1
|
Gallo A, Mansueto S, Emendato A, Fusco G, De Simone A. α-Synuclein and Mitochondria: Probing the Dynamics of Disordered Membrane-protein Regions Using Solid-State Nuclear Magnetic Resonance. JACS AU 2024; 4:2372-2380. [PMID: 38938811 PMCID: PMC11200226 DOI: 10.1021/jacsau.4c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
The characterization of intrinsically disordered regions (IDRs) in membrane-associated proteins is of crucial importance to elucidate key biochemical processes, including cellular signaling, drug targeting, or the role of post-translational modifications. These protein regions pose significant challenges to powerful analytical techniques of molecular structural investigations. We here applied magic angle spinning solid-state nuclear magnetic resonance to quantitatively probe the structural dynamics of IDRs of membrane-bound α-synuclein (αS), a disordered protein whose aggregation is associated with Parkinson's disease (PD). We focused on the mitochondrial binding of αS, an interaction that has functional and pathological relevance in neuronal cells and that is considered crucial for the underlying mechanisms of PD. Transverse and longitudinal 15N relaxation revealed that the dynamical properties of IDRs of αS bound to the outer mitochondrial membrane (OMM) are different from those of the cytosolic state, thus indicating that regions generally considered not to interact with the membrane are in fact affected by the spatial proximity with the lipid bilayer. Moreover, changes in the composition of OMM that are associated with lipid dyshomeostasis in PD were found to significantly perturb the topology and dynamics of IDRs in the membrane-bound state of αS. Taken together, our data underline the importance of characterizing IDRs in membrane proteins to achieve an accurate understanding of the role that these elusive protein regions play in numerous biochemical processes occurring on cellular surfaces.
Collapse
Affiliation(s)
- Angelo Gallo
- Department
of Chemistry, University of Turin, Via Giuria 7, Turin 10124, Italy
| | - Silvia Mansueto
- Department
of Pharmacy, University of Naples, Via Montesano 49, Naples 80131, Italy
| | - Alessandro Emendato
- Department
of Pharmacy, University of Naples, Via Montesano 49, Naples 80131, Italy
| | - Giuliana Fusco
- Department
of Pharmacy, University of Naples, Via Montesano 49, Naples 80131, Italy
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Alfonso De Simone
- Department
of Pharmacy, University of Naples, Via Montesano 49, Naples 80131, Italy
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| |
Collapse
|
2
|
Martinez Pomier K, Ahmed R, Huang J, Melacini G. Inhibition of toxic metal-alpha synuclein interactions by human serum albumin. Chem Sci 2024; 15:3502-3515. [PMID: 38455030 PMCID: PMC10915811 DOI: 10.1039/d3sc06285f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/12/2024] [Indexed: 03/09/2024] Open
Abstract
Human serum albumin (HSA), the most abundant protein in plasma and cerebrospinal fluid, not only serves as a crucial carrier of various exogenous and endogenous ligands but also modulates the aggregation of amyloidogenic proteins, including alpha synuclein (αSyn), which is associated with Parkinson's disease and other α-synucleinopathies. HSA decreases αSyn toxicity through the direct binding to monomeric and oligomeric αSyn species. However, it is possible that HSA also sequesters metal ions that otherwise promote aggregation. Cu(ii) ions, for example, enhance αSyn fibrillization in vitro, while also leading to neurotoxicity by generating reactive oxygen species (ROS). However, it is currently unclear if and how HSA affects Cu(ii)-binding to αSyn. Using an integrated set of NMR experiments, we show that HSA is able to chelate Cu(ii) ions from αSyn more efficiently than standard chelators such as EDTA, revealing an unexpected cooperativity between the HSA metal-binding sites. Notably, fatty acid binding to HSA perturbs this cooperativity, thus interfering with the sequestration of Cu(ii) ions from αSyn. We also observed that glycation of HSA diminished Cu(ii)-binding affinity, while largely preserving the degree of cooperativity between the HSA metal-binding sites. Additionally, our results show that Cu(ii)-binding to HSA stabilizes the interactions of HSA with αSyn primarily at two different regions, i.e. the N-terminus, Tyr 39 and the majority of the C-terminus. Our study not only unveils the effect of fatty acid binding and age-related posttranslational modifications, such as glycation, on the neuroprotective mechanisms of HSA, but also highlights the potential of αSyn as a viable NMR-based sensor to investigate HSA-metal interactions.
