024] Open
Abstract
An array of thiophene-based π-conjugated linkers in covalently linked pentacene dimers allow us to access diverse quantum interference (QI), modulating nonadiabatic coupling (NAC) in the singlet fission (SF) process. Simulations show that structural isomerism in terms of S atom orientation substantially alters NAC with relatively marginal impacts on energies. Extended curly arrow rules (ECARs) reveal sensitive dependence of QI on SF linker topologies and connectivity, categorizing regimes of constructive, destructive, and previously unrealized in SF research, shifted destructive QI. Drastic NAC changes in terms of S atom orientation are rationalized based on the nature of QI. Our results from nonequilibrium Green's function calculation using density functional theory corroborate the classification of QI regimes based on ECARs. Moreover, we found that the extent of charge resonance contribution in electronic states relevant to multiexciton formation and the appearance of optically allowed charge transfer excitation strongly depends on the operative QI regime. Notably, the magnitude of NAC effectively captures this influence. Our findings show that QI can rationalize and semi-quantitatively correlate with NAC for the multiexciton formation step in the SF process.
Collapse
Affiliation(s)
- Jonghwan Lee
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University Republic of Korea
| | - Sungsik Eom
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University Republic of Korea
- Department of Chemistry, Hanyang University Republic of Korea
| |
Collapse
|
5
|
Singh A, Röhr MIS. Configuration Interaction in Frontier Molecular Orbital Basis for Screening the Spin-Correlated, Spatially Separated Triplet Pair State 1(T···T) Formation. J Chem Theory Comput 2024; 20:8624-8633. [PMID: 39376073 DOI: 10.1021/acs.jctc.4c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
In the theoretical screening of Singlet Fission rates in molecular aggregates, often the frontier molecular orbital model for dimers is employed. However, the dimer approach fails to account for recent experimental findings that suggest singlet fission progresses through a further intermediate state featuring two spatially separated, spin-correlated triplets, specifically a 1(T···T) state. We address this limitation by generalizing the often used frontier molecular orbital model for singlet fission by incorporation of both separated Charge Transfer (C···T) and 1(T···T) states as well as mixed triplet-charge transfer states, delivering analytic expressions for the diabatic matrix elements. Applying the methodology to the perylene diimide trimer, we examine the packing dependence of competing formation pathways of the 1(T···T) state by evaluation of diabatic matrix elements.
Collapse
Affiliation(s)
- Anurag Singh
- Institute of Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Sr. 42, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry, Julius-Maximilians-Universität Würzburg, Theodor-Boveri Weg,97074 Würzburg, Germany
| | - Merle I S Röhr
- Institute of Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Sr. 42, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry, Julius-Maximilians-Universität Würzburg, Theodor-Boveri Weg,97074 Würzburg, Germany
| |
Collapse
|
6
|
Bressan G, Penty SE, Green D, Heisler IA, Jones GA, Barendt TA, Meech SR. Ultrafast and Coherent Dynamics in a Solvent Switchable "Pink Box" Perylene Diimide Dimer. Angew Chem Int Ed Engl 2024; 63:e202407242. [PMID: 39092492 DOI: 10.1002/anie.202407242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/11/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
Perylene diimide (PDI) dimers and higher aggregates are key components in organic molecular photonics and photovoltaic devices, supporting singlet fission and symmetry breaking charge separation. Detailed understanding of their excited states is thus important. This has proven challenging because interchromophoric coupling is a strong function of dimer architecture. Recently, a macrocyclic PDI dimer was reported in which excitonic coupling could be turned on and off simply by changing the solvent. This presents a useful case where coupling is modified without synthetic changes to tune supramolecular structure. Here we present a detailed study of solvent dependent excited state dynamics in this dimer by means of coherent multidimensional spectroscopy. Spectral analysis resolves the different coupling strengths, which are consistent with solvent dependent changes in dimer conformation. The strongly coupled conformer forms an excimer within 300 fs. The low-frequency Raman active modes recovered from two-dimensional electronic spectra reveal frequencies characteristic of exciton coupling. These are assigned to modes modulating the coupling from the corresponding DFT calculations. Further analysis reveals a time dependent frequency during excimer formation. Analysis of two-dimensional "beatmaps" reveals features in the coupled dimer which are not predicted by the displaced harmonic oscillator model and are assigned to vibronic coupling.
Collapse
Affiliation(s)
- Giovanni Bressan
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Samuel E Penty
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT, UK
| | - Dale Green
- Physics, Faculty of Science, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Ismael A Heisler
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, 9500, Brazil
| | - Garth A Jones
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Timothy A Barendt
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT, UK
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
7
|
Gao Y, Sun Y, Guo Z, Yu G, Wang Y, Wan Y, Han Y, Yang W, Zhao D, Ma X. Facilitating intrinsic delayed fluorescence of conjugated emitters by inter-chromophore interaction. Chem Sci 2024:d4sc05494f. [PMID: 39430944 PMCID: PMC11484929 DOI: 10.1039/d4sc05494f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Delayed fluorescence (DF) is a unique emitting phenomenon of great interest for important applications in organic optoelectronics. In general, DF requires well-separated frontier orbitals, inherently corresponding to charge transfer (CT)-type emitters. However, facilitating intrinsic DF for local excited (LE)-type conjugated emitters remains very challenging. Aiming to overcome this obstacle, we demonstrate a new molecular design strategy with a DF-inactive B,N-multiple resonance (MR) emitter as a model system. Without the necessity of doping with heavy atoms, we synthesized a co-facial dimer in which an excimer-like state (Sexc) was expected to facilitate efficient reverse intersystem crossing (RISC, T1 → Sexc) and intrinsic DF. Benefiting from greatly enhanced SOC and reduced ΔE ST, the proof-of-concept emitter Np-2CzB exhibited k RISC up to 6.5 × 105 s-1 and intrinsic DF with >35% contribution (Φ DF/Φ F) in dilute solution. Further investigation indicated that Sexc state formation relies on an optimized co-facial distance (d = ∼4.7 Å), strong inter-chromophore interaction (J coul > 450 cm-1) and a rigid structure (Γ S1→S0 < 350 cm-1). Although our strategy was demonstrated with a B,N-MR emitter, it can be applicable to many LE-type conjugated emitters without intrinsic DF. By triggering potential DF emission, many classic emitters might play a more important role in optoelectronics.
Collapse
Affiliation(s)
- Yixuan Gao
- Institute of Molecular Plus, Tianjin University Tianjin 300072 P. R. China
| | - Yingman Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Zilong Guo
- Institute of Molecular Plus, Tianjin University Tianjin 300072 P. R. China
| | - Guo Yu
- Institute of Molecular Plus, Tianjin University Tianjin 300072 P. R. China
| | - Yaxin Wang
- Institute of Molecular Plus, Tianjin University Tianjin 300072 P. R. China
| | - Yan Wan
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Yandong Han
- Engineering Research Center for Nanomaterials, Henan University Kaifeng 475004 P. R. China
| | - Wensheng Yang
- Engineering Research Center for Nanomaterials, Henan University Kaifeng 475004 P. R. China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Xiaonan Ma
- Institute of Molecular Plus, Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
8
|
O'Connor JP, Schultz JD, Tcyrulnikov NA, Kim T, Young RM, Wasielewski MR. Distinct vibrational motions promote disparate excited-state decay pathways in cofacial perylenediimide dimers. J Chem Phys 2024; 161:074306. [PMID: 39145558 DOI: 10.1063/5.0218752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
A complex interplay of structural, electronic, and vibrational degrees of freedom underpins the fate of molecular excited states. Organic assemblies exhibit a myriad of excited-state decay processes, such as symmetry-breaking charge separation (SB-CS), excimer (EX) formation, singlet fission, and energy transfer. Recent studies of cofacial and slip-stacked perylene-3,4:9,10-bis(dicarboximide) (PDI) multimers demonstrate that slight variations in core substituents and H- or J-type aggregation can determine whether the system follows an SB-CS pathway or an EX one. However, questions regarding the relative importance of structural properties and molecular vibrations in driving the excited-state dynamics remain. Here, we use a combination of two-dimensional electronic spectroscopy, femtosecond stimulated Raman spectroscopy, and quantum chemistry computations to compare the photophysics of two PDI dimers. The dimer with 1,7-bis(pyrrolidin-1'-yl) substituents (5PDI2) undergoes ultrafast SB-CS from a photoexcited mixed state, while the dimer with bis-1,7-(3',5'-di-t-butylphenoxy) substituents (PPDI2) rapidly forms an EX state. Examination of their quantum beating features reveals that SB-CS in 5PDI2 is driven by the collective vibronic coupling of two or more excited-state vibrations. In contrast, we observe signatures of low-frequency vibrational coherence transfer during EX formation by PPDI2, which aligns with several previous studies. We conclude that key electronic and structural differences between 5PDI2 and PPDI2 determine their markedly different photophysics.
Collapse
Affiliation(s)
- James P O'Connor
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Jonathan D Schultz
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Nikolai A Tcyrulnikov
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Taeyeon Kim
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Ryan M Young
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Michael R Wasielewski
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, USA
| |
Collapse
|
9
|
Yang Y, Su W, Wang H, Bao X, Liu X, Bo Z, Zhang W. Promotion of Fast and Efficient Singlet Fission Process of PDI Dimers by Selenium Substitution. J Phys Chem B 2024; 128:7219-7226. [PMID: 39007639 DOI: 10.1021/acs.jpcb.4c01744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Singlet fission (SF) is a triplet generation mechanism capable of turning a singlet exciton into two triplet excitons. It has the potential to enhance the power conversion efficiency of single-junction solar cells. Perylene diimides (PDIs) are a class of dye molecules with photovoltaic properties and are beginning to receive more and more attention due to their potential for SF. Here, we report a selenium-substituted PDI dimer, Se-PDI-II, and we studied its SF mechanism by using steady-state, transient absorption, and time-resolved photoluminescence spectroscopy. Compared with the unsubstituted dimer PDI-II, we found that the introduction of selenium atoms can suppress excimer emission during the SF process, showing much higher SF efficiency and triplet yield.
