1
|
Motornov V, Ackermann L. Well-Defined Highly-Coordinated Copper(III) Iodide and Pincer Tris(trifluoromethyl)copper Complexes. Chemistry 2024; 30:e202401791. [PMID: 38976449 DOI: 10.1002/chem.202401791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Copper(III) iodide and bromide complexes representing a unique combination of highly-coordinated metal and soft polarizable anions were synthesized and fully characterized, including X-ray crystallography. Ligand substitution in well-defined highly-coordinated copper complex PyCu(CF3)3 with pincer ligands was achieved to give formally octahedral copper(III) complexes.
Collapse
Affiliation(s)
- Vladimir Motornov
- Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, Göttingen, 37077, Germany
| | - Lutz Ackermann
- Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, Göttingen, 37077, Germany
| |
Collapse
|
2
|
Lai J, Xiao X, Shao S, Wang S, Kan J, Su W. Photoinduced Transition-Metal and External Photosensitizer Free Benzylic Fluorination of Unactivated Alkylarenes. Chemistry 2024; 30:e202401669. [PMID: 38970448 DOI: 10.1002/chem.202401669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/20/2024] [Accepted: 07/05/2024] [Indexed: 07/08/2024]
Abstract
A green and efficient protocol for the direct monofluorination of unactivated alkylarenes under visible-light irradiation has been developed, without any extraneous transition-metal catalysts or photosensitizers. This method is compatible with a broad spectrum of functional groups, including carboxylic and alcoholic scaffolds, under mild reaction conditions. Gram-scale synthesis of a fluorine-containing pharmaceutical analogue was successfully executed, underscoring the strategy's reliability and practicality. Furthermore, mechanistic studies suggest that a single-electron transfer mechanism might be responsible for the generation of the benzylic radicals in initiation step.
Collapse
Affiliation(s)
- Jiawen Lai
- College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou Fujian, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou Fujian, P. R. China
| | - Xuan Xiao
- College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou Fujian, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou Fujian, P. R. China
| | - Shixing Shao
- College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou Fujian, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou Fujian, P. R. China
| | - Shuping Wang
- College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou Fujian, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou Fujian, P. R. China
| | - Jian Kan
- College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou Fujian, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou Fujian, P. R. China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou Fujian, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou Fujian, P. R. China
| |
Collapse
|
3
|
Zhao Q, Chen Z, Soler J, Chen X, Rui J, Ji NT, Yu QE, Yang Y, Garcia-Borràs M, Huang X. Engineering non-haem iron enzymes for enantioselective C(sp3)-F bond formation via radical fluorine transfer. NATURE SYNTHESIS 2024; 3:958-966. [PMID: 39364063 PMCID: PMC11446476 DOI: 10.1038/s44160-024-00507-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/21/2024] [Indexed: 10/05/2024]
Abstract
In recent years there has been a surge in the development of methods for the synthesis of organofluorine compounds. However, enzymatic methods for C-F bond formation have been limited to nucleophilic fluoride substitution. Here, we report the incorporation of iron-catalysed radical fluorine transfer, a reaction mechanism that is not used in naturally occurring enzymes, into enzymatic catalysis for the development of biocatalytic enantioselective C(sp 3)-F bond formation. Using this strategy, we repurposed (S)-2-hydroxypropylphosphonate epoxidase from Streptomyces viridochromogenes (SvHppE) to catalyse an N-fluoroamide directed C(sp 3)-H fluorination. Directed evolution has enabled SvHppE to be optimized, forming diverse chiral benzylic fluoride products with turnover numbers of up to 180 and with excellent enantiocontrol (up to 94% e.e.). Mechanistic investigations showed that the N-F bond activation is the rate-determining step, and the strong preference for fluorination in the presence of excess NaN3 can be attributed to the spatial proximity of the carbon-centered radical to the iron-bound fluoride.
Collapse
Affiliation(s)
- Qun Zhao
- School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Zhenhong Chen
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jordi Soler
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Xiahe Chen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jinyan Rui
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Nathan Tianlin Ji
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Yunfang Yang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Marc Garcia-Borràs
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Xiongyi Huang
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
4
|
Wang Y, Zhou Y, Sun W, Wang X, Yao J, Li H. Identifying Radical Pathways for Cu(I)/Cu(II) Relay Catalyzed Oxygenation via Online Coupled EPR/UV-Vis/Near-IR Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402890. [PMID: 38810102 PMCID: PMC11304242 DOI: 10.1002/advs.202402890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/11/2024] [Indexed: 05/31/2024]
Abstract
Copper-catalyzed C─H oxygenation has drawn considerable attention in mechanistic studies. However, a comprehensive investigation combining radical pathways with a metal-catalytic cycle is challenged by the intricate organic radicals and metallic intermediates. Herein, an online coupled EPR/UV-vis/near-IR detecting method is developed to simultaneously monitor both reactive radical species and copper complex intermediates during the reaction. Focusing on copper-catalyzed phenol oxygenation with cumene hydroperoxide, the short-lived alkylperoxyl radical (EPR signal at g = 2.0143) as well as the unexpected square planar Cu(II)-alkoxyl radical complex (near-IR signal at 833 nm) are unveiled during the reaction, in addition to the observable phenoxyl radical in EPR, quinone product in UV-vis, and Cu(II) center in EPR. With a comprehensive picture of diverse intermediates evolving over the same timeline, a novel Cu(I)/Cu(II) proposed relay-catalyzed sequential radical pathway. In this sequence, Cu(II) activates hydroperoxide through Cu(II)-OOR into the alkylperoxide radical, while the reaction between Cu(I) and hydroperoxide leads to Cu(II)(•OR)OH with high H-atom abstracting activity. These results provide a thorough understanding of the Cu(I)/Cu(II) relay catalysis for phenol oxygenation, setting the stage for mechanistic investigations into intricate radical reactions promoted by metallic complexes.
Collapse
Affiliation(s)
- Yongtao Wang
- Department of ChemistryZhejiang University866 Yuhangtang RdHangzhou310058China
- Center of Chemistry for Frontier TechnologiesZJU‐NHU United R&D CenterZhejiang University866 Yuhangtang RdHangzhou310058China
| | - Yujia Zhou
- Department of ChemistryZhejiang University866 Yuhangtang RdHangzhou310058China
| | - Wenjing Sun
- Department of ChemistryZhejiang University866 Yuhangtang RdHangzhou310058China
| | - Xinyu Wang
- Department of ChemistryZhejiang University866 Yuhangtang RdHangzhou310058China
| | - Jia Yao
- Department of ChemistryZhejiang University866 Yuhangtang RdHangzhou310058China
- Center of Chemistry for Frontier TechnologiesZJU‐NHU United R&D CenterZhejiang University866 Yuhangtang RdHangzhou310058China
| | - Haoran Li
- Department of ChemistryZhejiang University866 Yuhangtang RdHangzhou310058China
- Center of Chemistry for Frontier TechnologiesZJU‐NHU United R&D CenterZhejiang University866 Yuhangtang RdHangzhou310058China
- State Key Laboratory of Chemical Engineering and College of Chemical and Biological EngineeringZhejiang University866 Yuhangtang RdHangzhou310058China
| |
Collapse
|
5
|
Yang L, Ito R, Sugimoto H, Morimoto Y, Itoh S. Oxidation mechanism of phenols by copper(II)-halide complexes. Chem Commun (Camb) 2024; 60:7586-7589. [PMID: 38949670 DOI: 10.1039/d4cc02483d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The mechanism of oxidation of phenols by tetrahedral copper(II)-halide complexes was investigated to demonstrate that phenols with an electron-withdrawing substituent are oxidized via a proton-transfer/electron-transfer (PTET) mechanism, whereas phenols with an electron-donating substituent involve a concerted proton/electron transfer (CPET) mechanism. The importance of the tetrahedral geometry of the metal centre as well as the effects of the halide ligands of the substrates were explored.
Collapse
Affiliation(s)
- Lan Yang
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.
| | - Rin Ito
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.
| | - Hideki Sugimoto
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.
| | - Yuma Morimoto
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.
| | - Shinobu Itoh
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
6
|
De Tovar J, Leblay R, Wang Y, Wojcik L, Thibon-Pourret A, Réglier M, Simaan AJ, Le Poul N, Belle C. Copper-oxygen adducts: new trends in characterization and properties towards C-H activation. Chem Sci 2024; 15:10308-10349. [PMID: 38994420 PMCID: PMC11234856 DOI: 10.1039/d4sc01762e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/11/2024] [Indexed: 07/13/2024] Open
Abstract
This review summarizes the latest discoveries in the field of C-H activation by copper monoxygenases and more particularly by their bioinspired systems. This work first describes the recent background on copper-containing enzymes along with additional interpretations about the nature of the active copper-oxygen intermediates. It then focuses on relevant examples of bioinorganic synthetic copper-oxygen intermediates according to their nuclearity (mono to polynuclear). This includes a detailed description of the spectroscopic features of these adducts as well as their reactivity towards the oxidation of recalcitrant Csp3 -H bonds. The last part is devoted to the significant expansion of heterogeneous catalytic systems based on copper-oxygen cores (i.e. within zeolite frameworks).