Collapse
Affiliation(s)
| | - Rashik Ahmed
- Department of Chemistry and Chemical Biology, McMaster University ON L8S 4M1 Canada
| | - Jinfeng Huang
- Department of Chemistry and Chemical Biology, McMaster University ON L8S 4M1 Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University ON L8S 4M1 Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton ON L8S 4M1 Canada
| |
Collapse
|
3
|
Huang J, Ahmed R, Akimoto M, Martinez Pomier K, Melacini G. Early-Onset Parkinson Mutation Remodels Monomer-Fibril Interactions to Allosterically Amplify Synuclein's Amyloid Cascade. JACS AU 2023; 3:3485-3493. [PMID: 38155658 PMCID: PMC10751762 DOI: 10.1021/jacsau.3c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/30/2023]
Abstract
Alpha synuclein (αS) aggregates are the main component of Lewy bodies (LBs) associated with Parkinson's disease (PD). A longstanding question about αS and PD pertains to the autosomal dominant E46K αS mutant, which leads to the early onset of PD and LB dementias. The E46K mutation not only promotes αS aggregation but also stabilizes αS monomers in "closed" conformers, which are compact and aggregation-incompetent. Hence, the mechanism of action of the E46K mutation is currently unclear. Here, we show that αS monomers harboring the E46K mutation exhibit more extensive interactions with fibrils compared to those of WT. Such monomer-fibril interactions are sufficient to allosterically drive transitions of αS monomers from closed to open conformations, enabling αS aggregation. We also show that E46K promotes head-to-tail monomer-monomer interactions in early self-association events. This multipronged mechanism provides a new framework to explain how the E46K mutation and possibly other αS variants trigger early-onset PD.
Collapse
Affiliation(s)
- Jinfeng Huang
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Rashik Ahmed
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Madoka Akimoto
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Karla Martinez Pomier
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Giuseppe Melacini
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| |
Collapse
|
4
|
Nirwal S, Saravanan P, Bajpai A, Meshram VD, Raju G, Deeksha W, Prabusankar G, Patel BK. In Vitro Interaction of a C-Terminal Fragment of TDP-43 Protein with Human Serum Albumin Modulates Its Aggregation. J Phys Chem B 2022; 126:9137-9151. [PMID: 36326054 DOI: 10.1021/acs.jpcb.2c04469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An increased level of naturally occurring anti-TDP-43 antibodies was observed in the serum and cerebrospinal fluid (CSF) of amyotrophic lateral sclerosis patients. Human serum albumin (HSA), the most abundant protein in blood plasma and CSF, is found to interact with pathological proteins like Aβ and α-synuclein. Therefore, we examined the effect on the in vitro aggregation of a C-terminal fragment of TDP-43 in the presence of HSA. We found that the lag phase in TDP-432C aggregation is abrogated in the presence of HSA, but there is an overall decreased aggregation as examined by thioflavin-T fluorescence spectroscopy and microscopy. An early onset of TDP-432C oligomer formation in the presence of HSA was observed using atomic force microscopy and transmission electron microscopy. Also, a known chemical inhibitor of TDP-432Caggregation, AIM4, abolishes the HSA-induced early formation of TDP-432C oligomers. Notably, the aggregates of TDP-432C formed in the presence of HSA are more stable against sarkosyl detergent. Using affinity copurification, we observed that HSA can bind to TDP-432C, and biolayer interferometry further supported their physical interaction and suggested the binding affinity to be in sub-micromolar range. Taken together, the data support that HSA can interact with TDP-432C in vitro and affect its aggregation.