Collapse
Affiliation(s)
- Yubo Yang
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China
| | - Wenli Su
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China
| | - Hang Wang
- College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Xiaotian Bao
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhishan Bo
- College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Wenkai Zhang
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
10
|
Greiner JE, Singh A, Röhr MIS. Functionality optimization for effective singlet fission coupling screening in the full-dimensional molecular and intermolecular coordinate space. Phys Chem Chem Phys 2024; 26:19257-19265. [PMID: 38958634 DOI: 10.1039/d4cp01274g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
In computational chemistry, accurately predicting molecular configurations that exhibit specific properties remains a critical challenge. Its intricacies become especially evident in the study of molecular aggregates, where the light-induced functionality is tied to highly structure-dependent electronic couplings between molecules. Here, we present an efficient strategy for the targeted screening of the structural space employing a "functionality optimization" technique, in which a chosen descriptor, constrained by the ground state energy expression, is optimized. The chosen algorithmic differentiation (AD) framework allows one to automatically obtain gradients without its tedious implementation. We demonstrate the effectiveness of the approach by identifying perylene bisimide (PBI) dimer motifs with enhanced effective SF coupling. Our findings reveal that certain structural modifications of the PBI monomer, such as helical twisting and bending as well as slipped-rotated packing arrangements, can significantly increase the effective SF coupling.
Collapse
Affiliation(s)
- Johannes E Greiner
- Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074 Würzburg, Germany.
- Julius-Maximilians-Universität Würzburg, Institute of Physical and Theoretical Chemistry, Am Hubland, 97074 Würzburg, Germany
| | - Anurag Singh
- Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074 Würzburg, Germany.
- Julius-Maximilians-Universität Würzburg, Institute of Physical and Theoretical Chemistry, Am Hubland, 97074 Würzburg, Germany
| | - Merle I S Röhr
- Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074 Würzburg, Germany.
- Julius-Maximilians-Universität Würzburg, Institute of Physical and Theoretical Chemistry, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
11
|
Wang K, You X, Miao X, Yi Y, Peng S, Wu D, Chen X, Xu J, Sfeir MY, Xia J. Activated Singlet Fission Dictated by Anti-Kasha Property in a Rylene Imide Dye. J Am Chem Soc 2024; 146:13326-13335. [PMID: 38693621 DOI: 10.1021/jacs.4c01732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
A key challenge in the search of new materials capable of singlet fission (SF) arises from the primary energy conservation criterion, i.e., the energy of the triplet exciton has to be half that of the singlet (E(S1) ≥ 2E(T1)), which excludes most photostable organic materials from consideration and confines the design strategy to materials with low energy triplet states. One potential way to overcome this energy requirement and improve the triplet energy is to enable a SF channel from higher energy ("hot") excitonic states (Sn) in a process called activated SF. Herein, we demonstrate that efficient activated SF is achieved in a rylene imide-based derivative acenaphth[l, 2-a]acenaphthylene diimide (AADI). This process is enabled by an increase in the energy gap to greater than 1.0 eV between the S3 and S1 states due to the incorporation of an antiaromatic pentalene unit, which leads to the emergence of anti-Kasha properties in the isolated molecule. Transient spectroscopy studies show that AADI undergoes ultrafast SF from higher singlet excited states in thin film, with excitation wavelength-dependent SF yields. The SF yield of ∼200% is observed upon higher energy excitation, and long-lived free triplets persist on the μs time scale suggesting that AADI can be used in SF-enhanced devices. Our results suggest that enlarging the Sn-S1 energy gap is an effective way to turn on the activated SF channel and shed light on the development of novel, stable SF materials with high triplet energies.
Collapse
Affiliation(s)
- Kangwei Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaoxiao You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaodan Miao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy Sciences, Beijing 100049, China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy Sciences, Beijing 100049, China
| | - Shaoqian Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Di Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Xingyu Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Jingwen Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Matthew Y Sfeir
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York 10016, United States
- Department of Physics, Graduate Center, City University of New York, New York 10031, United States
| | - Jianlong Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
12
|
Gorman J, Hart SM, John T, Castellanos MA, Harris D, Parsons MF, Banal JL, Willard AP, Schlau-Cohen GS, Bathe M. Sculpting photoproducts with DNA origami. Chem 2024; 10:1553-1575. [PMID: 38827435 PMCID: PMC11138899 DOI: 10.1016/j.chempr.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Natural light-harvesting systems spatially organize densely packed dyes in different configurations to either transport excitons or convert them into charge photoproducts, with high efficiency. In contrast, artificial photosystems like organic solar cells and light-emitting diodes lack this fine structural control, limiting their efficiency. Thus, biomimetic multi-dye systems are needed to organize dyes with the sub-nanometer spatial control required to sculpt resulting photoproducts. Here, we synthesize 11 distinct perylene diimide (PDI) dimers integrated into DNA origami nanostructures and identify dimer architectures that offer discrete control over exciton transport versus charge separation. The large structural-space and site-tunability of origami uniquely provides controlled PDI dimer packing to form distinct excimer photoproducts, which are sensitive to interdye configurations. In the future, this platform enables large-scale programmed assembly of dyes mimicking natural systems to sculpt distinct photophysical products needed for a broad range of optoelectronic devices, including solar energy converters and quantum information processors.
Collapse
Affiliation(s)
- Jeffrey Gorman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- These authors contributed equally
| | - Stephanie M. Hart
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- These authors contributed equally
| | - Torsten John
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maria A. Castellanos
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dvir Harris
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Molly F. Parsons
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James L. Banal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adam P. Willard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Lead contact
| |
Collapse
|
13
|
Su F, Hong Y, Zhang G, Wu K, Kim J, Chen Z, Zhang HJ, Kim D, Lin J. Two-dimensional radial-π-stacks in solution. Chem Sci 2024; 15:5604-5611. [PMID: 38638221 PMCID: PMC11023034 DOI: 10.1039/d4sc00195h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Highly organized π-aggregate architectures can strongly affect electronic couplings, leading to important photophysical behaviors. With the escalating interest in two-dimensional (2D) materials attributed to their exceptional electronic and optical characteristics, there is growing anticipation that 2D radial-π-stacks built upon radial π-conjugation nanorings, incorporating intra- and inter-ring electronic couplings within the confines of a 2D plane, will exhibit superior topological attributes and distinct properties. Despite their immense potential, the design and synthesis of 2D π-stacks have proven to be a formidable challenge due to the insufficient π-π interactions necessary for stable stacking. In this study, we present the successful preparation of single-layer 2D radial-π-stacks in a solution. Pillar-shaped radially π-conjugated [4]cyclo-naphthodithiophene diimide ([4]C-NDTIs) molecules were tetragonally arranged via in-plane intermolecular π-π interactions. These 2D π-stacks have a unique topology that differs from that of conventional 1D π-stacks and exhibit notable properties, such as acting as a 2D template capable of absorbing C60 guest molecules and facilitating the formation of 2D radial-π-stacks comprising [4]C-NDTI-C60 complexes, rapid exciton delocalization across the 2D plane, and efficient excitation energy funneling towards a trap.
Collapse
Affiliation(s)
- Feng Su
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University Xiamen 361005 P. R. China
| | - Yongseok Hong
- Department of Chemistry, Yonsei University Seoul 03722 Korea
| | - Guilan Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University Xiamen 361005 P. R. China
| | - Kongchuan Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University Xiamen 361005 P. R. China
| | - Juno Kim
- Department of Chemistry, Yonsei University Seoul 03722 Korea
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518060 China
| | - Hui-Jun Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University Xiamen 361005 P. R. China
| | - Dongho Kim
- Department of Chemistry, Yonsei University Seoul 03722 Korea
- Division of Energy Materials, Pohang University of Science and Technology (POSTECH) Pohang 37673 Korea
| | - Jianbin Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
14
|
Greißel PM, Schroeder ZW, Thiel D, Ferguson MJ, Clark T, Guldi DM, Tykwinski RR. Controlling Interchromophore Coupling in Diamantane-Linked Pentacene Dimers To Create a "Binary" Pair. J Am Chem Soc 2024; 146:10875-10888. [PMID: 38579119 DOI: 10.1021/jacs.4c01507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Two isomeric pentacene dimers, each linked by a diamantane spacer, have been synthesized. These dimers are designed to provide experimental evidence to support quantum mechanical calculations, which predict the substitution pattern on the carbon-rich diethynyldiamantane spacer to be decisive in controlling the interpentacene coupling. Intramolecular singlet fission (i-SF) serves as a probe for the existence and strength of the electronic coupling between the two pentacenes, with transient absorption spectroscopy as the method of choice to characterize i-SF. 4,9-Substitution of diamantane provides a pentacene dimer (4,9-dimer) in which the two chromophores are completely decoupled and that, following photoexcitation, deactivates to the ground state analogous to a monomeric pentacene chromophore. Conversely, 1,6-substitution provides a pentacene dimer (1,6-dimer) that exhibits sufficiently strong coupling to drive i-SF, resulting in correlated triplet M(T1T1) yields close to unity and free triplet (T1 + T1) yields of ca. 50%. Thus, the diamantane spacer effectively switches "on" or "off" the coupling between the chromophores, based on the substitution pattern. The binary control of diamantane contrasts other known molecular spacers designed only to modulate the coupling strength between two pentacenes.
