1
|
Ma J, Wehrle J, Frank D, Lorenzen L, Popp C, Driever W, Grosse R, Jessen HJ. Intracellular delivery and deep tissue penetration of nucleoside triphosphates using photocleavable covalently bound dendritic polycations. Chem Sci 2024; 15:6478-6487. [PMID: 38699261 PMCID: PMC11062083 DOI: 10.1039/d3sc05669d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/15/2024] [Indexed: 05/05/2024] Open
Abstract
Nucleoside triphosphates (NTPs) are essential in various biological processes. Cellular or even organismal controlled delivery of NTPs would be highly desirable, yet in cellulo and in vivo applications are hampered owing to their negative charge leading to cell impermeability. NTP transporters or NTP prodrugs have been developed, but a spatial and temporal control of the release of the investigated molecules remains challenging with these strategies. Herein, we describe a general approach to enable intracellular delivery of NTPs using covalently bound dendritic polycations, which are derived from PAMAM dendrons and their guanidinium derivatives. By design, these modifications are fully removable through attachment on a photocage, ready to deliver the native NTP upon irradiation enabling spatiotemporal control over nucleotide release. We study the intracellular distribution of the compounds depending on the linker and dendron generation as well as side chain modifications. Importantly, as the polycation is bound covalently, these molecules can also penetrate deeply into the tissue of living organisms, such as zebrafish.
Collapse
Affiliation(s)
- Jiahui Ma
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg Albertstr. 21 79104 Freiburg Germany
- CIBSS-Centre for Integrative Biological Signaling Studies, University of Freiburg 79104 Freiburg Germany
| | - Johanna Wehrle
- CIBSS-Centre for Integrative Biological Signaling Studies, University of Freiburg 79104 Freiburg Germany
- Faculty of Biology, University of Freiburg Hauptstr. 1 79104 Freiburg Germany
| | - Dennis Frank
- CIBSS-Centre for Integrative Biological Signaling Studies, University of Freiburg 79104 Freiburg Germany
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg Albertstr. 25 79104 Freiburg Germany
| | - Lina Lorenzen
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg Albertstr. 25 79104 Freiburg Germany
| | - Christoph Popp
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Wolfgang Driever
- CIBSS-Centre for Integrative Biological Signaling Studies, University of Freiburg 79104 Freiburg Germany
- Faculty of Biology, University of Freiburg Hauptstr. 1 79104 Freiburg Germany
| | - Robert Grosse
- CIBSS-Centre for Integrative Biological Signaling Studies, University of Freiburg 79104 Freiburg Germany
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg Albertstr. 25 79104 Freiburg Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg Albertstr. 21 79104 Freiburg Germany
- CIBSS-Centre for Integrative Biological Signaling Studies, University of Freiburg 79104 Freiburg Germany
| |
Collapse
|
2
|
Qi J, Shi L, Zhu L, Chen Y, Zhu H, Cheng W, Chen AF, Fu C. Functions, Mechanisms, and therapeutic applications of the inositol pyrophosphates 5PP-InsP 5 and InsP 8 in mammalian cells. J Cardiovasc Transl Res 2024; 17:197-215. [PMID: 37615888 DOI: 10.1007/s12265-023-10427-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023]
Abstract
Water-soluble myo-inositol phosphates have long been characterized as second messengers. The signaling properties of these compounds are determined by the number and arrangement of phosphate groups on the myo-inositol backbone. Recently, higher inositol phosphates with pyrophosphate groups were recognized as signaling molecules. 5-Diphosphoinositol 1,2,3,4,6-pentakisphosphate (5PP-InsP5) is the most abundant isoform, constituting more than 90% of intracellular inositol pyrophosphates. 5PP-InsP5 can be further phosphorylated to 1,5-bisdiphosphoinositol 2,3,4,6-tetrakisphosphate (InsP8). These two molecules, 5PP-InsP5 and InsP8, are present in various subcellular compartments, where they participate in regulating diverse cellular processes such as cell death, energy homeostasis, and cytoskeletal dynamics. The synthesis and metabolism of inositol pyrophosphates are subjected to tight regulation, allowing for their highly specific functions. Blocking the 5PP-InsP5/InsP8 signaling pathway by inhibiting the biosynthesis of 5PP-InsP5 demonstrates therapeutic benefits in preclinical studies, and thus holds promise as a therapeutic approach for certain diseases treatment, such as metabolic disorders.