Collapse
Affiliation(s)
- Jonathan De Tovar
- Université Grenoble-Alpes, CNRS, Département de Chimie Moléculaire Grenoble France
| | - Rébecca Leblay
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Institut des Sciences Moléculaires de Marseille Marseille France
| | - Yongxing Wang
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Institut des Sciences Moléculaires de Marseille Marseille France
| | - Laurianne Wojcik
- Université de Brest, Laboratoire de Chimie, Electrochimie Moléculaires et Chimie Analytique Brest France
| | | | - Marius Réglier
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Institut des Sciences Moléculaires de Marseille Marseille France
| | - A Jalila Simaan
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Institut des Sciences Moléculaires de Marseille Marseille France
| | - Nicolas Le Poul
- Université de Brest, Laboratoire de Chimie, Electrochimie Moléculaires et Chimie Analytique Brest France
| | - Catherine Belle
- Université Grenoble-Alpes, CNRS, Département de Chimie Moléculaire Grenoble France
| |
Collapse
|
7
|
Kayne M, Murphy PS, Kwon YM, Lee Y, Jackson TA, Wang D. Generation, Characterization and Reactivity of a High-Valent Mononuclear Cobalt(IV)-Diazide Complex. Chemistry 2024; 30:e202401218. [PMID: 38644346 DOI: 10.1002/chem.202401218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 04/23/2024]
Abstract
High-valent Fe(IV)=O intermediates of metalloenzymes have inspired numerous efforts to generate synthetic analogs to mimic and understand their substrate oxidation reactivities. However, high-valent M(IV) complexes of late transition metals are rare. We have recently reported a novel Co(IV)-dinitrate complex (1-NO3) that activates sp3 C-H bonds up to 87 kcal/mol. In this work, we have shown that the nitrate ligands in 1-NO3 can be replaced by azide, a more basic coordinating base, resulting in the formation of a more potent Co(IV)-diazide species (1-N3) that reacts with substrates (hydrocarbons and phenols) at faster rate constants and activates stronger C-H bonds than the parent complex 1-NO3. We have characterized 1-N3 employing a combination of spectroscopic and computational approaches. Our results clearly show that the coordination of azide leads to the modulation of the Co(IV) electronic structure and the Co(IV/III) redox potential. Together with the higher basicity of azide, these thermodynamic parameters contribute to the higher driving forces of 1-N3 than 1-NO3 for C-H bond activation. Our discoveries are thus insightful for designing more reactive bio-inspired high-valent late transition metal complexes for activating inert aliphatic hydrocarbons.
Collapse
Affiliation(s)
- Michael Kayne
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana, 59812, United States
| | - Patrick S Murphy
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas, 66045, United States
| | - Yubin M Kwon
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana, 59812, United States
| | - Yuri Lee
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas, 66045, United States
| | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas, 66045, United States
| | - Dong Wang
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana, 59812, United States
| |
Collapse
|
8
|
Wojdyla Z, Srnec M. Radical ligand transfer: mechanism and reactivity governed by three-component thermodynamics. Chem Sci 2024; 15:8459-8471. [PMID: 38846394 PMCID: PMC11151871 DOI: 10.1039/d4sc01507j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/19/2024] [Indexed: 06/09/2024] Open
Abstract
Here, we demonstrate that the relationship between reactivity and thermodynamics in radical ligand transfer chemistry can be understood if this chemistry is dissected as concerted ion-electron transfer (cIET). Namely, we investigate radical ligand transfer reactions from the perspective of thermodynamic contributions to the reaction barrier: the diagonal effect of the free energy of the reaction, and the off-diagonal effect resulting from asynchronicity and frustration, which we originally derived from the thermodynamic cycle for concerted proton-electron transfer (cPET). This study on the OH transfer reaction shows that the three-component thermodynamic model goes beyond cPET chemistry, successfully capturing the changes in radical ligand transfer reactivity in a series of model FeIII-OH⋯(diflouro)cyclohexadienyl systems. We also reveal the decisive role of the off-diagonal thermodynamics in determining the reaction mechanism. Two possible OH transfer mechanisms, in which electron transfer is coupled with either OH- and OH+ transfer, are associated with two competing thermodynamic cycles. Consequently, the operative mechanism is dictated by the cycle yielding a more favorable off-diagonal effect on the barrier. In line with this thermodynamic link to the mechanism, the transferred OH group in OH-/electron transfer retains its anionic character and slightly changes its volume in going from the reactant to the transition state. In contrast, OH+/electron transfer develops an electron deficiency on OH, which is evidenced by an increase in charge and a simultaneous decrease in volume. In addition, the observations in the study suggest that an OH+/electron transfer reaction can be classified as an adiabatic radical transfer, and the OH-/electron transfer reaction as a less adiabatic ion-coupled electron transfer.
Collapse
Affiliation(s)
- Zuzanna Wojdyla
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences Dolejškova 3 Prague 8 18223 Czech Republic
| | - Martin Srnec
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences Dolejškova 3 Prague 8 18223 Czech Republic
| |
Collapse
|
9
|
Joven-Sancho D, Echeverri A, Saffon-Merceron N, Contreras-García J, Nebra N. An Organocopper(III) Fluoride Triggering C-CF 3 Bond Formation. Angew Chem Int Ed Engl 2024; 63:e202319412. [PMID: 38147576 DOI: 10.1002/anie.202319412] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
Copper(III) fluorides are catalytically competent, yet elusive, intermediates in cross-coupling. The synthesis of [PPh4 ][CuIII (CF3 )3 F] (2), the first stable (isolable) CuIII -F, was accomplished via chloride addition to [CuIII (CF3 )3 (py)] (1) yielding [PPh4 ][CuIII (CF3 )3 Cl(py)] (1⋅Cl), followed by treatment with AgF. The CuIII halides 1⋅Cl and 2 were fully characterized using nuclear magnetic resonance (NMR) spectroscopy, single crystal X-ray diffraction (Sc-XRD) and elemental analysis (EA). Complex 2 proved capable of forging C-CF3 bonds from silyl-capped alkynes. In-depth mechanistic studies combining probes, theoretical calculations, trapping of intermediate 4a ([PPh4 ][CuIII (CF3 )3 (C≡CPh)]) and radical tests unveil the key role of the CuIII acetylides that undergo facile 2e- reductive elimination furnishing the trifluoromethylated alkynes (RC≡CCF3 ), which are industrially relevant synthons in drug discovery, pharma and agrochemistry.
Collapse
Affiliation(s)
- Daniel Joven-Sancho
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA), Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| | - Andrea Echeverri
- Laboratoire de Chimie Théorique (LCT), Sorbonne Université, CNRS, 4, Place Jussieu, 75005, Paris, France
| | - Nathalie Saffon-Merceron
- Institut de Chimie de Toulouse ICT-UAR2599, Université Paul Sabatier, CNRS, 31062, Toulouse Cedex, France
| | - Julia Contreras-García
- Laboratoire de Chimie Théorique (LCT), Sorbonne Université, CNRS, 4, Place Jussieu, 75005, Paris, France
| | - Noel Nebra
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA), Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
10
|
Jeong D, Lee Y, Lee Y, Kim K, Cho J. Synthesis, Characterization, and Reactivity of a Highly Oxidative Mononuclear Manganese(IV)-Bis(Fluoro) Complex. J Am Chem Soc 2024; 146:4172-4177. [PMID: 38311844 DOI: 10.1021/jacs.3c13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Recently, transition-metal terminal nonoxo complexes have shown a remarkable ability to activate and functionalize C-H bonds via proton-coupled electron transfer (PCET). Here we report the first example of a mononuclear manganese(IV) bis(fluoro) complex bearing a tetradentate pyridinophane ligand, [MnIV(TBDAP)(F)2]2+ (3), with an X-ray single crystal structure and physicochemical characterization. The manganese(IV) bis(fluoro) complex has a very high reduction potential of 1.61 V vs SCE, thereby enabling the four-electron oxidation of mesitylene to 3,5-dimethylbenzaldehyde. Kinetic studies, including the kinetic isotope effect and employment of other toluene derivatives, reveal the electron transfer (ET)-driven PCET in the C-H bond activation of mesitylene by 3. This novel metal halide intermediate would be prominently valuable for expanding transition-metal halide chemistry.
Collapse
Affiliation(s)
- Donghyun Jeong
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yujeong Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yuri Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyungmin Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
11
|
King DS, Wang F, Gerken JB, Gaggioli CA, Guzei IA, Kim YJ, Stahl SS, Gagliardi L. Divergent Bimetallic Mechanisms in Copper(II)-Mediated C-C, N-N, and O-O Oxidative Coupling Reactions. J Am Chem Soc 2024; 146:3521-3530. [PMID: 38284769 DOI: 10.1021/jacs.3c13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Copper-catalyzed aerobic oxidative coupling of diaryl imines provides a route for conversion of ammonia to hydrazine. The present study uses experimental and density functional theory computational methods to investigate the mechanism of N-N bond formation, and the data support a mechanism involving bimolecular coupling of Cu-coordinated iminyl radicals. Computational analysis is extended to CuII-mediated C-C, N-N, and O-O coupling reactions involved in the formation of cyanogen (NC-CN) from HCN, 1,3-butadiyne from ethyne (i.e., Glaser coupling), hydrazine from ammonia, and hydrogen peroxide from water. The results reveal two different mechanistic pathways. Heteroatom ligands with an uncoordinated lone pair (iminyl, NH2, OH) undergo charge transfer to CuII, generating ligand-centered radicals that undergo facile bimolecular radical-radical coupling. Ligands lacking a lone pair (CN and CCH) form bridged binuclear diamond-core structures that undergo C-C coupling. This mechanistic bifurcation is rationalized by analysis of spin densities in key intermediates and transition states, as well as multiconfigurational calculations. Radical-radical coupling is especially favorable for N-N coupling owing to energetically favorable charge transfer in the intermediate and thermodynamically favorable product formation.