Collapse
Affiliation(s)
- Phillip M Greißel
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Zachary W Schroeder
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Dominik Thiel
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Timothy Clark
- Computer Chemistry Center (CCC), Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nägelsbachstrasse 25, 91052 Erlangen, Germany
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Rik R Tykwinski
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
15
|
Majdecki M, Hsu CH, Wang CH, Shi EHC, Zakrocka M, Wei YC, Chen BH, Lu CH, Yang SD, Chou PT, Gaweł P. Singlet Fission in a New Series of Systematically Designed Through-space Coupled Tetracene Oligomers. Angew Chem Int Ed Engl 2024; 63:e202401103. [PMID: 38412017 DOI: 10.1002/anie.202401103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/14/2024] [Accepted: 02/24/2024] [Indexed: 02/28/2024]
Abstract
Singlet fission (SF) holds great promise for current photovoltaic technologies, where tetracenes, with their relatively high triplet energies, play a major role for application in silicon-based solar cells. However, the SF efficiencies in tetracene dimers are low due to the unfavorable energetics of their singlet and triplet energy levels. In the solid state, tetracene exhibits high yields of triplet formation through SF, raising great interest about the underlying mechanisms. To address this discrepancy, we designed and prepared a novel molecular system based on a hexaphenylbenzene core decorated with 2 to 6 tetracene chromophores. The spatial arrangement of tetracene units, induced by steric hindrance in the central part, dictates through-space coupling, making it a relevant model for solid-state chromophore organization. We then revealed a remarkable increase in SF quantum yield with the number of tetracenes, reaching quantitative (196 %) triplet pair formation in hexamer. We observed a short-lived correlated triplet pair and limited magnetic effects, indicating ineffective triplet dissociation in these through-space coupled systems. These findings emphasize the crucial role of the number of chromophores involved and the interchromophore arrangement for the SF efficiency. The insights gained from this study will aid designing more efficient and technology-compatible SF systems for applications in photovoltaics.
Collapse
Affiliation(s)
- Maciej Majdecki
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Chao-Hsien Hsu
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Chih-Hsing Wang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Emily Hsue-Chi Shi
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Magdalena Zakrocka
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Yu-Chen Wei
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Bo-Han Chen
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chih-Hsuan Lu
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shang-Da Yang
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Przemysław Gaweł
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
16
|
Kang S, Choi W, Ahn J, Kim T, Oh JH, Kim D. Impact of Packing Geometry on Excimer Characteristics and Mobility in Perylene Bisimide Polycrystalline Films. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18134-18143. [PMID: 38554079 DOI: 10.1021/acsami.3c19140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Efficient exciton transport is essential for high-performance optoelectronics. Considerable efforts have been focused on improving the exciton mobility in organic materials. While it is feasible to improve mobility in organic systems by forming well-ordered stacks, the formation of trap states, particularly the lower-lying states referred to as excimers, remains a significant challenge to enhancing mobility. The mobility of excimer excitons intricately depends on the strength of excitonic coupling in terms of Förster-type diffusive exciton transfer processes. Given that the formation and mobility of excimer excitons are highly sensitive to molecular arrangements (packing geometries), conducting comprehensive investigations into the structure-property relationship in organic systems is crucial. In this study, we prepared three types of polycrystalline films of perylene bisimide (PBI) by varying substituents at the imide and bay positions, which allowed us to tailor the properties of excimer excitons and their mobility based on packing geometries and excitonic coupling strengths. By utilizing femtosecond transient absorption spectroscopy, we observed ultrafast excimer formation in the higher coupling regime, while in the lower coupling regime, the transition from Frenkel to excimer excitons occurs with a time constant of 500 fs. Under high pump-fluence, exciton-exciton annihilation processes occur, indicating the diffusion of excimer excitons. Intriguingly, employing a three-dimensional diffusion model, we derived a diffusion constant that is 3000 times greater in the high coupling regime than in the low coupling regime. To investigate the optoelectronic properties in the form of a bulk system, we fabricated n-type organic field effect transistors and obtained 8000 times higher mobility in the high coupling regime. Furthermore, photocurrent measurements enable us to investigate the charge carrier transport by mobile excimer excitons, suggesting a 230-fold improvement in external quantum efficiency with tightly packing PBI molecules compared to the low coupling regime. These findings not only offer valuable insights into optimizing organic materials for optoelectronic devices but also unveil the intriguing potential of exciton migration within excimers.
Collapse
Affiliation(s)
- Seongsoo Kang
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Wonbin Choi
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaeyong Ahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeyeon Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Joon Hak Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
17
|
Fang L, Huang R, Gong W, Ji Y, Sun Y, Gou S, Zhao J. A Self-Assembly-Induced Exciton Delocalization Strategy for Converting a Perylene Diimide Derivative from a Type-II to Type-I Photosensitizer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307414. [PMID: 37940626 DOI: 10.1002/smll.202307414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/26/2023] [Indexed: 11/10/2023]
Abstract
Type-I photosensitizers have shown advantages in addressing the shortcomings of traditional oxygen-dependent type-II photosensitizers for the photodynamic therapy (PDT) of hypoxic tumors. However, developing type-I photosensitizers is yet a huge challenge because the type-II energy transfer process is much faster than the type-I electron transfer process. Herein, from the fundamental point of view, an effective approach is proposed to improve the electron transfer efficiency of the photosensitizer by lowering the internal reorganization energy and exciton binding energy via self-assembly-induced exciton delocalization. An example proof is presented by the design of a perylene diimide (PDI)-based photosensitizer (PDIMp) that can generate singlet oxygen (1O2) via a type-II energy transfer process in the monomeric state, but induce the generation of superoxide anion (O2˙-) via a type-I electron transfer process in the aggregated state. Significantly, with the addition ofcucurbit[6]uril (CB[6]), the self-assembled PDIMp can convert back to the monomeric state via host-guest complexation and consequently recover the generation of 1O2. The biological evaluations reveal that supramolecular nanoparticles (PDIMp-NPs) derived from PDIMp show superior phototherapeutic performance via synergistic type-I PDT and mild photothermal therapy (PTT) against cancer under either normoxia or hypoxia conditions.
Collapse
Affiliation(s)
- Lei Fang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Institution, Southeast University, Nanjing, 211189, China
| | - Rong Huang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Institution, Southeast University, Nanjing, 211189, China
| | - Wenqi Gong
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Institution, Southeast University, Nanjing, 211189, China
| | - Yuanhui Ji
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Institution, Southeast University, Nanjing, 211189, China
| | - Yanyan Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Institution, Southeast University, Nanjing, 211189, China
| | - Jian Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Institution, Southeast University, Nanjing, 211189, China
| |
Collapse
|
18
|
Greißel PM, Thiel D, Gotfredsen H, Chen L, Krug M, Papadopoulos I, Miskolzie M, Torres T, Clark T, Brøndsted Nielsen M, Tykwinski RR, Guldi DM. Intramolecular Triplet Diffusion Facilitates Triplet Dissociation in a Pentacene Hexamer. Angew Chem Int Ed Engl 2024; 63:e202315064. [PMID: 38092707 DOI: 10.1002/anie.202315064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Indexed: 01/26/2024]
Abstract
Triplet dynamics in singlet fission depend strongly on the strength of the electronic coupling. Covalent systems in solution offer precise control over such couplings. Nonetheless, efficient free triplet generation remains elusive in most systems, as the intermediate triplet pair 1 (T1 T1 ) is prone to triplet-triplet annihilation due to its spatial confinement. In the solid state, entropically driven triplet diffusion assists in the spatial separation of triplets, resulting in higher yields of free triplets. Control over electronic coupling in the solid state is, however, challenging given its sensitivity to molecular packing. We have thus developed a hexameric system (HexPnc) to enable solid-state-like triplet diffusion at the molecular scale. This system is realized by covalently tethering three pentacene dimers to a central subphthalocyanine scaffold. Transient absorption spectroscopy, complemented by theoretical structural optimizations and steady-state spectroscopy, reveals that triplet diffusion is indeed facilitated due to intramolecular cluster formation. The yield of free triplets in HexPnc is increased by a factor of up to 14 compared to the corresponding dimeric reference (DiPnc). Thus, HexPnc establishes crucial design aspects for achieving efficient triplet dissociation in strongly coupled systems by providing avenues for diffusive separation of 1 (T1 T1 ), while, concomitantly, retaining strong interchromophore coupling which preserves rapid formation of 1 (T1 T1 ).
Collapse
Affiliation(s)
- Phillip M Greißel
- Department of Chemistry and Pharmacy &, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Dominik Thiel
- Department of Chemistry and Pharmacy &, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Henrik Gotfredsen
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
- Current address: Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Lan Chen
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Marcel Krug
- Department of Chemistry and Pharmacy &, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Ilias Papadopoulos
- Department of Chemistry and Pharmacy &, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058, Erlangen, Germany
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Mark Miskolzie
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Tomás Torres
- Department of Organic Chemistry, Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
- IMDEA Nanociencia, C/Faraday 9, Cantoblanco, 28049, Madrid, Spain
| | - Timothy Clark
- Department of Chemistry and Pharmacy &, Computer-Chemie-Center (CCC), Friedrich-Alexander-University Erlangen-Nuremberg, Nägelsbachstraße 25, 91052, Erlangen, Germany
| | - Mogens Brøndsted Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| | - Rik R Tykwinski
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy &, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058, Erlangen, Germany
| |
Collapse
|
19
|
Zhang HJ, Wei Y, Lin J. Frustrated π-stacking. Chem Commun (Camb) 2024; 60:935-942. [PMID: 38165791 DOI: 10.1039/d3cc04123a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The properties of functional materials based on organic π-conjugated systems are governed extensively by intermolecular interactions between π-molecules. To establish clear relationships between supramolecular structures and functional properties, it is essential to attain structurally well-defined π-stacks, particularly in solution, as this enables the collection of valuable spectroscopic data. However, precise control and fine-tuning of π-stacks pose significant challenges due to the weak and bidirectional nature of π-π stacking interactions. This article introduces the concept of "frustrated π-stacking," strategically balancing attractive (π-π interaction) and repulsive (steric hindrance) forces in self-assembly to exert control over the sizes, sequences of π-stacks, and slip-stacked structures. These research efforts contribute to a deeper understanding of the correlation between π-stacks and their properties, thereby providing useful insights for the development of molecular materials with the desired performance.