Collapse
Affiliation(s)
- Ji Qi
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Linhui Shi
- Department of Critical Care Unit, Ningbo Medical Center Li Huili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Limei Zhu
- Department of Trauma Orthopedics, Ningbo No.6 Hospital, Ningbo, 315040, China
| | - Yuanyuan Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Hong Zhu
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Weiwei Cheng
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Chenglai Fu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
3
|
Li X, Wei Q, Zhao K, Wang W, Liu B, Li W, Wang J. Monitoring Intracellular IP6 with a Genetically Encoded Fluorescence Biosensor. ACS Sens 2023; 8:4484-4493. [PMID: 38079595 DOI: 10.1021/acssensors.3c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Inositol hexakisphosphate (IP6), a naturally occurring metabolite of inositol with specific functions in different organelles or tissues, participates in numerous physiological processes and plays a key role in mammalian metabolic regulation. However, current IP6 detection methods, i.e., high-performance liquid chromatography and gel electrophoresis, require sample destruction and lack spatiotemporal resolution. Here, we construct and characterize a genetically encoded fluorescence biosensor named HIPSer that enables ratiometric quantitative IP6 detection in HEK293T cells and subcellular compartments. We demonstrate that HIPSer has a high sensitivity and relative selectivity for IP6 in vitro. We also provide proof-of-concept evidence that HIPSer can monitor IP6 levels in real time in HEK293T cells and can be targeted for IP6 detection in the nucleus of HEK293T cells. Moreover, HIPSer could also detect changes in IP6 content induced by chemical inhibition of IP6-metabolizing enzymes in HEK293T cells. Thus, HIPSer achieves spatiotemporally precise detection of fluctuations in endogenous IP6 in live cells and provides a versatile tool for mechanistic investigations of inositol phosphate functions in metabolism and signaling.
Collapse
Affiliation(s)
- Xi Li
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qingpeng Wei
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Kaiyuan Zhao
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Weibo Wang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Bingjie Liu
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenzhe Li
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
4
|
Ritter K, Jork N, Unmüßig AS, Köhn M, Jessen HJ. Assigning the Absolute Configuration of Inositol Poly- and Pyrophosphates by NMR Using a Single Chiral Solvating Agent. Biomolecules 2023; 13:1150. [PMID: 37509185 PMCID: PMC10377360 DOI: 10.3390/biom13071150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Inositol phosphates constitute a family of highly charged messenger molecules that play diverse roles in cellular processes. The various phosphorylation patterns they exhibit give rise to a vast array of different compounds. To fully comprehend the biological interconnections, the precise molecular identification of each compound is crucial. Since the myo-inositol scaffold possesses an internal mirror plane, enantiomeric pairs can be formed. Most commonly employed methods for analyzing InsPs have been geared towards resolving regioisomers, but they have not been capable of resolving enantiomers. In this study, we present a general approach for enantiomer assignment using NMR measurements. To achieve this goal, we used 31P-NMR in the presence of L-arginine amide as a chiral solvating agent, which enables the differentiation of enantiomers. Using chemically synthesized standard compounds allows for an unambiguous assignment of the enantiomers. This method was applied to highly phosphorylated inositol pyrophosphates, as well as to lowly phosphorylated inositol phosphates and bisphosphonate analogs. Our method will facilitate the assignment of biologically relevant isomers when isolating naturally occurring compounds from biological specimens.