Collapse
Affiliation(s)
- Daniel S King
- Department of Chemistry, University of Chicago, Chicago, Illinois 60615, United States
| | - Fei Wang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - James B Gerken
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | | | - Ilia A Guzei
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Yeon Jung Kim
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Shannon S Stahl
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60615, United States
| |
Collapse
|
12
|
Li Y, Abelson C, Que L, Wang D. 10 6-fold faster C-H bond hydroxylation by a Co III,IV2(µ-O) 2 complex [via a Co III2(µ-O)(µ-OH) intermediate] versus its Fe IIIFe IV analog. Proc Natl Acad Sci U S A 2023; 120:e2307950120. [PMID: 38085777 PMCID: PMC10743362 DOI: 10.1073/pnas.2307950120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/04/2023] [Indexed: 12/24/2023] Open
Abstract
The hydroxylation of C-H bonds can be carried out by the high-valent CoIII,IV2(µ-O)2 complex 2a supported by the tetradentate tris(2-pyridylmethyl)amine ligand via a CoIII2(µ-O)(µ-OH) intermediate (3a). Complex 3a can be independently generated either by H-atom transfer (HAT) in the reaction of 2a with phenols as the H-atom donor or protonation of its conjugate base, the CoIII2(µ-O)2 complex 1a. Resonance Raman spectra of these three complexes reveal oxygen-isotope-sensitive vibrations at 560 to 590 cm-1 associated with the symmetric Co-O-Co stretching mode of the Co2O2 diamond core. Together with a Co•••Co distance of 2.78(2) Å previously identified for 1a and 2a by Extended X-ray Absorption Fine Structure (EXAFS) analysis, these results provide solid evidence for their "diamond core" structural assignments. The independent generation of 3a allows us to investigate HAT reactions of 2a with phenols in detail, measure the redox potential and pKa of the system, and calculate the O-H bond strength (DO-H) of 3a to shed light on the C-H bond activation reactivity of 2a. Complex 3a is found to be able to transfer its hydroxyl ligand onto the trityl radical to form the hydroxylated product, representing a direct experimental observation of such a reaction by a dinuclear cobalt complex. Surprisingly, reactivity comparisons reveal 2a to be 106-fold more reactive in oxidizing hydrocarbon C-H bonds than corresponding FeIII,IV2(µ-O)2 and MnIII,IV2(µ-O)2 analogs, an unexpected outcome that raises the prospects for using CoIII,IV2(µ-O)2 species to oxidize alkane C-H bonds.
Collapse
Affiliation(s)
- Yan Li
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT59812
| | - Chase Abelson
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN55455
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN55455
| | - Dong Wang
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT59812
| |
Collapse
|
13
|
Reese MS, Bonanno MG, Bower JK, Moore CE, Zhang S. C-N Bond Formation at Discrete Cu III-Aryl Complexes. J Am Chem Soc 2023; 145:26810-26816. [PMID: 38050828 PMCID: PMC11019775 DOI: 10.1021/jacs.3c09260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Copper(III) aryl species are widely proposed as intermediates in Cu-catalyzed C-C and C-heteroatom bond formation reactions. Despite their wide utility, mechanistic aspects of C-heteroatom formation at CuIII centers as well as factors that lead to byproducts, e.g., Ar-H, Ar-Ar, remain elusive due to the rarity of discrete CuIII-Ar complexes. Herein, we report the synthesis and reactivity of a series of CuII and CuIII aryl complexes that closely mimic the intermediates in Cu-catalyzed C-N coupling reactions. Copper(II) aryl complexes [TBA][LCuII-ArR] were synthesized via the treatment of CuII with a range of aryl donors, such as ZnAr2R, TMS-ArR, and ArR-Bpin. Oxidation of [TBA][LCuII-ArR] produces formal copper(III) aryl complexes LCuIII-ArR. Treatment of copper(III) aryl complexes with neutral nitrogen nucleophiles produces the C-N coupling product in up to 64% yield, along with commonly observed byproducts, such as Ar-H and Ar-Ar. Hammett analysis of the C-N bond formation performed with various N-nucleophiles shows a ρ value of -1.66, consistent with the electrophilic character of LCuIII-ArR. We propose mechanisms for common side reactions in Cu-catalyzed coupling reactions that lead to the formation of Ar-Ar and Ar-H.
Collapse
Affiliation(s)
- Maxwell S Reese
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Mitchell G Bonanno
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Jamey K Bower
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Curtis E Moore
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Shiyu Zhang
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
14
|
Yan W, Carter S, Hsieh CT, Krause JA, Cheng MJ, Zhang S, Liu W. Copper-Carbon Homolysis Competes with Reductive Elimination in Well-Defined Copper(III) Complexes. J Am Chem Soc 2023; 145:26152-26159. [PMID: 37992224 DOI: 10.1021/jacs.3c08510] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Despite the recent advancements of Cu catalysis for the cross-coupling of alkyl electrophiles and the frequently proposed involvement of alkyl-Cu(III) complexes in such reactions, little is known about the reactivity of these high-valent complexes. Specifically, although the reversible interconversion between an alkyl-CuIII complex and an alkyl radical/CuII pair has been frequently proposed in Cu catalysis, direct observation of such steps in well-defined CuIII complexes remains elusive. In this study, we report the synthesis and investigation of alkyl-CuIII complexes, which exclusively undergo a Cu-C homolysis pathway to generate alkyl radicals and CuII species. Kinetic studies suggest a bond dissociation energy of 28.6 kcal/mol for the CuIII-C bonds. Moreover, these four-coordinate complexes could be converted to a solvated alkyl-CuIII-(CF3)2, which undergoes highly efficient C-CF3 bond-forming reductive elimination even at low temperatures (-4 °C). These results provide strong support for the reversible recombination of alkyl radicals with CuII to form alkyl-CuIII species, an elusive step that has been proposed in Cu-catalyzed mechanisms. Furthermore, our work has demonstrated that the reactivity of CuIII complexes could be significantly influenced by subtle changes in the coordination environment. Lastly, the observation of the highly reactive neutral alkyl-CuIII-(CF3)2 species (or with weakly bound solvent molecules) suggests they might be the true intermediates in many Cu-catalyzed trifluoromethylation reactions.
Collapse
Affiliation(s)
- Wenhao Yan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Samantha Carter
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chi-Tien Hsieh
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Shiyu Zhang
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
15
|
Sarkar A, Das S, Mondal P, Maiti B, Sen Gupta S. Synthesis, Characterization, and Reactivity of High-Valent Carbene Dicarboxamide-Based Nickel Pincer Complexes. Inorg Chem 2023. [PMID: 38001041 DOI: 10.1021/acs.inorgchem.3c03465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
High-valent metal-fluoride complexes are currently being explored for concerted proton-electron transfer (CPET) reactions, the driving force being the high bond dissociation energy of H-F (BDEH-F = 135 kcal/mol) that is formed after the reaction. Ni(III)-fluoride-based complexes on the pyridine dicarboxamide pincer ligand framework have been utilized for CPET reactions toward phenols and hydrocarbons. We have replaced the central pyridine ligand with an N-heterocyclic carbene carbene to probe its effect in both stabilizing the high-valent Ni(III) state and its ability to initiate CPET reactions. We report a monomeric carbene-diamide-based Ni(II)-fluoride pincer complex that was characterized through 1H/19F NMR, mass spectrometry, UV-vis, and X-ray crystallography analysis. Although carbenes and deprotonated carboxamides in the Ni(II)-fluoride complex are expected to stabilize the Ni(III) state upon oxidation, the Ni(III)/Ni(II) redox process occurred at very high potential (0.87 V vs Fc+/Fc, dichloromethane) and was irreversible. Structural studies indicate significant distortion in the imidazolium "NCN" carbene plane of Ni(II)-fluoride caused by the formation of six-membered metallacycles. The high-valent NiIII-fluoride analogue was synthesized by the addition of 1.0 equiv CTAN (ceric tetrabutylammonium nitrate) in dichloromethane at -20 °C which was characterized by UV-vis, mass spectrometry, and EPR spectroscopy. Density functional theory studies indicate that the Ni-carbene bond elongated, while the Ni-F bond shortened upon oxidation to the Ni(III) species. The high-valent Ni(III)-fluoride was found to react with the substituted phenols. Analysis of the KIE and linear free energy relationship correlates well with the CPET nature of the reaction. Preliminary analysis indicates that the CPET is asynchronous and is primarily driven by the E0' of the Ni(III)-fluoride complex.
Collapse
Affiliation(s)
- Aniruddha Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Soumadip Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Prasenjit Mondal
- Department of Chemistry, Indian Institute of Technology Tirupati (IIT Tirupati), Tirupati, AP 517619, India
| | - Biswajit Maiti
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| |
Collapse
|
16
|
Schneider JE, Anderson JS. Reconciling Imbalanced and Nonadiabatic Reactivity in Transition Metal-Oxo-Mediated Concerted Proton Electron Transfer (CPET). J Phys Chem Lett 2023; 14:9548-9555. [PMID: 37856336 DOI: 10.1021/acs.jpclett.3c02318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Recently, there have been several experimental demonstrations of how the rates of concerted proton electron transfer (CPET) are affected by stepwise thermodynamic parameters of only proton (ΔG°PT) or electron (ΔG°ET) transfer. Semiclassical structure-activity relationships have been invoked to rationalize these linear free energy relationships, but it is not clear how they would manifest in a nonadiabatic reaction. Using density functional theory calculations, we demonstrate how a decrease in ΔG°PT can lead to transition state imbalance in a nonadiabatic framework. We then use these calculations to anchor a theoretical model that reproduces experimental trends with ΔG°PT and ΔG°ET. Our results reconcile predictions from semiclassical transition state theory with models that treat proton transfer quantum mechanically in CPET reactivity, make new predictions about the importance of basicity for uphill CPET reactions, and suggest similar treatments may be possible for other nonadiabatic reactions.