Collapse
Affiliation(s)
- Hui-Jun Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, P. R. China.
| | - Yifei Wei
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, P. R. China.
| | - Jianbin Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, P. R. China.
| |
Collapse
|
20
|
Wang K, Chen X, Xu J, Peng S, Wu D, Xia J. Recent Advance in the Development of Singlet-Fission-Capable Polymeric Materials. Macromol Rapid Commun 2024; 45:e2300241. [PMID: 37548255 DOI: 10.1002/marc.202300241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/24/2023] [Indexed: 08/08/2023]
Abstract
Singlet fission (SF) is a spin-allowed process in which a higher-energy singlet exciton is converted into two lower-energy triplet excitons via a triplet pair intermediate state. Implementing SF in photovoltaic devices holds the potential to exceed the Shockley-Queisser limit of conventional single-junction solar cells. Although great progress has been made in exploiting the underlying mechanism of SF over the past decades, the scope of materials capable of SF, particularly polymeric materials, remains poor. SF-capable polymer is one of the most potential candidates in the implementation of SF into devices due to their distinct superiorities in flexibility, solution processability and self-assembly behavior. Notably, recent advancements have demonstrated high-performance SF in isolated donor-acceptor (D-A) copolymer chains. This review provides an overview of recent progress in the development of SF-capable polymeric materials, with a significant focus on elucidating the mechanisms of SF in polymers and optimizing the design strategies for SF-capable polymers. Additionally, the paper discusses the challenges encountered in this field and presents future perspectives. It is expected that this comprehensive review will offer valuable insights into the design of novel SF-capable polymeric materials, further advancing the potential for SF implementation in photovoltaic devices.
Collapse
Affiliation(s)
- Kangwei Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
| | - Xingyu Chen
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jingwen Xu
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Shaoqian Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
| | - Di Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Jianlong Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
21
|
Majumder K, Mukherjee S, Panjwani NA, Lee J, Bittl R, Kim W, Patil S, Musser AJ. Controlling Intramolecular Singlet Fission Dynamics via Torsional Modulation of Through-Bond versus Through-Space Couplings. J Am Chem Soc 2023; 145:20883-20896. [PMID: 37705333 DOI: 10.1021/jacs.3c06075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Covalent dimers, particularly pentacenes, are the dominant platform for developing a mechanistic understanding of intramolecular singlet fission (iSF). Numerous studies have demonstrated that a photoexcited singlet state in these structures can rapidly and efficiently undergo exciton multiplication to form a correlated pair of triplets within a single molecule, with potential applications from photovoltaics to quantum information science. One of the most significant barriers limiting such dimers is the fast recombination of the triplet pair, which prevents spatial separation and the formation of long-lived triplet states. There is an ever-growing need to develop general synthetic strategies to control the evolution of triplets following iSF and enhance their lifetime. Here, we rationally tune the dihedral angle and interchromophore separation between pairs of pentacenes in a systematic series of bridging units to facilitate triplet separation. Through a combination of transient optical and spin-resonance techniques, we demonstrate that torsion within the linker provides a simple synthetic handle to tune the fine balance between through-bond and through-space interchromophore couplings that steer iSF. We show that the full iSF pathway from femtosecond to microsecond timescales is tuned through the static coupling set by molecular design and structural fluctuations that can be biased through steric control. Our approach highlights a straightforward design principle to generate paramagnetic spin pair states with higher yields.
Collapse
Affiliation(s)
- Kanad Majumder
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Soham Mukherjee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Naitik A Panjwani
- Berlin Joint EPR Lab, Fachbereich Physik, Freie Universität, Berlin, Berlin 14195, Berlin, Germany
| | - Jieun Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Robert Bittl
- Berlin Joint EPR Lab, Fachbereich Physik, Freie Universität, Berlin, Berlin 14195, Berlin, Germany
| | - Woojae Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Satish Patil
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Andrew J Musser
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
22
|
Kim J, Teo HT, Hong Y, Liau YC, Yim D, Han Y, Oh J, Kim H, Chi C, Kim D. Leveraging Charge-Transfer Interactions in Through-Space-Coupled Pentacene Dendritic Oligomer for Singlet Exciton Fission. J Am Chem Soc 2023; 145:19812-19823. [PMID: 37656929 DOI: 10.1021/jacs.3c05660] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Singlet exciton fission in organic chromophores has received much attention during the past decade. Inspired by numerous spectroscopic studies in the solid state, there have been vigorous efforts to study singlet exciton fission dynamics in covalently bonded oligomers, which aims to investigate underlying mechanisms of this intriguing process in simplified model systems. In terms of through-space orbital interactions, however, most of covalently bonded pentacene oligomers studied so far fall into weakly interacting systems since they manifest chain-like structures based on various (non)conjugated linkers. Therefore, it remains as a compelling question to answer how through-space interactions in the solid state intervene this photophysical process since it is hypersensitive to displacements and orientations between neighboring chromophores. Herein, as one of experimental studies to answer this question, we introduced a tight-packing dendritic structure whose mesityl-pentacene constituents are coupled via moderate through-space orbital interactions. Based on the comparison with a suitably controlled dendritic structure, which is in a weak coupling regime, important mechanistic viewpoints are tackled such as configurational mixings between singlet, charge-transfer, and triplet pair states and the role of chromophore multiplication. We underscore that our through-space-coupled dendritic oligomer in a quasi-intermediate coupling regime provides a hint on the interplay of multiconfigurational excited-states, which might have drawn complexity in singlet exciton fission kinetics throughout numerous solid-state morphologies.
Collapse
Affiliation(s)
- Juno Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Hao Ting Teo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yongseok Hong
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Yuan Cheng Liau
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Daniel Yim
- Department of Chemistry, Incheon National University, Incheon 22012, Korea
| | - Yi Han
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Juwon Oh
- Department of ICT Environmental Health System and Department of Chemistry, Soonchunhyang University, Asan 31538, Korea
| | - Hyungjun Kim
- Department of Chemistry, Incheon National University, Incheon 22012, Korea
| | - Chunyan Chi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Dongho Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
23
|
Bo Y, Hou P, Wan J, Cao H, Liu Y, Xie L, Guldi DM. One-Pot Synthesis and Excited-State Dynamics of Null Exciton-Coupled Diketopyrrolopyrroles Oligo-Grids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302664. [PMID: 37289569 DOI: 10.1002/adma.202302664] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/02/2023] [Indexed: 06/10/2023]
Abstract
Exciton coupling in molecular aggregates plays a vital role in impacting and fine-tuning optoelectronic materials and their efficiencies in devices. A versatile platform to decipher aggregation-property relationships is built around multichromophoric architectures. Here, a series of cyclic diketopyrrolopyrrole (DPP) oligomers featuring nanoscale gridarene structures and rigid bifluorenyl spacers are designed and synthesized via one-pot Friedel-Crafts reaction. DPP dimer [2]Grid and trimer [3]Grid, which are cyclic rigid nanoarchitectures of rather different sizes, are further characterized via steady-state and time-resolved absorption and fluorescence spectroscopies. They exhibit monomer-like spectroscopic signatures in the steady-state measurements, from which null exciton couplings are derived. Moreover, in an apolar solvent, high fluorescence quantum yields and excited-state dynamics that resembled DPP monomer are gathered. In a polar solvent, the localized singlet excited state on a single DPP dissociates into the adjacent null coupling DPP with charge transfer characteristics. This pathway facilitates the evolution of the symmetry-broken charge-separated state (SB-CS). Notable is the fact that the SB-CS of [2]Grid is, on one hand, in equilibrium with the singlet excited state and promotes, on the other hand, the formation of the triplet excited state with a yield of 32% via charge recombination.
Collapse
Affiliation(s)
- Yifan Bo
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Pengfei Hou
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, Center for Molecular Systems and Organic Devices (CMSOD), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jun Wan
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, Center for Molecular Systems and Organic Devices (CMSOD), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Hongtao Cao
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, Center for Molecular Systems and Organic Devices (CMSOD), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yuyu Liu
- College of Electrical Engineering, Nanjing Vocational University of Industry Technology, 1 Yangshan North Road, Nanjing, 210023, China
| | - Linghai Xie
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, Center for Molecular Systems and Organic Devices (CMSOD), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| |
Collapse
|
24
|
Hart SM, Gorman J, Bathe M, Schlau-Cohen GS. Engineering Exciton Dynamics with Synthetic DNA Scaffolds. Acc Chem Res 2023; 56:2051-2061. [PMID: 37345736 DOI: 10.1021/acs.accounts.3c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Excitons are the molecular-scale currency of electronic energy. Control over excitons enables energy to be directed and harnessed for light harvesting, electronics, and sensing. Excitonic circuits achieve such control by arranging electronically active molecules to prescribe desired spatiotemporal dynamics. Photosynthetic solar energy conversion is a canonical example of the power of excitonic circuits, where chromophores are positioned in a protein scaffold to perform efficient light capture, energy transport, and charge separation. Synthetic systems that aim to emulate this functionality include self-assembled aggregates, molecular crystals, and chromophore-modified proteins. While the potential of this approach is clear, these systems lack the structural precision to control excitons or even test the limits of their power. In recent years, DNA origami has emerged as a designer material that exploits biological building blocks to construct nanoscale architectures. The structural precision afforded by DNA origami has enabled the pursuit of naturally inspired organizational principles in a highly precise and scalable manner. In this Account, we describe recent developments in DNA-based platforms that spatially organize chromophores to construct tunable excitonic systems. The high fidelity of DNA base pairing enables the formation of programmable nanoscale architectures, and sequence-specific placement allows for the precise positioning of chromophores within the DNA structure. The integration of a wide range of chromophores across the visible spectrum introduces spectral tunability. These excitonic DNA-chromophore assemblies not only serve as model systems for light harvesting, solar conversion, and sensing but also lay the groundwork for the integration of coupled chromophores into larger-scale nucleic acid architectures.We have used this approach to generate DNA-chromophore assemblies of strongly coupled delocalized excited states through both sequence-specific self-assembly and the covalent attachment of chromophores. These strategies have been leveraged to independently control excitonic coupling and system-bath interaction, which together control energy transfer. We then extended this framework to identify how scaffold configurations can steer the formation of symmetry-breaking charge transfer states, paving the way toward the design of dual light-harvesting and charge separation DNA machinery. In an orthogonal application, we used the programmability of DNA chromophore assemblies to change the optical emission properties of strongly coupled dimers, generating a series of fluorophore-modified constructs with separable emission properties for fluorescence assays. Upcoming advances in the chemical modification of nucleotides, design of large-scale DNA origami, and predictive computational methods will aid in constructing excitonic assemblies for optical and computing applications. Collectively, the development of DNA-chromophore assemblies as a platform for excitonic circuitry offers a pathway to identifying and applying design principles for light harvesting and molecular electronics.