Collapse
Affiliation(s)
- Sadhana Nirwal
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Preethi Saravanan
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Akarsh Bajpai
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Vini D Meshram
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Gembali Raju
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi Sangareddy, Telangana 502284, India
| | - Waghela Deeksha
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Ganesan Prabusankar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi Sangareddy, Telangana 502284, India
| | - Basant K Patel
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| |
Collapse
|
5
|
Abstract
The role of albumin in Parkinson disease (PD) is not well understood, our study will investigate the association between the serum albumin level and risk of dementia, motor impairment, as well as survival outcome in PD. Data were obtained from the publicly available dataset in the DRYAD database (https://datadryad.org/). The original prospective study enrolled patients with PD from a single center in Japan between March 2004 and November 2007. Due to missing values, 242 and 274 participants were included in the study, in which we aimed to, respectively, analyze the relationship between serum albumin and cognitive function as well as motor impairment; additionally, 264 participants were included to assess the association between baseline serum albumin levels and risk of PD-related death with a median follow-up of 5.24 years. Compared to patients of the low tertile of albumin levels, Mini-Mental State Examination (MMSE) of patients of middle tertile increased 2.09 [95% confidence interval (CI) (0.45, 3.73), P = .013], independent of age, sex, PD duration, modified Hoehn-Yahr (mHY) stage, C-reactive protein (CRP) level, and use of nonsteroidal anti-inflammatory drugs (NSAIDs). Further analysis revealed a positive curvilinear association between albumin and MMSE, with cutoff values of 3.9. As concentration serum albumin increased, the risk of severe motor impairment was grown [odds ratio (OR) 0.34 (95% CI 0.14,0.8), P = .013] after adjustment by age, sex, PD duration, MMSE scores, CRP level, and use of NSAIDs. Albumin levels increased per unit of mg/dL, and the risk of PD-related death reduced 0.74-fold with 95% CI (0.15, 0.86) (P = .021), independent of age, sex, PD disease duration, mHY stage, CRP levels, use of NSAIDs, and MMSE. Higher serum albumin levels were significantly association with the better cognitive function when albumin was <3.9 mg/dL, and played a protective role in severe motor impairment and PD-related death.
Collapse
Affiliation(s)
- Shujun Sun
- Department of Neurology, The Frist People’s Hospital of Changde City, Changde, Hunan 415003, China
- * Correspondence: Shujun Sun, Department of Neurology, The Frist People’s Hospital of Changde City, Changde, Hunan 415003, China (e-mail: )
| | - Yiyong Wen
- Department of General Practice, The Frist People’s Hospital of Changde City, Changde, Hunan 415003, China
| | - Yandeng Li
- Department of Neurology, The Frist People’s Hospital of Changde City, Changde, Hunan 415003, China
| |
Collapse
|
6
|
Navarro-Paya C, Sanz-Hernandez M, De Simone A. Plasticity of Membrane Binding by the Central Region of α-Synuclein. Front Mol Biosci 2022; 9:857217. [PMID: 35782868 PMCID: PMC9240306 DOI: 10.3389/fmolb.2022.857217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/02/2022] [Indexed: 12/20/2022] Open
Abstract
Membrane binding by α-synuclein (αS), an intrinsically disordered protein whose aggregation is associated with Parkinson’s disease, is a key step in determining its biological properties under both physiological and pathological conditions. Upon membrane interaction, αS retains a partial level of structural disorder despite acquiring α-helical content. In the membrane-bound state, the equilibrium between the helical-bound and disordered-detached states of the central region of αS (residues 65–97) has been involved in a double-anchor mechanism that promotes the clustering of synaptic vesicles. Herein, we investigated the underlying molecular bases of this equilibrium using enhanced coarse-grained molecular dynamics simulations. The results enabled clarifying the conformational dependencies of the membrane affinity by this protein region that, in addition to playing a role in physiological membrane binding, has key relevance for the aggregation of αS and the mechanisms of the toxicity of the resulting assemblies.
Collapse
Affiliation(s)
- Carlos Navarro-Paya
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- *Correspondence: Alfonso De Simone,
| |
Collapse
|
7
|
Jin Y, Yu G, Yuwen T, Gao D, Wang G, Zhou Y, Jiang B, Zhang X, Li C, He L, Liu M. Molecular Insight into the Extracellular Chaperone Serum Albumin in Modifying the Folding Free Energy Landscape of Client Proteins. J Phys Chem Lett 2022; 13:2711-2717. [PMID: 35311276 DOI: 10.1021/acs.jpclett.2c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Serum albumin (SA) is the most abundant extracellular chaperone protein presenting in various bodily fluids. Recently, several studies have revealed molecular mechanisms of SA in preventing the amyloid formation of amyloidogenic proteins. However, our insight into the mechanism SA employed to sense and regulate the folding states of full-length native proteins is still limited. Addressing this question is technically challenging due to the intrinsic dynamic nature of both chaperones and clients. Here using nuclear magnetic resonance spectroscopy, we show SA modifies the folding free energy landscape of clients and subsequently alters the equilibria between different compact conformations of its clients, resulting in the increased populations of excited states of client proteins. This modulation of client protein conformation by SA can change the client protein activity in a way that cannot be interpreted on the basis of its ground state structure; therefore, our work provides an alternative insight of SA in retaining a balanced functional proteome.