Collapse
Affiliation(s)
- Joseph E Schneider
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - John S Anderson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
17
|
Yadav V, Wen L, Yadav S, Siegler MA, Goldberg DP. Selective Radical Transfer in a Series of Nonheme Iron(III) Complexes. Inorg Chem 2023; 62:17830-17842. [PMID: 37857315 PMCID: PMC11296666 DOI: 10.1021/acs.inorgchem.3c02617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
A series of nonheme iron complexes, FeIII(BNPAPh2O)(Lax)(Leq) (Lax/eq = N3-, NCS-, NCO-, and Cl-) have been synthesized using the previously reported BNPAPh2O- ligand. The ferrous analogs FeII(BNPAPh2O)(Lax) (Lax = N3-, NCS-, and NCO-) were also prepared. The complexes were structurally characterized using single crystal X-ray diffraction, which shows that all the FeIII complexes are six-coordinate, with one anionic ligand (Lax) in the H-bonding axial site and the other anionic ligand (Leq) in the equatorial plane, cis to the Lax ligand. The reaction of FeIII(BNPAPh2O-)(Lax)(Leq) with Ph3C• shows that one ligand is selectively transferred in each case. A selectivity trend emerges that shows •N3 is the most favored for transfer in each case to the carbon radical, whereas Cl• is the least favored. The NCO and NCS ligands showed an intermediate propensity for radical transfer, with NCS > NCO. The overall order of selectivity is N3 > NCS > NCO > Cl. In addition, we also demonstrated that H-bonding has a small effect on governing product selectivity by using a non-H-bonded ligand (DPAPh2O-). This study demonstrates the inherent radical transfer selectivity of nonhydroxo-ligated nonheme iron(III) complexes, which could be useful for efforts in synthetic and (bio)catalytic C-H functionalization.
Collapse
Affiliation(s)
- Vishal Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Lyupeng Wen
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Sudha Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
18
|
Cao E, Sun M. Spectral Physics of Stable Cu(III) Produced by Oxidative Addition of an Alkyl Halide. Int J Mol Sci 2023; 24:15694. [PMID: 37958679 PMCID: PMC10648560 DOI: 10.3390/ijms242115694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
In this paper, we theoretically investigated spectral physics on Cu(III) complexes formed by the oxidative addition of α-haloacetonitrile to ionic and neutral Cu(I) complexes, stimulated by recent experimental reports. Firstly, the electronic structures of reactants of α-haloacetonitrile and neutral Cu(I) and two kinds of products of Cu(III) complexes are visualized with the density of state (DOS) and orbital energy levels of HOMO and LUMO. The visually manifested static and dynamic polarizability as well as the first hyperpolarizability are employed to reveal the vibrational modes of the normal and resonance Raman spectra of two Cu(III) complexes. The nuclear magnetic resonance (NMR) spectra are not only used to identify the reactants and products but also to distinguish between two Cu(III) complexes. The charge difference density (CDD) reveals intramolecular charge transfer in electronic transitions in optical absorption spectra. The CDDs in fluorescence visually reveal electron-hole recombination. Our results promote a deeper understanding of the physical mechanism of stable Cu(III) produced by the oxidative addition of an alkyl halide.
Collapse
Affiliation(s)
- En Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China;
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China;
| |
Collapse
|
19
|
Demonti L, Joven-Sancho D, Nebra N. Cross-Coupling Reactions Enabled by Well-Defined Ag(III) Compounds: Main Focus on Aromatic Fluorination and Trifluoromethylation. CHEM REC 2023; 23:e202300143. [PMID: 37338273 DOI: 10.1002/tcr.202300143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Indexed: 06/21/2023]
Abstract
AgIII compounds are considered strong oxidizers of difficult handling. Accordingly, the involvement of Ag catalysts in cross-coupling via 2e- redox sequences is frequently discarded. Nevertheless, organosilver(III) compounds have been authenticated using tetradentate macrocycles or perfluorinated groups as supporting ligands, and since 2014, first examples of cross-coupling enabled by AgI /AgIII redox cycles saw light. This review collects the most relevant contributions to this field, with main focus on aromatic fluorination/perfluoroalkylation and the identification of AgIII key intermediates. Pertinent comparison between the activity of AgIII RF compounds in aryl-F and aryl-CF3 couplings vs. the one shown by its CuIII RF and AuIII RF congeners is herein disclosed, thus providing a more profound picture on the scope of these transformations and the pathways commonly associated to C-RF bond formations enabled by coinage metals.
Collapse
Affiliation(s)
- Luca Demonti
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA)., Université Paul Sabatier, CNRS., 118 Route de Narbonne, 31062, Toulouse, France)
| | - Daniel Joven-Sancho
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA)., Université Paul Sabatier, CNRS., 118 Route de Narbonne, 31062, Toulouse, France)
| | - Noel Nebra
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA)., Université Paul Sabatier, CNRS., 118 Route de Narbonne, 31062, Toulouse, France)
| |
Collapse
|
20
|
DiMucci IM, Titus CJ, Nordlund D, Bour JR, Chong E, Grigas DP, Hu CH, Kosobokov MD, Martin CD, Mirica LM, Nebra N, Vicic DA, Yorks LL, Yruegas S, MacMillan SN, Shearer J, Lancaster KM. Scrutinizing formally Ni IV centers through the lenses of core spectroscopy, molecular orbital theory, and valence bond theory. Chem Sci 2023; 14:6915-6929. [PMID: 37389249 PMCID: PMC10306094 DOI: 10.1039/d3sc02001k] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Nickel K- and L2,3-edge X-ray absorption spectra (XAS) are discussed for 16 complexes and complex ions with nickel centers spanning a range of formal oxidation states from II to IV. K-edge XAS alone is shown to be an ambiguous metric of physical oxidation state for these Ni complexes. Meanwhile, L2,3-edge XAS reveals that the physical d-counts of the formally NiIV compounds measured lie well above the d6 count implied by the oxidation state formalism. The generality of this phenomenon is explored computationally by scrutinizing 8 additional complexes. The extreme case of NiF62- is considered using high-level molecular orbital approaches as well as advanced valence bond methods. The emergent electronic structure picture reveals that even highly electronegative F-donors are incapable of supporting a physical d6 NiIV center. The reactivity of NiIV complexes is then discussed, highlighting the dominant role of the ligands in this chemistry over that of the metal centers.
Collapse
Affiliation(s)
- Ida M DiMucci
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory 162 Sciences Drive Ithaca NY 14853 USA
| | - Charles J Titus
- Department of Physics, Stanford University Stanford California 94305 USA
| | - Dennis Nordlund
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory Menlo Park California 94025 USA
| | - James R Bour
- Department of Chemistry, University of Michigan Ann Arbor Michigan 48109 USA
| | - Eugene Chong
- Department of Chemistry, University of Michigan Ann Arbor Michigan 48109 USA
| | - Dylan P Grigas
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory 162 Sciences Drive Ithaca NY 14853 USA
| | - Chi-Herng Hu
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | | | - Caleb D Martin
- Department of Chemistry and Biochemistry, Baylor University Waco Texas 76798 USA
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Noel Nebra
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA), Université Paul Sabatier, CNRS 118 Route de Narbonne 31062 Toulouse France
| | - David A Vicic
- Department of Chemistry, Lehigh University Bethlehem Pennsylvania 18015 USA
| | - Lydia L Yorks
- Department of Chemistry, Lehigh University Bethlehem Pennsylvania 18015 USA
| | - Sam Yruegas
- Department of Chemistry and Biochemistry, Baylor University Waco Texas 76798 USA
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory 162 Sciences Drive Ithaca NY 14853 USA
| | - Jason Shearer
- Department of Chemistry, Trinity University San Antonio Texas 78212-7200 USA
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory 162 Sciences Drive Ithaca NY 14853 USA
| |
Collapse
|
21
|
Leibler INM, Gandhi SS, Tekle-Smith MA, Doyle AG. Strategies for Nucleophilic C(sp 3)-(Radio)Fluorination. J Am Chem Soc 2023; 145:9928-9950. [PMID: 37094357 DOI: 10.1021/jacs.3c01824] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
This Perspective surveys the progress and current limitations of nucleophilic fluorination methodologies. Despite the long and rich history of C(sp3)-F bond construction in chemical research, the inherent challenges associated with this transformation have largely constrained nucleophilic fluorination to a privileged reaction platform. In recent years, the Doyle group─along with many others─has pursued the study and development of this transformation with the intent of generating deeper mechanistic understanding, developing user-friendly fluorination reagents, and contributing to the invention of synthetic methods capable of enabling radiofluorination. Studies from our laboratory are discussed along with recent developments from others in this field. Fluoride reagent development and the mechanistic implications of reagent identity are highlighted. We also outline the chemical space inaccessible by current synthetic technologies and a series of future directions in the field that can potentially fill the existing dark spaces.
Collapse
Affiliation(s)
| | - Shivaani S Gandhi
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Makeda A Tekle-Smith
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Abigail G Doyle
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
22
|
Zou Z, Chang W, Zhang W, Ni S, Pan Y, Liang Y, Pan D, Wang Y. CuCF3 Mediated Deoxyfluorination of Redox-active Esters. J Fluor Chem 2023. [DOI: 10.1016/j.jfluchem.2023.110114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
23
|
Bower JK, Reese MS, Mazin IM, Zarnitsa LM, Cypcar AD, Moore CE, Sokolov AY, Zhang S. C(sp 3)-H cyanation by a formal copper(iii) cyanide complex. Chem Sci 2023; 14:1301-1307. [PMID: 36756315 PMCID: PMC9891353 DOI: 10.1039/d2sc06573h] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
High-valent metal oxo complexes are prototypical intermediates for the activation and hydroxylation of alkyl C-H bonds. Substituting the oxo ligand with other functional groups offers the opportunity for additional C-H functionalization beyond C-O bond formation. However, few species aside from metal oxo complexes have been reported to both activate and functionalize alkyl C-H bonds. We herein report the first example of an isolated copper(iii) cyanide complex (LCuIIICN) and its C-H cyanation reactivity. We found that the redox potential (E ox) of substrates, instead of C-H bond dissociation energy, is a key determinant of the rate of PCET, suggesting an oxidative asynchronous CPET or ETPT mechanism. Among substrates with the same BDEs, those with low redox potentials transfer H atoms up to a million-fold faster. Capitalizing on this mechanistic insight, we found that LCuIIICN is highly selective for cyanation of amines, which is predisposed to oxidative asynchronous or stepwise transfer of H+/e-. Our study demonstrates that the asynchronous effect of PCET is an appealing tool for controlling the selectivity of C-H functionalization.