Collapse
Affiliation(s)
- Stephanie M Hart
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jeffrey Gorman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gabriela S Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
25
|
Wang K, Huang H, Xu K, Peng S, You X, Chen X, Xu J, Wu D, Xia J. Veil of the Charge Transfer State in Bay-Annulated Indigo-Based Donor-Acceptor Systems: Charge Separation versus Singlet Fission. J Phys Chem Lett 2023; 14:4822-4829. [PMID: 37191450 DOI: 10.1021/acs.jpclett.3c00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Bay-annulated indigo (BAI) is a new potential SF-active building block, which has aroused great interest in the design of highly stable singlet fission materials. However, singlet fission of unfunctionalized BAI is inactive due to the inappropriate energy levels. Herein, we seek to develop a new design strategy by introducing the charge transfer interaction to tune the exciton dynamics of BAI derivatives. A new donor-acceptor molecule (TPA-2BAI) and two control molecules (TPA-BAI and 2TPA-BAI) were designed and synthesized to unravel the veil of CT states in tuning the excited-state dynamics of BAI derivatives. Transient absorption spectroscopy studies show that CT states are generated immediately following the excitation. However, the low-lying CT states induced by strong donor-acceptor interactions result in them acting as trap states and inhibiting the SF process. These results show that the low-lying CT state is detrimental to SF and provide insight into the design of CT-mediated BAI-based SF materials.
Collapse
Affiliation(s)
- Kangwei Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Huaxi Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Ke Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Shaoqian Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaoxiao You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Xingyu Chen
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jingwen Xu
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Di Wu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Jianlong Xia
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
26
|
Gotfredsen H, Thiel D, Greißel PM, Chen L, Krug M, Papadopoulos I, Ferguson MJ, Nielsen MB, Torres T, Clark T, Guldi DM, Tykwinski RR. Sensitized Singlet Fission in Rigidly Linked Axial and Peripheral Pentacene-Subphthalocyanine Conjugates. J Am Chem Soc 2023; 145:9548-9563. [PMID: 37083447 DOI: 10.1021/jacs.2c13353] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The goal of harnessing the theoretical potential of singlet fission (SF), a process in which one singlet excited state is split into two triplet excited states, has become a central challenge in solar energy research. Covalently linked dimers provide crucial models for understanding the role of chromophore arrangement and coupling in SF. Sensitizers can be integrated into these systems to expand the absorption bandwidth through which SF can be accessed. Here, we define the role of the sensitizer-chromophore geometry in a sensitized SF model system. To this end, two conjugates have been synthesized consisting of a pentacene dimer (SF motif) connected via a rigid alkynyl bridge to a subphthalocyanine (the sensitizer motif) in either an axial or a peripheral arrangement. Steady-state and time-resolved photophysical measurements are used to confirm that both conjugates operate as per design, displaying near unity energy transfer efficiencies and high triplet quantum yields from SF. Decisively, energy transfer between the subphthalocyanine and pentacene dimer occurs ca. 26 times faster in the peripheral conjugate, even though the two chromophores are ca. 3 Å farther apart than in the axial conjugate. Following a theoretical evaluation of the dipolar coupling, Vdip2, and the orientation factor, κ2, of both the axial (Vdip2 = 140 cm-2; κ2 = 0.08) and the peripheral (Vdip2 = 724 cm-2; κ2 = 1.46) arrangements, we establish that this rate acceleration is due to a more favorable (nearly co-planar) relative orientation of the transition dipole moments of the subphthalocyanine and pentacenes in the peripheral constellation.
Collapse
Affiliation(s)
- Henrik Gotfredsen
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, U.K
| | - Dominik Thiel
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Phillip M Greißel
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Lan Chen
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Marcel Krug
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Ilias Papadopoulos
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka819-0395, Japan
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Mogens Brøndsted Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
| | - Tomás Torres
- Department of Organic Chemistry and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049, Spain
- IMDEA Nanociencia, C/Faraday 9, Cantoblanco, Madrid 28049, Spain
| | - Timothy Clark
- Department of Chemistry and Pharmacy and Computer-Chemie-Center (CCC), Friedrich-Alexander-University Erlangen-Nuremberg, Nägelsbachstraße 25, Erlangen 91052, Germany
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Rik R Tykwinski
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
27
|
Su P, Ran G, Wang H, Yue J, Kong Q, Bo Z, Zhang W. Intramolecular and Intermolecular Interaction Switching in the Aggregates of Perylene Diimide Trimer: Effect of Hydrophobicity. Molecules 2023; 28:molecules28073003. [PMID: 37049767 PMCID: PMC10095916 DOI: 10.3390/molecules28073003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The research on perylene diimide (PDI) aggregates effectively promotes their applications in organic photovoltaic solar cells and fluorescent sensors. In this paper, a PDI fabricated with three peripheral PDI units (N, N’-bis(6-undecyl) perylene-3,4,9,10-bis(dicarboximide)) is investigated. The trimer shows different absorption and fluorescence properties due to hydrophobicity when dissolved in the mixed solvent of tetrahydrofuran (THF) and water. Through comprehensive analysis of the fluorescence lifetime and transient absorption spectroscopic results, we concluded that the trimer underwent different excited state kinetic pathways with different concentrations of water in THF. When dissolved in pure THF solvent, both the intramolecular charge-transfer and excimer states are formed. When the water concentration increases from 0 to 50% (v/v), the formation time of the excimer state and its structural relaxation time are prolonged, illustrating the arising of the intermolecular excimer state. It is interesting to determine that the probability of the intramolecular charge-transfer pathway will first decrease and then increase as the speed of intermolecular excimer formation slows down. The two inflection points appear when the water concentration is above 10% and 40%. The results not only highlight the importance of hydrophobicity on the aggregate properties of PDI multimers but also guide the further design of PDI-based organic photovoltaic solar cells.
Collapse
|
28
|
Naranjo C, Adalid S, Gómez R, Sánchez L. Modulating the Differentiation of Kinetically Controlled Supramolecular Polymerizations through the Alkyl Bridge Length. Angew Chem Int Ed Engl 2023; 62:e202218572. [PMID: 36735857 DOI: 10.1002/anie.202218572] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/05/2023]
Abstract
The synthesis and self-assembling features of N-annulated perylenebisimides (N-PBIs) 2-4 are reported and compared with the complex self-assembly of N-PBI 1. The studies presented herein demonstrate that increasing the length of the alkyl spacer separating the central aromatic core of the dye and the peripheral side chains cancels the differentiation on the corresponding supramolecular polymerization. Thus, only 2 is able to form two different supramolecular polymorphs. The formation of kinetically trapped monomeric species is observed for all the N-PBIs 2-4. These metastable species, constituted by intramolecularly H-bonded pseudocycles of 7, 8, 9, or 10 members for compounds 1, 2, 3, and 4, respectively, provoke kinetically controlled supramolecular polymerizations that can be accelerated by the addition of seeds. The results presented herein shed light on the intricate process of differentiation in self-assembly.
Collapse
Affiliation(s)
- Cristina Naranjo
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, s/n, 28040, -Madrid, Spain
| | - Sergio Adalid
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, s/n, 28040, -Madrid, Spain
| | - Rafael Gómez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, s/n, 28040, -Madrid, Spain
| | - Luis Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, s/n, 28040, -Madrid, Spain
| |
Collapse
|
29
|
Del Pino Rosendo E, Yildiz O, Pisula W, Marszalek T, Blom PWM, Ramanan C. Symmetry-breaking charge transfer and intersystem crossing in copper phthalocyanine thin films. Phys Chem Chem Phys 2023; 25:6847-6856. [PMID: 36799358 DOI: 10.1039/d2cp05240g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Intermolecular interactions in π-stacked chromophores strongly influence their photophysical properties, and thereby also their function in photonic applications. Mixed electronic and vibrational coupling interactions lead to complex potential energy landscapes with competitive photophysical pathways. Here, we characterize the photoexcited dynamics of the small molecule semiconductor copper pthalocyanine (CuPc) in solution and in thin film, the latter comprising two different π-stacked architectures, α-CuPc and β-CuPc. In solution, CuPc undergoes ultrafast intersytem crossing (ISC) to the triplet excited state. In the solid state, both α-CuPc and β-CuPc morphologies exhibit a mixing between Frenkel and charge-transfer excitons (Frenkel-CT mixing). We find that this mixing influences the photophysical properties differently, based on morphology. In addition to ISC, α-CuPc demonstrates symmetry-breaking charge transfer, which furthermore depends on excitation wavelength. This mechanism is not observed in β-CuPc. These results elucidate how molecular organization mediates the balance of competitive photexcited decay mechanisms in organic semiconductors.