Collapse
Affiliation(s)
- Kevin Ritter
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Jork
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Anne-Sophie Unmüßig
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Maja Köhn
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Institute of Biology 3, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- BIOSS-Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
5
|
Simon C, Asaro A, Feng S, Riezman H. An organelle-specific photoactivation and dual-isotope labeling strategy reveals phosphatidylethanolamine metabolic flux. Chem Sci 2023; 14:1687-1695. [PMID: 36819876 PMCID: PMC9930920 DOI: 10.1039/d2sc06069h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
Phosphatidylethanolamine metabolism plays essential roles in eukaryotic cells but has not been completely investigated due to its complexity. This is because lipid species, unlike proteins or nucleic acids, cannot be easily manipulated at the single molecule level or controlled with subcellular resolution, two of the key factors toward understanding their functions. Here, we use the organelle-targeting photoactivation method to study PE metabolism in living cells with a high spatiotemporal resolution. Containing predefined PE structures, probes which can be selectively introduced into the ER or mitochondria were designed to compare their metabolic products according to their subcellular localization. We combined photo-uncaging with dual stable isotopic labeling to track PE metabolism in living cells by mass spectrometry analysis. Our results reveal that both mitochondria- and ER-released PE participate in phospholipid remodeling, and that PE methylation can be detected only under particular conditions. Thus, our method provides a framework to study phospholipid metabolism at subcellular resolution.
Collapse
Affiliation(s)
- Clémence Simon
- Department of Biochemistry, NCCR Chemical Biology, University of Geneva Geneva 1205 Switzerland
| | - Antonino Asaro
- Department of Biochemistry, NCCR Chemical Biology, University of Geneva Geneva 1205 Switzerland
| | - Suihan Feng
- Unit of Chemical Biology and Lipid Metabolism, Center for Microbes, Development and Health (CMDH), Institut Pasteur of Shanghai, Chinese Academy of SciencesShanghai200031China
| | - Howard Riezman
- Department of Biochemistry, NCCR Chemical Biology, University of Geneva Geneva 1205 Switzerland
| |
Collapse
|
6
|
Qiu D, Gu C, Liu G, Ritter K, Eisenbeis VB, Bittner T, Gruzdev A, Seidel L, Bengsch B, Shears SB, Jessen HJ. Capillary electrophoresis mass spectrometry identifies new isomers of inositol pyrophosphates in mammalian tissues. Chem Sci 2023; 14:658-667. [PMID: 36741535 PMCID: PMC9847636 DOI: 10.1039/d2sc05147h] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Technical challenges have to date prevented a complete profiling of the levels of myo-inositol phosphates (InsPs) and pyrophosphates (PP-InsPs) in mammalian tissues. Here, we have deployed capillary electrophoresis mass spectrometry to identify and record the levels of InsPs and PP-InsPs in several tissues obtained from wild type mice and a newly created PPIP5K2 knockout strain. We observe that the mouse colon harbours unusually high levels of InsPs and PP-InsPs. Additionally, the PP-InsP profile is considerably more complex than previously reported for animal cells: using chemically synthesized internal stable isotope references and high-resolution mass spectra, we characterize two new PP-InsP isomers as 4/6-PP-InsP5 and 2-PP-InsP5. The latter has not previously been described in nature. The analysis of feces and the commercial mouse diet suggests that the latter is one potential source of noncanonical isomers in the colon. However, we also identify both molecules in the heart, indicating unknown synthesis pathways in mammals. We also demonstrate that the CE-MS method is sensitive enough to measure PP-InsPs from patient samples such as colon biopsies and peripheral blood mononuclear cells (PBMCs). Strikingly, PBMCs also contain 4/6-PP-InsP5 and 2-PP-InsP5. In summary, our study substantially expands PP-InsP biology in mammals.