Collapse
Affiliation(s)
- Jamey K. Bower
- Department of Chemistry and Biochemistry, The Ohio State University100 W. 18 AveColumbusOH43210USA
| | - Maxwell S. Reese
- Department of Chemistry and Biochemistry, The Ohio State University100 W. 18 AveColumbusOH43210USA
| | - Ilia M. Mazin
- Department of Chemistry and Biochemistry, The Ohio State University100 W. 18 AveColumbusOH43210USA
| | - Lina M. Zarnitsa
- Department of Chemistry and Biochemistry, The Ohio State University100 W. 18 AveColumbusOH43210USA
| | - Andrew D. Cypcar
- Department of Chemistry and Biochemistry, The Ohio State University100 W. 18 AveColumbusOH43210USA
| | - Curtis E. Moore
- Department of Chemistry and Biochemistry, The Ohio State University100 W. 18 AveColumbusOH43210USA
| | - Alexander Yu. Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University100 W. 18 AveColumbusOH43210USA
| | - Shiyu Zhang
- Department of Chemistry and Biochemistry, The Ohio State University 100 W. 18th Ave Columbus OH 43210 USA
| |
Collapse
|
24
|
Czaikowski ME, Anderson JS. Electrocatalytic C-H activation and fluorination using high-valent Cu. CHEM CATALYSIS 2023; 3:100495. [PMID: 37711227 PMCID: PMC10501530 DOI: 10.1016/j.checat.2022.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
In this issue of Chem Catalysis, Zhang and co-workers demonstrate the utility of electrochemical methods to enable catalytic turnover, employing high-valent Cu for C-H bond fluorination with selectivity for more hydridic bonds. Corresponding mechanistic investigations offer a rare catalytic example of oxidation driven C-H activation.
Collapse
Affiliation(s)
- Maia E. Czaikowski
- University of Chicago Department of Chemistry, 929 E 57th St. Chicago, IL, 60637
| | - John S. Anderson
- University of Chicago Department of Chemistry, 929 E 57th St. Chicago, IL, 60637
| |
Collapse
|
25
|
Hintz H, Bower J, Tang J, LaLama M, Sevov C, Zhang S. Copper-Catalyzed Electrochemical C-H Fluorination. CHEM CATALYSIS 2023; 3:100491. [PMID: 36743279 PMCID: PMC9894310 DOI: 10.1016/j.checat.2022.100491] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We report the systematic development of an electrooxidative methodology that translates stoichiometric C-H fluorination reactivity of an isolable CuIII fluoride complex into a catalytic process. The critical challenges of electrocatalysis with a highly reactive CuIII species were addressed by the judicious selection of electrolyte, F- source, and sacrificial electron acceptor. Catalyst-controlled C-H fluorination occurs with a preference for hydridic C-H bonds with high bond dissociation energies over weaker but less hydridic C-H bonds. The selectivity is driven by an oxidative asynchronous proton-coupled elelctron transfer (PCET) at an electrophilic CuIII-F complex. We further demonstrate that the asynchronicity factor of hydrogen atom transfer η can be used as a guideline to rationalize the selectivity of C-H fluorination.
Collapse
Affiliation(s)
- Heather Hintz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Jamey Bower
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Jinghua Tang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Matthew LaLama
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Christo Sevov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Shiyu Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| |
Collapse
|
26
|
Peng X, Rahim A, Peng W, Jiang F, Gu Z, Wen S. Recent Progress in Cyclic Aryliodonium Chemistry: Syntheses and Applications. Chem Rev 2023; 123:1364-1416. [PMID: 36649301 PMCID: PMC9951228 DOI: 10.1021/acs.chemrev.2c00591] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Hypervalent aryliodoumiums are intensively investigated as arylating agents. They are excellent surrogates to aryl halides, and moreover they exhibit better reactivity, which allows the corresponding arylation reactions to be performed under mild conditions. In the past decades, acyclic aryliodoniums are widely explored as arylation agents. However, the unmet need for acyclic aryliodoniums is the improvement of their notoriously low reaction economy because the coproduced aryl iodides during the arylation are often wasted. Cyclic aryliodoniums have their intrinsic advantage in terms of reaction economy, and they have started to receive considerable attention due to their valuable synthetic applications to initiate cascade reactions, which can enable the construction of complex structures, including polycycles with potential pharmaceutical and functional properties. Here, we are summarizing the recent advances made in the research field of cyclic aryliodoniums, including the nascent design of aryliodonium species and their synthetic applications. First, the general preparation of typical diphenyl iodoniums is described, followed by the construction of heterocyclic iodoniums and monoaryl iodoniums. Then, the initiated arylations coupled with subsequent domino reactions are summarized to construct polycycles. Meanwhile, the advances in cyclic aryliodoniums for building biaryls including axial atropisomers are discussed in a systematic manner. Finally, a very recent advance of cyclic aryliodoniums employed as halogen-bonding organocatalysts is described.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| | - Abdur Rahim
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Weijie Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Feng Jiang
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Shijun Wen
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| |
Collapse
|
27
|
Zhang J, Lee YM, Seo MS, Nilajakar M, Fukuzumi S, Nam W. A Contrasting Effect of Acid in Electron Transfer, Oxygen Atom Transfer, and Hydrogen Atom Transfer Reactions of a Nickel(III) Complex. Inorg Chem 2022; 61:19735-19747. [PMID: 36445726 DOI: 10.1021/acs.inorgchem.2c02504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There have been many examples of the accelerating effects of acids in electron transfer (ET), oxygen atom transfer (OAT), and hydrogen atom transfer (HAT) reactions. Herein, we report a contrasting effect of acids in the ET, OAT, and HAT reactions of a nickel(III) complex, [NiIII(PaPy3*)]2+ (1) in acetone/CH3CN (v/v 19:1). 1 was synthesized by reacting [NiII(PaPy3*)]+ (2) with magic blue or iodosylbenzene in the absence or presence of triflic acid (HOTf), respectively. Sulfoxidation of thioanisole by 1 and H2O occurred in the presence of HOTf, and the reaction rate increased proportionally with increasing concentration of HOTf ([HOTf]). The rate of ET from diacetylferrocene to 1 also increased linearly with increasing [HOTf]. In contrast, HAT from 9,10-dihydroanthracene (DHA) to 1 slowed down with increasing [HOTf], exhibiting an inversely proportional relation to [HOTf]. The accelerating effect of HOTf in the ET and OAT reactions was ascribed to the binding of H+ to the PaPy3* ligand of 2; the one-electron reduction potential (Ered) of 1 was positively shifted with increasing [HOTf]. Such a positive shift in the Ered value resulted in accelerating the ET and OAT reactions that proceeded via the rate-determining ET step. On the other hand, the decelerating effect of HOTf on HAT from DHA to 1 resulted from the inhibition of proton transfer from DHA•+ to 2 due to the binding of H+ to the PaPy3* ligand of 2. The ET reactions of 1 in the absence and presence of HOTf were well analyzed in light of the Marcus theory of ET in comparison with the HAT reactions.
Collapse
Affiliation(s)
- Jisheng Zhang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Madhuri Nilajakar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
28
|
Yadav V, Wen L, Rodriguez RJ, Siegler MA, Goldberg DP. Nonheme Iron(III) Azide and Iron(III) Isothiocyanate Complexes: Radical Rebound Reactivity, Selectivity, and Catalysis. J Am Chem Soc 2022; 144:20641-20652. [PMID: 36382466 PMCID: PMC10226418 DOI: 10.1021/jacs.2c07224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The new nonheme iron complexes FeII(BNPAPh2O)(N3) (1), FeIII(BNPAPh2O)(OH)(N3) (2), FeII(BNPAPh2O)(OH) (3), FeIII(BNPAPh2O)(OH)(NCS) (4), FeII(BNPAPh2O)(NCS) (5), FeIII(BNPAPh2O)(NCS)2 (6), and FeIII(BNPAPh2O)(N3)2 (7) (BNPAPh2O = 2-(bis((6-(neopentylamino)pyridin-2-yl) methyl)amino)-1,1-diphenylethanolate) were synthesized and characterized by single crystal X-ray diffraction (XRD), as well as by 1H NMR, 57Fe Mössbauer, and ATR-IR spectroscopies. Complex 2 was reacted with a series of carbon radicals, ArX3C· (ArX = p-X-C6H4), analogous to the proposed radical rebound step for nonheme iron hydroxylases and halogenases. The results show that for ArX3C· (X = Cl, H, tBu), only OH· transfer occurs to give ArX3COH. However, when X = OMe, a mixture of alcohol (ArX3COH) (30%) and azide (ArX3CN3) (40%) products was obtained. These data indicate that the rebound selectivity is influenced by the electron-rich nature of the carbon radicals for the azide complex. Reaction of 2 with Ph3C· in the presence of Sc3+ or H+ reverses the selectivity, giving only the azide product. In contrast to the mixed selectivity seen for 2, the reactivity of cis-FeIII(OH)(NCS) with the X = OMe radical derivative leads only to hydroxylation. Catalytic azidation was achieved with 1 as catalyst, λ3-azidoiodane as oxidant and azide source, and Ph3CH as test substrate, giving Ph3CN3 in 84% (TON = 8). These studies show that hydroxylation is favored over azidation for nonheme iron(III) complexes, but the nature of the carbon radical can alter this selectivity. If an OH· transfer pathway can be avoided, the FeIII(N3) complexes are capable of mediating both stoichiometric and catalytic azidation.