Collapse
Affiliation(s)
| | - Okan Yildiz
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, DE, Germany
| | - Wojciech Pisula
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, DE, Germany.,Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Tomasz Marszalek
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, DE, Germany.,Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Paul W M Blom
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, DE, Germany
| | - Charusheela Ramanan
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, DE, Germany.,Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Chen S, Feng S, Markvoort AJ, Zhang C, Zhou E, Liang W, Zhang HJ, Jiang YB, Lin J. Unequal Perylene Diimide Twins in a Quadruple Assembly. Angew Chem Int Ed Engl 2023; 62:e202300786. [PMID: 36792541 DOI: 10.1002/anie.202300786] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/17/2023]
Abstract
Natural light-harvesting (LH) systems can divide identical dyes into unequal aggregate states, thereby achieving intelligent "allocation of labor". From a synthetic point of view, the construction of such kinds of unequal and integrated systems without the help of proteinaceous scaffolding is challenging. Here, we show that four octatetrayne-bridged ortho-perylene diimide (PDI) dyads (POPs) self-assemble into a quadruple assembly (POP)4 both in solution and in the solid state. The two identical PDI units in each POP are compartmentalized into weakly coupled PDIs (P520) and closely stacked PDIs (P550) in (POP)4 . The two extreme pools of PDI chromophores were unambiguously confirmed by single-crystal X-ray crystallography and NMR spectroscopy. To interpret the formation of the discrete quadruple assembly, we also developed a two-step cooperative model. Quantum-chemical calculations indicate the existence of multiple couplings within and across P520 and P550, which can satisfactorily describe the photophysical properties of the unequal quadruple assembly. This finding is expected to help advance the rational design of dye stacks to emulate functions of natural LH systems.
Collapse
Affiliation(s)
- Shuqi Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| | - Shishi Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Albert J Markvoort
- Computational Biology Group and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven (The, Netherlands
| | - Cankun Zhang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, P. R. China
| | - Enyang Zhou
- School of Mathematical Sciences, Xiamen University, Xiamen, 361005, P. R. China
| | - WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Hui-Jun Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| | - Jianbin Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
31
|
Wang Z, Liu T, Peng H, Fang Y. Advances in Molecular Design and Photophysical Engineering of Perylene Bisimide-Containing Polyads and Multichromophores for Film-Based Fluorescent Sensors. J Phys Chem B 2023; 127:828-837. [PMID: 36692385 DOI: 10.1021/acs.jpcb.2c07815] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Film-based fluorescent sensors (FFSs) represent an important chemistry technology for meeting the urgent needs of on-site and real-time analysis, thereby enabling significant applications in environmental and health monitoring. As the core of FFSs, innovative design of sensing fluorophores and their intrinsic excited-state-related response nature endow FFSs with superior sensing performances in an endless expansion. In this Perspective, we specifically focus on perylene bisimide (PBI)-containing polyads and multichromophores with rigid configuration and notable photochemical stability for developing high-performance FFSs. These nonplanar structures mitigate aggregation and create abundant gaps for the sake of mass transfer and availability of the sensing units in the adlayer of the sensing films. We also comprehensively discuss how to adjust electronic coupling governing the excited-state events by appropriate functionalization strategies, thus providing a plethora of valuable insights for the exploration of the structure-property relationships in these orchestrated molecular systems. Throughout this Perspective, we also identify opportunities for FFSs in the future developments.
Collapse
Affiliation(s)
- Zhaolong Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.,State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
32
|
Singlet fission dynamics modulated by molecular configuration in covalently linked pyrene dimers, Anti- and Syn-1,2-di(pyrenyl)benzene. Commun Chem 2023; 6:16. [PMID: 36698005 PMCID: PMC9845327 DOI: 10.1038/s42004-023-00816-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Covalently linked dimers (CLDs) and their structural isomers have attracted much attention as potential materials for improving power conversion efficiencies through singlet fission (SF). Here, we designed and synthesized two covalently ortho-linked pyrene (Py) dimers, anti- and syn-1,2-di(pyrenyl)benzene (Anti-DPyB and Syn-DPyB, respectively), and investigated the effect of molecular configuration on SF dynamics using steady-state and time-resolved spectroscopies. Both Anti-DPyB and Syn-DPyB, which have different Py-stacking configurations, form excimers, which then relax to the correlated triplet pair ((T1T1)) state, indicating the occurrence of SF. Unlike previous studies where the excimer formation inhibited an SF process, the (T1T1)'s of Anti-DPyB and Syn-DPyB are formed through the excimer state. The dissociation of (T1T1)'s to 2T1 in Anti-DPyB is more favorable than in Syn-DPyB. Our results showcase that the molecular configuration of a CLD plays an important role in SF dynamics.
Collapse
|
33
|
Dai Y, Calzolari A, Zubiria-Ulacia M, Casanova D, Negri F. Intermolecular Interactions and Charge Resonance Contributions to Triplet and Singlet Exciton States of Oligoacene Aggregates. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010119. [PMID: 36615311 PMCID: PMC9822017 DOI: 10.3390/molecules28010119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
Intermolecular interactions modulate the electro-optical properties of molecular materials and the nature of low-lying exciton states. Molecular materials composed by oligoacenes are extensively investigated for their semiconducting and optoelectronic properties. Here, we analyze the exciton states derived from time-dependent density functional theory (TDDFT) calculations for two oligoacene model aggregates: naphthalene and anthracene dimers. To unravel the role of inter-molecular interactions, a set of diabatic states is selected, chosen to coincide with local (LE) and charge-transfer (CT) excitations within a restricted orbital space including two occupied and two unoccupied orbitals for each molecular monomer. We study energy profiles and disentangle inter-state couplings to disclose the (CT) character of singlet and triplet exciton states and assess the influence of inter-molecular orientation by displacing one molecule with respect to the other along the longitudinal translation coordinate. The analysis shows that (CT) contributions are relevant, although comparably less effective for triplet excitons, and induce a non-negligible mixed character to the low-lying exciton states for eclipsed monomers and for small translational displacements. Such (CT) contributions govern the La/Lb state inversion occurring for the low-lying singlet exciton states of naphthalene dimer and contribute to the switch from H- to J-aggregate type of the strongly allowed Bb transition of both oligoacene aggregates.
Collapse
Affiliation(s)
- Yasi Dai
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, 40126 Bologna, Italy
| | - Alessandro Calzolari
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, 40126 Bologna, Italy
| | - Maria Zubiria-Ulacia
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastian, Euskadi, Spain
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Manuel Lardizabal 3, 20018 Donostia-San Sebastian, Euskadi, Spain
| | - David Casanova
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastian, Euskadi, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Euskadi, Spain
| | - Fabrizia Negri
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, 40126 Bologna, Italy
- INSTM UdR Bologna, 40126 Bologna, Italy
- Correspondence:
| |
Collapse
|
34
|
Parida S, Patra SK, Mishra S. Self-Assembling Behaviour of Perylene, Perylene Diimide, and Thionated Perylene Diimide Deciphered through Non-Covalent Interactions. Chemphyschem 2022; 23:e202200361. [PMID: 35881033 DOI: 10.1002/cphc.202200361] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/26/2022] [Indexed: 01/04/2023]
Abstract
The π-conjugated supramolecular polymers (SMP) have gained vast popularity in materials chemistry and biomedicine due to their spectacular self-assembling behaviour. A detailed account of the electronic structure and bonding through quantum theory of atoms-in-molecules, non-covalent interactions, and energy decomposition analysis (EDA) in the oligomers of perylene, perylene diimide (PDI), and thionated-PDI (t-PDI) is presented. The oligomers of all three molecules show a slip angle of θ≈62° thus forming H-aggregates. The stacking pattern in perylene oligomers prefers a slip-stacked brick-layer order, while the bulkier PDI and t-PDI prefer a parallel step-wise pattern in their oligomers. Successive addition of monomers leads to a consequent rise in the association energy, although to a much greater extent in PDI and t-PDI than in perylene. While the major contribution to this association energy comes from the dispersion interactions in all three systems, the steric interactions in t-PDI quench the cooperativity in its SMP formation. A detailed analysis of the non-covalent interactions reveals the presence of π-π, π-hole⋅⋅⋅O=C, and π-hole⋅⋅⋅S=C electrostatic interactions playing a crucial role in the self-assembly process, which can be further implemented on developing force field-based methods for understanding the self-assembling mechanism in higher degree of oligomers.
Collapse
Affiliation(s)
- Sanjukta Parida
- Department of Chemistry, Indian Institute of Technology Kharag-pur, 721302, West Bengal, India
| | - Sanjib K Patra
- Department of Chemistry, Indian Institute of Technology Kharag-pur, 721302, West Bengal, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharag-pur, 721302, West Bengal, India
| |
Collapse
|
35
|
Influence of core-twisted structure on singlet fission in perylenediimide film. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Hart SM, Banal JL, Castellanos MA, Markova L, Vyborna Y, Gorman J, Häner R, Willard AP, Bathe M, Schlau-Cohen GS. Activating charge-transfer state formation in strongly-coupled dimers using DNA scaffolds. Chem Sci 2022; 13:13020-13031. [PMID: 36425503 PMCID: PMC9667922 DOI: 10.1039/d2sc02759c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/04/2022] [Indexed: 09/16/2023] Open
Abstract
Strongly-coupled multichromophoric assemblies orchestrate the absorption, transport, and conversion of photonic energy in natural and synthetic systems. Programming these functionalities involves the production of materials in which chromophore placement is precisely controlled. DNA nanomaterials have emerged as a programmable scaffold that introduces the control necessary to select desired excitonic properties. While the ability to control photophysical processes, such as energy transport, has been established, similar control over photochemical processes, such as interchromophore charge transfer, has not been demonstrated in DNA. In particular, charge transfer requires the presence of close-range interchromophoric interactions, which have a particularly steep distance dependence, but are required for eventual energy conversion. Here, we report a DNA-chromophore platform in which long-range excitonic couplings and short-range charge-transfer couplings can be tailored. Using combinatorial screening, we discovered chromophore geometries that enhance or suppress photochemistry. We combined spectroscopic and computational results to establish the presence of symmetry-breaking charge transfer in DNA-scaffolded squaraines, which had not been previously achieved in these chromophores. Our results demonstrate that the geometric control introduced through the DNA can access otherwise inaccessible processes and program the evolution of excitonic states of molecular chromophores, opening up opportunities for designer photoactive materials for light harvesting and computation.