Collapse
Affiliation(s)
- Danye Qiu
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg79104FreiburgGermany,CIBSS – Centre for Integrative Biological Signaling Studies, University of FreiburgGermany
| | - Chunfang Gu
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of HealthResearch Triangle ParkNC27709USA
| | - Guizhen Liu
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg79104FreiburgGermany
| | - Kevin Ritter
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg79104FreiburgGermany
| | - Verena B. Eisenbeis
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg79104FreiburgGermany
| | - Tamara Bittner
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg79104FreiburgGermany
| | - Artiom Gruzdev
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of HealthResearch Triangle ParkNC27709USA
| | - Lea Seidel
- CIBSS – Centre for Integrative Biological Signaling Studies, University of FreiburgGermany,Clinic for Internal Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of FreiburgFreiburgGermany,SGBM – Spemann Graduate School of Biology and Medicine, University of FreiburgGermany
| | - Bertram Bengsch
- CIBSS – Centre for Integrative Biological Signaling Studies, University of FreiburgGermany,Clinic for Internal Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Stephen B. Shears
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of HealthResearch Triangle ParkNC27709USA
| | - Henning J. Jessen
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg79104FreiburgGermany,CIBSS – Centre for Integrative Biological Signaling Studies, University of FreiburgGermany
| |
Collapse
|
7
|
Nguyen Trung M, Furkert D, Fiedler D. Versatile signaling mechanisms of inositol pyrophosphates. Curr Opin Chem Biol 2022; 70:102177. [PMID: 35780751 DOI: 10.1016/j.cbpa.2022.102177] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 01/03/2023]
Abstract
Inositol pyrophosphates (PP-InsPs) constitute a group of highly charged messengers, which regulate central biological processes in health and disease, such as cellular phosphate and general energy homeostasis. Deciphering the molecular mechanisms underlying PP-InsP-mediated signaling remains a challenge due to the unique properties of these molecules, the different modes of action they can access, and a somewhat limited chemical and analytical toolset. Herein, we summarize the most recent mechanistic insights into PP-InsP signaling, which illustrate our progress in connecting mechanism and function of PP-InsPs.
Collapse
Affiliation(s)
- Minh Nguyen Trung
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| |
Collapse
|
8
|
Jessen HJ, Dürr-Mayer T, Haas TM, Ripp A, Cummins CC. Lost in Condensation: Poly-, Cyclo-, and Ultraphosphates. Acc Chem Res 2021; 54:4036-4050. [PMID: 34648267 DOI: 10.1021/acs.accounts.1c00370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Much like linear, branched, and cyclic alkanes, condensed phosphates exist as linear, branched, and cyclic structures. Inasmuch as alkanes are the cornerstone of organic chemistry, generating an inexplorably large chemical space, a comparable richness in structures can be expected for condensed phosphates, as also for them the concepts of isomerism apply. Little of their chemical space has been charted, and only a few different synthesis methods are available to construct isomers of condensed phosphates. Here, we will discuss the application of phosphoramidites with one, two, or three P-N bonds that can be substituted selectively to access different condensed phosphates in a highly controllable manner. Work directed toward the further exploration of this chemical space will contribute to our understanding of the fundamental chemistry of phosphates.In biology, condensed phosphates play important roles in the form of inorganic representatives, such as pyrophosphate, polyphosphate, and cyclophosphate, and also in conjugation with organic molecules, such as esters and amidates. Phosphorus is one of the six biogenic elements; the omnipresence of phosphates in biology points toward their critical involvement in prebiotic chemistry and the emergence of life itself. Indeed, it is hard to imagine any life without phosphate. It is therefore desirable to achieve through synthesis a better understanding of the chemistry of the condensed phosphates to further explore their biology.There is a rich but underexplored chemistry of the family of condensed phosphates per se, which is further diversified by their conjugation to important biomolecules and metabolites. For example, proteins may be polyphosphorylated on lysins, a very recent addition to posttranslational modifications. Adenosine triphosphate, as a representative of the small molecules, on the other hand, is well known as the universal cellular energy currency. In this Account, we will describe our motivations and our approaches to construct, modify, and synthetically apply different representatives of the condensed phosphates. We also describe the generation of hybrids composed of cyclic and linear structures of different oxidation states and develop them into reagents of great utility. A pertinent example is provided in the step-economic synthesis of the magic spot nucleotides (p)ppGpp. Finally, we provide an overview of 31P NMR data collected over the years in our laboratories, helping as a waymarker for not getting lost in condensation.