Collapse
Affiliation(s)
- Yangzhuoyue Jin
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gangjin Yu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tairan Yuwen
- Department of Pharmaceutical Analysis & State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100871, China
| | - Dawei Gao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Hebei 066004, China
| | - Guan Wang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilin Zhou
- College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Bin Jiang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Zhang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Conggang Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lichun He
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Optics Valley Laboratory, Hubei 430074, China
| |
Collapse
|
8
|
Interactions of intrinsically disordered proteins with the unconventional chaperone human serum albumin: From mechanisms of amyloid inhibition to therapeutic opportunities. Biophys Chem 2022; 282:106743. [PMID: 35093643 DOI: 10.1016/j.bpc.2021.106743] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 12/29/2022]
Abstract
Human Serum Albumin (HSA), the most abundant protein in plasma, serves a diverse repertoire of biological functions including regulation of oncotic pressure and redox potential, transport of serum solutes, but also chaperoning of misfolded proteins. Here we review how HSA interacts with a wide spectrum of client proteins including intrinsically disordered proteins (IDPs) such as Aβ, the islet amyloid peptide (IAPP), alpha synuclein and stressed globular proteins such as insulin. The comparative analysis of the HSA chaperone - client interactions reveals that the amyloid-inhibitory function of HSA arises from at least four emerging mechanisms. Two mechanisms (the monomer stabilizer model and the monomer competitor model) involve the direct binding of HSA to either IDP monomers or oligomers, while other mechanisms (metal chelation and membrane protection) rely on the indirect modulation by HSA of other factors that drive IDP aggregation. While HSA is not the only extracellular chaperone, given its abundance, HSA is likely to account for a significant fraction of the chaperoning effects in plasma, thus opening new therapeutic opportunities in the context of the peripheral sink hypothesis.
Collapse
|
9
|
Ahmed R, Huang J, Lifshitz R, Martinez Pomier K, Melacini G. Structural determinants of the interactions of catechins with Aβ oligomers and lipid membranes. J Biol Chem 2021; 298:101502. [PMID: 34929173 PMCID: PMC8800114 DOI: 10.1016/j.jbc.2021.101502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 02/08/2023] Open
Abstract
The aberrant self-assembly of intrinsically disordered proteins (IDPs) into soluble oligomers and their interactions with biological membranes underlie the pathogenesis of numerous neurodegenerative diseases, including Alzheimer's disease. Catechins have emerged as useful tools to reduce the toxicity of IDP oligomers by modulating their interactions with membranes. However, the structural determinants of catechin binding to IDP oligomers and membranes remain largely elusive. Here, we assemble a catechin library by combining several naturally occurring chemical modifications and, using a coupled NMR-statistical approach, we map at atomic resolution the interactions of such library with the Alzheimer's-associated amyloid-beta (Aβ) oligomers and model membranes. Our results reveal multiple catechin affinity drivers and show that the combination of affinity-reducing covalent changes may lead to unexpected net gains in affinity. Interestingly, we find that the positive cooperativity is more prevalent for Aβ oligomers than membrane binding, and that the determinants underlying catechin recognition by membranes are markedly different from those dissected for Aβ oligomers. Notably, we find that the unanticipated positive cooperativity arises from the critical regulatory role of the gallate catechin moiety, which recruits previously disengaged substituents into the binding interface and leads to an overall greater compaction of the receptor-bound conformation. Overall, the previously elusive structural attributes mapped here provide an unprecedented foundation to establish structure-activity relationships of catechins.