Collapse
Affiliation(s)
- Stephanie M Hart
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - James L Banal
- Department of Biological Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Maria A Castellanos
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Larysa Markova
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3, CH-3012 Bern Switzerland
| | - Yuliia Vyborna
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3, CH-3012 Bern Switzerland
| | - Jeffrey Gorman
- Department of Biological Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Robert Häner
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3, CH-3012 Bern Switzerland
| | - Adam P Willard
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | | |
Collapse
|
37
|
Energy Transfer in Supramolecular Calix[4]arene – Perylene Bisimide Dye Light Harvesting Building Blocks: Resolving Loss Processes with Simultaneous Target Analysis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
Bansal D, Kundu A, Singh VP, Pal AK, Datta A, Dasgupta J, Mukhopadhyay P. A highly contorted push-pull naphthalenediimide dimer and evidence of intramolecular singlet exciton fission. Chem Sci 2022; 13:11506-11512. [PMID: 36320404 PMCID: PMC9555572 DOI: 10.1039/d2sc04187a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/05/2022] [Indexed: 08/05/2023] Open
Abstract
Singlet fission is a process by which two molecular triplet excitons are generated subsequent to the absorption of one photon. Molecules that enable singlet fission have triplet state energy at least half of the bright singlet state energy. This stringent energy criteria have challenged chemists to device new molecular and supramolecular design principles to modulate the singlet-triplet energy gap and build singlet fission systems from a wide range of organic chromophores. Herein, we report for the first time intramolecular singlet fission in the seminal naphthalenediimide (NDI) scaffold constrained in a push-pull cyclophane architecture, while individually the NDI chromophore does not satisfy the energy criterion. The challenging synthesis of this highly contorted push-pull cyclophane is possible from the preorganized pincer-like precursor. The special architecture establishes the shortest co-facial NDI⋯NDI contacts (3.084 Å) realized to date. Using broadband femtosecond transient absorption, we find that the correlated T-T pair forms rapidly within 380 fs of photoexcitation. Electronic structure calculations at the level of state-averaged CASSCF (ne,mo)/XMCQDPT2 support the existence of the multi-excitonic T-T pair state, thereby confirming the first example of singlet exciton fission in a NDI scaffold.
Collapse
Affiliation(s)
- Deepak Bansal
- School of Physical Sciences, Jawaharlal Nehru University New Delhi 110067 India
| | - Arup Kundu
- Department of Chemical Sciences, Tata Institute of Fundamental Research Mumbai 400005 India
| | - Vijay Pal Singh
- School of Physical Sciences, Jawaharlal Nehru University New Delhi 110067 India
| | - Arun K Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science Kolkata 700032 West Bengal India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science Kolkata 700032 West Bengal India
| | - Jyotishman Dasgupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research Mumbai 400005 India
| | - Pritam Mukhopadhyay
- School of Physical Sciences, Jawaharlal Nehru University New Delhi 110067 India
| |
Collapse
|
39
|
Shi Z, Wang Q, Yi J, Zhao C, Chen S, Tian H, Qu D. Encoding Supramolecular Chiral Self‐Assembly with Photo‐Controlled Circularly Polarized Luminescence by Overcrowded Alkene‐Based Bis‐PBI Modulators. Angew Chem Int Ed Engl 2022; 61:e202207405. [DOI: 10.1002/anie.202207405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Zhao‐Tao Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Qian Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Jinhao Yi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Chengxi Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Shao‐Yu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Da‐Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
40
|
Sebastian E, Sunny J, Hariharan M. Excimer evolution hampers symmetry-broken charge-separated states. Chem Sci 2022; 13:10824-10835. [PMID: 36320683 PMCID: PMC9491171 DOI: 10.1039/d2sc04387d] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/18/2022] [Indexed: 08/26/2023] Open
Abstract
Achieving long-lived symmetry-broken charge-separated states in chromophoric assemblies is quintessential for enhanced performance of artificial photosynthetic mimics. However, the occurrence of energy trap states hinders exciton and charge transport across photovoltaic devices, diminishing power conversion efficiency. Herein, we demonstrate unprecedented excimer formation in the relaxed excited-state geometry of bichromophoric systems impeding the lifetime of symmetry-broken charge-separated states. Core-annulated perylenediimide dimers (SC-SPDI2 and SC-NPDI2) prefer a near-orthogonal arrangement in the ground state and a π-stacked foldamer structure in the excited state. The prospect of an excimer-like state in the foldameric arrangement of SC-SPDI2 and SC-NPDI2 has been rationalized by fragment-based excited state analysis and temperature-dependent photoluminescence measurements. Effective electronic coupling matrix elements in the Franck-Condon geometry of SC-SPDI2 and SC-NPDI2 facilitate solvation-assisted ultrafast symmetry-breaking charge-separation (SB-CS) in a high dielectric environment, in contrast to unrelaxed excimer formation (Ex*) in a low dielectric environment. Subsequently, the SB-CS state dissociates into an undesired relaxed excimer state (Ex) due to configuration mixing of a Frenkel exciton (FE) and charge-separated state in the foldamer structure, downgrading the efficacy of the charge-separated state. The decay rate constant of the FE to SB-CS (k FE→SB-CS) in polar solvents is 8-17 fold faster than that of direct Ex* formation (k FE→Ex*) in non-polar solvent (k FE→SB-CS≫k FE→Ex*), characterized by femtosecond transient absorption (fsTA) spectroscopy. The present investigation establishes the impact of detrimental excimer formation on the persistence of the SB-CS state in chromophoric dimers and offers the requisite of conformational rigidity as one of the potential design principles for developing advanced molecular photovoltaics.
Collapse
Affiliation(s)
- Ebin Sebastian
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Maruthamala P.O., Vithura Thiruvananthapuram Kerala 695551 India
| | - Jeswin Sunny
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Maruthamala P.O., Vithura Thiruvananthapuram Kerala 695551 India
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Maruthamala P.O., Vithura Thiruvananthapuram Kerala 695551 India
| |
Collapse
|
41
|
Parallel triplet formation pathways in a singlet fission material. Nat Commun 2022; 13:5244. [PMID: 36068233 PMCID: PMC9448805 DOI: 10.1038/s41467-022-32844-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/18/2022] [Indexed: 11/08/2022] Open
Abstract
Harvesting long-lived free triplets in high yields by utilizing organic singlet fission materials can be the cornerstone for increasing photovoltaic efficiencies potentially. However, except for polyacenes, which are the most studied systems in the singlet fission field, spin-entangled correlated triplet pairs and free triplets born through singlet fission are relatively poorly characterized. By utilizing transient absorption and photoluminescence spectroscopy in supramolecular aggregate thin films consisting of Hamilton-receptor-substituted diketopyrrolopyrrole derivatives, we show that photoexcitation gives rise to the formation of spin-0 correlated triplet pair 1(TT) from the lower Frenkel exciton state. The existence of 1(TT) is proved through faint Herzberg-Teller emission that is enabled by vibronic coupling and correlated with an artifact-free triplet-state photoinduced absorption in the near-infrared. Surprisingly, transient electron paramagnetic resonance reveals that long-lived triplets are produced through classical intersystem crossing instead of 1(TT) dissociation, with the two pathways in competition. Moreover, comparison of the triplet-formation dynamics in J-like and H-like thin films with the same energetics reveals that spin-orbit coupling mediated intersystem crossing persists in both. However, 1(TT) only forms in the J-like film, pinpointing the huge impact of intermolecular coupling geometry on singlet fission dynamics.
Collapse
|
42
|
Wang Z, Gou X, Shi Q, Liu K, Chang X, Wang G, Xu W, Lin S, Liu T, Fang Y. Through‐Space Charge Transfer: A New Way to Develop a High‐Performance Fluorescence Sensing Film towards Opto‐Electronically Inert Alkanes. Angew Chem Int Ed Engl 2022; 61:e202207619. [DOI: 10.1002/anie.202207619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Zhaolong Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Xinyu Gou
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Qiyuan Shi
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Ke Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Xingmao Chang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Gang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Wenjun Xu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Simin Lin
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| |
Collapse
|
43
|
One Fluorophore‐Two Sensing Films: Hydrogen‐Bond Directed Formation of a Quadruple Perylene Bisimide Stack. Chemistry 2022; 28:e202201974. [DOI: 10.1002/chem.202201974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Indexed: 11/07/2022]
|
44
|
Zhou J, Liu H, Liu S, Su P, Wang W, Li Z, Liu Z, Chen Y, Dong Y, Li X. Singlet Fission in Colloidal Nanoparticles of Amphipathic Diketopyrrolopyrrole Derivatives: Probing the Role of the Charge Transfer State. J Phys Chem B 2022; 126:6483-6492. [PMID: 35979942 DOI: 10.1021/acs.jpcb.2c03163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To evaluate the role of the charge transfer (CT) state in the singlet fission (SF) process, we prepared three 3,6-bis(thiophen-2-yl)diketopyrrolopyrrole (TDPP) derivatives with zero (Ph2TDPP), one (Ph2TDPP-COOH), and two (Ph2TDPP-(COOH)2) carboxylic groups, respectively. Their colloidal nanoparticles were also prepared by a simple precipitation method. The SF dynamics and mechanism in these colloid nanoparticles were investigated by using steady-state/transient absorption and fluorescence spectroscopy. Steady-state absorption spectra reveal that the strength of the CT resonance interactions between the adjacent DPP units is increased gradually from Ph2TDPP to Ph2TDPP-COOH and then to Ph2TDPP-(COOH)2. Fluorescence and transient absorption spectra demonstrate that SF is proceeded via a CT-assisted superexchange mechanism in these three nanoparticles. Furthermore, SF rate and yield are enhanced gradually with the increase of the number of the carboxylic group, which may be attributed to the enhancement of the CT coupling strength. The result of this work not only provides a better understanding of the SF mechanism especially for the role of the CT state but also gives some new insights for the design of efficient SF materials based on DPP derivatives.