Collapse
Affiliation(s)
- Henning J. Jessen
- Department of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT − Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Tobias Dürr-Mayer
- Department of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Thomas M. Haas
- Department of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Alexander Ripp
- Department of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT − Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Christopher C. Cummins
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, United States
| |
Collapse
|
9
|
Zhang X, Li N, Zhang J, Zhang Y, Yang X, Luo Y, Zhang B, Xu Z, Zhu Z, Yang X, Yan Y, Lin B, Wang S, Chen D, Ye C, Ding Y, Lou M, Wu Q, Hou Z, Zhang K, Liang Z, Wei A, Wang B, Wang C, Jiang N, Zhang W, Xiao G, Ma C, Ren Y, Qi X, Han W, Wang C, Rao F. 5-IP 7 is a GPCR messenger mediating neural control of synaptotagmin-dependent insulin exocytosis and glucose homeostasis. Nat Metab 2021; 3:1400-1414. [PMID: 34663975 DOI: 10.1038/s42255-021-00468-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 09/02/2021] [Indexed: 11/08/2022]
Abstract
5-diphosphoinositol pentakisphosphate (5-IP7) is a signalling metabolite linked to various cellular processes. How extracellular stimuli elicit 5-IP7 signalling remains unclear. Here we show that 5-IP7 in β cells mediates parasympathetic stimulation of synaptotagmin-7 (Syt7)-dependent insulin release. Mechanistically, vagal stimulation and activation of muscarinic acetylcholine receptors triggers Gαq-PLC-PKC-PKD-dependent signalling and activates IP6K1, the 5-IP7 synthase. Whereas both 5-IP7 and its precursor IP6 compete with PIP2 for binding to Syt7, Ca2+ selectively binds 5-IP7 with high affinity, freeing Syt7 to enable fusion of insulin-containing vesicles with the cell membrane. β-cell-specific IP6K1 deletion diminishes insulin secretion and glucose clearance elicited by muscarinic stimulation, whereas mice carrying a phosphorylation-mimicking, hyperactive IP6K1 mutant display augmented insulin release, congenital hyperinsulinaemia and obesity. These phenotypes are absent in mice lacking Syt7. Our study proposes a new conceptual framework for inositol pyrophosphate physiology in which 5-IP7 acts as a GPCR second messenger at the interface between peripheral nervous system and metabolic organs, transmitting Gq-coupled GPCR stimulation to unclamp Syt7-dependent, and perhaps other, exocytotic events.
Collapse
Affiliation(s)
- Xiaozhe Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Na Li
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jun Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yanshen Zhang
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaoli Yang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yifan Luo
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Bobo Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhixue Xu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhenhua Zhu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xiuyan Yang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuan Yan
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Biao Lin
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Da Chen
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Caichao Ye
- Department of Physics and Shenzhen Institute for Quantum Science & Technology, Southern University of Science and Technology, Shenzhen, China
| | - Yan Ding
- National Institute of Biological Sciences, Beijing, China
| | - Mingliang Lou
- National Institute of Biological Sciences, Beijing, China
| | - Qingcui Wu
- National Institute of Biological Sciences, Beijing, China
| | - Zhanfeng Hou
- National Institute of Biological Sciences, Beijing, China
| | - Keren Zhang
- BGI-Shenzhen, Beishan Industrial Zone 11th building, Shenzhen, China
| | - Ziming Liang
- Department of Hepatic Surgery, the Third People's Hospital of Shenzhen and the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Anqi Wei
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Bianbian Wang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Changhe Wang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Nan Jiang
- Department of Hepatic Surgery, the Third People's Hospital of Shenzhen and the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Wenqing Zhang
- Department of Physics and Shenzhen Institute for Quantum Science & Technology, Southern University of Science and Technology, Shenzhen, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Ren
- BGI-Shenzhen, Beishan Industrial Zone 11th building, Shenzhen, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, Beijing, China
| | - Weiping Han