Collapse
Affiliation(s)
- Rashik Ahmed
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Jinfeng Huang
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Romi Lifshitz
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Karla Martinez Pomier
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada,For correspondence: Giuseppe Melacini
| |
Collapse
|
10
|
Zhao M, Guo C. Multipronged Regulatory Functions of Serum Albumin in Early Stages of Amyloid-β Aggregation. ACS Chem Neurosci 2021; 12:2409-2420. [PMID: 34160192 DOI: 10.1021/acschemneuro.1c00150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human serum albumin (HSA) is a major interacting-partner of Alzheimer's amyloid-β (Aβ) peptide in the plasma and has emerged as a promising therapeutic target. HSA inhibits Aβ fibrillization, but the underlying molecular mechanism is not well elucidated. In this work, we investigated the role of HSA in the early stages of Aβ aggregation by simulating the binding process of multiple Aβ monomers and protofibrils to HSA with extensive molecular dynamics simulations. HSA could simultaneously trap multiple Aβ monomers and accommodate the formation of nonfibrillar Aβ oligomers after binding. In particular, domains I and III show stronger binding capacities and hold preferable interaction sites for oligomers. Consequently, HSA prevents the formation of fibrillar oligomers in water, thus interfering with the nucleation process. On the other aspect, when protofibrils are preformed, HSA tends to block the β-strand spanning the central hydrophobic core located at the protofibril end, preventing the addition of monomers to protofibrils. Furthermore, Aβ protofibril structures are severely disrupted both globally and locally. Thus, further growth of protofibrils to fibrils is impeded by HSA. Our results collectively indicate that HSA performs multipronged regulatory functions in the early stages of Aβ aggregation. Our work advances the understanding of the amyloid inhibition of Aβ by HSA and provides theoretical guidance for developing rational therapies of Alzheimer's disease.
Collapse
Affiliation(s)
- Mengjuan Zhao
- Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Cong Guo
- Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
11
|
Ahmed R, Huang J, Akimoto M, Shi T, Melacini G. Atomic Resolution Map of Hierarchical Self-Assembly for an Amyloidogenic Protein Probed through Thermal 15N-R 2 Correlation Matrices. J Am Chem Soc 2021; 143:4668-4679. [PMID: 33733753 DOI: 10.1021/jacs.0c13289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Soluble oligomers formed by amyloidogenic intrinsically disordered proteins are some of the most cytotoxic species linked to neurodegeneration. Due to the transient and heterogeneous nature of such oligomeric intermediates, the underlying self-association events often remain elusive. NMR relaxation measurements sensitive to zero-frequency spectral densities (J(0)), such as the 15N - R2 rates, are ideally suited to map sites of self-association at atomic resolution without the need of exogenous labels. Such experiments exploit the dynamic exchange between NMR visible monomers and slowly tumbling oligomers. However,15N - R2 rates are also sensitive to intrinsic monomer dynamics, and it is often difficult to discern these contributions from those arising from exchange with oligomers. Another challenge pertains to defining a hierarchy of self-association. Here, using the archetypical amyloidogenic protein alpha synuclein (αS), we show that the temperature-dependence of 15N - R2 effectively identifies self-association sites with reduced bias from internal dynamics. The key signature of the residues involved in self-association is a nonlinear temperature-dependence of 15N - R2 with a positive ΔR2/ΔT slope. These two hallmarks are systematically probed through a thermal R2 correlation matrix, from which the network of residues involved in self-association as well as the hierarchy of αS self-association sites is extracted through agglomerative clustering. We find that aggregation is initiated by residues within the NAC region that is solvent inaccessible in αS fibrils and eventually extends to the N-terminal segment harboring familial PD mutations. These hierarchical self-association maps help dissect the essential drivers of oligomerization and reveal how amyloid inhibitors affect oligomer formation.
Collapse
Affiliation(s)
- Rashik Ahmed
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton ON L8S4M1, Canada
| | - Jinfeng Huang
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton ON L8S4M1, Canada
| | - Madoka Akimoto
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton ON L8S4M1, Canada
| | - Tongyu Shi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton ON L8S4M1, Canada
| | - Giuseppe Melacini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton ON L8S4M1, Canada.,Department of Chemistry and Chemical Biology, McMaster University, Hamilton ON L8S4M1, Canada
| |
Collapse
|