Collapse
Affiliation(s)
- Vishal Yadav
- Department of Chemistry, The Johns Hopkins
University, 3400 North Charles Street, Baltimore, Maryland, 21218, USA
| | - Lyupeng Wen
- Department of Chemistry, The Johns Hopkins
University, 3400 North Charles Street, Baltimore, Maryland, 21218, USA
| | - Rodolfo J. Rodriguez
- Department of Chemistry, The Johns Hopkins
University, 3400 North Charles Street, Baltimore, Maryland, 21218, USA
| | - Maxime A. Siegler
- Department of Chemistry, The Johns Hopkins
University, 3400 North Charles Street, Baltimore, Maryland, 21218, USA
| | - David P. Goldberg
- Department of Chemistry, The Johns Hopkins
University, 3400 North Charles Street, Baltimore, Maryland, 21218, USA
| |
Collapse
|
29
|
Czaikowski ME, McNeece AJ, Boyn JN, Jesse KA, Anferov SW, Filatov AS, Mazziotti DA, Anderson JS. Generation and Aerobic Oxidative Catalysis of a Cu(II) Superoxo Complex Supported by a Redox-Active Ligand. J Am Chem Soc 2022; 144:15569-15580. [PMID: 35977083 PMCID: PMC10017013 DOI: 10.1021/jacs.2c04630] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cu systems feature prominently in aerobic oxidative catalysis in both biology and synthetic chemistry. Metal ligand cooperativity is a common theme in both areas as exemplified by galactose oxidase and by aminoxyl radicals in alcohol oxidations. This has motivated investigations into the aerobic chemistry of Cu and specifically the isolation and study of Cu-superoxo species that are invoked as key catalytic intermediates. While several examples of complexes that model biologically relevant Cu(II) superoxo intermediates have been reported, they are not typically competent aerobic catalysts. Here, we report a new Cu complex of the redox-active ligand tBu,TolDHP (2,5-bis((2-t-butylhydrazono)(p-tolyl)methyl)-pyrrole) that activates O2 to generate a catalytically active Cu(II)-superoxo complex via ligand-based electron transfer. Characterization using ultraviolet (UV)-visible spectroscopy, Raman isotope labeling studies, and Cu extended X-ray absorption fine structure (EXAFS) analysis confirms the assignment of an end-on κ1 superoxo complex. This Cu-O2 complex engages in a range of aerobic catalytic oxidations with substrates including alcohols and aldehydes. These results demonstrate that bioinspired Cu systems can not only model important bioinorganic intermediates but can also mediate and provide mechanistic insight into aerobic oxidative transformations.
Collapse
Affiliation(s)
- Maia E Czaikowski
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Andrew J McNeece
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Jan-Niklas Boyn
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Kate A Jesse
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Sophie W Anferov
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander S Filatov
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - David A Mazziotti
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - John S Anderson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
30
|
Kwon YM, Lee Y, Schmautz AK, Jackson TA, Wang D. C-H Bond Activation by a Mononuclear Nickel(IV)-Nitrate Complex. J Am Chem Soc 2022; 144:12072-12080. [PMID: 35767834 DOI: 10.1021/jacs.2c02454] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The recent focus on developing high-valent non-oxo-metal complexes for late transition metals has proven to be an effective strategy to study the rich chemistry of these high-valent species while bypassing the synthetic challenges of obtaining the oxo-metal counterparts. In our continuing work of exploring late transition metal complexes of unusually high oxidation states, we have obtained in the present study a formal mononuclear Ni(IV)-nitrate complex (2) upon 1-e- oxidation of its Ni(III) derivatives (1-OH and 1-NO3). Characterization of these Ni complexes by combined spectroscopic and computational approaches enables deep understanding of their geometric and electronic structures, bonding interactions, and spectroscopic properties, showing that all of them are square planar complexes and exhibit strong π-covalency with the amido N-donors of the N3 ligand. Furthermore, results obtained from X-ray absorption spectroscopy and density functional theory calculations provide strong support for the assignment of the Ni(IV) oxidation state of complex 2, albeit with strong ligand-to-metal charge donation. Notably, 2 is able to oxidize hydrocarbons with C-H bond strength in the range of 76-92 kcal/mol, representing a rare example of high-valent late transition metal complexes capable of activating strong sp3 C-H bonds.
Collapse
Affiliation(s)
- Yubin M Kwon
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, United States
| | - Yuri Lee
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Anna K Schmautz
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, United States
| | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Dong Wang
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, United States
| |
Collapse
|
31
|
Paik A, Paul S, Bhowmik S, Das R, Naveen T, Rana S. Recent Advances in First Row Transition Metal Mediated C‐H Halogenation of (Hetero)arenes and Alkanes. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Aniruddha Paik
- University of North Bengal Department of Chemistry Raja Rammohunpur, DarjeelingWest Bengal, India - 734013 734013 Siliguri INDIA
| | - Sabarni Paul
- University of North Bengal Department of Chemistry Raja Rammohunpur, DarjeelingWest Bengal, India - 734013 734013 Siliguri INDIA
| | - Sabyasachi Bhowmik
- University of North Bengal Department of Chemistry Raja Rammohunpur, DarjeelingWest Bengal, India - 734013 734013 Siliguri INDIA
| | - Rahul Das
- University of North Bengal Department of Chemistry Raja Rammohunpur, DarjeelingWest Bengal, India - 734013 734013 Siliguri INDIA
| | - Togati Naveen
- Sardar Vallabhbhai National Institute of Technology Department of Chemistry 395007 Surat INDIA
| | - Sujoy Rana
- University of North Bengal Chemistry Raja Rammohunpur, DarjeelingWest Bengal, India, 734013 734013 Siliguri INDIA
| |
Collapse
|
32
|
Bouchey CJ, Tolman WB. Involvement of a Formally Copper(III) Nitrite Complex in Proton-Coupled Electron Transfer and Nitration of Phenols. Inorg Chem 2022; 61:2662-2668. [PMID: 35078314 PMCID: PMC9835712 DOI: 10.1021/acs.inorgchem.1c03790] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A unique high-valent copper nitrite species, LCuNO2, was accessed via the reversible one-electron oxidation of [M][LCuNO2] (M = NBu4+ or PPN+). The complex LCuNO2 reacts with 2,4,6-tri-tert-butylphenol via a typical proton-coupled electron transfer (PCET) to yield LCuTHF and the 2,4,6-tri-tert-butylphenoxyl radical. The reaction between LCuNO2 and 2,4-di-tert-butylphenol was more complicated. It yielded two products: the coupled bisphenol product expected from a H-atom abstraction and 2,4-di-tert-butyl-6-nitrophenol, the product of an unusual anaerobic nitration. Various mechanisms for the latter transformation were considered.
Collapse
Affiliation(s)
- Caitlin J Bouchey
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, Campus Box 1134, St. Louis, Missouri 63130, United States
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - William B Tolman
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, Campus Box 1134, St. Louis, Missouri 63130, United States
| |
Collapse
|
33
|
A general strategy for C(sp 3)-H functionalization with nucleophiles using methyl radical as a hydrogen atom abstractor. Nat Commun 2021; 12:6950. [PMID: 34845207 PMCID: PMC8630022 DOI: 10.1038/s41467-021-27165-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/04/2021] [Indexed: 11/08/2022] Open
Abstract
Photoredox catalysis has provided many approaches to C(sp3)-H functionalization that enable selective oxidation and C(sp3)-C bond formation via the intermediacy of a carbon-centered radical. While highly enabling, functionalization of the carbon-centered radical is largely mediated by electrophilic reagents. Notably, nucleophilic reagents represent an abundant and practical reagent class, motivating the interest in developing a general C(sp3)-H functionalization strategy with nucleophiles. Here we describe a strategy that transforms C(sp3)-H bonds into carbocations via sequential hydrogen atom transfer (HAT) and oxidative radical-polar crossover. The resulting carbocation is functionalized by a variety of nucleophiles-including halides, water, alcohols, thiols, an electron-rich arene, and an azide-to effect diverse bond formations. Mechanistic studies indicate that HAT is mediated by methyl radical-a previously unexplored HAT agent with differing polarity to many of those used in photoredox catalysis-enabling new site-selectivity for late-stage C(sp3)-H functionalization.
Collapse
|
34
|
Farley GW, Siegler MA, Goldberg DP. Halogen Transfer to Carbon Radicals by High-Valent Iron Chloride and Iron Fluoride Corroles. Inorg Chem 2021; 60:17288-17302. [PMID: 34709780 DOI: 10.1021/acs.inorgchem.1c02666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
High-valent iron halide corroles were examined to determine their reactivity with carbon radicals and their ability to undergo radical rebound-like processes. Beginning with Fe(Cl)(ttppc) (1) (ttppc = 5,10,15-tris(2,4,6-triphenylphenyl)corrolato3-), the new iron corroles Fe(OTf)(ttppc) (2), Fe(OTf)(ttppc)(AgOTf) (3), and Fe(F)(ttppc) (4) were synthesized. Complexes 3 and 4 are the first iron triflate and iron fluoride corroles to be structurally characterized by single crystal X-ray diffraction. The structure of 3 reveals an AgI-pyrrole (η2-π) interaction. The Fe(Cl)(ttppc) and Fe(F)(ttppc) complexes undergo halogen transfer to triarylmethyl radicals, and kinetic analysis of the reaction between (p-OMe-C6H4)3C• and 1 gave k = 1.34(3) × 103 M-1 s-1 at 23 °C and 2.2(2) M-1 s-1 at -60 °C, ΔH⧧ = +9.8(3) kcal mol-1, and ΔS⧧ = -14(1) cal mol-1 K-1 through an Eyring analysis. Complex 4 is significantly more reactive, giving k = 1.16(6) × 105 M-1 s-1 at 23 °C. The data point to a concerted mechanism and show the trend X = F- > Cl- > OH- for Fe(X)(ttppc). This study provides mechanistic insights into halogen rebound for an iron porphyrinoid complex.