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore, Singapore
- Center for Neuro-Metabolism and Regeneration Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Chao Wang
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Feng Rao
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
10
|
Couto D, Richter A, Walter H, Furkert D, Hothorn M, Fiedler D. Using Biotinylated myo-Inositol Hexakisphosphate to Investigate Inositol Pyrophosphate-Protein Interactions with Surface-Based Biosensors. Biochemistry 2021; 60:2739-2748. [PMID: 34499474 DOI: 10.1021/acs.biochem.1c00497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Inositol pyrophosphates (PP-InsPs) are highly phosphorylated molecules that have emerged as central nutrient messengers in eukaryotic organisms. They can bind to structurally diverse target proteins to regulate biological functions, such as protein-protein interactions. PP-InsPs are strongly negatively charged and interact with highly basic surface patches in proteins, making their quantitative biochemical analysis challenging. Here, we present the synthesis of biotinylated myo-inositol hexakisphosphates and their application in surface plasmon resonance and grating-coupled interferometry assays, to enable the rapid identification, validation, and kinetic characterization of InsP- and PP-InsP-protein interactions.
Collapse
Affiliation(s)
- Daniel Couto
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Annika Richter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Henriette Walter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| |
Collapse
|
11
|
Ma J, Ripp A, Wassy D, Dürr T, Qiu D, Häner M, Haas T, Popp C, Bezold D, Richert S, Esser B, Jessen HJ. Thiocoumarin Caged Nucleotides: Synthetic Access and Their Photophysical Properties. Molecules 2020; 25:E5325. [PMID: 33203096 PMCID: PMC7696096 DOI: 10.3390/molecules25225325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/07/2020] [Accepted: 11/13/2020] [Indexed: 11/21/2022] Open
Abstract
Photocages have been successfully applied in cellular signaling studies for the controlled release of metabolites with high spatio-temporal resolution. Commonly, coumarin photocages are activated by UV light and the quantum yields of uncaging are relatively low, which can limit their applications in vivo. Here, syntheses, the determination of the photophysical properties, and quantum chemical calculations of 7-diethylamino-4-hydroxymethyl-thiocoumarin (thio-DEACM) and caged adenine nucleotides are reported and compared to the widely used 7-diethylamino-4-hydroxymethyl-coumarin (DEACM) caging group. In this comparison, thio-DEACM stands out as a phosphate cage with improved photophysical properties, such as red-shifted absorption and significantly faster photolysis kinetics.
Collapse
Affiliation(s)
- Jiahui Ma
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Alexander Ripp
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Daniel Wassy
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Tobias Dürr
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Danye Qiu
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Markus Häner
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Thomas Haas
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Christoph Popp
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Dominik Bezold
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Sabine Richert
- Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany;
| | - Birgit Esser
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Henning J. Jessen
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
12
|
Shears SB, Wang H. Metabolism and Functions of Inositol Pyrophosphates: Insights Gained from the Application of Synthetic Analogues. Molecules 2020; 25:E4515. [PMID: 33023101 PMCID: PMC7583957 DOI: 10.3390/molecules25194515] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/17/2022] Open
Abstract
Inositol pyrophosphates (PP-InsPs) comprise an important group of intracellular, diffusible cellular signals that a wide range of biological processes throughout the yeast, plant, and animal kingdoms. It has been difficult to gain a molecular-level mechanistic understanding of the actions of these molecules, due to their highly phosphorylated nature, their low levels, and their rapid metabolic turnover. More recently, these obstacles to success are being surmounted by the chemical synthesis of a number of insightful PP-InsP analogs. This review will describe these analogs and will indicate the important chemical and biological information gained by using them.
Collapse
Affiliation(s)
- Stephen B. Shears
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | | |
Collapse
|