Collapse
Affiliation(s)
- Jun Zhou
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Heyuan Liu
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China.,National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - Shanshan Liu
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Pengkun Su
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Weijie Wang
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Zhi Li
- Shandong Energy Group Co., Ltd., Jinan, Shandong 250014, China
| | - Zhaobin Liu
- Shandong Energy Group Co., Ltd., Jinan, Shandong 250014, China
| | - Yanli Chen
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Yunqin Dong
- College of Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Xiyou Li
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|
45
|
Liu H, Wang X, Ma L, Wang W, Liu S, Zhou J, Su P, Liu Z, Li Z, Lin X, Chen Y, Li X. Effects of the Separation Distance between Two Triplet States Produced from Intramolecular Singlet Fission on the Two-Electron-Transfer Process. J Am Chem Soc 2022; 144:15509-15518. [PMID: 35930671 DOI: 10.1021/jacs.2c03550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To harvest two triplet excitons of singlet fission (SF) via a two-electron transfer efficiently, the revelation of the key factors that influence the two-electron-transfer process is necessary. Here, by using steady-state and transient absorption/fluorescence spectroscopy, we investigated the two-electron-transfer process from the two triplet excitons of intramolecular SF (iSF) in a series of tetracene oligomers (dimer, trimer, and tetramer) with 7,7,8,8-tetracyanoquinodimethane (TCNQ) as an electron acceptor in solution. Quantitative two-electron transfer could be conducted for the trimer and tetramer, and the rate for the tetramer is faster than that for the trimer. However, the maximum efficiency of the two-electron transfer in the dimer is relatively low (∼47%). The calculation result of the free energy change (ΔG) of the second-electron transfer for these three compounds (-0.024, -0.061, and -0.074 eV for the dimer, trimer, and tetramer, respectively) is consistent with the experimental observation. The much closer ΔG value to zero for the dimer should be responsible for its low efficiency of the two-electron transfer. Different ΔG values for these three oligomers are attributed to the different Coulomb repulsive energies between the two positive charges generated after the two-electron transfer that is caused by their various intertriplet distances. This result reveals for the first time the important effect of the Coulomb repulsive energy, which depends on the intertriplet distance, on the two-electron transfer process from the two triplet excitons of iSF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhaobin Liu
- Shandong Energy Group Co., Ltd., Jinan, Shandong 250014, People's Republic of China
| | - Zhi Li
- Shandong Energy Group Co., Ltd., Jinan, Shandong 250014, People's Republic of China
| | | | | | | |
Collapse
|
46
|
Shi ZT, Wang Q, Yi J, Zhao C, Chen SY, Tian H, Qu DH. Encoding Supramolecular Chiral Self‐Assembly with Photo‐Controlled Circularly Polarized Luminescence by Overcrowded Alkene‐Based Bis‐PBI Modulators. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhao-Tao Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboretory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Joint Research Center East China University of Science and Technology CHINA
| | - Qian Wang
- Key Laboretory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center East China University of Science and Technology CHINA
| | - Jinhao Yi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center East China University of Science and Technology CHINA
| | - Chengxi Zhao
- Key Laboretory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Jiont Research Center East China University of Science and Technology CHINA
| | - Shao-Yu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center East China University of Science and Technology CHINA
| | - He Tian
- Key Laboratory for Advanced Materials and Joint Internation Research Laboratory of Precision Chemistry and Molecular Enginering, Feringa Nobel Prize Scientist Joint Research Center East China University of Science and Technology CHINA
| | - Da-Hui Qu
- Key Labs for Advanced Materials Institute of Fine Chemicals, East China University of Science and Technology Meilong Road 130 200237 Shanghai CHINA
| |
Collapse
|
47
|
Hong Y, Rudolf M, Kim M, Kim J, Schembri T, Krause AM, Shoyama K, Bialas D, Röhr MIS, Joo T, Kim H, Kim D, Würthner F. Steering the multiexciton generation in slip-stacked perylene dye array via exciton coupling. Nat Commun 2022; 13:4488. [PMID: 35918327 PMCID: PMC9345863 DOI: 10.1038/s41467-022-31958-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022] Open
Abstract
Dye arrays from dimers up to larger oligomers constitute the functional units of natural light harvesting systems as well as organic photonic and photovoltaic materials. Whilst in the past decades many photophysical studies were devoted to molecular dimers for deriving structure-property relationship to unravel the design principles for ideal optoelectronic materials, they fail to accomplish the subsequent processes of charge carrier generation or the detachment of two triplet species in singlet fission (SF). Here, we present a slip-stacked perylene bisimide trimer, which constitutes a bridge between hitherto studied dimer and solid-state materials, to investigate SF mechanisms. This work showcases multiple pathways towards the multiexciton state through direct or excimer-mediated mechanisms by depending upon interchromophoric interaction. These results suggest the comprehensive role of the exciton coupling, exciton delocalization, and excimer state to facilitate the SF process. In this regard, our observations expand the fundamental understanding the structure-property relationship in dye arrays. Understanding structure-property relationship of dye arrays is of great importance for designing organic photonic and photovoltaic materials. Here, authors present a slip-stacked perylene bisimide array as a model system to investigate singlet fission mechanisms by depending upon interchromophoric interaction.
Collapse
Affiliation(s)
- Yongseok Hong
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Maximilian Rudolf
- Universitat Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
| | - Munnyon Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Juno Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Tim Schembri
- Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074, Würzburg, Germany
| | - Ana-Maria Krause
- Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074, Würzburg, Germany
| | - Kazutaka Shoyama
- Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074, Würzburg, Germany
| | - David Bialas
- Universitat Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
| | - Merle I S Röhr
- Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074, Würzburg, Germany.
| | - Taiha Joo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Hyungjun Kim
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University, Incheon, 22012, Republic of Korea.
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea. .,Division of Energy Materials, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Frank Würthner
- Universitat Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany. .,Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074, Würzburg, Germany.
| |
Collapse
|
48
|
Wang Z, Gou X, Shi Q, Liu K, Chang X, Wang G, Xu W, Lin S, Liu T, Fang Y. Through‐Space Charge Transfer: A New Way to Develop High‐Performance Fluorescence Sensing Film towards Opto‐Electronically Inert Alkanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhaolong Wang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Xinyu Gou
- Shaanxi Normal University Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education CHINA
| | - Qiyuan Shi
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Ke Liu
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Xingmao Chang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Gang Wang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Wenjun Xu
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Simin Lin
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Taihong Liu
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Yu Fang
- Shaanxi Normal University School of Chemistry and Chemical Engineering 199 South Chang'an Road 710119 Xi'an CHINA
| |
Collapse
|
49
|
Kim T, Lin C, Schultz JD, Young RM, Wasielewski MR. π-Stacking-Dependent Vibronic Couplings Drive Excited-State Dynamics in Perylenediimide Assemblies. J Am Chem Soc 2022; 144:11386-11396. [PMID: 35699940 DOI: 10.1021/jacs.2c03993] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Vibronic coupling, the interplay of electronic and nuclear vibrational motion, is considered a critical mechanism in photoinduced reactions such as energy transfer, charge transfer, and singlet fission. However, our understanding of how particular vibronic couplings impact excited-state dynamics is lacking due to the limited number of experimental studies of model molecular systems. Herein, we use two-dimensional electronic spectroscopy (2DES) to launch and interrogate a range of vibronic coherences in two distinct types of perylenediimide slip stacks─along the short and long molecular axes, which form either an excimer or a mixed state between the Frenkel exciton (FE) and charge transfer states. We explore the functionality of these vibronic coherences using quantum beatmaps, which display the Fourier amplitude signal oscillations as a function of pump and probe frequencies, along with knowledge of the characteristic signatures of the FE, ionic, and excimer species. We find that a low-frequency vibrational mode of the short-axis slip stack appears concomitantly with the formation of the excimer state, survives 2-fold longer than in the FE state in the reference monomer, and shows a phase shift compared to other modes. For the long-axis slip stacks, a pair of low-frequency modes coupled to a high-frequency coordinate of the FE state were found to play a critical role in mixed-state generation. Our findings thus experimentally reveal the complex and varying roles of vibronic couplings in tightly packed multimers undergoing a range of photoinduced processes.
Collapse
Affiliation(s)
- Taeyeon Kim
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Chenjian Lin
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Jonathan D Schultz
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Ryan M Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
50
|
Wang K, Shao G, Peng S, You X, Chen X, Xu J, Huang H, Wang H, Wu D, Xia J. Achieving Symmetry-Breaking Charge Separation in Perylenediimide Trimers: The Effect of Bridge Resonance. J Phys Chem B 2022; 126:3758-3767. [PMID: 35559687 DOI: 10.1021/acs.jpcb.2c02387] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Symmetry-breaking charge separation (SB-CS) provides a very promising option to engineer a novel light conversion scheme, while it is still a challenge to realize SB-CS in a nonpolar environment. The strength of electronic coupling plays a crucial role in determining the exciton dynamics of organic semiconductors. Herein, we describe how to mediate interchromophore coupling to achieve SB-CS in a nonpolar solvent by the use of two perylenediimide (PDI)-based trimers, 1,7-tri-PDI and 1,6-tri-PDI. Although functionalization at the N-atom decreases electronic coupling between PDI units, our strategy takes advantage of "bridge resonance", in which the frontier orbital energies are nearly degenerate with those of the covalently linked PDI units, leading to enhanced interchromophore electronic coupling. Tunable electronic coupling was realized by the judicious combination of "bridge resonance" with N-functionalization. The enhanced mixing between the S1 state and CT/CS states results in direct observation of the CT band in the steady-state UV-vis absorption and negative free energy of charge separation (ΔGCS) in both chloroform and toluene for the two trimers. Using transient absorption spectroscopy, we demonstrated that photoinduced SB-CS in a nonpolar solvent is feasible. This work highlights that the use of "bridge resonance" is an effective way to control exciton dynamics of organic semiconductors.
Collapse
Affiliation(s)
- Kangwei Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Guangwei Shao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Shaoqian Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaoxiao You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Xingyu Chen
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jingwen Xu
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Huaxi Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China.,School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Huan Wang
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Di Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China.,School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Jianlong Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China.,School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|