Collapse
Affiliation(s)
- Geoffrey W Farley
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
35
|
Demonti L, Saffon-Merceron N, Mézailles N, Nebra N. Cross-Coupling through Ag(I)/Ag(III) Redox Manifold. Chemistry 2021; 27:15396-15405. [PMID: 34473859 DOI: 10.1002/chem.202102836] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 01/07/2023]
Abstract
In ample variety of transformations, the presence of silver as an additive or co-catalyst is believed to be innocuous for the efficiency of the operating metal catalyst. Even though Ag additives are required often as coupling partners, oxidants or halide scavengers, its role as a catalytically competent species is widely neglected in cross-coupling reactions. Most likely, this is due to the erroneously assumed incapacity of Ag to undergo 2e- redox steps. Definite proof is herein provided for the required elementary steps to accomplish the oxidative trifluoromethylation of arenes through AgI /AgIII redox catalysis (i. e. CEL coupling), namely: i) easy AgI /AgIII 2e- oxidation mediated by air; ii) bpy/phen ligation to AgIII ; iii) boron-to-AgIII aryl transfer; and iv) ulterior reductive elimination of benzotrifluorides from an [aryl-AgIII -CF3 ] fragment. More precisely, an ultimate entry and full characterization of organosilver(III) compounds [K]+ [AgIII (CF3 )4 ]- (K-1), [(bpy)AgIII (CF3 )3 ] (2) and [(phen)AgIII (CF3 )3 ] (3), is described. The utility of 3 in cross-coupling has been showcased unambiguously, and a large variety of arylboron compounds was trifluoromethylated via [AgIII (aryl)(CF3 )3 ]- intermediates. This work breaks with old stereotypes and misconceptions regarding the inability of Ag to undergo cross-coupling by itself.
Collapse
Affiliation(s)
- Luca Demonti
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA), Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| | - Nathalie Saffon-Merceron
- Institut de Chimie de Toulouse ICT-UAR2599, Université Paul Sabatier, CNRS, 31062, Toulouse Cedex, France
| | - Nicolas Mézailles
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA), Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| | - Noel Nebra
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA), Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
36
|
Lovisari M, Gericke R, Twamley B, McDonald AR. Comparing Metal-Halide and -Oxygen Adducts in Oxidative C/O-H Activation: Au III-Cl versus Au III-OH. Inorg Chem 2021; 60:15610-15616. [PMID: 34582177 PMCID: PMC8527453 DOI: 10.1021/acs.inorgchem.1c02222] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
High-valent metal–halides
have come to prominence as highly
effective oxidants. A direct comparison of their efficacy against
that of traditional metal–oxygen adducts is needed. [AuIII(Cl)(terpy)](ClO4)2 (1; terpy = 2,2′:6′,2-terpyridine) readily oxidized substrates bearing O–H and C–H bonds
via a hydrogen atom transfer mechanism. A direct comparison with [AuIII(OH)(terpy)](ClO4)2 (2) showed that 1 was a kinetically superior oxidant with
respect to 2 for all substrates tested. We ascribe this
to the greater thermodynamic driving force imbued by the Cl ligand
versus the OH ligand. We report a
direct comparison of the efficacy of metal−halide
oxidants to those of traditional metal−oxygen adducts. AuIII−Cl and AuIII−OH oxidants, supported
by the same ancillary ligand, readily oxidized substrates via a hydrogen
atom transfer mechanism. The AuIII−Cl oxidant was
kinetically superior for all substrates. We ascribed this to the greater
thermodynamic driving force imbued by the Cl ligand versus the OH
ligand.
Collapse
Affiliation(s)
- Marta Lovisari
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Robert Gericke
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Aidan R McDonald
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
37
|
Dong T, Tsui GC. Construction of Carbon-Fluorine Bonds via Copper-Catalyzed/-Mediated Fluorination Reactions. CHEM REC 2021; 21:4015-4031. [PMID: 34618399 DOI: 10.1002/tcr.202100231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 01/09/2023]
Abstract
The construction of carbon-fluorine bonds is an important yet challenging task in organic synthesis. Transition metal-catalyzed/-mediated C-F bond forming processes have recently emerged as a viable strategy and provided access to value-added monofluorinated compounds. A dramatic increase in fluorination methods using inexpensive and earth-abundant copper can be seen in the past decade surpassing those using palladium and silver. This review discusses the recent development of Cu-catalyzed/-mediated formation of C(sp2 )-F and C(sp3 )-F bonds.
Collapse
Affiliation(s)
- Tao Dong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Gavin Chit Tsui
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
38
|
Nicoli F, Baroncini M, Silvi S, Groppi J, Credi A. Direct synthetic routes to functionalised crown ethers. Org Chem Front 2021; 8:5531-5549. [PMID: 34603737 PMCID: PMC8477657 DOI: 10.1039/d1qo00699a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/27/2021] [Indexed: 11/21/2022]
Abstract
Crown ethers are macrocyclic hosts that can complex a wide range of inorganic and organic cations as well as neutral guest species. Their widespread utilization in several areas of fundamental and applied chemistry strongly relies on strategies for their functionalisation, in order to obtain compounds that could carry out multiple functions and could be incorporated in sophisticated systems. Although functionalised crown ethers are normally synthesised by templated macrocyclisation using appropriately substituted starting materials, the direct addition of functional groups onto a pre-formed macrocyclic framework is a valuable yet underexplored alternative. Here we review the methodologies for the direct functionalisation of aliphatic and aromatic crown ethers sporadically reported in the literature over a period of four decades. The general approach for the introduction of moieties on aliphatic crown ethers involves a radical mediated cross dehydrogenative coupling initiated either by photochemical or thermal/chemical activation, while aromatic crown ethers are commonly derivatised via electrophilic aromatic substitution. Direct functionalization routes can reduce synthetic effort, allow the later modification of crown ether-based architectures, and disclose new ways to exploit these versatile macrocycles in contemporary supramolecular science and technology.
Collapse
Affiliation(s)
- Federico Nicoli
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna viale del Risorgimento 4 40136 Bologna Italy
| | - Massimo Baroncini
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna viale Fanin 44 40127 Bologna Italy
| | - Serena Silvi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica "G. Ciamician", Università di Bologna via Selmi 2 40126 Bologna Italy
| | - Jessica Groppi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna viale del Risorgimento 4 40136 Bologna Italy
| |
Collapse
|
39
|
Liu H, Shen Q. Well-defined organometallic Copper(III) complexes: Preparation, characterization and reactivity. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213923] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Chang Z, Huang J, Wang S, Chen G, Zhao H, Wang R, Zhao D. Copper catalyzed late-stage C(sp 3)-H functionalization of nitrogen heterocycles. Nat Commun 2021; 12:4342. [PMID: 34267229 PMCID: PMC8282657 DOI: 10.1038/s41467-021-24671-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/21/2021] [Indexed: 11/15/2022] Open
Abstract
Nitrogen heterocycle represents a ubiquitous skeleton in natural products and drugs. Late-stage C(sp3)-H bond functionalization of N-heterocycles with broad substrate scope remains a challenge and of particular significance to modern chemical synthesis and pharmaceutical chemistry. Here, we demonstrate copper-catalysed late-stage C(sp3)-H functionalizaion of N-heterocycles using commercially available catalysts under mild reaction conditions. We have investigated 8 types of N-heterocycles which are usually found as medicinally important skeletons. The scope and utility of this approach are demonstrated by late-stage C(sp3)-H modification of these heterocycles including a number of pharmaceuticals with a broad range of nucleophiles, e.g. methylation, arylation, azidination, mono-deuteration and glycoconjugation etc. Preliminary mechanistic studies reveal that the reaction undergoes a C-H fluorination process which is followed by a nucleophilic substitution.
Collapse
Affiliation(s)
- Zhe Chang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jialin Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Si Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Geshuyi Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Heng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| | - Depeng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
41
|
Britton R, Gouverneur V, Lin JH, Meanwell M, Ni C, Pupo G, Xiao JC, Hu J. Contemporary synthetic strategies in organofluorine chemistry. ACTA ACUST UNITED AC 2021. [DOI: 10.1038/s43586-021-00042-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
Wu T, Musgrove J, Siegler MA, Garcia-Bosch I. Mononuclear and Dinuclear Copper Complexes of Tridentate Redox-active Ligands with Tunable H-bonding Donors: Structure, Spectroscopy and H + /e - Reactivity. Chem Asian J 2021; 16:1608-1618. [PMID: 33929787 DOI: 10.1002/asia.202100286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/29/2021] [Indexed: 11/06/2022]
Abstract
In this research article, we describe the synthesis and characterization of mononuclear and dinuclear Cu complexes bound by a family of tridentate redox-active ligands with tunable H-bonding donors. The mononuclear Cu-anion complexes were oxidized to the corresponding "high-valent" intermediates by oxidation of the redox-active ligand. These species were capable of oxidizing phenols with weak O-H bonds via H-atom abstraction. Thermodynamic analysis of the H-atom abstractions, which included reduction potential measurements, pKa determination and kinetic studies, revealed that modification of the anion coordinated to the Cu and changes in the H-bonding donor did not lead to major differences in the reactivity of the "high-valent" CuY complexes (Y: hydroxide, phenolate and acetate), which indicated that the tridentate ligand scaffold acts as the H+ and e- acceptor.
Collapse
Affiliation(s)
- Tong Wu
- Department of Chemistry, Southern Methodist University, Dallas, Texas, 75275, United States
| | - Justin Musgrove
- Department of Chemistry, Southern Methodist University, Dallas, Texas, 75275, United States
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, 21218, United States
| | - Isaac Garcia-Bosch
- Department of Chemistry, Southern Methodist University, Dallas, Texas, 75275, United States
| |
Collapse
|
43
|
Vincent É, Brioche J. Synthesis of Alkyl Fluorides by Silver‐Catalyzed Radical Decarboxylative Fluorination of Cesium Oxalates. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Émilie Vincent
- INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) Normandie University 76000 Rouen France
| | - Julien Brioche
- INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) Normandie University 76000 Rouen France
| |
Collapse
|
44
|
Rafiq MI, Wang X, Farid T, Zhou J, Tang J, Tang W. Carbonyl-enriched hierarchical carbon synergizes redox electrolyte for highly-efficient and stable supercapacitors. Chem Commun (Camb) 2021; 57:3716-3719. [PMID: 33729223 DOI: 10.1039/d0cc08432h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbonyl-functionalized carbon porous leaves modifying carbon channels have been reported via single-step wood carbonization. A redox reaction between carbonyl and cupric chloride endows the freestanding electrode with an ultrahigh area specific capacitance of 13.1 F cm-2 (30 mA cm-2) and over 99.6% retention after 45 000 cycles in supercapacitors.
Collapse
Affiliation(s)
- Muhammad Imran Rafiq
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | | | | | | | | | | |
Collapse
|
45
|
Wu W, De Hont JT, Parveen R, Vlaisavljevich B, Tolman WB. Sulfur-Containing Analogues of the Reactive [CuOH] 2+ Core. Inorg Chem 2021; 60:5217-5223. [PMID: 33733755 DOI: 10.1021/acs.inorgchem.1c00216] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With the aim of drawing comparisons to the highly reactive complex LCuOH (L = bis(2,6-diisopropylphenylcarboxamido)pyridine), the complexes [Bu4N][LCuSR] (R = H or Ph) were prepared, characterized by spectroscopy and X-ray crystallography, and oxidized at low temperature to generate the species assigned as LCuSR on the basis of spectroscopy and theory. Consistent with the smaller electronegativity of S versus O, redox potentials for the LCuSR-/0 couples were ∼50 mV lower than for LCuOH-/0, and the rates of the proton-coupled electron transfer reactions of LCuSR with anhydrous 1-hydroxy-2,2,6,6-tetramethyl-piperidine at -80 °C were significantly slower (by more than 100 times) than the same reaction of LCuOH. Density functional theory (DFT) and time-dependent DFT calculations on LCuZ (Z = OH, SH, SPh) revealed subtle differences in structural and UV-visible parameters. Further comparison to complexes with Z = F, Cl, and Br using complete active space (CAS) self-consistent field and localized orbital CAS configuration interaction calculations along with a valence-bond-like interpretation of the wave functions showed differences with previously reported results ( J. Am. Chem. Soc. 2020, 142, 8514), and argue for a consistent electronic structure across the entire series of complexes, rather than a change in the nature of the ligand field arrangement for Z = F.
Collapse
Affiliation(s)
- Wen Wu
- Department of Chemistry, Washington University in St. Louis, One Brookings Hall, Campus Box 1134, St. Louis, Missouri 63130-4899, United States
| | - Jacqui Tehranchi De Hont
- Department of Chemistry, University of Minnesota, 207 Pleasant Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Riffat Parveen
- University of South Dakota, 414 E. Clark Street, Vermillion, South Dakota 57069, United States
| | - Bess Vlaisavljevich
- University of South Dakota, 414 E. Clark Street, Vermillion, South Dakota 57069, United States
| | - William B Tolman
- Department of Chemistry, Washington University in St. Louis, One Brookings Hall, Campus Box 1134, St. Louis, Missouri 63130-4899, United States
| |
Collapse
|
46
|
Krishnan VM, Shopov DY, Bouchey CJ, Bailey WD, Parveen R, Vlaisavljevich B, Tolman WB. Structural Characterization of the [CuOR] 2+ Core. J Am Chem Soc 2021; 143:3295-3299. [PMID: 33621089 DOI: 10.1021/jacs.0c13470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Formal Cu(III) complexes bearing an oxygen-based auxiliary ligand ([CuOR]2+, R = H or CH2CF3) were stabilized by modulating the donor character of supporting ligand LY (LY = 4-Y, N,N'-bis(2,6-diisopropylphenyl)-2,6-pyridinedicarboxamide, Y = H or OMe) and/or the basicity of the auxiliary ligand, enabling the first characterization of these typically highly reactive cores by NMR spectroscopy and X-ray crystallography. Enhanced lifetimes in solution and slowed rates of PCET with a phenol substrate were observed. NMR spectra corroborate the S = 0 ground states of the complexes, and X-ray structures reveal shortened Cu-ligand bond distances that match well with theory.
Collapse
Affiliation(s)
- V Mahesh Krishnan
- Department of Chemistry, Washington University in St. Louis, One Brookings Hall, Campus Box 1134, St. Louis, Missouri 63130-4899, United States
| | - Dimitar Y Shopov
- Department of Chemistry, Washington University in St. Louis, One Brookings Hall, Campus Box 1134, St. Louis, Missouri 63130-4899, United States
| | - Caitlin J Bouchey
- Department of Chemistry, Washington University in St. Louis, One Brookings Hall, Campus Box 1134, St. Louis, Missouri 63130-4899, United States
| | - Wilson D Bailey
- Department of Chemistry, Washington University in St. Louis, One Brookings Hall, Campus Box 1134, St. Louis, Missouri 63130-4899, United States
| | - Riffat Parveen
- University of South Dakota, 414 E. Clark Street, Vermillion, South Dakota 57069, United States
| | - Bess Vlaisavljevich
- University of South Dakota, 414 E. Clark Street, Vermillion, South Dakota 57069, United States
| | - William B Tolman
- Department of Chemistry, Washington University in St. Louis, One Brookings Hall, Campus Box 1134, St. Louis, Missouri 63130-4899, United States
| |
Collapse
|
47
|
Yadav V, Siegler MA, Goldberg DP. Temperature-Dependent Reactivity of a Non-heme Fe III(OH)(SR) Complex: Relevance to Isopenicillin N Synthase. J Am Chem Soc 2021; 143:46-52. [PMID: 33356198 DOI: 10.1021/jacs.0c09688] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Non-heme iron complexes with cis-FeIII(OH)(SAr/OAr) coordination were isolated and examined for their reactivity with a tertiary carbon radical. The sulfur-ligated complex shows a temperature dependence on •OH versus ArS• transfer, whereas the oxygen-ligated complex does not. These results provide the first working model for C-S bond formation in isopenicillin N synthase and indicate that kinetic control may be a key factor in the selectivity of non-heme iron "rebound" processes.
Collapse
Affiliation(s)
- Vishal Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
48
|
Scheide MR, Nicoleti CR, Martins GM, Braga AL. Electrohalogenation of organic compounds. Org Biomol Chem 2021; 19:2578-2602. [DOI: 10.1039/d0ob02459g] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this review we target sp, sp2 and sp3 carbon fluorination, chlorination, bromination and iodination reactions using electrolysis as a redox medium. Mechanistic insights and substrate reactivity are also discussed.
Collapse
Affiliation(s)
- Marcos R. Scheide
- Departamento de Química
- Universidade Federal de Santa Catarina – UFSC
- Florianópolis
- Brazil
| | - Celso R. Nicoleti
- Departamento de Química
- Universidade Federal de Santa Catarina – UFSC
- Florianópolis
- Brazil
| | - Guilherme M. Martins
- Departamento de Química
- Universidade Federal de Santa Catarina – UFSC
- Florianópolis
- Brazil
| | - Antonio L. Braga
- Departamento de Química
- Universidade Federal de Santa Catarina – UFSC
- Florianópolis
- Brazil
| |
Collapse
|
49
|
Shu C, Feng J, Zheng H, Cheng C, Yuan Z, Zhang Z, Xue XS, Zhu G. Internal Alkyne-Directed Fluorination of Unactivated C(sp 3)-H Bonds. Org Lett 2020; 22:9398-9403. [PMID: 33226830 DOI: 10.1021/acs.orglett.0c03730] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A silver-mediated internal alkyne-guided fluorination of unactivated C(sp3)-H bonds is described. The reaction provides a facile access to γ-fluorinated fluoroalkylated (Z)-alkenes from readily available alkynes in promising yields with excellent regioselectivity, stereoselectivity, and site selectivity.
Collapse
Affiliation(s)
- Chenyun Shu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Jian Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Hanliang Zheng
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Cungui Cheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Zheliang Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Zuxiao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Xiao-Song Xue
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| |
Collapse
|
50
|
Cummins DC, Alvarado JG, Zaragoza JPT, Effendy Mubarak MQ, Lin YT, de Visser SP, Goldberg DP. Hydroxyl Transfer to Carbon Radicals by Mn(OH) vs Fe(OH) Corrole Complexes. Inorg Chem 2020; 59:16053-16064. [PMID: 33047596 DOI: 10.1021/acs.inorgchem.0c02640] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The transfer of •OH from metal-hydroxo species to carbon radicals (R•) to give hydroxylated products (ROH) is a fundamental process in metal-mediated heme and nonheme C-H bond oxidations. This step, often referred to as the hydroxyl "rebound" step, is typically very fast, making direct study of this process challenging if not impossible. In this report, we describe the reactions of the synthetic models M(OH)(ttppc) (M = Fe (1), Mn (3); ttppc = 5,10,15-tris(2,4,6-triphenyl)phenyl corrolato3-) with a series of triphenylmethyl carbon radical (R•) derivatives ((4-X-C6H4)3C•; X = OMe, tBu, Ph, Cl, CN) to give the one-electron reduced MIII(ttppc) complexes and ROH products. Rate constants for 3 for the different radicals ranged from 11.4(1) to 58.4(2) M-1 s-1, as compared to those for 1, which fall between 0.74(2) and 357(4) M-1 s-1. Linear correlations for Hammett and Marcus plots for both Mn and Fe were observed, and the small magnitudes of the slopes for both correlations imply a concerted •OH transfer reaction for both metals. Eyring analyses of reactions for 1 and 3 with (4-X-C6H4)3C• (X = tBu, CN) also give good linear correlations, and a comparison of the resulting activation parameters highlight the importance of entropy in these •OH transfer reactions. Density functional theory calculations of the reaction profiles show a concerted process with one transition state for all radicals investigated and help to explain the electronic features of the OH rebound process.
Collapse
Affiliation(s)
- Daniel C Cummins
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Jessica G Alvarado
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Jan Paulo T Zaragoza
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Muhammad Qadri Effendy Mubarak
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Yen-Ting Lin
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sam P de Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|